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Analysis of Panel Data

Panel data models have become increasingly popular among applied re-
searchers due to their heightened capacity for capturing the complexity of
human behavior as compared to cross-sectional or time-series data mod-
els. As a consequence, more and richer panel data sets also have become
increasingly available. This second edition is a substantial revision of the
highly successful first edition of 1986. Recent advances in panel data re-
search are presented in a rigorous and accessible manner and are carefully
integrated with the older material. The thorough discussion of theory and
the judicious use of empirical examples will make this book useful to grad-
uate students and advanced researchers in economics, business, sociology,
political science, etc. Other specific revisions include the introduction of
Bayes method and the notion of strict exogeneity with estimators presented
in a generalized method of moments framework to link the identification
of various models, intuitive explanations of semiparametric methods of
estimating discrete choice models and methods of pairwise trimming for
the estimation of panel sample selection models, etc.

Cheng Hsiao is Professor of Economics at the University of Southern
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literature. Professor Hsiao is also a coauthor of Econometric Models,
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Dependent Variable Models (Cambridge University Press, 1999, with
K. Lahiri, L.F. Lee, and M.H. Pesaran), and coeditor of Nonlinear Stati-
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Preface to the Second Edition

Since the publication of the first edition of this monograph in 1986, there has
been a phenomenal growth of articles dealing with panel data. According to
the Social Science Citation Index, there were 29 articles related to panel data in
1989. But in 1997 there were 518; in 1998, 553; and in 1999, 650. The increasing
attention is partly due to the greater availability of panel data sets, which can
better answer questions of substantial interest than a single set of cross-section
or time series data can, and partly due to the rapid growth in computational
power of the individual researcher. It is furthermore motivated by the internal
methodological logic of the subject (e.g., Trognon (2000)).

The current version is a substantial revision of the first edition. The major
additions are essentially on nonlinear panel data models of discrete choice
(Chapter 7) and sample selection (Chapter 8); a new Chapter 10 on miscella-
neous topics such as simulation techniques, large N and T theory, unit root and
cointegration tests, multiple level structure, and cross-sectional dependence;
and new sections on estimation of dynamic models (4.5–4.7), Bayesian treat-
ment of models with fixed and random coefficients (6.6–6.8), and repeated
cross-sectional data (or pseudopanels), etc. In addition, many of the discussions
in old chapters have been updated. For instance, the notion of strict exogene-
ity is introduced, and estimators are also presented in a generalized method
of moments framework to help link the assumptions that are required for the
identification of various models. The discussion of fixed and random effects is
updated in regard to restrictions on the assumption about unobserved specific
effects, etc.

The goal of this revision remains the same as that of the first edition. It
aims to bring up to date a comprehensive analytical framework for the analy-
sis of a greater variety of data. The emphasis is on formulating appropri-
ate statistical inference for issues shaped by important policy concerns. The
revised edition of this monograph is intended neither as an encyclopedia nor
as a history of panel data econometrics. I apologize for the omissions of many
important contributions. A recount of the history of panel data econometrics
can be found in Nerlove (2000). Some additional issues and references can
also be found in a survey by Arellano and Honoré (2001) and in four recent



xiv Preface to the Second Edition

edited volumes – Matyás and Sevester (1996); Hsiao, Lahiri, Lee, and Pesaran
(1999); Hsiao, Morimune, and Powell (2001); and Krishnakumar and Ronchetti
(2000). Software is reviewed by Blanchard (1996).

I would like to thank the editor, Scott Parris, for his encouragement and
assistance in preparing the revision, and Andrew Chesher and two anonymous
readers for helpful comments on an early draft. I am also very grateful to E.
Kyriazidou for her careful and detailed comments on Chapters 7 and 8, S. Chen
and J. Powell for their helpful comments and suggestions on Chapter 8, and H.R.
Moon for the section on large panels, Sena Schlessinger for her expert typing
of the manuscript except for Chapter 7, Yan Shen for carefully proofreading
the manuscript and for expertly typing Chapter 7, and Siyan Wang for drawing
the figures for Chapter 8. Of course, all remaining errors are mine. The kind
permissions to reproduce parts of articles by James Heckman, C. Manski, Daniel
McFadden, Ariel Pakes, Econometrica, Journal of the American Statistical
Association, Journal of Econometrics, Regional Science and Urban Economics,
Review of Economic Studies, The University of Chicago Press, and Elsevier
Science are also gratefully acknowledged.



Preface to the First Edition

Recently, empirical research in economics has been enriched by the availability
of a wealth of new sources of data: cross sections of individuals observed over
time. These allow us to construct and test more realistic behavioral models
that could not be identified using only a cross section or a single time series
data set. Nevertheless, the availability of new data sources raises new issues.
New methods are constantly being introduced, and points of view are changing.
An author preparing an introductory monograph has to select the topics to be
included. My selection involves controlling for unobserved individual and/or
time characteristics to avoid specification bias and to improve the efficiency of
the estimates. The more basic and more commonly used methods are treated
here, although to some extent the coverage is a matter of taste. Some examples
of applications of the methods are also given, and the uses, computational
approaches, and interpretations are discussed.

I am very much indebted to C. Manski and to a reader for Cambridge
University Press, as well as to G. Chamberlain and J. Ham, for helpful com-
ments and suggestions. I am also grateful to Mario Tello Pacheco, who read
through the manuscript and made numerous suggestions concerning matters of
exposition and corrections of errors of every magnitude. My appreciation also
goes to V. Bencivenga, A.C. Cameron, T. Crawley, A. Deaton, E. Kuh, B. Ma,
D. McFadden, D. Mountain, G. Solon, G. Taylor, and K.Y. Tsui, for helpful
comments, and Sophia Knapik and Jennifer Johnson, who patiently typed and
retyped innumerable drafts and revisions. Of course, in material like this it is
easy to generate errors, and the reader should put the blame on the author for
any remaining errors.

Various parts of this monograph were written while I was associated with
Bell Laboratories, Murray Hill, Princeton University, Stanford University, the
University of Southern California, and the University of Toronto. I am grateful
to these institutions for providing me with secretarial and research facilities
and, most of all, stimulating colleagues. Financial support from the National
Science Foundation, U.S.A., and from the Social Sciences and Humanities
Research Council of Canada is gratefully acknowledged.





CHAPTER 1

Introduction

1.1 ADVANTAGES OF PANEL DATA

A longitudinal, or panel, data set is one that follows a given sample of individuals
over time, and thus provides multiple observations on each individual in the
sample. Panel data have become widely available in both the developed and
developing countries. For instance, in the U.S., two of the most prominent panel
data sets are the National Longitudinal Surveys of Labor Market Experience
(NLS) and the University of Michigan’s Panel Study of Income Dynamics
(PSID).

The NLS began in the mid-1960s. It contains five separate longitudinal data
bases covering distinct segments of the labor force: men whose ages were 45
to 59 in 1966, young men 14 to 24 in 1966, women 30 to 44 in 1967, young
women 14 to 24 in 1968, and youth of both sexes 14 to 21 in 1979. In 1986, the
NLS expanded to include surveys of the children born to women who partici-
pated in the National Longitudinal Survey of Youth 1979. The list of variables
surveyed is running into the thousands, with the emphasis on the supply side
of the labor market. Table 1.1 summarizes the NLS survey groups, the sizes of
the original samples, the span of years each group has been interviewed, and
the current interview status of each group (for detail, see NLS Handbook 2000,
U.S. Department of Labor, Bureau of Labor Statistics).

The PSID began with collection of annual economic information from a
representative national sample of about 6,000 families and 15,000 individuals
in 1968 and has continued to the present. The data set contains over 5,000
variables, including employment, income, and human-capital variables, as well
as information on housing, travel to work, and mobility. In addition to the NLS
and PSID data sets there are several other panel data sets that are of interest
to economists, and these have been cataloged and discussed by Borus (1981)
and Juster (2000); also see Ashenfelter and Solon (1982) and Becketti et al.
(1988).1

In Europe, various countries have their annual national or more frequent
surveys – the Netherlands Socio-Economic Panel (SEP), the German Social
Economics Panel (GSOEP), the Luxembourg Social Economic Panel (PSELL),



Ta
bl

e
1.

1.
T

he
N

L
S:

Su
rv

ey
gr

ou
ps

,s
am

pl
e

si
ze

s,
in

te
rv

ie
w

ye
ar

s,
an

d
su

rv
ey

st
at

us

A
ge

B
ir

th
ye

ar
O

ri
gi

na
l

In
iti

al
ye

ar
/

N
um

be
r

N
um

be
r

at
Su

rv
ey

gr
ou

p
co

ho
rt

co
ho

rt
sa

m
pl

e
la

te
st

ye
ar

of
su

rv
ey

s
la

st
in

te
rv

ie
w

St
at

us

O
ld

er
m

en
45

–5
9

4/
2/

07
–4

/1
/2

1
5,

02
0

19
66

/1
99

0
13

2,
09

21
E

nd
ed

M
at

ur
e

w
om

en
30

–4
4

4/
2/

23
–4

/1
/3

7
5,

08
3

19
67

/1
99

9
19

2,
46

62
C

on
tin

ui
ng

Y
ou

ng
m

en
14

–2
4

4/
2/

42
–4

/1
/5

2
5,

22
5

19
66

/1
98

1
12

3,
39

8
E

nd
ed

Y
ou

ng
w

om
en

14
–2

4
19

44
–1

95
4

5,
15

9
19

68
/1

99
9

20
2,

90
02

C
on

tin
ui

ng

N
L

SY
79

14
–2

1
19

57
–1

96
4

12
,6

86
3

19
79

/1
99

8
18

8,
39

9
C

on
tin

ui
ng

N
L

SY
79

ch
ild

re
n

bi
rt

h–
14

—
—

4
19

86
/1

99
8

7
4,

92
4

C
on

tin
ui

ng
N

L
SY

79
yo

un
g

ad
ul

ts
15

–2
2

—
—

4
19

94
/1

99
8

3
2,

14
3

C
on

tin
ui

ng

N
L

SY
97

12
–1

6
19

80
–1

98
4

8,
98

4
19

97
/1

99
9

3
8,

38
6

C
on

tin
ui

ng

1
In

te
rv

ie
w

s
in

19
90

w
er

e
al

so
co

nd
uc

te
d

w
ith

2,
20

6
w

id
ow

s
or

ot
he

r
ne

xt
-o

f-
ki

n
of

de
ce

as
ed

re
sp

on
de

nt
s.

2
Pr

el
im

in
ar

y
nu

m
be

rs
.

3
A

ft
er

dr
op

pi
ng

th
e

m
ili

ta
ry

(i
n

19
85

)
an

d
ec

on
om

ic
al

ly
di

sa
dv

an
ta

ge
d

no
n-

B
la

ck
,n

on
-H

is
pa

ni
c

ov
er

sa
m

pl
es

(i
n

19
91

),
th

e
sa

m
pl

e
co

nt
ai

ns
9,

96
4

re
sp

on
de

nt
s

el
ig

ib
le

fo
r

in
te

rv
ie

w
.

4
T

he
si

ze
s

of
th

e
N

L
SY

79
ch

ild
re

n
an

d
yo

un
g

ad
ul

ts
am

pl
es

ar
e

de
pe

nd
en

to
n

th
e

nu
m

be
r

of
ch

ild
re

n
bo

rn
to

fe
m

al
e

N
L

SY
79

re
sp

on
de

nt
s,

w
hi

ch
is

in
cr

ea
si

ng
ov

er
tim

e.
So

ur
ce

:
N

L
S

H
an

db
oo

k,
20

00
,U

.S
.D

ep
ar

tm
en

to
f

L
ab

or
,B

ur
ea

u
of

L
ab

or
St

at
is

tic
s.



1.1 Advantages of Panel Data 3

the British Household Panel Survey (BHPS), etc. Starting in 1994, the National
Data Collection Units (NDUs) of the Statistical Office of the European Com-
munities, “in response to the increasing demand in the European Union for
comparable information across the Member States on income, work and em-
ployment, poverty and social exclusion, housing, health, and many other diverse
social indicators concerning living conditions of private households and per-
sons” (Eurostat (1996)), have begun coordinating and linking existing national
panels with centrally designed standardized multipurpose annual longitudinal
surveys. For instance, the Manheim Innovation Panel (MIP) and the Manheim
Innovation Panel – Service Sector (MIP-S) contain annual surveys of innova-
tive activities (product innovations, expenditure on innovations, expenditure
on R&D, factors hampering innovations, the stock of capital, wages, and skill
structures of employees, etc.) of German firms with at least five employees in
manufacturing and service sectors, started in 1993 and 1995, respectively. The
survey methodology is closely related to the recommendations on innovation
surveys manifested in the OSLO Manual of the OECD and Eurostat, thereby
yielding international comparable data on innovation activities of German firms.
The 1993 and 1997 surveys also become part of the European Community Inno-
vation Surveys CIS I and CIS II (for detail, see Janz et al. (2001)). Similarly, the
European Community Household Panel (ECHP) is to represent the population
of the European Union (EU) at the household and individual levels. The ECHP
contains information on demographics, labor-force behavior, income, health,
education and training, housing, migration, etc. The ECHP now covers 14 of the
15 countries, the exception being Sweden (Peracchi (2000)). Detailed statistics
from the ECHP are published in Eurostat’s reference data base New Cronos
in three domains, namely health, housing, and income and living conditions
(ILC).2

Panel data have also become increasingly available in developing countries.
In these countries, there may not have a long tradition of statistical collection.
It is of special importance to obtain original survey data to answer many sig-
nificant and important questions. The World Bank has sponsored and helped
to design many panel surveys. For instance, the Development Research Insti-
tute of the Research Center for Rural Development of the State Council of
China, in collaboration with the World Bank, undertook an annual survey of
200 large Chinese township and village enterprises from 1984 to 1990 (Hsiao
et al. (1998)).

Panel data sets for economic research possess several major advantages over
conventional cross-sectional or time-series data sets (e.g., Hsiao (1985a, 1995,
2000)). Panel data usually give the researcher a large number of data points,
increasing the degrees of freedom and reducing the collinearity among explana-
tory variables – hence improving the efficiency of econometric estimates. More
importantly, longitudinal data allow a researcher to analyze a number of im-
portant economic questions that cannot be addressed using cross-sectional or
time-series data sets. For instance, consider the following example taken from
Ben-Porath (1973): Suppose that a cross-sectional sample of married women
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is found to have an average yearly labor-force participation rate of 50 per-
cent. At one extreme this might be interpreted as implying that each woman
in a homogeneous population has a 50 percent chance of being in the labor
force in any given year, while at the other extreme it might imply that 50 per-
cent of the women in a heterogeneous population always work and 50 percent
never work. In the first case, each woman would be expected to spend half
of her married life in the labor force and half out of the labor force, and job
turnover would be expected to be frequent, with an average job duration of
two years. In the second case, there is no turnover, and current information
about work status is a perfect predictor of future work status. To discriminate
between these two models, we need to utilize individual labor-force histories
to estimate the probability of participation in different subintervals of the life
cycle. This is possible only if we have sequential observations for a number of
individuals.

The difficulties of making inferences about the dynamics of change from
cross-sectional evidence are seen as well in other labor-market situations. Con-
sider the impact of unionism on economic behavior (e.g., Freeman and Medoff
1981). Those economists who tend to interpret the observed differences between
union and nonunion firms or employees as largely real believe that unions and
the collective-bargaining process fundamentally alter key aspects of the employ-
ment relationship: compensation, internal and external mobility of labor, work
rules, and environment. Those economists who regard union effects as largely
illusory tend to posit that the real world is close enough to satisfying the con-
ditions of perfect competition; they believe that the observed union–nonunion
differences are mainly due to differences between union and nonunion firms or
workers prior to unionism or postunion sorting. Unions do not raise wages in
the long run, because firms react to higher wages (forced by the union) by hiring
better-quality workers. If one believes the former view, the coefficient of the
dummy variable for union status in a wage or earning equation is a measure of
the effect of unionism. If one believes the latter view, then the dummy variable
for union status could be simply acting as a proxy for worker quality. A single
cross-sectional data set usually cannot provide a direct choice between these
two hypotheses, because the estimates are likely to reflect interindividual dif-
ferences inherent in comparisons of different people or firms. However, if panel
data are used, one can distinguish these two hypotheses by studying the wage
differential for a worker moving from a nonunion firm to a union firm, or vice
versa. If one accepts the view that unions have no effect, then a worker’s wage
should not be affected when he moves from a nonunion firm to a union firm,
if the quality of this worker is constant over time. On the other hand, if unions
truly do raise wages, then, holding worker quality constant, the worker’s wage
should rise as he moves to a union firm from a nonunion firm. By following
given individuals or firms over time as they change status (say from nonunion
to union, or vice versa), one can construct a proper recursive structure to study
the before–after effect.
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Whereas microdynamic and macrodynamic effects typically cannot be es-
timated using a cross-sectional data set, a single time-series data set usually
cannot provide precise estimates of dynamic coefficients either. For instance,
consider the estimation of a distributed-lag model:

yt =
h∑

τ=0

βτ xt−τ + ut , t = 1, . . . , T, (1.1.1)

where xt is an exogenous variable and ut is a random disturbance term. In
general, xt is near xt−1, and still nearer 2xt−1 − xt−2 = xt−1 + (xt−1 − xt−2);
fairly strict multicollinearities appear among h + 1 explanatory variables,
x1, xt−1, . . . , xt−h . Hence, there is not sufficient information to obtain precise
estimates of any of the lag coefficients without specifying, a priori, that each
of them is a function of only a very small number of parameters [e.g., Almon
lag, rational distributed lag (Malinvaud (1970))]. If panel data are available, we
can utilize the interindividual differences in x values to reduce the problem of
collinearity; this allows us to drop the ad hoc conventional approach of con-
straining the lag coefficients {βτ } and to impose a different prior restriction to
estimate an unconstrained distributed-lag model.

Another example is that measurement errors can lead to unidentification of a
model in the usual circumstance. However, the availability of multiple observa-
tions for a given individual or at a given time may allow a researcher to identify
an otherwise unidentified model (e.g., Biørn (1992); Griliches and Hausman
(1986); Hsiao (1991b); Hsiao and Taylor (1991); Wansbeek and Koning (1989)).

Besides the advantage that panel data allow us to construct and test more com-
plicated behavioral models than purely cross-sectional or time-series data, the
use of panel data also provides a means of resolving or reducing the magnitude
of a key econometric problem that often arises in empirical studies, namely, the
often heard assertion that the real reason one finds (or does not find) certain
effects is the presence of omitted (mismeasured or unobserved) variables that
are correlated with explanatory variables. By utilizing information on both the
intertemporal dynamics and the individuality of the entities being investigated,
one is better able to control in a more natural way for the effects of missing or
unobserved variables. For instance, consider a simple regression model:

yit = α∗ + �′xi t + �′zi t + uit , i = 1, . . . , N ,

t = 1, . . . , T,
(1.1.2)

where xi t and zi t are k1 × 1 and k2 × 1 vectors of exogenous variables; α∗,
�, and � are 1 × 1, k1 × 1, and k2 × 1 vectors of constants respectively; and
the error term uit is independently, identically distributed over i and t , with
mean zero and variance σ 2

u . It is well known that the least-squares regression
of yit on xi t and zi t yields unbiased and consistent estimators of α∗, �, and
�. Now suppose that zi t values are unobservable, and the covariances between
xi t and zi t are nonzero. Then the least-squares regression coefficients of yit on
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xi t are biased. However, if repeated observations for a group of individuals are
available, they may allow us to get rid of the effect of z. For example, if zi t = zi

for all t (i.e., z values stay constant through time for a given individual but vary
across individuals), we can take the first difference of individual observations
over time and obtain

yit − yi,t−1 = �′(xi t − xi,t−1) + (uit − ui,t−1), i = 1, . . . , N ,

t = 2, . . . , T .

(1.1.3)

Similarly, if zi t = zt for all i (i.e., z values stay constant across individuals at a
given time, but exhibit variation through time), we can take the deviation from
the mean across individuals at a given time and obtain

yit − ȳt = �′(xi t − x̄t ) + (uit − ūt ), i = 1, . . . , N ,

t = 1, . . . , T,
(1.1.4)

where ȳt = (1/N )
∑N

i=1 yit , x̄t = (1/N )
∑N

i=1 xi t , and ūt = (1/N )
∑N

i=1 uit .
Least-squares regression of (1.1.3) or (1.1.4) now provides unbiased and con-
sistent estimates of �. Nevertheless if we have only a single cross-sectional
data set (T = 1) for the former case (zi t = zi ), or a single time-series data set
(N = 1) for the latter case (zi t = zt ), such transformations cannot be performed.
We cannot get consistent estimates of � unless there exist instruments that are
correlated with x but are uncorrelated with z and u.

MaCurdy’s (1981) work on the life-cycle labor supply of prime-age males
under certainty is an example of this approach. Under certain simplifying as-
sumptions, MaCurdy shows that a worker’s labor-supply function can be written
as (1.1.2), where y is the logarithm of hours worked, x is the logarithm of the
real wage rate, and z is the logarithm of the worker’s (unobserved) marginal
utility of initial wealth, which, as a summary measure of a worker’s lifetime
wages and property income, is assumed to stay constant through time but to vary
across individuals (i.e., zit = zi ). Given the economic problem, not only is xit

correlated with zi , but every economic variable that could act as an instrument
for xit (such as education) is also correlated with zi . Thus, in general, it is not
possible to estimate � consistently from a cross-sectional data set,3 but if panel
data are available, one can consistently estimate � by first-differencing (1.1.2).

The “conditional convergence” of the growth rate is another example (e.g.,
Durlauf (2001); Temple (1999)). Given the role of transitional dynamics, it is
widely agreed that growth regressions should control for the steady state level
of income (e.g., Barro and Sala-i-Martin (1995); Mankiew, Romer, and Weil
(1992)). Thus, a growth-rate regression model typically includes investment
ratio, initial income, and measures of policy outcomes like school enrollment
and the black-market exchange-rate premium as regressors. However, an im-
portant component, the initial level of a country’s technical efficiency, zi0, is
omitted because this variable is unobserved. Since a country that is less efficient
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is also more likely to have lower investment rate or school enrollment, one can
easily imagine that zi0 is correlated with the regressors and the resulting cross-
sectional parameter estimates are subject to omitted-variable bias. However,
with panel data one can eliminate the influence of initial efficiency by taking
the first difference of individual country observations over time as in (1.1.3).

Panel data involve two dimensions: a cross-sectional dimension N , and a
time-series dimension T . We would expect that the computation of panel data
estimators would be more complicated than the analysis of cross-section data
alone (where T = 1) or time series data alone (where N = 1). However, in
certain cases the availability of panel data can actually simplify the computation
and inference. For instance, consider a dynamic Tobit model of the form

y∗
i t = γ y∗

i,t−1 + βxit + εi t (1.1.5)

where y∗ is unobservable, and what we observe is y, where yit = y∗
i t if y∗

i t > 0
and 0 otherwise. The conditional density of yit given yi,t−1 = 0 is much more
complicated than the case if y∗

i,t−1 is known, because the joint density of
(yit , yi,t−1) involves the integration of y∗

i,t−1 from −∞ to 0. Moreover, when
there are a number of censored observations over time, the full implemen-
tation of the maximum likelihood principle is almost impossible. However,
with panel data, the estimation of γ and β can be simplified considerably by
simply focusing on the subset of data where yi,t−1 > 0, because the joint den-
sity of f (yit , yi,t−1) can be written as the product of the conditional density
f (yi,t | yi,t−1) and the marginal density of yi,t−1. But if y∗

i,t−1 is observable,
the conditional density of yit given yi,t−1 = y∗

i,t−1 is simply the density of εi t

(Arellano, Bover, and Labeager (1999)).
Another example is the time-series analysis of nonstationary data. The large-

sample approximation of the distributions of the least-squares or maximum like-
lihood estimators when T → ∞ are no longer normally distributed if the data
are nonstationary (e.g., Dickey and Fuller (1979, 1981); Phillips and Durlauf
(1986)). Hence, the behavior of the usual test statistics will often have to be
inferred through computer simulations. But if panel data are available, and ob-
servations among cross-sectional units are independent, then one can invoke
the central limit theorem across cross-sectional units to show that the limiting
distributions of many estimators remain asymptotically normal and the Wald-
type test statistics are asymptotically chi-square distributed (e.g., Binder, Hsiao,
and Pesaran (2000); Levin and Lin (1993); Pesaran, Shin, and Smith (1999),
Phillips and Moon (1999, 2000); Quah (1994)).

Panel data also provide the possibility of generating more accurate predic-
tions for individual outcomes than time-series data alone. If individual behaviors
are similar conditional on certain variables, panel data provide the possibility
of learning an individual’s behavior by observing the behavior of others, in
addition to the information on that individual’s behavior. Thus, a more accurate
description of an individual’s behavior can be obtained by pooling the data
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(e.g., Hsiao and Mountain (1994); Hsiao and Tahmiscioglu (1997); Hsiao et al.
(1989); Hsiao, Applebe, and Dineen (1993)).

1.2 ISSUES INVOLVED IN UTILIZING
PANEL DATA

1.2.1 Heterogeneity Bias

The oft-touted power of panel data derives from their theoretical ability to iso-
late the effects of specific actions, treatments, or more general policies. This
theoretical ability is based on the assumption that economic data are gener-
ated from controlled experiments in which the outcomes are random variables
with a probability distribution that is a smooth function of the various vari-
ables describing the conditions of the experiment. If the available data were in
fact generated from simple controlled experiments, standard statistical methods
could be applied. Unfortunately, most panel data come from the very compli-
cated process of everyday economic life. In general, different individuals may
be subject to the influences of different factors. In explaining individual behav-
ior, one may extend the list of factors ad infinitum. It is neither feasible nor
desirable to include all the factors affecting the outcome of all individuals in a
model specification, since the purpose of modeling is not to mimic the reality
but is to capture the essential forces affecting the outcome. It is typical to leave
out those factors that are believed to have insignificant impacts or are peculiar
to certain individuals.

However, when important factors peculiar to a given individual are left out,
the typical assumption that economic variable y is generated by a parametric
probability distribution function P(y | �), where � is an m-dimensional real
vector, identical for all individuals at all times, may not be a realistic one.
Ignoring the individual or time-specific effects that exist among cross-sectional
or time-series units but are not captured by the included explanatory variables
can lead to parameter heterogeneity in the model specification. Ignoring such
heterogeneity could lead to inconsistent or meaningless estimates of interesting
parameters. For example, consider a simple model postulated as

yit = α∗
i + βi xi t + uit , i = 1, . . . , N ,

t = 1, . . . , T,
(1.2.1)

where x is a scalar exogenous variable (k1 = 1) and uit is the error term with
mean zero and constant variance σ 2

u . The parameters α∗
i and βi may be differ-

ent for different cross-sectional units, although they stay constant over time.
Following this assumption, a variety of sampling distributions may occur. Such
sampling distributions can seriously mislead the least-squares regression of yit

on xit when all N T observations are used to estimate the model:

yit = α∗ + βxit + uit , i = 1, . . . , N ,

t = 1, . . . , T .
(1.2.2)
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For instance, consider the situation that the data are generated as either in case
1 or case 2.

Case 1: Heterogeneous intercepts (α∗
i �= α∗

j ), homogeneous slope
(βi = β j ). We use graphs to illustrate the likely biases due to the
assumption that α∗

i �= α∗
j and βi = β j . In these graphs, the broken-

line ellipses represent the point scatter for an individual over time,
and the broken straight lines represent the individual regressions.
Solid lines serve the same purpose for the least-squares regression of
(1.2.2) using all N T observations. A variety of circumstances may
arise in this case, as shown in Figures 1.1, 1.2, and 1.3. All of these
figures depict situations in which biases arise in pooled least-squares
estimates of (1.2.2) because of heterogeneous intercepts. Obviously,
in these cases, pooled regression ignoring heterogeneous intercepts
should never be used. Moreover, the direction of the bias of the
pooled slope estimates cannot be identified a priori; it can go either
way.

Case 2: Heterogeneous intercepts and slopes (α∗
i �= α∗

j , βi �= β j ). In
Figures 1.4 and 1.5 the point scatters are not shown, and the cir-
cled numbers signify the individuals whose regressions have been
included in the analysis. For the example depicted in Figure 1.4, a
straightforward pooling of all N T observations, assuming identical
parameters for all cross-sectional units, would lead to nonsensical
results because it would represent an average of coefficients that dif-
fer greatly across individuals. Nor does the case of Figure 1.5 make
any sense in pooling, because it gives rise to the false inference that
the pooled relation is curvilinear. In either case, the classic paradigm
of the “representative agent” simply does not hold, and pooling the
data under homogeneity assumption makes no sense.

These are some of the likely biases when parameter heterogeneities among
cross-sectional units are ignored. Similar patterns of bias will also arise if the
intercepts and slopes vary through time, even though for a given time period they
are identical for all individuals. More elaborate patterns than those depicted here
are, of course, likely to occur (e.g., Chesher and Lancaster 1983; Kuh 1963).

1.2.2 Selectivity Bias

Another frequently observed source of bias in both cross-sectional and panel
data is that the sample may not be randomly drawn from the population. For
example, the New Jersey negative income tax experiment excluded all families
in the geographic areas of the experiment who had incomes above 1.5 times the
officially defined poverty level. When the truncation is based on earnings, uses
of the data that treat components of earnings (specifically, wages or hours) as
dependent variables will often create what is commonly referred to as selection
bias (e.g., Hausman and Wise (1977); Heckman (1976a, 1979); Hsiao (1974b)).
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Fig. 1.1 Fig. 1.2 Fig. 1.3

Fig. 1.4 Fig. 1.5

L

Fig. 1.6

For ease of exposition, we shall consider a cross-sectional example to get
some idea of how using a nonrandom sample may bias the least-squares esti-
mates. We assume that in the population the relationship between earnings (y)
and exogenous variables (x), including education, intelligence, and so forth, is
of the form

yi = �′xi + ui , i = 1, . . . , N , (1.2.3)

where the disturbance term ui is independently distributed with mean zero and
variance σ 2

u . If the participants of an experiment are restricted to have earnings
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less than L , the selection criterion for families considered for inclusion in the
experiment can be stated as follows:

yi = �′xi + ui ≤ L, included,

yi = �′xi + ui > L, excluded.
(1.2.4)

For simplicity, we assume that the values of exogenous variables, except for
the education variable, are the same for each observation. In Figure 1.6, we let
the upward-sloping solid line indicate the “average” relation between education
and earnings and the dots represent the distribution of earnings around this mean
for selected values of education. All individuals with earnings above a given
level L , indicated by the horizontal line, would be eliminated from this experi-
ment. In estimating the effect of education on earnings, we would observe only
the points below the limit (circled) and thus would tend to underestimate the ef-
fect of education using ordinary least squares.4 In other words, the sample selec-
tion procedure introduces correlation between right-hand variables and the error
term, which leads to a downward-biased regression line, as the dashed line in
Figure 1.6 indicates.

These examples demonstrate that despite the advantages panel data may
possess, they are subject to their own potential experimental problems. It is
only by taking proper account of selectivity and heterogeneity biases in the
panel data that one can have confidence in the results obtained. The focus of
this monograph will be on controlling for the effect of unobserved individual
and/or time characteristics to draw proper inference about the characteristics of
the population.

1.3 OUTLINE OF THE MONOGRAPH

Because the source of sample variation critically affects the formulation and
estimation of many economic models, we shall first briefly review the clas-
sic analysis of covariance procedures in Chapter 2. We shall then relax the
assumption that the parameters that characterize all temporal cross-sectional
sample observations are identical and examine a number of specifications that
allow for differences in behavior across individuals as well as over time. For
instance, a single-equation model with observations of y depending on a vector
of characteristics x can be written in the following form:

1. Slope coefficients are constant, and the intercept varies over individu-
als:

yit = α∗
i +

K∑
k=1

βk xkit + uit , i = 1, . . . , N ,

(1.3.1)
t = 1, . . . , T .
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2. Slope coefficients are constant, and the intercept varies over individu-
als and time:

yit = α∗
i t +

K∑
k=1

βk xkit + uit , i = 1, . . . , N ,

(1.3.2)
t = 1, . . . , T .

3. All coefficients vary over individuals:

yit = α∗
i +

K∑
k=1

βki xkit + uit , i = 1, . . . , N ,

(1.3.3)
t = 1, . . . , T .

4. All coefficients vary over time and individuals:

yit = α∗
i t +

K∑
k=1

βki t xkit + uit , i = 1, . . . , N ,

(1.3.4)
t = 1, . . . , T .

In each of these cases the model can be classified further, depending on whether
the coefficients are assumed to be random or fixed.

Models with constant slopes and variable intercepts [such as (1.3.1) and
(1.3.2)] are most widely used when analyzing panel data because they provide
simple yet reasonably general alternatives to the assumption that parameters
take values common to all agents at all times. We shall consequently devote
the majority of this monograph to this type of model. Static models with vari-
able intercepts will be discussed in Chapter 3, dynamic models in Chapter 4,
simultaneous-equations models in Chapter 5, and discrete-data and sample
selection models in Chapters 7 and 8, respectively. Basic issues in variable-
coefficient models for linear models [such as (1.3.3) and (1.3.4)] will be dis-
cussed in Chapter 6. Chapter 9 discusses issues of incomplete panel models,
such as estimating distributed-lag models in short panels, rotating samples,
pooling of a series of independent cross sections (pseudopanels), and the pool-
ing of data on a single cross section and a single time series. Miscellaneous
topics such as simulation methods, measurement errors, panels with large N
and large T , unit-root tests, cross-sectional dependence, and multilevel panels
will be discussed in Chapter 10. A summary view of the issues involved in
utilizing panel data will be presented in Chapter 11.

The challenge of panel data analysis has been, and will continue to be, the
best way to formulate statistical models for inference motivated and shaped
by substantive problems compatible with our understanding of the processes
generating the data. The goal of this monograph is to summarize previous work
in such a way as to provide the reader with the basic tools for analyzing and dra-
wing inferences from panel data. Analyses of several important and advanced
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topics, such as continuous time-duration models (e.g., Florens, Fougére, and
Mouchart (1996); Fougére and Kamionka (1996); Heckman and Singer (1984);
Kiefer (1988); Lancaster (1990)), general nonlinear models (e.g., Abrevaya
(1999); Amemiya (1983); Gourieroux and Jasiak (2000); Hsiao (1992c);
Jorgenson and Stokes (1982); Lancaster (2001); Wooldridge (1999)),5 count
data (Cameron and Trevedi 1998), and econometric evaluation of social pro-
grams (e.g., Angrist and Hahn (1999); Hahn (1998); Heckman (2001); Heckman
and Vytlacil (2001); Heckman, Ichimura, and Todd (1998); Hirano, Imbens, and
Ridder (2000); Imbens and Angrist (1994)), are beyond the scope of this mono-
graph.



CHAPTER 2

Analysis of Covariance

2.1 INTRODUCTION1

Suppose we have sample observations of characteristics of N individuals over T
time periods denoted by yit , xkit , i = 1, . . . , N , t = 1, . . . , T , k = 1, . . . , K .
Conventionally, observations of y are assumed to be the random outcomes of
some experiment with a probability distribution conditional on vectors of the
characteristics x and a fixed number of parameters �, f (y | x, �). When panel
data are used, one of the ultimate goals is to use all available information to
make inferences on �. For instance, a simple model commonly postulated is
that y is a linear function of x. Yet to run a least-squares regression with all
N T observations, we need to assume that the regression parameters take values
common to all cross-sectional units for all time periods. If this assumption is
not valid, as shown in Section 1.2, the pooled least-squares estimates may lead
to false inferences. Thus, as a first step toward full exploitation of the data,
we often test whether or not parameters characterizing the random outcome
variable y stay constant across all i and t .

A widely used procedure to identify the source of sample variation is the
analysis-of-covariance test. The name “analysis of variance” is often reserved
for a particular category of linear hypotheses that stipulate that the expected
value of a random variable y depends only on the class (defined by one or more
factors) to which the individual considered belongs, but excludes tests relating
to regressions. On the other hand, analysis-of-covariance models are of a mixed
character involving genuine exogenous variables, as do regression models, and
at the same time allowing the true relation for each individual to depend on
the class to which the individual belongs, as do the usual analysis-of-variance
models.

A linear model commonly used to assess the effects of both quantitative and
qualitative factors is postulated as

yit = α∗
i t + �′

i t xi t + uit , i = 1, . . . , N ,

t = 1, . . . , T,
(2.1.1)

where α∗
i t and �′

i t = (β1i t , β2i t , . . . , βK it ) are 1 × 1 and 1 × K vectors of
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constants that vary across i and t , respectively, x′
i t = (x1i t , . . . , xK it ) is a 1 × K

vector of exogenous variables, and uit is the error term. Two aspects of the esti-
mated regression coefficients can be tested: first, the homogeneity of regression
slope coefficients; second, the homogeneity of regression intercept coefficients.
The test procedure has three main steps:

1. Test whether or not slopes and intercepts simultaneously are homoge-
neous among different individuals at different times.

2. Test whether or not the regression slopes collectively are the same.
3. Test whether or not the regression intercepts are the same.

It is obvious that if the hypothesis of overall homogeneity (step 1) is ac-
cepted, the testing procedure will go no further. However, should the overall
homogeneity hypothesis be rejected, the second step of the analysis is to decide
if the regression slopes are the same. If this hypothesis of homogeneity is not
rejected, one then proceeds to the third and final test to determine the equality
of regression intercepts. In principle, step 1 is separable from steps 2 and 3.2

Although this type of analysis can be performed on several dimensions,
as described by Scheffé (1959) or Searle (1971), only one-way analysis of
covariance has been widely used. Therefore, here we present only the procedures
for performing one-way analysis of covariance.

2.2 ANALYSIS OF COVARIANCE

Model (2.1.1) only has descriptive value. It can neither be estimated nor be
used to generate prediction, because the available degrees of freedom, N T ,
is less than the number of parameters, N T (K + 1) + (number of parameters
characterizing the distribution of uit ). A structure has to be imposed on (2.1.1)
before any inference can be made. To start with, we assume that parameters are
constant over time, but can vary across individuals. Thus, we can postulate a
separate regression for each individual:

yit = α∗
i + �′

i xi t + uit , i = 1, . . . , N ,

t = 1, . . . , T .
(2.2.1)

Three types of restrictions can be imposed on (2.2.1). Namely:

H1: Regression slope coefficients are identical, and intercepts are not.
That is,

yit = α∗
i + �′xi t + uit . (2.2.2)

H2: Regression intercepts are the same, and slope coefficients are not.
That is,

yit = α∗ + �′
i xi t + uit . (2.2.3)

H3: Both slope and intercept coefficients are the same. That is,

yit = α∗ + �′xi t + uit . (2.2.4)
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Because it is seldom meaningful to ask if the intercepts are the same when the
slopes are unequal, we shall ignore the type of restrictions postulated by (2.2.3).
We shall refer to (2.2.1) as the unrestricted model, (2.2.2) as the individual-mean
or cell-mean corrected regression model, and (2.2.4) as the pooled regression.

Let

ȳi = 1

T

T∑
t=1

yit , (2.2.5)

x̄i = 1

T

T∑
t=1

xi t (2.2.6)

be the means of y and x, respectively, for the i th individual. The least-squares
estimates of �i and α∗

i in the unrestricted model (2.2.1) are given by3

�̂i = W −1
xx,i Wxy,i , α̂i = ȳi − �̂′

i x̄i , i = 1, . . . , N , (2.2.7)

where

Wxx,i =
T∑

t=1

(xi t − x̄i )(xi t − x̄i )
′,

Wxy,i =
T∑

t=1

(xi t − x̄i )(yit − ȳi ), (2.2.8)

Wyy,i =
T∑

t=1

(yit − ȳi )
2.

In the analysis-of-covariance terminology, equations (2.2.7) are called within-
group estimates. The i th-group residual sum of squares is RSSi = Wyy,i −
W ′

xy,i W
−1
xx,i Wxy,i . The unrestricted residual sum of squares is

S1 =
N∑

i=1

RSSi . (2.2.9)

The least-squares regression of the individual-mean corrected model yields
parameter estimates

�̂w = W −1
xx Wxy,

(2.2.10)
α̂∗

i = ȳi − �̂′
w x̄i , i = 1, . . . , N ,

where

Wxx =
N∑

i=1

Wxx,i and Wxy =
N∑

i=1

Wxy,i .

Let Wyy = ∑N
i=1 Wyy,i ; the residual sum of squares of (2.2.2) is

S2 = Wyy − W ′
xy W −1

xx Wxy . (2.2.11)
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The least-squares regression of the pooled model (2.2.4) yields parameter
estimates

�̂ = T −1
xx Txy, α̂∗ = ȳ − �̂′x̄, (2.2.12)

where

Txx =
N∑

i=1

T∑
t=1

(xi t − x̄)(xi t − x̄)′,

Txy =
N∑

i=1

T∑
t=1

(xi t − x̄)(yit − ȳ),

Tyy =
N∑

i=1

T∑
t=1

(yit − ȳ)2,

ȳ = 1

N T

N∑
i=1

T∑
t=1

yit , x̄ = 1

N

N∑
i=1

T∑
t=1

xi t .

The (overall) residual sum of squares is

S3 = Tyy − T ′
xy T −1

xx Txy . (2.2.13)

Under the assumption that the uit are independently normally distributed
over i and t with mean zero and variance σ 2

u , F tests can be used to test the
restrictions postulated by (2.2.2) and (2.2.4). In effect, (2.2.2) and (2.2.4) can
be viewed as (2.2.1) subject to various types of linear restrictions. For instance,
the hypothesis of heterogeneous intercepts but homogeneous slopes [equation
(2.2.2)] can be reformulated as (2.2.1) subject to (N − 1)K linear restrictions:

H1 : �1 = �2 = · · · = �N .

The hypothesis of common intercept and slope can be viewed as (2.2.1) subject
to (K + 1)(N − 1) linear restrictions:

H3 : α∗
1 = α∗

2 = · · · = α∗
N ,

�1 = �2 = · · · = �N .

Thus, application of the analysis-of-covariance test is equivalent to the ordi-
nary hypothesis test based on sums of squared residuals from linear-regression
outputs.

The unrestricted residual sum of squares S1 divided by σ 2
u has a chi-square

distribution with N T − N (K + 1) degrees of freedom. The increment in the
explained sum of squares due to allowing for the parameters to vary across
i is measured by (S3 − S1). Under H3, the restricted residual sum of squares
S3 divided by σ 2

u has a chi-square distribution with N T − (K + 1) degrees of
freedom, and (S3 − S1)/σ 2

u has a chi-square distribution with (N − 1)(K + 1)
degrees of freedom. Because (S3 − S1)/σ 2

u is independent of S1/σ
2
u , the F
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statistic

F3 = (S3 − S1)/[(N − 1)(K + 1)]

S1/[N T − N (K + 1)]
(2.2.14)

can be used to test H3. If F3 with (N − 1)(K + 1) and N (T − K − 1) degrees
of freedom is not significant, we pool the data and estimate a single equation
of (2.2.4). If the F ratio is significant, a further attempt is usually made to
find out if the nonhomogeneity can be attributed to heterogeneous slopes or
heterogeneous intercepts.

Under the hypothesis of heterogeneous intercepts but homogeneous slopes
(H1), the residual sum of squares of (2.2.2), S2 = Wyy − W ′

xy W −1
xx Wxy , divided

by σ 2
u has a chi-square distribution with N (T − 1) − K degrees of freedom.

The F test of H1 is thus given by

F1 = (S2 − S1)/[(N − 1)K ]

S1/[N T − N (K + 1)]
. (2.2.15)

If F1 with (N − 1)K and N T − N (K + 1) degrees of freedom is significant, the
test sequence is naturally halted and model (2.2.1) is treated as the maintained
hypothesis. If F1 is not significant, we can then determine the extent to which
nonhomogeneities can arise in the intercepts.

If H1 is accepted, one can also apply a conditional test for homogeneous
intercepts, namely,

H4 : α∗
1 = α∗

2 = · · · = α∗
N given �1 = · · · = �N .

The unrestricted residual sum of squares now is S2, and the restricted residual
sum of squares is S3. The reduction in the residual sum of squares in moving
from (2.2.4) to (2.2.2) is (S3 − S2). Under H4, S3 divided by σ 2

u is chi-square
distributed with N T − (K + 1) degrees of freedom, and S2 divided by σ 2

u is
chi-square distributed with N (T − 1) − K degrees of freedom. Because S2/σ

2
u

is independent of (S3 − S2)/σ 2
u , which is chi-square distributed with N − 1

degrees of freedom, the F test for H4 is

F4 = (S3 − S2)/(N − 1)

S2/[N (T − 1) − K ]
. (2.2.16)

We can summarize these tests in an analysis-of-covariance table (Table 2.1).
Alternatively, we can assume that coefficients are constant across individuals

at a given time, but can vary over time. Hence, a separate regression can be
postulated for each cross section:

yit = α∗
t + �′

t xi t + uit , i = 1, . . . , N ,
(2.2.17)

t = 1, . . . , T,

where we again assume that uit is independently normally distributed with
mean 0 and constant variance σ 2

u . Analogous analysis of covariance can then
be performed to test the homogeneities of the cross-sectional parameters over
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time. For instance, we can test for overall homogeneity (H ′
3 : α∗

1 = α∗
2 = · · · =

α∗
T , �1 = �2 = · · · = �T ) by using the F statistic

F ′
3 = (S3 − S′

1)/[(T − 1)(K + 1)]

S′
1/[N T − T (K + 1)]

(2.2.18)

with (T − 1)(K + 1) and N T − T (K + 1) degrees of freedom, where

S′
1 =

T∑
t=1

(
Wyy,t − W ′

xy,t W
−1
xx,t Wxy,t

)
,

Wyy,t =
N∑

i=1

(yit − ȳt )
2, ȳt = 1

N

N∑
i=1

yit ,

(2.2.19)

Wxx,t =
N∑

i=1

(xi t − x̄t )(xi t − x̄t )
′, x̄t = 1

N

N∑
t=1

xi t ,

Wxy,t =
N∑

i=1

(xi t − x̄t )(yit − ȳt ).

Similarly, we can test the hypothesis of heterogeneous intercepts, but homoge-
neous slopes (H ′

1 : α∗
1 �= α∗

2 �= · · · �= α∗
T , �1 = �2 = · · · = �T ), by using the

F statistic

F ′
1 = (S′

2 − S′
1)/[(T − 1)K ]

S′
1/[N T − T (K + 1)]

(2.2.20)

with (T − 1)K and N T − T (K + 1) degrees of freedom, where

S′
2 =

T∑
t=1

Wyy,t −
(

T∑
t=1

W ′
xy,t

)(
T∑

t=1

Wxx,t

)−1 (
T∑

t=1

Wxy,t

)
,

(2.2.21)

or test the hypothesis of homogeneous intercepts conditional on homogeneous
slopes �1 = �2 = · · · = �T (H ′

4) by using the F statistic

F ′
4 = (S3 − S′

2)/(T − 1)

S′
2/[T (N − 1) − K ]

(2.2.22)

with T − 1 and T (N − 1) − K degrees of freedom. In general, unless both
cross-section and time-series analyses of covariance indicate the acceptance
of homogeneity of regression coefficients, unconditional pooling (i.e., a single
least-squares regression using all observations of cross-sectional units through
time) may lead to serious bias.

Finally, it should be noted that the foregoing tests are not independent. For
example, the uncomfortable possibility exists that according to F3 (or F ′

3),
we might find homogeneous slopes and intercepts, and yet this finding could
be compatible with opposite results according to F1(F ′

1) and F4(F ′
4), because the

alternative or null hypotheses are somewhat different in the two cases. Worse
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still, we might reject the hypothesis of overall homogeneity using the test ratio
F3(F ′

3), but then find according to F1(F ′
1) and F4(F ′

4) that we cannot reject the
null hypothesis, so that the existence of heterogeneity indicated by F3 (or F ′

3)
cannot be traced. This outcome is quite proper at a formal statistical level,
although at the less formal but important level of interpreting test statistics, it
is an annoyance.

2.3 AN EXAMPLE4

With the aim of suggesting certain modifications to existing theories of invest-
ment behavior and providing estimates of the coefficients of principal interest,
Kuh (1963) used data on 60 small and middle-sized firms in capital-goods-
producing industries from 1935 to 1955, excluding the war years (1942 to
1945), to probe the proper specification for the investment function. He ex-
plored various models based on capacity accelerator behavior or internal funds
flows, with various lags. For ease of illustration, we report here only functional
specifications and results based on profit theories, capacity-utilization theories,
financial restrictions, and long-run growth theories in arithmetic form (Table
2.2, part A), their logarithmic transformations (part B), and several ratio models
(part C). The equations are summarized in Table 2.2.

There were two main reasons that Kuh resorted to using individual-firm
data rather than economic aggregates. One was the expressed doubt about the
quality of the aggregate data, together with the problems associated with es-
timating an aggregate time-series model when the explanatory variables are
highly correlated. The other was the desire to construct and test more compli-
cated behavioral models that require many degrees of freedom. However, as
stated in Section 1.2, a single regression using all observations through time
makes sense only when individual observations conditional on the explanatory
variables can be viewed as random draws from the same universe. Kuh (1963)
used the analysis-of-covariance techniques discussed in Section 2.2. to test for
overall homogeneity (F3 or F ′

3), slope homogeneity (F1 or F ′
1), and homoge-

neous intercept conditional on acceptance of homogeneous slopes (F4 or F ′
4) for

both cross-sectional units and time-series units. The results for testing homo-
geneity of time-series estimates across cross-sectional units and homogeneity
of cross-sectional estimates over time are reproduced in Tables 2.3 and 2.4,
respectively.

A striking fact recorded from these statistics is that except for the time-series
results for equations (2.3.1) and (2.3.3) (which are in first-difference form), all
other specifications failed the overall homogeneity tests.5 Furthermore, in most
cases, with the exception of cross-sectional estimates of (2.3.17) and (2.3.18)
(Table 2.4), the intercept and slope variabilities cannot be rigorously separated.
Nor do the time-series results correspond closely to cross-sectional results for
the same equation. Although analysis of covariance, like other statistics, is not
a mill that will grind out results automatically, these results do suggest that
the effects of excluded variables in both time series and cross sections may be
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Table 2.2. Investment equation forms estimated by Kuh (1963)

Part A
	Iit = α0 + β1Ci + β2	Kit + β3	Sit (2.3.1)
	Iit = α0 + β1Ci + β2	Kit + β4	Pit (2.3.2)
	Iit = α0 + β1Ci + β2	Kit + β3	Sit + β4	Pit (2.3.3)
Iit = α0 + β1Ci + β2 Kit + β3 Sit (2.3.4)
Iit = α0 + β1Ci + β2 Kit + β4 Pit (2.3.5)
Iit = α0 + β1Ci + β2 Kit + β3 Sit + β4 Pit (2.3.6)
Iit = α0 + β1Ci + β2 Kit + β3 Si,t−1 (2.3.7)
Iit = α0 + β1Ci + β2 Kit + β4 Pi,t−1 (2.3.8)
Iit = α0 + β1Ci + β2 Kit + β3 Si,t−1 + β4 Pi,t−1 (2.3.9)
Iit = α0 + β1Ci + β2 Kit + β3[(Sit + Si,t−1) ÷ 2] (2.3.10)
Iit = α0 + β1Ci + β2 Kit + β4[(Pit + Pi,t−1) ÷ 2] (2.3.11)
Iit = α0 + β1Ci + β2 Kit + β3[(Sit + Si,t−1) ÷ 2] (2.3.12)

+ β4[(Pit + Pi,t−1) ÷ 2]
[(Iit + Ii,t−1) ÷ 2] = α0 + β1Ci + β2 Kit + β3[(Sit + Si,t−1) ÷ 2] (2.3.13)
[(Iit + Ii,t−1) ÷ 2] = α0 + β1Ci + β2 Kit + β4[(Pit + Pi,t−1) ÷ 2] (2.3.14)
[(Iit + Ii,t−1) ÷ 2] = α0 + β1Ci + β2 Kit + β3[(Sit + Si,t−1) ÷ 2] (2.3.15)

+ β4[(Pit + Pi,t−1) ÷ 2]

Part B
	 log Iit = α0 + β1 log Ci + β2	 log Kit + β3	 log Sit (2.3.16)
log Iit = α0 + β1 log Ci + β2 log Kit + β3 log Sit (2.3.17)
log Iit = α0 + β1 log Ci + β2 log Kit + β3 log Si,t−1 (2.3.18)
log Iit = α0 + β1 log Ci + β2 log[(Kit + Ki,t−1) ÷ 2] (2.3.19)

+ β3 log[(Sit + Si,t−1) ÷ 2]

Part C
Iit

Kit
= α0 + β1

Pit

Kit
+ β2

Si,t−1

Ci · Ki,t−1
(2.3.20)

Iit

Kit
= α0 + β1

Pit

Kit
+ β2

Si,t−1

Ci · Ki,t−1
+ β3

Sit

Ci · Kit
(2.3.21)

Iit

Kit
= α0 + β1

Pit + Pi,t−1

Kit · 2
+ β2

Si,t−1

Ci · Ki,t−1
(2.3.22)

Iit

Kit
= α0 + β1

Pit + Pi,t−1

Kit · 2
+ β2

Si,t−1

Ci · Ki,t−1
+ β3

Sit

Ci · Kit
(2.3.23)

Note: I = gross investment; C = capital-intensity index; K = capital stock; S = sales;
P = gross retained profits.

very different. It would be quite careless not to explore the possible causes of
discrepancies that give rise to the systematic interrelationships between different
individuals at different periods of time.6

Kuh explored the sources of estimation discrepancies through decompo-
sition of the error variances, comparison of individual coefficient behavior,
assessment of the statistical influence of various lag structures, and so forth. He
concluded that sales seem to include critical time-correlated elements common
to a large number of firms and thus have a much greater capability of annihilating
systematic, cyclical factors. In general, his results are more favorable to the ac-
celeration sales model than to the internal-liquidity/profit hypothesis supported
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by the results obtained using cross-sectional data (e.g., Meyer and Kuh (1957)).
He found that the cash-flow effect is more important some time before the actual
capital outlays are made than it is in actually restricting the outlays during the
expenditure period. It appears more appropriate to view internal liquidity flows
as a critical part of the budgeting process that later is modified, primarily in
light of variations in levels of output and capacity utilization.

The policy implications of Kuh’s conclusions are clear. Other things being
equal, a small percentage increase in sales will have a greater effect on invest-
ment than will a small percentage increase in internal funds. If the government
seeks to stimulate investment and the objective is magnitude, not qualitative
composition, it inexorably follows that the greatest investment effect will come
from measures that increase demand rather than from measures that increase
internal funds.7



CHAPTER 3

Simple Regression with Variable Intercepts

3.1 INTRODUCTION

When the overall homogeneity hypothesis is rejected by the panel data while
the specification of a model appears proper, a simple way to take account of
the heterogeneity across individuals and/or through time is to use the variable-
intercept models (1.3.1) and (1.3.2). The basic assumption of such models is
that, conditional on the observed explanatory variables, the effects of all omit-
ted (or excluded) variables are driven by three types of variables: individual
time-invariant, period individual-invariant, and individual time-varying.1 The
individual time-invariant variables are variables that are the same for a given
cross-sectional unit through time but that vary across cross-sectional units.
Examples of these are attributes of individual-firm management, ability, sex,
and socioeconomic-background variables. The period individual-invariant vari-
ables are variables that are the same for all cross-sectional units at a given point in
time but that vary through time. Examples of these variables are prices, interest
rates, and widespread optimism or pessimism. The individual time-varying
variables are variables that vary across cross-sectional units at a given point in
time and also exhibit variations through time. Examples of these variables are
firm profits, sales, and capital stock. The variable-intercept models assume that
the effects of the numerous omitted individual time-varying variables are each
individually unimportant but are collectively significant, and possess the prop-
erty of a random variable that is uncorrelated with (or independent of) all other
included and excluded variables. On the other hand, because the effects of
remaining omitted variables either stay constant through time for a given cross-
sectional unit or are the same for all cross-sectional units at a given point in time,
or a combination of both, they can be absorbed into the intercept term of a re-
gression model as a means to allow explicitly for the individual and/or time het-
erogeneity contained in the temporal cross-sectional data. Moreover, when the
individual- or time-specific effects are absorbed into the intercept term, there is
no need to assume that those effects are uncorrelated with x, although sometimes
they are.
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The variable-intercept models can provide a fairly useful specification for
fitting regression models using panel data. For example, consider fitting a Cobb–
Douglas production function

yit = µ + β1x1i t + · · · + βK xK it + vit , i = 1, . . . , N ,

t = 1, . . . , T,
(3.1.1)

where y is the logarithm of output and x1, . . . , xK are the logarithms of the
inputs. The classic procedure is to assume that the effects of omitted variables
are independent of x and are independently identically distributed. Thus, con-
ditioning on x, all observations are random variations of a representative firm.
However, (3.1.1) has often been criticized for ignoring variables reflecting man-
agerial and other technical differences between firms or variables that reflect
general conditions affecting the productivity of all firms but that are fluctuating
over time (such as weather in agriculture production); see, e.g., Hoch (1962);
Mundlak (1961); Nerlove (1965). Ideally, such firm- and time-effects variables,
say Mi and Pt , should be explicitly introduced into (3.1.1). Thus, vit can be
written as

vit = αMi + λPt + uit , (3.1.2)

with uit representing the effects of all remaining omitted variables. Unfortu-
nately, there usually are no observations on Mi and Pt . It is impossible to
estimate α and λ directly. A natural alternative would then be to consider the
effects of the products, αi = αMi and λt = λPt , which then leads to a variable-
intercept model: (1.3.1) or (1.3.2).

Such a procedure was used by Hoch (1962) to estimate parameters of a
Cobb–Douglas production function based on annual data for 63 Minnesota
farms from 1946 to 1951. He treated output y as a function of labor x1, real
estate x2, machinery x3, and feed, fertilizer, and related expenses, x4. However,
because of the difficulties of measuring real-estate and machinery variables,
he also tried an alternative specification that treated y as a function of x1,
x4, a current-expenditures item x5, and fixed capital x6. Regression results for
both specifications rejected the overall homogeneity hypothesis at the 5 percent
significance level. The least-squares estimates under three assumptions (αi =
λt = 0; αi = 0, λt �= 0; and αi �= 0, λt �= 0) are summarized in Table 3.1.
They exhibit an increase in the adjusted R2 from 0.75 to about 0.88 when αi

and λt are introduced.
There are also some important changes in parameter estimates when we

move from the assumption of identical αi s to the assumption that both αi and
λt differ from zero. There is a significant drop in the sum of the elasticities,
mainly concentrated in the labor variable. If one interprets αi as the firm scale
effect, then this indicates that efficiency increases with scale. As demonstrated in
Figure 1.1, when the production hyperplane of larger firms lies above the average
production plane and the production plane of smaller firms below the average
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Table 3.1. Least-squares estimates of elasticity of Minnesota farm production
function based on alternative assumptions

Assumption

αi and λt are
Estimate of Elasticity: identically zero αi only is identically αi and λt different
βk for all i and t zero for all i from zero

Variable set 1a

β̂1, labor 0.256 0.166 0.043
β̂2, real estate 0.135 0.230 0.199
β̂3, machinery 0.163 0.261 0.194
β̂4, feed & fertilizer 0.349 0.311 0.289
Sum of β̂’s 0.904 0.967 0.726
Adjusted R2 0.721 0.813 0.884

Variable set 2
β̂1, labor 0.241 0.218 0.057
β̂5, current expenses 0.121 0.185 0.170
β̂6, fixed capital 0.278 0.304 0.317
β̂4, feed & fertilizer 0.315 0.285 0.288

Sum of β̂’s 0.954 0.991 0.832
Adjusted R2 0.752 0.823 0.879

aAll output and input variables are in service units, measured in dollars.
Source: Hoch (1962).

plane, the pooled estimates, neglecting firm differences, will have greater slope
than the average plane. Some confirmation of this argument was provided by
Hoch (1962).

Table 3.2 lists the characteristics of firms grouped on the basis of firm-
specific effects αi . The table suggests a fairly pronounced association between
scale and efficiency.

This example demonstrates that by introducing the unit- and/or time-specific
variables into the specification for panel data, it is possible to reduce or avoid the
omitted-variable bias. In this chapter, we focus on the estimation and hypothesis
testing of models (1.3.1) and (1.3.2) under the assumption that all explanatory
variables, xkit , are nonstochastic (or exogenous). In Section 3.2 we discuss
estimation methods when the specific effects are treated as fixed constants.
Section 3.3 discusses estimation methods when they are treated as random
variables. Section 3.4 discusses the pros and cons of treating the specific effects
as fixed or random. Tests for misspecification are discussed in Section 3.5. Some
generalizations of the basic model are discussed in Sections 3.6 to 3.8. In Section
3.9, we use a multivariate setup of a single-equation model to provide a synthesis
of the issues involved and to provide a link between the single-equation model
and the linear simultaneous-equations model (see Chapter 5).
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Table 3.2. Characteristics of firms grouped on the basis of the firm constant

Firms classified by value of exp(αi )a

Characteristics All firms <0.85 0.85–0.95 0.95–1.05 1.05–1.15 >1.15

Numbers of firms
in group 63 6 17 19 14 7

Average value of:
eαi , firm constant 1.00 0.81 0.92 1.00 1.11 1.26
Output (dollars) 15,602 10,000 15,570 14,690 16,500 24,140
Labor (dollars) 3,468 2,662 3,570 3,346 3,538 4,280
Feed & fertilizer

(dollars) 3,217 2,457 3,681 3,064 2,621 5,014
Current expenses

(dollars) 2,425 1,538 2,704 2,359 2,533 2,715
Fixed capital (dollars) 3,398 2,852 3,712 3,067 3,484 3,996
Profit (dollars) 3,094 491 1,903 2,854 4,324 8,135
Profit/output 0.20 0.05 0.12 0.19 0.26 0.33

aThe mean of firm effects, αi , is zero is invoked.
Source: Hoch (1962).

3.2 FIXED-EFFECTS MODELS: LEAST-SQUARES
DUMMY-VARIABLE APPROACH

The obvious generalization of the constant-intercept-and-slope model for panel
data is to introduce dummy variables to allow for the effects of those omitted
variables that are specific to individual cross-sectional units but stay constant
over time, and the effects that are specific to each time period but are the same
for all cross-sectional units. For simplicity, in this section we assume no time-
specific effects and focus only on individual-specific effects. Thus, the value of
the dependent variable for the i th unit at time t , yit , depends on K exogenous
variables, (x1i t , . . . , xK it ) = x′

i t , that differ among individuals in a cross section
at a given point in time and also exhibit variation through time, as well as on
variables that are specific to the i th unit and that stay (more or less) constant
over time. This is model (1.3.1), which we can rewrite as

yit = α∗
i + �′

1×K
xi t

K×1
+ uit , i = 1, . . . , N ,

(3.2.1)
t = 1, . . . , T,

where �′ is a 1 × K vector of constants and α∗
i is a 1 × 1 scalar constant

representing the effects of those variables peculiar to the i th individual in more
or less the same fashion over time. The error term, uit , represents the effects
of the omitted variables that are peculiar to both the individual units and time
periods. We assume that uit is uncorrelated with (xi1, . . . , xiT ) and can be
characterized by an independently identically distributed random variable with
mean zero and variance σ 2

u .
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The model (3.2.1) is also called the analysis-of-covariance model. Without
attempting to make the boundaries between regression analysis, analysis of
variance, and analysis of covariance precise, we can say that regression model
assumes that the expected value of y is a function of exogenous factors x,
while the conventional analysis-of-variance model stipulates that the expected
value of yit depends only on the class i to which the observation considered
belongs and that the value of the measured quantity, y, satisfies the relation
yit = α∗

i + uit , where the other characteristics, uit , are random and are in no
way dependent on the class this individual belongs. But if y is also affected by
other variables that we are not able to control and standardize within classes,
the simple within-class sum of squares will be an overestimate of the stochastic
component in y, and the differences between class means will reflect not only
any class effect but also the effects of any differences in the values assumed by
the uncontrolled variables in different classes. It was for this kind of problem that
the analysis-of-covariance model of the form (3.2.1) was first developed. The
models are of a mixed character, involving genuine exogenous variables xi t ,
as do regression models, and at the same time allowing the true relation for
each individual to depend on the class to which the individual belongs, α∗

i , as
do the usual analysis-of-variance models. The regression model enables us to
assess the effects of quantitative factors, the analysis-of-variance model those
of qualitative factors; the analysis-of-covariance model covers both quantitative
and qualitative factors.

Writing (3.2.1) in vector form, we have

Y=

 y1
...

yN

 =


e
0
...
0

α∗
1 +


0
e
...
0

α∗
2 + · · · +


0
0
...
e

α∗
N +


x1

x2
...

xN

 � +

 u1
...

uN

,

(3.2.2)

where

yi
T ×1

=


yi1

yi2
...

yiT

, Xi
T ×K

=


x1i1 x2i1 · · · xK i1

x1i2 x2i2 · · · xK i2
...

...
...

x1iT x2iT xK iT

,

e′
1×T

= (1, 1, . . . , 1), u′
i

1×T
= (ui1, . . . , uiT ),

Eui = 0, Eui u′
i = σ 2

u IT , Eui u′
j = 0 if i �= j,

and IT denotes the T × T identity matrix.
Given the assumed properties of uit , we know that the ordinary-least-squares

(OLS) estimator of (3.2.2) is the best linear unbiased estimator (BLUE). The
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OLS estimators of α∗
i and � are obtained by minimizing

S =
N∑

i=1

u′
i ui =

N∑
i=1

(yi − eα∗
i − Xi �)′(yi − eα∗

i − Xi �). (3.2.3)

Taking partial derivatives of S with respect to α∗
i and setting them equal to zero,

we have

α̂∗
i = ȳi − �′x̄i , i = 1, . . . , N , (3.2.4)

where

ȳi = 1

T

T∑
t=1

yit , x̄i = 1

T

T∑
t=1

xi t .

Substituting (3.2.4) into (3.2.3) and taking the partial derivative of S with respect
to �, we have2

�̂CV =
[

N∑
i=1

T∑
t=1

(xi t − x̄i )(xi t − x̄i )
′
]−1 [

N∑
i=1

T∑
t=1

(xi t − x̄i )(yit − ȳi )

]
.

(3.2.5)

The OLS estimator (3.2.5) is called the least-squares dummy-variable (LSDV)
estimator, because the observed values of the variable for the coefficient α∗

i takes
the form of dummy variables. However, the computational procedure for esti-
mating the slope parameters in this model does not require that the dummy vari-
ables for the individual (and/or time) effects actually be included in the matrix
of explanatory variables. We need only find the means of time-series observa-
tions separately for each cross-sectional unit, transform the observed variables
by subtracting out the appropriate time-series means, and then apply the least-
squares method to the transformed data. Hence, we need only invert a matrix
of order K × K .

The foregoing procedure is equivalent to premultiplying the i th equation

yi = eα∗
i + Xi � + ui

by a T × T idempotent (covariance) transformation matrix

Q = IT − 1

T
ee′ (3.2.6)

to “sweep out” the individual effect α∗
i so that individual observations are

measured as deviations from individual means (over time):

Qyi = Qeα∗
i + Q Xi � + Qui

= Q Xi � + Qui , i = 1, . . . , N . (3.2.7)
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Applying the OLS procedure to (3.2.7), we have3

�̂CV =
[

N∑
i=1

X ′
i Q Xi

]−1 [
N∑

i=1

X ′
i Qyi

]
, (3.2.8)

which is identically equal to (3.2.5). Because (3.2.2) is called the analysis-of-
covariance model, the LSDV estimator of � is sometimes called the covariance
estimator. It is also called the within-group estimator, because only the variation
within each group is utilized in forming this estimator.4

The covariance estimator β̂CV is unbiased. It is also consistent when either
N or T or both tend to infinity. Its variance–covariance matrix is

Var(�CV) = σ 2
u

[
N∑

t=1

X ′
i Q Xi

]−1

. (3.2.9)

However, the estimator for the intercept, (3.2.4), although unbiased, is consistent
only when T → ∞.

It should be noted that an alternative and equivalent formulation of (3.2.1)
is to introduce a “mean intercept,” µ, so that

yit = µ + �′xi t + αi + uit . (3.2.10)

Because both µ and αi are fixed constants, without additional restriction, they
are not separately identifiable or estimable. One way to identify µ and αi is to
introduce the restriction

∑N
i=1 αi = 0. Then the individual effect αi represents

the deviation of the i th individual from the common mean µ.
Equations (3.2.10) and (3.2.1) lead to the same least-squares estimator for �

[equation (3.2.5)]. This can easily be seen by noting that the BLUEs for µ, αi ,
and � are obtained by minimizing

N∑
i=1

u′
i ui =

N∑
i=1

T∑
t=1

u2
i t

subject to the restriction
∑N

t=1 αi = 0. Utilizing the restriction
∑N

t=1 αi = 0 in
solving the marginal conditions, we have

µ̂ = ȳ − �′x̄, where ȳ = 1

N T

N∑
i=1

T∑
t=1

yit ,

(3.2.11)

x̄ = 1

N T

N∑
i=1

T∑
t=1

xi t ,

α̂i = ȳi − µ̂ − �′x̄i . (3.2.12)

Substituting (3.2.11) and (3.2.12) into (3.2.10) and solving the marginal con-
dition for �, we obtain (3.2.5).
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3.3 RANDOM-EFFECTS MODELS: ESTIMATION
OF VARIANCE-COMPONENTS MODELS

In Section 3.2, we discussed the estimation of linear-regression models when
the effects of omitted individual-specific variables (αi ) are treated as fixed
constants over time. In this section we treat the individual-specific effects, like
uit , as random variables.

It is a standard practice in the regression analysis to assume that the large
number of factors that affect the value of the dependent variable, but that have
not been explicitly included as independent variables, can be appropriately
summarized by a random disturbance. When numerous individual units are
observed over time, it is sometimes assumed that some of the omitted variables
will represent factors peculiar to both the individual units and time periods for
which observations are obtained, whereas other variables will reflect individual
differences that tend to affect the observations for a given individual in more or
less the same fashion over time. Still other variables may reflect factors peculiar
to specific time periods, but affecting individual units more or less equally. Thus,
the residual, vit , is often assumed to consist of three components:5

vit = αi + λt + uit , (3.3.1)

where

Eαi = Eλt = Euit = 0, Eαiλt = Eαi uit = Eλt uit = 0,

Eαiα j =
{

σ 2
α if i = j,

0 if i �= j,

Eλtλs =
{

σ 2
λ if t = s,

0 if t �= s,

Euit u js =
{

σ 2
u if i = j, t = s,

0 otherwise,

(3.3.2)

and

Eαi x′
i t = Eλt x′

i t = Euit x′
i t = 0′.

The variance of yit conditional on xi t is, from (3.3.1) and (3.3.2), σ 2
y =

σ 2
α + σ 2

λ + σ 2
u . The variances σ 2

α , σ 2
λ , and σ 2

u are accordingly called variance
components; each is a variance in its own right and is a component of σ 2

y . There-
fore, this kind of model is sometimes referred to as a variance-components (or
error-components) model.

For ease of exposition we assume λt = 0 for all t in this and the following
three sections. That is, we concentrate on models of the form (3.2.10).

Rewriting (3.2.10) in vector form, we have

yi
T ×1

= X̃ i
T ×(K+1)

�
(K+1)×1

+ vi
T ×1

, i = 1, 2, . . . , N , (3.3.3)
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where X̃ i = (e, Xi ), �′ = (µ, �′), v′
i = (vi1, . . . , viT ), and vit = αi + uit . The

variance–covariance matrix of vi is

Evi v′
i = σ 2

u IT + σ 2
α ee′ = V . (3.3.4)

Its inverse is (see Graybill (1969); Nerlove (1971b); Wallace and Hussain
(1969))

V −1 = 1

σ 2
u

[
IT − σ 2

α

σ 2
u + T σ 2

α

ee′
]
. (3.3.5)

3.3.1 Covariance Estimation

The presence of αi produces a correlation among residuals of the same cross-
sectional unit, though the residuals from different cross-sectional units are in-
dependent. However, regardless of whether the αi s are treated as fixed or as ran-
dom, the individual-specific effects for a given sample can be swept out by the
idempotent (covariance) transformation matrix Q [equation (3.2.6)], because
Qe = 0, and hence Qvi = Qui . Thus, premultiplying (3.3.3) by Q, we have

Qyi = Qeµ + Q Xi � + Qeαi + Qui

= Q Xi � + Qui . (3.3.6)

Applying the least-squares method to (3.3.6), we obtain the covariance
estimator (CV) (3.2.8) of �. We estimate µ by µ̂ = ȳ − �̂

′
CVx̄.

Whether αi are treated as fixed or random, the CV of � is unbiased and
consistent either N or T or both tend to infinity. However, whereas the CV is
the BLUE under the assumption that αi are fixed constants, it is not the BLUE in
finite samples when αi are assumed random. The BLUE in the latter case is the
generalized-least-squares (GLS) estimator.6 Moreover, if the explanatory vari-
ables contain some time-invariant variables zi , their coefficients cannot be esti-
mated by CV, because the covariance transformation eliminates zi from (3.3.6).

3.3.2 Generalized-Least-Squares Estimation

Because vit and vis both contain αi , the residuals of (3.3.3) are correlated. To
get efficient estimates of �′ = (µ, �′), we have to use the GLS method. The
normal equations for the GLS estimators are[

N∑
i=1

X̃ ′
i V

−1 X̃ i

]
�̂GLS =

N∑
i=1

X̃ ′
i V

−1yi . (3.3.7)

Following Maddala (1971a), we write V −1 [equation (3.3.5)] as

V −1 = 1

σ 2
u

[(
IT − 1

T
ee′

)
+ ψ · 1

T
ee′

]
= 1

σ 2
u

[
Q + ψ · 1

T
ee′

]
,

(3.3.8)
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where

ψ = σ 2
u

σ 2
u + T σ 2

α

. (3.3.9)

Hence, (3.3.7) can conveniently be written as

[Wx̃x̃ + ψ Bx̃ x̃ ]

[
µ̂

�̂

]
GLS

= Wx̃ y + ψ Bx̃ y, (3.3.10)

where

Tx̃ x̃ =
N∑

i=1

X̃ ′
i X̃ i , Tx̃ y =

N∑
i=1

X̃ ′
i yi ,

Bx̃ x̃ = 1

T

N∑
i=1

(X̃ ′
i ee′ X̃ i ), Bx̃ y = 1

T

N∑
i=1

(X̃ ′
i ee′yi ),

Wx̃x̃ = Tx̃ x̃ − Bx̃ x̃ , Wx̃ y = Tx̃ y − Bx̃ y .

The matrices Bx̃ x̃ and Bx̃ y contain the sums of squares and sums of cross
products between groups, Wx̃x̃ and Wx̃ y are the corresponding matrices within
groups, and Tx̃ x̃ and Tx̃ y are the corresponding matrices for total variation.

Solving (3.3.10), we have
ψ N T ψT

N∑
i=1

x̄′
i

ψT
N∑

i=1

x̄i

N∑
i=1

X ′
i Q Xi + ψT

N∑
i=1

x̄i x̄′
i


[
µ̂

�̂

]
GLS

=

 ψ N T ȳ

N∑
i=1

X ′
i Qyi + ψT

N∑
i=1

x̄i ȳi

. (3.3.11)

Using the formula of the partitioned inverse, we obtain

�̂GLS =
[

1

T

N∑
i=1

X ′
i Q Xi + ψ

N∑
i=1

(x̄i − x̄)(x̄i − x̄)′
]−1

×
[

1

T

N∑
i=1

X ′
i Qyi + ψ

N∑
i=1

(x̄i − x̄)(ȳi − ȳ)

]
(3.3.12)

= 	�̂b + (IK − 	)�̂CV,

µ̂GLS = ȳ − �̂
′
GLSx̄,
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where

	 = ψT

[
N∑

i=1

X ′
i Q Xi + ψT

N∑
i=1

(x̄i − x̄)(x̄i − x̄)′
]−1

×
[

N∑
i=1

(x̄i − x̄)(x̄i − x̄)′
]
,

�̂b =
[

N∑
i=1

(x̄i − x̄)(x̄i − x̄)′
]−1 [

N∑
i=1

(x̄i − x̄)(ȳi − ȳ)

]
.

The estimator �̂b is called the between-group estimator because it ignores
variation within the group.

The GLS estimator (3.3.12) is a weighted average of the between-group and
within-group estimators. If ψ → 1, then �GLS converges to the OLS estimator
T −1

x̃ x̃ Tx̃ y . If ψ → 0, the GLS estimator for � becomes the covariance estimator
(LSDV) [equation (3.2.5)]. In essence, ψ measures the weight given to the
between-group variation. In the LSDV (or fixed-effects model) procedure, this
source of variation is completely ignored. The OLS procedure corresponds to
ψ = 1. The between-group and within-group variations are just added up. Thus,
one can view the OLS and LSDV as somewhat all-or-nothing ways of utilizing
the between-group variation. The procedure of treating αi as random provides
a solution intermediate between treating them all as different and treating them
all as equal as implied by the GLS estimator given in (3.3.12).

If [Wx̃x̃ + ψ Bx̃ x̃ ] is nonsingular, the covariance matrix of GLS estimators of
� can be written as

Var

[
µ̂

�̂

]
GLS

= σ 2
u [Wx̃x̃ + ψ Bx̃ x̃ ]−1

= σ 2
u


0 0′

0
N∑

i=1

X ′
i Q Xi



+ T ψ


N

N∑
i=1

x̄′
i

N∑
i=1

x̄i

N∑
i=1

x̄i x̄′
i




−1

. (3.3.13)

Using the formula for partitioned inversion (e.g., Rao (1973, Chapter 2); Theil
(1971, Chapter 1)), we obtain

Var(�̂GLS) = σ 2
u

[
N∑

i=1

X ′
i Q Xi + T ψ

N∑
i=1

(x̄i − x̄)(x̄i − x̄)′
]−1

.

(3.3.14)
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Because ψ > 0, we see immediately that the difference between the covariance
matrices of �̂CV and �̂GLS is a positive semidefinite matrix. However, for fixed
N , as T → ∞, ψ → 0. Thus, under the assumption that (1/N T )

∑N
i=1 X ′

i Xi

and (1/N T )
∑N

i=1 X ′
i Q Xi converge to finite positive definitive matrices when

T → ∞, we have β̂GLS → β̂CV and Var(
√

T �̂GLS) → Var(
√

T �̂CV). This is
because when T → ∞, we have an infinite number of observations for each i .
Therefore, we can consider each αi as a random variable which has been drawn
once and forever, so that for each i we can pretend that they are just like fixed
parameters.

Computation of the GLS estimator can be simplified by noting the spe-
cial form of V −1 (3.3.8). Let P = [IT − (1 − ψ1/2)(1/T )ee′]; we have V −1 =
(1/σ 2

u )P ′ P . Premultiplying (3.3.3) by the transformation matrix P , we obtain
the GLS estimator (3.3.10) by applying the least-squares method to the trans-
formed model (Theil (1971, Chapter 6)). This is equivalent to first transforming
the data by subtracting a fraction (1 − ψ1/2) of individual means ȳi and x̄i

from their corresponding yit and xi t , then regressing [yit − (1 − ψ1/2)ȳi ] on a
constant and [xi t − (1 − ψ1/2)x̄i ].

If the variance components σ 2
u and σ 2

α are unknown, we can use two-step GLS
estimation. In the first step, we estimate the variance components using some
consistent estimators. In the second step, we substitute their estimated values
into (3.3.10) or its equivalent form. When the sample size is large (in the sense
of either N → ∞ or T → ∞), the two-step GLS estimator will have the same
asymptotic efficiency as the GLS procedure with known variance components
(Fuller and Battese (1974)). Even for moderate sample size [for T ≥ 3, N −
(K + 1) ≥ 9; for T = 2, N − (K + 1) ≥ 10], the two-step procedure is still
more efficient than the covariance (or within-group) estimator in the sense that
the difference between the covariance matrices of the covariance estimator and
the two-step estimator is nonnegative definite (Taylor (1980)).

Noting that ȳi = µ + �′x̄i + αi + ūi and (yit − ȳi ) = �′(xi t − x̄i ) +
(uit − ūi ), we can use the within- and between-group residuals to estimate
σ 2

u and σ 2
α respectively, by7

σ̂ 2
u =

∑N
i=1

∑T
t=1[(yit − ȳi ) − �̂

′
CV(xi t − x̄i )]2

N (T − 1) − K
, (3.3.15)

and

σ̂ 2
α =

∑N
i=1(ȳi − µ̃ − �̃

′
x̄i )2

N − (K + 1)
− 1

T
σ̂ 2

u , (3.3.16)

where (µ̃, �̃
′
)′ = B−1

x̃ x̃ Bx̃ ỹ .
Amemiya (1971) has discussed efficient estimation of the variance compo-

nents. However, substituting more efficiently estimated variance components
into (3.3.9) need not lead to more efficient estimates of µ and � (Maddala and
Mount (1973); Taylor (1980)).
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3.3.3 Maximum Likelihood Estimation

When αi and uit are random and normally distributed, the logarithm of the
likelihood function is

log L = − N T

2
log 2π − N

2
log |V |

− 1

2

N∑
i=1

(yi − eµ − Xi �)′V −1(yi − eµ − Xi �)

= − N T

2
log 2π − N (T − 1)

2
log σ 2

u − N

2
log

(
σ 2

u + T σ 2
α

)
− 1

2σ 2
u

N∑
i=1

(yi − eµ − Xi �)′ Q(yi − eµ − Xi �)

− T

2
(
σ 2

u + T σ 2
α

) N∑
i=1

(ȳi − µ − �′x̄i )
2, (3.3.17)

where the second equality follows from (3.3.8) and

|V | = σ 2(T −1)
u

(
σ 2

u + T σ 2
α

)
. (3.3.18)

The maximum likelihood estimator (MLE) of (µ, �′, σ 2
u , σ 2

α ) = �̃
′
is obtained

by solving the following first-order conditions simultaneously:

∂ log L

∂µ
= T

σ 2
u + T σ 2

α

N∑
i=1

(ȳi − µ − x̄′
i �) = 0, (3.3.19)

∂ log L

∂�
= 1

σ 2
u

[
N∑

i=1

(yi − eµ − Xi �)′ Q Xi

− T σ 2
u

σ 2
u + T σ 2

α

N∑
i=1

(ȳi − µ − x̄′
i �)x̄′

i

]
= 0, (3.3.20)

∂ log L

∂σ 2
u

= − N (T − 1)

2σ 2
u

− N

2
(
σ 2

u + T σ 2
α

)
+ 1

2σ 4
u

N∑
i=1

(yi − eµ − Xi �)′ Q(yi − eµ − Xi �)

+ T

2
(
σ 2

u + T σ 2
α

)2

N∑
i=1

(ȳi − µ − x̄′
i �)2 = 0, (3.3.21)

∂ log L

∂σ 2
α

= − N T

2
(
σ 2

u + T σ 2
α

) + T 2

2
(
σ 2

u + T σ 2
α

)2

N∑
i=1

(ȳi − µ − x̄′
i �)2 = 0.

(3.3.22)
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Simultaneous solution of (3.3.19)–(3.3.22) is complicated. The Newton–
Raphson iterative procedure can be used to solve for the MLE. The procedure
uses an initial trial value ˆ̃�

(1)

of �̃ to start the iteration by substituting it into the
formula

ˆ̃�
( j) = ˆ̃�

( j−1) −
[
∂2 log L

∂�̃ ∂�̃
′

]−1

�̃= ˆ̃�
( j−1)

∂ log L

∂�̃

∣∣∣∣∣
�̃= ˆ̃�

( j−1)

(3.3.23)

to obtain a revised estimate of �̃, ˆ̃�
(2)

. The process is repeated until the j th
iterative solution ˆ̃�

( j)

is close to the ( j − 1)th iterative solution ˆ̃�
( j−1)

.
Alternatively, we can use a sequential iterative procedure to obtain the MLE.

We note that from (3.3.19) and (3.3.20), we have

[
µ̂

�̂

]
=

[
N∑

i=1

X̃ ′
i V

−1 X̃ i

]−1 [
N∑

i=1

X̃ ′
i V

−1yi

]

=
{

N∑
i=1

[
e′

X ′
i

] [
IT − σ 2

α

σ 2
α + T σ 2

α

ee′
]

(e, Xi )

}−1

×
{

N∑
i=1

[
e′

X ′
i

] [
IT − σ 2

α

σ 2
u + T σ 2

α

ee′
]

yi

}
. (3.3.24)

Substituting (3.3.22) into (3.3.21), we have

σ̂ 2
u = 1

N (T − 1)

N∑
i=1

(yi − eµ − Xi �)′ Q(yi − eµ − Xi �). (3.3.25)

From (3.3.22), we have

σ̂ 2
α = 1

N

N∑
i=1

(ȳi − µ̂ − x̄′
i �̂)2 − 1

T
σ̂ 2

u . (3.3.26)

Thus, we can obtain the MLE by first substituting an initial trial value of
σ 2

α/(σ 2
u + T σ 2

α ) into (3.3.24) to estimate µ and �′, and then estimate σ 2
u by

(3.3.25) using the solution of (3.3.24). Substituting the solutions of (3.3.24)
and (3.3.25) into (3.3.26), we obtain an estimate of σ 2

α . Then we repeat the
process by substituting the new values of σ 2

u and σ 2
α into (3.3.24) to obtain new

estimates of µ and �, and so on until the solution converges.
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When T is fixed and N goes to infinity, the MLE is consistent and asymp-
totically normally distributed with variance–covariance matrix

Var(
√

N ˆ̃�MLE) = N E

[
−∂2 log L

∂�̃ ∂�̃
′

]−1

=



T

σ 2

T

σ 2

1

N

N∑
i=1

x̄′
i 0 0

1

σ 2
u

1

N

N∑
i=1

X ′
i

(
IT − σ 2

α

σ 2
ee′

)
Xi 0 0

T − 1

2σ 2
u

+ 1

2σ 4

T

2σ 4

T 2

2σ 4



−1

,

(3.3.27)

where σ 2 = σ 2
u + T σ 2

α . When N is fixed and T tends to infinity, the MLEs
of µ, �, and σ 2

u converge to the covariance estimator and are consistent, but
the MLE of σ 2

α is inconsistent. This is because when N is fixed, there is not
sufficient variation in αi no matter how large T is; for details, see Anderson
and Hsiao (1981, 1982).

Although the MLE is asymptotically efficient, sometimes simultaneous so-
lution of (3.3.19)–(3.3.22) yields an estimated value of σ 2

α that is negative.8

When there is a unique solution to the partial-derivative equations (3.3.19)–
(3.3.22), with σ 2

u > 0, σ 2
α > 0, the solution is the MLE. However, when we

constrain σ 2
u ≥ 0 and σ 2

α ≥ 0, a boundary solution may occur. The solution
then no longer satisfies all the derivative equations (3.3.19)–(3.3.22). Maddala
(1971a) has shown that the boundary solution of σ 2

u = 0 cannot occur, but the
boundary solution of σ 2

α = 0 will occur when Tyy − T ′
x̃ y T −1

x̃ x̃ Tx̃ y > T [Byy −
2T ′

x̃ y T −1
x̃ x̃ Tx̃ y + T ′

x̃ y T −1
x̃ x̃ Bx̃ x̃ T −1

x̃ x̃ Tx̃ y]. However, the probability of occurrence of
a boundary solution tends to zero when either T or N tends to infinity.

3.4 FIXED EFFECTS OR RANDOM EFFECTS

3.4.1 An Example

In previous sections we discussed the estimation of a linear-regression model
(3.2.1) when the effects, αi , are treated either as fixed or as random. Whether
to treat the effects as fixed or random makes no difference when T is large,
because both the LSDV estimator (3.2.8) and the generalized least-squares
estimator (3.3.12) become the same estimator. When T is finite and N is large,
whether to treat the effects as fixed or random is not an easy question to answer.
It can make a surprising amount of difference in the estimates of the parameters.
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Table 3.3. Wage equations (dependent variable: log wagea)

Variable Fixed effects Random effects

1. Age 1 (20–35) 0.0557 0.0393
(0.0042) (0.0033)

2. Age 2 (35–45) 0.0351 0.0092
(0.0051) (0.0036)

3. Age 3 (45–55) 0.0209 −0.0007
(0.0055) (0.0042)

4. Age 4 (55–65) 0.0209 −0.0097
(0.0078) (0.0060)

5. Age 5 (65–) −0.0171 −0.0423
(0.0155) (0.0121)

6. Unemployed previous year −0.0042 −0.0277
(0.0153) (0.0151)

7. Poor health previous year −0.0204 −0.0250
(0.0221) (0.0215)

8. Self-employment −0.2190 −0.2670
(0.0297) (0.0263)

9. South −0.1569 −0.0324
(0.0656) (0.0333)

10. Rural −0.0101 −0.1215
(0.0317) (0.0237)

11. Constant — 0.8499
— (0.0433)

s2 0.0567 0.0694
Degrees of freedom 3,135 3,763

a3,774 observations; standard errors are in parentheses.
Source: Hausman (1978).

In fact, when only a few observations are available for different individuals over
time, it is exceptionally important to make the best use of the lesser amount
of information over time for the efficient estimation of the common behavioral
relationship.

For example, Hausman (1978) found that using a fixed-effects specifica-
tion produced significantly different results from a random-effects specification
when estimating a wage equation using a sample of 629 high school graduates
followed over six years by the Michigan income dynamics study. The explana-
tory variables in the Hausman wage equation include a piecewise-linear repre-
sentation of age, the presence of unemployment or poor health in the previous
year, and dummy variables for self-employment, living in the South, or living
in a rural area. The fixed-effects specification was estimated using (3.2.5).9 The
random-effects specification was estimated using (3.3.10). The results are re-
produced in Table 3.3. In comparing these two estimates, it is apparent that the
effects of unemployment, self-employment, and geographical location differ
widely (relative to their standard errors) in the two models.
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3.4.2 Conditional Inference or Unconditional (Marginal) Inference

If the effects of omitted variables can be appropriately summarized by a random
variable and the individual (or time) effects represent the ignorance of the
investigator, it does not seem reasonable to treat one source of ignorance (αi )
as fixed and the other source of ignorance (uit ) as random. It appears that one
way to unify the fixed-effects and random-effects models is to assume from the
outset that the effects are random. The fixed-effects model is viewed as one
in which investigators make inferences conditional on the effects that are in
the sample. The random-effects model is viewed as one in which investigators
make unconditional or marginal inferences with respect to the population of all
effects. There is really no distinction in the “nature (of the effect).” It is up to the
investigator to decide whether to make inference with respect to the population
characteristics or only with respect to the effects that are in the sample.

In general, whether one wishes to consider the conditional-likelihood func-
tion or the marginal-likelihood function depends on the context of the data, the
manner in which they were gathered, and the environment from which they
came. For instance, consider an example in which several technicians care for
machines. The effects of technicians can be assumed random if the technicians
are all randomly drawn from a common population. But if the situation is not
that each technician comes and goes, randomly sampled from all employees,
but that all are available, and if we want to assess differences between those
specific technicians, then the fixed-effects model is more appropriate. Similarly,
if an experiment involves hundreds of individuals who are considered a ran-
dom sample from some larger population, random effects are more appropriate.
However, if the situation were one of analyzing just a few individuals, say five
or six, and the sole interest lay in just these individuals, then individual effects
would more appropriately be fixed, not random. The situation to which a model
applies and the inferences based on it are the deciding factors in determining
whether we should treat effects as random or fixed. When inferences are going
to be confined to the effects in the model, the effects are more appropriately
considered fixed. When inferences will be made about a population of effects
from which those in the data are considered to be a random sample, then the
effects should be considered random.10

If one accepts this view, then why do the fixed-effects and random-effects
approaches sometimes yield vastly different estimates of the common slope
coefficients that are not supposed to vary across individuals? It appears that in
addition to the efficiency issue discussed earlier, there is also a different but im-
portant issue of whether or not the model is properly specified – that is, whether
the differences in individual effects can be attributed to the chance mechanism.

In the random-effects framework of (3.3.1)–(3.3.3), there are two fundamen-
tal assumptions. One is that the unobserved individual effects αi are random
draws from a common population. The other is that the explanatory variables are
strictly exogenous. That is, the error terms are uncorrelated with (or orthogonal
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to) the past, current, and future values of the regressors:

E(uit | xi1, . . . , xiT )= E(αi | xi1, . . . , xiT )

= E(vit | xi1, . . . , xiT ) = 0 for t = 1, . . . , T .

(3.4.1)

In the above example, if there are fundamental differences in the technicians
(for instance, in their ability, age, years of experiences, etc.), then the differ-
ence in technicians cannot be attributed to a pure chance mechanism. It is more
appropriate to view the technicians as drawn from heterogeneous populations
and the individual effects α∗

i = αi + µ as representing the fundamental differ-
ence among the heterogeneous populations. Thus, it would be more appropriate
to treat α∗

i as fixed and different (Hsiao and Sun (2000)). If the difference in
technicians captured by α∗

i is ignored, the least-squares estimator of (3.3.3)
yields

�̂LS =
[

N∑
i=1

T∑
t=1

(xi t − x̄)(xi t − x̄)′
]−1 [

N∑
i=1

T∑
t=1

(xi t − x̄)(yit − ȳ)

]

= � +
[

N∑
i=1

T∑
t=1

(xi t − x̄)(xi t − x̄)′
]−1 {

T
N∑

i=1

(x̄i − x̄)(α∗
i − ᾱ)

}
,

(3.4.2)

where ᾱ = 1
N

∑N
i=1 α∗

i . It is clear that unless 1
N

∑N
i=1(x̄i − x̄)(α∗

i − ᾱ) con-
verges to zero as N → ∞, the least-squares estimator of � is inconsistent. The
bias of �̂LS depends on the correlation between xi t and α∗

i .

3.4.2.a Mundlak’s Formulation

Mundlak (1978a) criticized the random-effects formulation (3.3.2) on the
grounds that it neglects the correlation that may exist between the effects αi and
the explanatory variables xi t . There are reasons to believe that in many circum-
stances αi and xi t are indeed correlated. For instance, consider the estimation
of a production function using firm data. The output of each firm, yit , may
be affected by unobservable managerial ability αi . Firms with more efficient
management tend to produce more and use more inputs Xi . Less efficient firms
tend to produce less and use fewer inputs. In this situation, αi and Xi cannot be
independent. Ignoring this correlation can lead to biased estimation.

The properties of various estimators we have discussed thus far depend on the
existence and extent of the relations between the X ’s and the effects. Therefore,
we have to consider the joint distribution of these variables. However, αi are
unobservable. Mundlak (1978a) suggested that we approximate E(αi | Xi ) by
a linear function. He introduced the auxiliary regression

αi =
∑

t

x′
i t at + ωi , ωi ∼ N

(
0, σ 2

ω

)
. (3.4.3a)
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A simple approximation to (3.4.3a) is to let

αi = x̄′
i a + ωi , ωi ∼ N

(
0, σ 2

ω

)
. (3.4.3b)

Clearly, a will be equal to zero (and σ 2
ω = σ 2

α ) if (and only if) the explanatory
variables are uncorrelated with the effects.

Substituting (3.4.3b) into (3.3.3), and stacking equations over t and i , we
have 

y1

y2
...

yN

=


X̃1

X̃2
...

X̃ N

 � +


ex̄′

1
ex̄′

2
...

ex̄′
N

 a +


e
0
...
0

ω1

+


0
e
...
0

ω2 + · · · +


0
0
...

eN

ωN +


u1

u2
...

uN

, (3.4.4)

where, conditional on xi ,

E(ui + eωi ) = 0,

E(ui + eωi )(u j + eω j )
′ =

{
σ 2

u IT + σ 2
ωee′ = Ṽ if i = j,

0 if i �= j,

Ṽ −1 = 1

σ 2
u

[
IT − σ 2

ω

σ 2
u + T σ 2

ω

ee′
]
.

Utilizing the expression for the inverse of a partitioned matrix (Theil (1971,
Chapter 1)), we obtain the GLS of (µ, �′, a′) as

µ̂∗
GLS = ȳ − x̄′�̂b, (3.4.5)

�̂
∗
GLS = �̂CV, (3.4.6)

â∗
GLS = �̂b − �̂CV. (3.4.7)

Thus, in the present framework, the BLUE of � is the covariance estima-
tor of (3.2.1) or (3.2.10). It does not depend on knowledge of the variance
components. Therefore, Mundlak (1978a) maintained that the imaginary dif-
ference between the fixed-effects and random-effects approaches is based on
an incorrect specification. In fact, applying GLS to (3.2.10) yields a biased
estimator. This can be seen by noting that the GLS estimate of � for (3.3.3),
that is, (3.3.10), can be viewed as the GLS estimate of (3.4.4) after imposing
the restriction a = 0. As shown in (3.3.12),

�̂GLS = 	�̂b + (IK − 	)�̂CV. (3.4.8)

If (3.4.4) is the correct specification, then E�̂b is equal to � + a, and E�̂CV = �,
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so that

E�̂GLS = � + 	a. (3.4.9)

This is a biased estimator if a �= 0. However, when T tends to infinity, 	

tends to zero, and �̂GLS tends to �̂CV and is asymptotically unbiased. But
in the more relevant situation in which T is fixed and N tends to infinity,
plimN→∞�̂GLS �= � in Mundlak’s formulation.

While it is important to recognize the possible correlation between the effects
and the explanatory variables, Mundlak’s claim (1978a) that there is only one
estimator and that efficiency is not a consideration in distinguishing between
the random-effects and fixed-effects approaches is perhaps a bit strong. In fact,
in the dynamic, random-coefficient, and discrete-choice models to be discussed
later, one can show that the two approaches do not lead to the same estimator
even when one allows for the correlation between αi and Xi . Moreover, in the
linear static model if a = 0, the efficient estimator is (3.3.12), not the covariance
estimator (3.2.8).

3.4.2.b Conditional and Unconditional Inferences in the Presence or
Absence of Correlation between Individual Effects and Attributes

To gain further intuition about the differences between models (3.3.3) and
(3.4.4) within the conditional- and unconditional-inference frameworks, we
consider the following two experiments. Let a population be made up of a
certain composition of red and black balls. The first experiment consists in N
individuals, each picking a fixed number of balls randomly from this popula-
tion to form his person-specific urn. Each individual then makes T independent
trials of drawing a ball from his specific urn and putting it back. The second
experiment assumes that individuals have different preferences for the composi-
tions of red and black balls for their specific urns and allows personal attributes
to affect the compositions. Specifically, prior to making T independent trials
with replacement from their respective urns, individuals are allowed to take any
number of balls from the population until their compositions reach the desired
proportions.

If one is interested in making inferences regarding an individual urn’s com-
position of red and black balls, a fixed-effects model should be used, whether
the sample comes from the first or the second experiment. On the other hand,
if one is interested in the population composition, a marginal or unconditional
inference should be used. However, the marginal distributions are different for
these two cases. In the first experiment, differences in individual urns are out-
comes of random sampling. The subscript i is purely a labeling device, with no
substantive content. A conventional random-effects model assuming indepen-
dence between αi and xi t would be appropriate. In the second experiment, the
differences in individual urns reflect differences in personal attributes. A proper
marginal inference has to allow for these nonrandom effects. It so happens that,
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for the Mundlak’s formulation a marginal inference that properly allows for the
correlation between individual effects (αi ) and the attributes (xi ) generating the
process gives rise to the same estimator as when the individual effects are treated
as fixed. It is not that in making inferences about population characteristics we
should assume a fixed-effects model.

Formally, let uit and αi be independent normal processes that are mutu-
ally independent. In the case of the first experiment, αi are independently dis-
tributed and independent of individual attributes xi , so the distribution of αi

must be expressible as random sampling from a univariate distribution (Box and
Tiao (1968); Chamberlain (1980)). Thus, the conditional distribution of {(ui +
eαi )′, αi | Xi } is identical with the marginal distribution of {(ui + eαi )′, αi },

ui1 + αi
...

uiT + αi

. . . . . . . . .

αi

=


ui1 + αi

...
uiT + αi Xi

. . . . . . . . .

αi



∼ N

[
0
. . .

0

]
,

σ 2
u IT + σ 2

α ee′ ... σ 2
α e

. . . . . . . . . . . .
... . . . .

σ 2
α e′ ... σ 2

α


. (3.4.10a)

In the second experiment, αi may be viewed as a random draw from
heterogeneous populations with mean a∗

i and variance σ 2
ωi (Mundlak’s (1978a)

formulation may be viewed as a special case of this in which E(αi | Xi ) =
a∗

i = a′x̄i , and σ 2
ωi = σ 2

ω for all i). Then the conditional distribution of
{(ui + eαi )′

... αi | Xi } is
ui1 + αi

...
uiT + αi Xi

. . . . . . . . .

αi

 ∼ N


ea∗

i
. . .

a∗
i

 ,

σ 2
u IT + σ 2

ωi ee′ ... σ 2
ωi e

. . . . . . . . . . . .
... . . . .

σ 2
ωi e

′ ... σ 2
ωi


.

(3.4.10b)

In both cases, the conditional density of ui + eαi , given αi , is11

(
2πσ 2

u

)T/2
exp

{
− 1

2σ 2
u

u′
i ui

}
. (3.4.11)

But the marginal density of ui + eαi , given Xi , are different [(3.4.10a) and
(3.4.10b), respectively]. Under the independence assumption, {ui + eαi | Xi }
has a common mean of zero for i = 1, . . . , N . Under the assumption that αi

and Xi are correlated or αi is a draw from a heterogeneous population, {ui +
eαi | Xi } has a different mean ea∗

i for different i .
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In the linear regression model, conditional on αi the Jacobian of transforma-
tion from ui + eαi to yi is 1. Maximizing the conditional-likelihood function
of (y1 | α1, X1), . . . , (yN | αN , X N ), treating αi as unknown parameters, yields
the covariance (or within-group) estimators for both cases. Maximizing the
marginal-likelihood function of (y1, . . . , yN | X1, . . . , X N ) yields the GLS es-
timator (3.3.12) for (3.4.10a) if σ 2

u and σ 2
α are known, and it happens to yield

the covariance estimator for (3.4.10b) in the linear case. In other words, there
is no loss of information using a conditional approach for the case of (3.4.10b).
However, there is a loss in efficiency in maximizing the conditional-likelihood
function for the former case [i.e., (3.4.10a)] because of the loss of degrees
of freedom in estimating additional unknown parameters (α1, . . . , αN ), which
leads to ignoring the information contained in the between-group variation.

The advantage of the unconditional inference is that the likelihood function
may only depend on a finite number of parameters and hence can often lead
to efficient inference. The disadvantage is that the correct specification of the
conditional density of yi given Xi ,

f (yi | Xi ) =
∫

f (yi | Xi , αi ) f (αi | Xi ) dαi , (3.4.12)

depends on the correct specification of f (αi | Xi ). A misspecified f (αi | Xi )
can lead to a misspecified f (yi | Xi ). Maximizing the wrong f (yi | Xi ) can lead
to biased and inconsistent estimators. The bias of the GLS estimator (3.3.12)
in the case that αi ∼ N (a∗

i , σ 2
ωi ) is not due to any fallacy of the unconditional

inference, but due to the misspecification of f (αi | Xi ).
The advantage of the conditional inference is that there is no need to specify

f (αi | Xi ). Therefore, if the distribution of effects cannot be represented by
a simple parametric functional form (say bimodal), or one is not sure of the
correlation pattern between the effects and Xi , there may be an advantage in
basing one’s inference conditionally. In the situation that there are fundamental
differences between the effects (for instance, if there are fundamental differ-
ences in the ability, years of experiences, etc., as in the previous of example of
technicians), then it is more appropriate to treat the technicians’ effects as fixed.

The disadvantage of the conditional inference is that not only there is a loss of
efficiency due to the loss of degrees of freedom of estimating the effects, there is
also an issue of incidental parameters if T is finite (Neyman and Scott (1948)).
A typical panel contains a large number of individuals observed over a short
time period; the number of individual effects parameters (α∗

i ) increases with
the number of cross-sectional dimension, N . Because increase in N provides
no information on a particular α∗

i apart from that already contained in yi , α∗
i

cannot be consistently estimated with finite T . The condition that, in general,

E(uit | xi t ) = 0 (3.4.13)

is not informative about the common parameters � in the absence of any knowl-
edge about α∗

i . If the estimation of the incidental parameters α∗
i is not asymptoti-

cally independent of the estimation of the common parameters (called structural
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parameters in the statistical literature), the conditional inference of the common
parameter � conditional on the inconsistently estimated α∗

i , in general, will be
inconsistent.

In the case of a linear static model (3.2.1) or (3.2.10), the strict exogeneity
of xi t to uit ,

E(uit | xi ) = 0, t = 1, 2, . . . , T, (3.4.14)

where x′
i = (x′

i1, . . . , x′
iT ), implies that

E(uit − ūi | xi ) = E[(yit − ȳi ) − (xi t − x̄i )
′�] = 0,

t = 1, 2, . . . , T,
(3.4.15)

i = 1, . . . , N .

Since � can be identified from the moment conditions of the form (3.4.15) in
the linear static model and (3.4.15) no longer involves α∗

i , consistent estimators
of � can be proposed by making use of these moment conditions (e.g., (3.2.8)).
Unfortunately, for nonlinear panel data models, it is in general not possible
to find moment conditions that are independent of α∗

i to provide consistent
estimators of common parameters.

The advantage of fixed-effects inference is that there is no need to assume
that the effects are independent of xi . The disadvantage is that it introduces the
issue of incidental parameters. The advantage of random-effects inference is
that the number of parameters is fixed and efficient estimation methods can be
derived. The disadvantage is that one has to make specific assumptions about the
pattern of correlation (or no correlation) between the effects and the included
explanatory variables.

Finally, it should be noted that the assumption of randomness does not carry
with it the assumption of normality. Often this assumption is made for random
effects, but it is a separate assumption made subsequent to the randomness
assumption. Most estimation procedures do not require normality, although if
distributional properties of the resulting estimators are to be investigated, then
normality is often assumed.

3.5 TESTS FOR MISSPECIFICATION

As discussed in Section 3.4, the issue is not whether αi is fixed or random.
The issue is whether or not αi can be viewed as random draws from a common
population or whether the conditional distribution of αi given xi can be viewed
as identical across i . In the linear-regression framework, treating αi as fixed in
(3.2.10) leads to the identical estimator of � whether αi is correlated with xi as
in (3.4.3) or is from a heterogeneous population. Hence, for ease of reference,
when αi is correlated with xi , we shall follow the convention and call (3.2.10)
a fixed-effects model, and when αi is uncorrelated with xi , we shall call it a
random-effects model.

Thus, one way to decide whether to use a fixed-effects or a random-effects
model is to test for misspecification of (3.3.3), where αi is assumed random and
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uncorrelated with xi . Using Mundlak’s formulation, (3.4.3a) or (3.4.3b), this
test can be reduced to a test of

H0 : a = 0

against

H1 : a �= 0.

If the alternative hypothesis H1 holds, we use the fixed-effects model (3.2.1).
If the null hypothesis H0 holds, we use the random-effects model (3.3.3). The
ratio

F =



∑N
i=1(yi − X̃ i �̂GLS)′V ∗−1(yi − X̃ i �̂GLS)

−∑N
i=1(yi − X̃ i �̂

∗
GLS − ex̄′

i â
∗
GLS)′V ∗−1 · (yi − X̃ i �̂

∗
GLS − ex̄′

i â
∗
GLS)

K


(∑N

i=1(yi − X̃ i �̂
∗
GLS − ex̄′

i â
∗
GLS)′V ∗−1(yi − X̃ i �̂

∗
GLS − ex̄′

i â
∗
GLS)

N T − (2K + 1)

)
(3.5.1)

under H0 has a central F distribution with K and N T − (2K + 1) degrees
of freedom, where V ∗−1 = (1/σ 2

u )[Q + ψ∗(1/T )ee′], ψ∗ = σ 2
u /(σ 2

u + T σ 2
ω).

Hence, (3.5.1) can be used to test H0 against H1.12

An alternative testing procedure suggested by Hausman (1978) notes that
under H0 the GLS for (3.3.3) achieves the Cramer–Rao lower bounds, but under
H1, the GLS is a biased estimator. In contrast, the CV of � is consistent under
both H0 and H1. Hence, the Hausman test basically asks if the CV and GLS
estimates of � are significantly different.

To derive the asymptotic distribution of the differences of the two estimates,
Hausman makes use of the following lemma:13

Lemma 3.5.1. Based on a sample of N observations, consider two estimates
�̂0 and �̂1 that are both consistent and asymptotically normally distributed,
with �̂0 attaining the asymptotic Cramer–Rao bound so that

√
N (�̂0 − �) is

asymptotically normally distributed with variance–covariance matrix V0. Sup-
pose

√
N (�̂1 − �) is asymptotically normally distributed, with mean zero and

variance–covariance matrix V1. Let q̂ = �̂1 − �̂0. Then the limiting distri-
bution of

√
N (�̂0 − �) and

√
N q̂ has zero covariance: C(�̂0, q̂) = 0, a zero

matrix.

From this lemma, it follows that Var(q̂) = Var(�̂1) − Var(�̂0). Thus,
Hausman suggests using the statistic14

m = q̂′ Var(q̂)−1q̂, (3.5.2)

where q̂ = �̂CV − �̂GLS, Var(q̂) = Var(�̂CV) − Var(�̂GLS), to test the null
hypothesis E(αi | Xi ) = 0 against the alternative E(αi | Xi ) �= 0. Under the
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null hypothesis, this statistic is distributed asymptotically as central chi-
square, with K degrees of freedom. Under the alternative, it has a noncen-
tral chi-square distribution with noncentrality parameter q̄′ Var(q̂)−1q̄, where
q̄ = plim(�̂CV − �̂GLS).

When N is fixed and T tends to infinity, �̂CV and �̂GLS become identi-
cal. However, it was shown by Ahn and Moon (2001) that the numerator and
denominator of (3.5.2) approach zero at the same speed. Therefore the ratio
remains chi-square distributed. However, in this situation the fixed-effects and
random-effects models become indistinguishable for all practical purposes. The
more typical case in practice is that N is large relative to T , so that differences
between the two estimators or two approaches are important problems.

We can use either (3.5.1) or (3.5.2) to test whether a fixed-effects or a random-
effects formulation is more appropriate for the wage equation cited at the begin-
ning of Section 3.4 (Table 3.3). The chi-square statistic for (3.5.2) computed by
Hausman (1978) is 129.9. The critical value for the 1 percent significance level
at 10 degrees of freedom is 23.2, a very strong indication of misspecification
in the conventional random-effects model (3.3.3). Similar conclusions are also
obtained by using (3.5.1). The F value computed by Hausman (1978) is 139.7,
which well exceeds the 1 percent critical value. These tests imply that in the
Michigan survey, important individual effects are present that are correlated
with the right-hand variables. Because the random-effects estimates appear to
be significantly biased with high probability, it may well be important to take
account of permanent unobserved differences across individuals in estimating
earnings equations using panel data.

3.6 MODELS WITH SPECIFIC VARIABLES AND
BOTH INDIVIDUAL- AND TIME-SPECIFIC
EFFECTS

3.6.1 Estimation of Models with Individual-Specific Variables

Model (3.2.10) can be generalized in a number of different directions with
no fundamental change in the analysis. For instance, we can include a 1 × p
vector z′

i of individual-specific variables (such as sex, race, socioeconomic-
background variables, which vary across individual units but do not vary over
time) in the specification of the equation for yit and consider

yi
T ×1

= e
T ×1

µ
1×1

+ Zi
T ×p

�
p×1

+ Xi
T ×K

�
K×1

+ e
T ×1

αi
1×1

+ ui
T ×1

, i = 1, . . . , N , (3.6.1)

where

Zi = e
T ×1

z′
i

1×p
.

If we assume that the αi are fixed constants, model (3.6.1) is subject to
perfect multicollinearity because Z = (Z ′

1, . . . , Z ′
N )′ and (IN ⊗ e) are perfectly
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correlated.15 Hence, �, µ, and αi are not separately estimable. However, �
may still be estimated by the covariance method (provided

∑N
i=1 X ′

i Q Xi is of
full rank). Premultiplying (3.6.1) by the (covariance) transformation matrix Q
[(3.2.6)], we sweep out Zi , eµ, and eαi from (3.6.1), so that

Qyi = Q Xi � + Qui , i = 1, . . . , N . (3.6.2)

Applying OLS to (3.6.2), we obtain the CV estimate of �, (3.2.8).
When the αi are assumed random and uncorrelated with Xi and Zi , CV

uses the same method to estimate � (3.2.8). To estimate �, we note that the
individual mean over time satisfies

ȳi − x̄′
i � = µ + z′

i � + αi + ūi , i = 1, . . . , N . (3.6.3)

Treating (αi + ūi ) as the error term and minimizing
∑N

i=1(αi + ūi )2, we obtain

�̂ =
[

N∑
i=1

(zi − z̄)(zi − z̄)′
]−1 {

N∑
i=1

(zi − z̄)[(ȳi − ȳ) − (x̄i − x̄)′�]

}
,

(3.6.4)

µ̂ = ȳ − x̄′� − z̄′�̂, (3.6.5)

where

z̄ = 1

N

N∑
i=1

zi , x̄ = 1

N

N∑
i=1

x̄i , ȳ = 1

N

N∑
i=1

ȳi .

Substituting the CV estimate of � into (3.6.4) and (3.6.5), we obtain estimators
of � and µ. When N tends to infinity, this two-step procedure is consistent.
When N is fixed and T tends to infinity, � can still be consistently estimated by
(3.2.8). But � can no longer be consistently estimated, because when N is fixed,
we have a limited amount of information on αi and zi . To see this, note that
the OLS estimate of (3.6.3) after substituting plimT →∞ �̂CV = � converges to

�̂OLS = � +
[

N∑
i=1

(zi − z̄)(zi − z̄)′
]−1 [

N∑
i=1

(zi − z̄)(αi − ᾱ)

]

+
[
T

N∑
i=1

(zi − z̄)(zi − z̄)′
]−1 [

N∑
i=1

T∑
t=1

(zi − z̄)(uit − ū)

]
,

(3.6.6)

where

ū = 1

N T

N∑
i=1

T∑
t=1

uit , ᾱ = 1

N

N∑
i=1

αi .

It is clear that

plim
T →∞

1

N

N∑
i=1

(zi − z̄)
1

T

T∑
t=1

(uit − ū) = 0,
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but (1/N )
∑N

i=1(zi − z̄)(αi − ᾱ) is a random variable, with mean zero and co-
variance σ 2

α [
∑N

i=1(zi − z̄)(zi − z̄)′/N 2] �= 0 for finite N , so that the second
term in (3.6.6) does not have zero plim.

When αi are random and uncorrelated with Xi and Zi , the CV is not the
BLUE. The BLUE of (3.6.1) is the GLS estimator

µ̂

�̂

�̂

 =



N T ψ N T ψ z̄′ N T ψ x̄′

N T ψ z̄ T ψ

N∑
i=1

zi z′
i T ψ

N∑
i=1

zi x̄′
i

N T ψ x̄ T ψ

N∑
i=1

x̄i z′
i

N∑
i=1

X ′
i Q Xi + ψT

N∑
i=1

x̄i x̄′
i



−1

×



N T ψ ȳ

ψT
N∑

i=1

zi ȳi

N∑
i=1

X ′
i Qyi + ψT

N∑
i=1

x̄i ȳi


. (3.6.7)

If ψ in (3.6.7) is unknown, we can substitute a consistent estimate for it. When
T is fixed, the GLS is more efficient than the CV. When T tends to infinity, the
GLS estimator of � converges to the CV estimator; for details, see Lee (1978b).

One way to view (3.6.1) is that by explicitly incorporating time-invariant
explanatory variables zi we can eliminate or reduce the correlation between
αi and xi t . However, if αi remains correlated with xi t or zi , the GLS will be a
biased estimator. The CV will produce an unbiased estimate of �, but the OLS
estimates of � andµ in (3.6.3) are inconsistent even when N tends to infinity ifαi

is correlated with zi .16 Thus, Hausman and Taylor (1981) suggested estimating
� in (3.6.3) by two-stage least squares, using those elements of x̄i that are
uncorrelated with αi as instruments for zi . A necessary condition to implement
this method is that the number of elements of x̄i that are uncorrelated with αi

must be greater than the number of elements of zi that are correlated with αi .

3.6.2 Estimation of Models with Both Individual and Time Effects

We can further generalize model (3.6.1) to include time-specific variables and
effects. Let

yit = µ + z′
i

1×p
�

p×1
+ r′

t
1×l

�
l×1

+ x′
i t

1×K
�

K×1
+ αi + λt + uit ,

i = 1, . . . , N ,
(3.6.8)

t = 1, . . . , T,
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where rt and λt denote l × 1 and 1 × 1 time-specific variables and effects.
Stacking (3.6.8) over i and t , we have

Y
N T ×1

=


y1

y2
...

yN

 =


e Z1 R X1

e Z2 R X2
...

...
...

...
e Z N R X N




µ

�

�

�



+ (IN ⊗ e)� + (eN ⊗ IT )� +


u1

u2
...

uN

, (3.6.9)

where � ′ = (α1, . . . , αN ), � ′ = (λ1. . . . , λT ), R′ = (r1, r2, . . . , rT ), eN is an
N × 1 vector of ones, and ⊗ denotes the Kronecker product.

If � and � are treated as fixed constants, there is a multicollinearity problem,
for the same reasons stated in Section 3.6.1. The coefficients �, �, �, �, and µ

cannot be separately estimated. The coefficient � can still be estimated by the
covariance method. Using the N T × N T (covariance) transformation matrix

Q̃ = IN T − IN ⊗ 1

T
ee′ − 1

N
eN e′

N ⊗ IT + 1

N T
J, (3.6.10)

where J is an N T × N T matrix of ones, we can sweep out µ, zi , rt , αi , and λt

and estimate � by

�̂CV = [(X ′
1, . . . , X ′

N )Q̃(X ′
1, . . . , X ′

N )′]−1[(X ′
1, . . . , X ′

N )Q̃Y ].

(3.6.11)

If αi and λt are random, we can still estimate � by the covariance method.
To estimate µ, �, and �, we note that the individual-mean (over time) and
time-mean (over individuals) equations are of the form

ȳi − x̄′
i � = µ∗

c + z′
i � + αi + ūi , i = 1, . . . , N , (3.6.12)

ȳt − x̄′
t � = µ∗

T + r′
t � + λt + ūt , t = 1, . . . , T, (3.6.13)

where

µ∗
c = µ + r̄′� + λ̄, (3.6.14)

µ∗
T = µ + z̄′� + ᾱ, (3.6.15)

and

r̄ = 1

T

T∑
t=1

rt , z̄ = 1

N

N∑
i=1

zi , λ̄ = 1

T

T∑
t=1

λt , ᾱ = 1

N

N∑
i=1

αi ,

ȳt = 1

N

N∑
i=1

yit , x̄t = 1

N

N∑
i=1

xi t , ūt = 1

N

N∑
i=1

uit .
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Replacing � by �̂CV, we can estimate (µ∗
c , �′) and (µ∗

T , �′) by applying OLS
to (3.6.12) and (3.6.13) over i and t , respectively, if αi and λt are uncorrelated
with zi , rt , and xi t . To estimate µ, we can substitute estimated values of �, �,
and � into any of

µ̂ = µ̂∗
c − r̄′�̂, (3.6.16)

µ̂ = µ̂∗
T − z̄′�̂, (3.6.17)

µ̂ = ȳ − z̄′�̂ − r̄′�̂ − x̄′�̂, (3.6.18)

or apply the least-squares method to the combined equations (3.6.16)–(3.6.18).
When both N and T go to infinity, µ̂ is consistent.

If αi and λt are random and uncorrelated with zi , rt , and xi t , the BLUE is the
GLS estimator. Assuming αi and λt satisfy (3.3.2), the N T × N T variance–
covariance matrix of the error term, u + (IN ⊗ e)� + (eN ⊗ IT )�, is

Ṽ = σ 2
u IN T + σ 2

α IN ⊗ ee′ + σ 2
λ eN e′

N ⊗ IT . (3.6.19)

Its inverse (Henderson (1971); Nerlove (1971b); Wallace and Hussain (1969))
(see Appendix 3B) is

Ṽ −1 = 1

σ 2
u

[IN T − η1 IN ⊗ ee′ − η2eN e′
N ⊗ IT + η3 J ], (3.6.20)

where

η1 = σ 2
α

σ 2
u + T σ 2

α

, η2 = σ 2
λ

σ 2
u + Nσ 2

λ

,

η3 = σ 2
ασ 2

λ(
σ 2

u + T σ 2
α

)(
σ 2

u + Nσ 2
λ

) (
2σ 2

u + T σ 2
α + Nσ 2

λ

σ 2
u + T σ 2

α + Nσ 2
λ

)
.

When N → ∞, T → ∞, and the ratio N/T tends to a nonzero constant,
Wallace and Hussain (1969) have shown that the GLS estimator converges to the
CV estimator. It should also be noted that, contrary to the conventional linear-
regression model without specific effects, the speed of convergence of �GLS to
� is (N T )1/2, whereas the speed of convergence for µ is N 1/2. This is because
the effect of a random component can be averaged out only in the direction of
that random component. For details, see Kelejian and Stephan (1983).

For the discussion of the MLE of the two-way error components models,
see Baltagi (1995) and Baltagi and Li (1992).

3.7 HETEROSCEDASTICITY

So far we have confined our discussion to the assumption that the variances
of the errors across individuals are identical. However, many panel studies
involve cross-sectional units of varying size. In an error-components setup,
heteroscedasticity can arise because the variance σ 2

αi of αi varies with i
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(e.g., Mazodier and Trognon (1978); Baltagi and Griffin (1983)), or the variance
σ 2

ui of uit varies with i , or both σ 2
αi and σ 2

ui vary with i . Then

Evi v′
i = σ 2

ui IT + σ 2
αi ee′ = Vi . (3.7.1)

The V −1
i is of the same form as (3.3.5) with σ 2

ui and σ 2
αi in place of σ 2

u and σ 2
α .

The GLS estimator of � is obtained by replacing V by Vi in (3.3.7).
When σ 2

ui and σ 2
αi are unknown, by replacing the unknown true values with

their estimates, a feasible (or two-step) GLS estimator can be implemented.
Unfortunately, with a single realization of αi , there is no way one can get a
consistent estimator for σ 2

αi even when T → ∞. The conventional formula

σ̂ 2
αi = ˆ̄v2

i − 1

T
σ̂ 2

ui , i = 1, . . . , N , (3.7.2)

where v̂i t is the initial estimate of vit (say, the least-squares or CV estimated
residual of (3.3.3)), converges to α2

i , not σ 2
αi . However, σ 2

ui can be consistently
estimated by

σ̂ 2
ui = 1

T − 1

T∑
t=1

(v̂i t − ˆ̄vi )
2, (3.7.3)

as T tends to infinity. In the event that σ 2
αi = σ 2

α for all i , we can estimate σ 2
α

by taking the average of (3.7.2) across i as their estimates.
It should be noted that when T is finite, there is no way we can get consistent

estimates of σ 2
ui and σ 2

αi even when N tends to infinity. This is the classical
incidental-parameter problem of Neyman and Scott (1948). However, if σ 2

αi =
σ 2

α for all i , then we can get consistent estimates of σ 2
ui and σ 2

α when both
N and T tend to infinity. Substituting σ̂ 2

ui and σ̂ 2
α for σ 2

ui and σ 2
α in Vi , we

obtain its estimation V̂i . Alternatively, one may assume that the conditional
variance of αi conditional on xi has the same functional form across individuals,
Var(αi | xi ) = σ 2(xi ), to allow for the consistent estimation of heteroscedastic
variance, σ 2

αi . The feasible GLS estimator of �,

�̂FGLS =
[

N∑
i=1

X̃ ′
i V̂

−1
i X̃ i

]−1 [
N∑

i=1

X̃ ′
i V̂

−1
i yi

]
(3.7.4)

is asymptotically equivalent to the GLS estimator when both N and T approach
to infinity. The asymptotic variance–covariance matrix of the �̂FGLS can be
approximated by (

∑N
i=1 X̃ ′

i V̂
−1

i X̃ i )−1.
In the case that both σ 2

αi and σ 2
ui vary across i , another way to estimate the

model is to treat αi as fixed by taking the covariance transformation to eliminate
the effect of αi , then apply feasible weighted least squares method. That is, we
first weight each individual observation by the reciprocal of σui ,

y∗
i = 1

σui
yi , X∗

i = 1

σui
Xi ,
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then apply the covariance estimator to the transformed data

�̂CV =
[

N∑
i=1

X∗′
i Q X∗

i

]−1 [
N∑

i=1

X∗′
i Qy∗

i

]
. (3.7.5)

3.8 MODELS WITH SERIALLY CORRELATED
ERRORS

The fundamental assumption we made with regard to the variable-intercept
model was that the error term is serially uncorrelated conditional on the indi-
vidual effects αi . But there are cases in which the effects of unobserved variables
vary systematically over time, such as the effect of serially correlated omitted
variables or the effects of transitory variables whose effects last more than one
period. The existence of these variables is not well described by an error term
that is either constant or independently distributed over time periods. To pro-
vide for a more general autocorrelation scheme, one can relax the restriction
that uit are serially uncorrelated (e.g., Lillard and Weiss (1978, 1979??)).17

Anderson and Hsiao (1982) have considered the MLE of the model (3.3.3) with
uit following a first-order autoregressive process,

uit = ρui,t−1 + εi t , (3.8.1)

where εi t are independently, identically distributed, with zero mean and variance
σ 2

ε . However, computation of the MLE is complicated. But if we know ρ, we
can transform the model into a standard variance-components model,

yit − ρyi,t−1 = µ(1 − ρ) + �′(xi t − ρxi,t−1) + (1 − ρ)αi + εi t .

(3.8.2)

Therefore, we can obtain an asymptotically efficient estimator of � by the
following multistep procedure:

Step 1. Eliminate the individual effect αi by subtracting the individual
mean from (3.3.3). We have

yit − ȳi = �′(xi t − x̄i ) + (uit − ūi ). (3.8.3)

Step 2. Use the least-squares residual of (3.8.3) to estimate the se-
rial correlation coefficient ρ, or use the Durbin (1960) method
by regressing (yit − ȳi ) on (yi,t−1 − ȳi,−1), and (xi,t−1 − x̄i,−1),
and treat the coefficient of (yi,t−1 − ȳi,−1) as the estimated value of
ρ, where ȳi,−1 = (1/T )

∑T
t=1 yi,t−1 and x̄i,−1 = (1/T )

∑T
t=1 xi,t−1.

(For simplicity, we assume that yi0 and xi0 are observable.)
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Step 3. Estimate σ 2
ε and σ 2

α by

σ̂ 2
ε = 1

N T

N∑
i=1

T∑
t=1

{(yit − ȳi )

−(1 − ρ̂)µ̂ − ρ̂(yi,t−1 − ȳi,−1)

−�̂
′
[(xi t − x̄i ) − (xi,t−1 − x̄i,−1)ρ̂]}2, (3.8.4)

and

σ̂ 2
α = 1

(1 − ρ̂)2
· 1

N

N∑
i=1

[ȳi − µ̂(1 − ρ̂) − ρ̂ ȳi,−1 − �̂
′
(x̄i − x̄i,−1ρ̂)]2

− 1

T
σ̂ 2

ε . (3.8.5)

Step 4. Substituting ρ̂, (3.8.4), and (3.8.5) for ρ, σ 2
ε , and σ 2

α in the
variance–covariance matrix of εi t + (1 − ρ)αi , we estimate (3.8.2)
by the GLS method.

The above multistep or feasible generalized least-squares procedure treats
the initial ui1 as fixed constants. A more efficient, but computationally more
burdensome, feasible GLS is to treat initial ui1 as random variables with mean 0
and variance σ 2

ε /(1 − ρ2) (e.g., Baltagi and Li (1991)). Premultiplying (3.3.3)
by the T × T transformation matrix

R =



(1 − ρ2)1/2 0 0 · · · 0 0
−ρ 1 0 · · · 0 0
0 −ρ 1 · · · 0 0

0 0 −ρ
. . .

...
...

...
...

...
. . . 1 0

0 0 0 · · · −ρ 1


transforms ui into serially uncorrelated homoscedastic error terms, but also
transforms eT αi into (1 − ρ)�T αi , where

�T =
[(

1 + ρ

1 − ρ

)1/2

, 1, . . . , 1

]′
.

Therefore, the transformed error terms will have covariance matrix

V ∗ = σ 2
ε IT + (1 − ρ)2σ 2

α�T �
′
T , (3.8.6)

with inverse

V ∗−1 = 1

σ 2
ε

[
IT − (1 − ρ)2σ 2

α

[T − (T − 1)ρ − ρ2]σ 2
α + σ 2

ε

�T �
′
T

]
. (3.8.7)

Substituting initial estimates of ρ, σ 2
α , and σ 2

ε into (3.8.7), one can apply the
GLS procedure using (3.8.7) to estimate �.
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When T tends to infinity, the GLS estimator of � converges to the covariance
estimator of the transformed model (3.8.2). In other words, an asymptotically
efficient estimator of � is obtained by finding a consistent estimate of ρ, trans-
forming the model to eliminate the serial correlation, and then applying the
covariance method to the transformed model (3.8.2).

MaCurdy (1982) has considered a similar estimation procedure for (3.3.3)
with a more general time-series process of uit . His procedure essentially
involves eliminating αi by first-differencing and treating yit − yi,t−1 as the
dependent variable. He then modeled the variance–covariance matrix of
ui by using a standard Box–Jenkins (1970) procedure to model the least-
squares predictor of uit − ui,t−1, and estimated the parameters by an efficient
algorithm.

Kiefer (1980) considered estimation of fixed-effects models of (3.2.1) with
arbitrary intertemporal correlations for uit . When T is fixed, the individual
effects cannot be consistently estimated. He suggested that we first eliminate
the individual effects by transforming the model to the form (3.8.3) using the
transformation matrix Q = IT − (1/T )ee′. Then estimate the intertemporal co-
variance matrix of Qui by

�̂∗ = 1

N

N∑
i=1

[Q(yi − Xi �̂)][Q(yi − Xi �̂)]′, (3.8.8)

where �̂ is any arbitrary consistent estimator of � (e.g., CV of �). Given an
estimate of �̂∗, one can estimate � by the GLS method,

�̂
∗ =

[
N∑

i=1

X ′
i Q�̂∗− Q Xi

]−1 [
N∑

i=1

X ′
i Q�̂∗− Qyi

]
, (3.8.9)

where �̂∗− is a generalized inverse of �∗, because �∗ has only rank T − 1.
The asymptotic variance–covariance matrix of �̂

∗
is

Var(�̂
∗
) =

[
N∑

i=1

X ′
i Q�̂∗− Q Xi

]−1

. (3.8.10)

Although any generalized inverse can be used for �̂∗, a particularly attractive
choice is

�̂∗− =
[
�̂∗−1

T −1 0

0′ 0

]
,

where �̂∗
T −1 is the (T − 1) × (T − 1) full-rank submatrix of �̂∗ obtained by

deleting the last row and column from �̂∗. Using this generalized inverse simply
amounts to deleting the T th observation from the transformed observations
Qyi and Q Xi , and then applying GLS to the remaining subsample. However,
it should be noted that this is not the GLS estimator that would be used if the
variance–covariance matrix of ui were known.
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3.9 MODELS WITH ARBITRARY ERROR
STRUCTURE – CHAMBERLAIN π APPROACH

The focus of this chapter is formulation and estimation of linear-regression
models when there exist time-invariant and/or individual-invariant omitted
(latent) variables. In Sections 3.1–3.7 we have been assuming that the variance–
covariance matrix of the error term possesses a known structure. In fact, when
N tends to infinity, the characteristics of short panels allow us to exploit the un-
known structure of the error process. Chamberlain (1982, 1984) has proposed to
treat each period as an equation in a multivariate setup to transform the problems
of estimating a single-equation model involving two dimensions (cross sections
and time series) into a one-dimensional problem of estimating a T -variate re-
gression model with cross-sectional data. This formulation avoids imposing
restrictions a priori on the variance–covariance matrix, so that serial correlation
and certain forms of heteroscedasticity in the error process, which covers cer-
tain kinds of random-coefficient models (see Chapter 6), can be incorporated.
The multivariate setup also provides a link between the single-equation and
simultaneous-equations models (see Chapter 5). Moreover, the extended view
of the Chamberlain method can also be reinterpreted in terms of the generalized
method of moments (GMM) method to be discussed in Chapter 4 (Crépon and
Mairesse (1996)).

For simplicity, consider the following model:

yit = α∗
i + �′xi t + uit , i = 1, . . . , N ,

(3.9.1)
t = 1, . . . , T,

and

E(uit | xi1, . . . , xiT , α∗
i ) = 0. (3.9.2)

When T is fixed and N tends to infinity, we can stack the T time-period ob-
servations of the i th individual’s characteristics into a vector (y′

i , x′
i ), where

y′
i = (yi1, . . . , yiT ) and x′

i = (x′
i1, . . . , x′

iT ) are 1 × T and 1 × K T vectors, re-
spectively. We assume that (y′

i , x′
i ) is an independent draw from a common

(unknown) multivariate distribution function with finite fourth-order moments
and with Exi x′

i = �xx positive definite. Then each individual observation vec-
tor corresponds to a T -variate regression

yi
T ×1

= eα∗
i + (IT ⊗ �′)xi + ui , i = 1, . . . , N . (3.9.3)

To allow for the possible correlation between α∗
i and xi , Chamberlain, fol-

lowing the idea of Mundlak (1978a), assumes that

E(α∗
i | xi ) = µ +

T∑
t=1

a′
t xi t = µ + a′xi , (3.9.4)

where a′ = (a′
1, . . . , a′

T ). While E(yi | xi , α
∗
i ) is assumed linear, it is possible
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to relax the assumption of E(α∗
i | xi ) being linear for the linear model. In the

case in which E(α∗
i | xi ) is not linear, Chamberlain (1984) replaces (3.9.4) by

E∗(α∗
i | xi ) = µ + a′xi , (3.9.5)

where E∗(α∗
i | xi ) refers to the (minimum-mean-squared-error) linear predictor

(or the projection) of α∗
i onto xi . Then,18

E∗(yi | xi ) = E∗{E∗(yi | xi , α
∗
i ) | xi }

= E∗{eα∗
i + (IT ⊗ �′)xi | xi }

= eµ + �xi , (3.9.6)

where

�
T ×K T

= IT ⊗ �′ + ea′. (3.9.7)

Rewrite equations (3.9.3) and (3.9.6) as

yi = eµ + [IT ⊗ x′
i ]� + 	 i , i = 1, . . . , N , (3.9.8)

where 	 i = yi − E∗(yi | xi ) and �′ = vec(�∗′)′ = [�′
1, . . . , �′

T ] is a 1 × K T 2

vector with �′
t denoting the t th row of �. Treating the coefficients of (3.9.8) as

if they were unconstrained, we regress (yi − ȳ) on [IT ⊗ (xi − x̄∗)′] and obtain
the least-squares estimate of � as19

�̂ =
{

N∑
i=1

[IT ⊗ (xi − x̄∗)][IT ⊗ (xi − x̄∗)′]

}−1

×
{

N∑
i=1

[IT ⊗ (xi − x̄∗)](yi − ȳ)

}

= � +
{

1

N

N∑
i=1

[IT ⊗ (xi − x̄∗)][IT ⊗ (xi − x̄∗)′]

}−1

×
{

1

N

N∑
i=1

[IT ⊗ (xi − x̄∗)]	 i

}
, (3.9.9)

where ȳ = (1/N )
∑N

i=1 yi and x̄∗ = (1/N )
∑N

i=1 xi .
By construction, E(	 i | xi ) = 0, and E(	 i ⊗ xi ) = 0. The law of large num-

bers implies that �̂ is a consistent estimator of � when T is fixed and N tends
to infinity (Rao (1973, Chapter 2)). Moreover, because

plim
N→∞

1

N

N∑
i=1

(xi − x̄∗)(xi − x̄∗)′ = E[xi − Exi ][xi − Exi ]
′

= �xx − (Ex)(Ex)′ = �xx ,
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we have
√

N (�̂ − �) converging in distribution to (Rao (1973, Chapter 2))

[
IT ⊗ �−1

xx

] { 1√
N

N∑
i=1

[IT ⊗ (xi − x̄∗)]	 i

}

= [
IT ⊗ �−1

xx

] { 1√
N

N∑
i=1

[	 i ⊗ (xi − x̄∗)]

}
. (3.9.10)

So the central limit theorem implies that
√

N (�̂ − �) is asymptotically normally
distributed, with mean zero and variance–covariance matrix �, where20

� = E
[
(yi − eµ − �xi )(yi − eµ − �xi )

′

⊗ �−1
xx (xi − Ex)(xi − Ex)′�−1

xx

]
. (3.9.11)

A consistent estimator of � is readily available from the corresponding
sample moments,

�̂ = 1

N

N∑
i=1

{
[(yi − ȳ) − �̂(xi − x̄∗)][(yi − ȳ)

− �̂(xi − x̄∗)]′ ⊗ S−1
xx (xi − x̄∗)(xi − x̄∗)′S−1

xx

}
,

(3.9.12)

where

Sxx = 1

N

N∑
i=1

(xi − x̄∗)(xi − x̄∗)′.

Equation (3.9.7) implies that � is subject to restrictions. Let � = (�′, a′).
We specify the restrictions on � [equation (3.9.7)] by the conditions that

� = f(�). (3.9.13)

We can impose these restrictions by using a minimum-distance estimator.
Namely, choose �̂ to minimize

[�̂ − f(�)]′�̂−1[�̂ − f(�)]. (3.9.14)

Under the assumptions that f possesses continuous second partial derivatives,
and the matrix of first partial derivatives

F = ∂f
∂�′ (3.9.15)

has full column rank in an open neighborhood containing the true parameter �,
the minimum-distance estimator �̂ of (3.9.14) is consistent, and

√
N (�̂ − �) is

asymptotically normally distributed, with mean zero and variance–covariance
matrix

(F ′�−1 F)−1. (3.9.16)



3.9 Models with Arbitrary Error Structure 63

The quadratic form

N [�̂ − f(�)]′�̂−1[�̂ − f(�)] (3.9.17)

converges to a chi-square distribution with K T 2 − K (1 + T ) degrees of
freedom.21

The advantage of the multivariate setup is that we need only to assume
that the T period observations of the characteristics of the i th individual are
independently distributed across cross-sectional units with finite fourth-order
moments. We do not need to make specific assumptions about the error process.
Nor do we need to assume that E(α∗

i | xi ) is linear.22 In the more restrictive case
that E(α∗

i | xi ) is indeed linear, [then the regression function is linear, that is,
E(yi | xi ) = eµ + �xi ] and Var(yi | xi ) is uncorrelated with xi x′

i , (3.9.12) will
converge to

E[Var(yi | xi )] ⊗ �−1
xx . (3.9.18)

If the conditional variance–covariance matrix is homoscedastic, so that
Var(yi | xi ) = � does not depend on xi , then (3.9.12) will converge to

� ⊗ �−1
xx . (3.9.19)

The Chamberlain procedure of combining all T equations for a single indi-
vidual into one system, obtaining the matrix of unconstrained linear-predictor
coefficients, and then imposing restrictions by using a minimum-distance es-
timator also has a direct analog in the linear simultaneous-equations model,
in which an efficient estimator is provided by applying a minimum-distance
procedure to the reduced form (Malinvaud (1970, Chapter 19)). We demon-
strate this by considering the standard simultaneous-equations model for the
time-series data,23

�yt + Bxt = ut , t = 1, . . . , T, (3.9.20)

and its reduced form

yt = �xt + vt , � = −�−1 B, vt = �−1ut , (3.9.21)

where �, B, and � are G × G, G × K , and G × K matrices of coefficients,
yt and ut are G × 1 vectors of observed endogenous variables and unobserved
disturbances, respectively, and xt is a K × 1 vector of observed exogenous vari-
ables. The ut are assumed to be serially independent, with bounded variances
and covariances.

In general, there are restrictions on � and B. We assume that the model
(3.9.20) is identified by zero restrictions (e.g., Hsiao (1983)), so that the gth
structural equation is of the form

ygt = w′
gt �g + vgt , (3.9.22)

where the components of wgt are the variables in yt and xt that appear in
the gth equation with unknown coefficients. Let �(�) and B(�) be parametric
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representations of� and B that satisfy the zero restrictions and the normalization
rule, where �′ = (�′

1, . . . , �′
G). Then � = f(�) = vec{[−�−1(�)B(�)]′}.

Let �̂ be the least-squares estimate of �, and

�̃ = 1

T

T∑
t=1

[
(yt − �̂xt )(yt − �̂xt )

′ ⊗ S∗−1
x (xt x′

t )S∗−1
x

]
, (3.9.23)

where S∗
x = (1/T )

∑T
t=1 xt x′

t . The generalization of the Malinvaud (1970)
minimum-distance estimator is to choose �̂ to

min[�̂ − f(�)]′�̃−1[�̂ − f(�)]. (3.9.24)

Then we have
√

T (�̂ − �) being asymptotically normally distributed, with mean
zero and variance–covariance matrix (F ′�̃−1 F)−1, where F = ∂f(�)/∂�′.

The formula for ∂�/∂�′ is given in Rothenberg (1973, p. 69):

F = ∂�

∂�′ = −(�−1 ⊗ IK )
[
�w x

(
IG ⊗ �−1

xx

)]′
, (3.9.25)

where �wx is block-diagonal: �w x = diag{E(w1t x′
t ), . . . , E(wGt x′

t )} and
�xx = E(xt x′

t ). So we have

(F ′�̃−1 F)−1 = {�w x [E(ut u′
t ⊗ xt x′

t )]
−1�′

w x }−1, (3.9.26)

If ut u′
t is uncorrelated with xt x′

t , then (3.9.26) reduces to{
�wx

[
[E(ut u′

t )]
−1 ⊗ �−1

xx

]
�′

xw

}−1
, (3.9.27)

which is the conventional asymptotic covariance matrix for the three-stage least-
squares (3SLS) estimator (Zellner and Theil (1962)). If ut u′

t is correlated with
xt x′

t , then the minimum-distance estimator of �̂ is asymptotically equivalent to
the Chamberlain (1982) generalized 3SLS estimator,

�̂G3SLS = (Swx�̂
−1S′

w x )−1(Sw x�̂
−1sxy), (3.9.28)

where

Swx = diag

{
1

T

T∑
t=1

w1t x′
t , . . . ,

1

T

T∑
t=1

wGt x′
t

}
,

�̂ = 1

T

T∑
t=1

{ût û′
t ⊗ xt x′

t }, sxy = 1

T

T∑
t=1

yt ⊗ xt ,

and

ût = �̂yt + B̂xt ,

where �̂ and B̂ are any consistent estimators for � and B. When certain equa-
tions are exactly identified, then just as in the conventional 3SLS case, applying
the generalized 3SLS estimator to the system of equations, excluding the ex-
actly identified equations, yields the same asymptotic covariance matrix as the
estimator obtained by applying the generalized 3SLS estimator to the full set
of G equations.24
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However, as with any generalization, there is a cost associated with it. The
minimum-distance estimator is efficient only relative to the class of estimators
that do not impose a priori restrictions on the variance–covariance matrix of
the error process. If the error process is known to have an error-component
structure, as assumed in previous sections, then the least-squares estimate of �

is not efficient (see Section 5.2), and hence the minimum-distance estimator,
ignoring the specific structure of the error process, cannot be efficient, although
it remains consistent.25 The efficient estimator is the GLS estimator. Moreover,
computation of the minimum-distance estimator can be quite tedious, whereas
the two-step GLS estimation procedure is fairly easy to implement.

APPENDIX 3A: CONSISTENCY AND ASYMPTOTIC
NORMALITY OF THE MINIMUM-DISTANCE
ESTIMATOR26

In this appendix we briefly sketch the proof of consistency and asymptotic
normality of the minimum-distance estimator. For completeness we shall state
the set of conditions and properties that they imply in general forms.

Let

SN = [�̂N − f(�)]′ AN [�̂N − f(�)]. (3A.1)

Assumption 3A.1. The vector �̂N converges to � = f (�) in probability.27 The
matrix AN converges to � in probability, where � is positive definite.

Assumption 3A.2. The vector � belongs to a compact subset of p-dimensional
space. The functions f(�) possess continuous second partial derivatives, and the
matrix of the first partial derivatives [equation (3.9.15)] has full column rank p
in an open neighborhood containing the true parameter �.

Assumption 3A.3.
√

N [�̂N − f(�)] is asymptotically normally distributed
with mean zero and variance–covariance matrix 	.

The minimum-distance estimator chooses �̂ to minimize SN .

Proposition 3A.1. If Assumptions 3A.1 and 3A.2 are satisfied, �̂ converges to
� in probability.

Proof. Assumption 3A.1 implies that SN converges to S = [f(�) − f(�̂)]′� ×
[f(�) − f(�̂)] = h ≥ 0. Because min S = 0 and the rank condition [Assumption
3A.2 or (3.9.15)] implies that in the neighborhood of the true �, f(�) = f(�∗) if
and only if � = �∗ (Hsiao (1983, p. 256)), �̂ must converge to � in probability.
Q.E.D.

Proposition 3A.2. If Assumptions 3A.1–3A.3 are satisfied,
√

N (�̂ − �) is asy-
mptotically normally distributed, with mean zero and variance–covariance
matrix

(F ′ � F)−1 F ′ � 	 � F(F ′ � F)−1. (3A.2)
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Proof. �̂ is the solution of

dN (�̂) = ∂SN

∂�
= −2

(
∂f′

∂�̂

)
AN [�̂N − f(�̂)] = 0. (3A.3)

The mean-value theorem implies that

dN (�̂) = dN (�) +
(

∂dN (�∗)

∂�′

)
(�̂ − �), (3A.4)

where �∗ is on the line segment connecting �̂ and �. Because �̂ converges to
�, direct evaluation shows that ∂dN (�∗)/∂�′ converges to

∂dN (�)

∂�′ = 2

(
∂f(�)

∂�′

)′
�

(
∂f(�)

∂�′

)
= 2F ′�F.

Hence,
√

N (�̂ − �) has the same limiting distribution as

−
[
∂dN (�)

∂�′

]−1

·
√

NdN (�) = (F ′�F)−1 F ′� ·
√

N [�̂N − f(�)].

(3A.5)

Assumption 3A.3 says that
√

N [�̂ − f(�)] is asymptotically normally dis-
tributed, with mean zero and variance–covariance 	. Therefore,

√
N (�̂ − �) is

asymptotically normally distributed, with mean zero and variance–covariance
matrix given by (3A.2). Q.E.D.

Proposition 3A.3. If 	 is positive definite, then

(F ′�F)−1 F ′�	�F(F ′�F)−1 − (F ′	−1 F)−1 (3A.6)

is positive semidefinite; hence, an optimal choice for � is 	−1.

Proof. Because 	 is positive definite, there is a nonsingular matrix C̃ such that
	 = C̃C̃ ′. Let F̃ = C̃−1 F and B̃ = (F ′�F)−1 F ′�C̃ . Then (3A.6) becomes
B̃[I − F̃(F̃ ′ F̃)−1 F̃ ′]B̃ ′, which is positive semidefinite. Q.E.D.

Proposition 3A.4. If Assumptions 3A.1–3A.3 are satisfied, if 	 is positive def-
inite, and if AN converges to 	−1 in probability, then

N [�̂ − f(�̂)]′ AN [�̂ − f(�̂)] (3A.7)

converges to a chi-square distribution with K T 2 − p degrees of freedom.

Proof. Taking a Taylor series expansion of f(�) around �, we have

f(�̂) � f(�) + ∂f(�)

∂�′ (�̂ − �). (3A.8)

Therefore, for sufficiently large N ,
√

N [f(�̂) − f(�)] has the same limiting
distribution as F · √

N (�̂ − �). Thus,√
N [�̂ − f(�̂)] =

√
N [�̂N − f(�)] −

√
N [f(�̂) − f(�)] (3A.9)

converges in distribution to Q∗C̃u∗, where Q∗ = IK T 2 − F(F ′ 	 −1 F)−1

× F ′	−1, C̃ is a nonsingular matrix such that C̃C̃ ′ = 	, and u∗ is normally
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distributed, with mean zero and variance–covariance matrix IK T 2 . Then the
quadratic form (3A.7) converges in distribution to u∗′

C̃ ′ Q∗′
	−1 Q∗C̃u∗. Let

F̃ = C̃−1 F and M = IK T 2 − F̃(F̃ ′ F̃)−1 F̃ ′; then M is a symmetric idempotent
matrix with rank K T 2 − p, and C̃ ′ Q∗′

	−1 Q∗C̃ = M2 = M ; hence, (3A.7)
converges in distribution to u∗′

Mu∗, which is chi-square, with K T 2 − p de-
grees of freedom. Q.E.D.

APPENDIX 3B: CHARACTERISTIC VECTORS AND
THE INVERSE OF THE VARIANCE–COVARIANCE
MATRIX OF A THREE-COMPONENT MODEL

In this appendix we derive the inverse of the variance–covariance matrix for a
three-component model (3.6.19) by means of its characteristic roots and vectors.
The material is drawn from the work of Nerlove (1971b).

The matrix Ṽ (3.6.19) has three terms, one in IN T , one in IN ⊗ ee′, and one
in eN e′

N ⊗ IT . Thus, the vector (eN /
√

N ) ⊗ (e/
√

T ) is a characteristic vector,
with the associated root σ 2

u + T σ 2
α + Nσ 2

λ . To find N T − 1 other characteristic
vectors, we note that we can always find N − 1 vectors, 
 j , j = 1, . . . , N − 1,
each N × 1, that are orthonormal and orthogonal to eN :

e′
N 
 j = 0,


 ′
j 
 j ′ =

{
1 if j = j ′,
0 if j �= j ′, j = 1, . . . , N − 1,

(3B.1)

and T − 1 vectors �k, k = 1, . . . , T − 1, each T × 1, that are orthonormal and
orthogonal to e:

e′�k = 0,

�′
k�k ′ =

{
1 if k = k ′,
0, if k �= k ′, k = 1, . . . , T − 1.

(3B.2)

Then the (N − 1)(T − 1) vectors 
 j ⊗ �k, j = 1, . . . , N − 1, k = 1, . . . ,

T − 1, the N − 1 vectors 
 j ⊗ (e/
√

T ), j = 1, . . . , N − 1, and the T − 1
vectors eN /

√
N ⊗ �k, k = 1, . . . , T − 1, are also characteristic vectors of Ṽ ,

with the associated roots σ 2
u , σ 2

u + T σ 2
α and σ 2

u + Nσ 2
λ , which are of multiplic-

ity (N − 1)(T − 1), (N − 1), and (T − 1), respectively.
Let

C1 = 1√
T

[
1 ⊗ e, . . . , 
 N−1 ⊗ e],

C2 = 1√
N

[eN ⊗ �1, . . . , eN ⊗ �T −1],

C3 = [
1 ⊗ �1, 
1 ⊗ �2, . . . , 
 N−1 ⊗ �T −1],

C4 = (eN /
√

N ) ⊗ (e/
√

T ) = 1√
N T

eN T ,

(3B.3)
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and

C = [C1 C2 C3 C4]. (3B.4)

Then,

CC ′ = C1C ′
1 + C2C ′

2 + C3C ′
3 + C4C ′

4 = IN T , (3B.5)

CṼ C ′ =


(
σ 2

u + T σ 2
α

)
IN−1 0 0 0

0
(
σ 2

u + Nσ 2
λ

)
IT −1 0 0

0 0 σ 2
u I(N−1)(T −1) 0

0 0 0 σ 2
u + T σ 2

α + Nσ 2
λ


= �, (3B.6)

and

V̂ = C�C ′.

Let A = IN ⊗ ee′, D = eN e′
N ⊗ IT , and J = eN T e′

N T . From

C4C ′
4 = 1

N T
J, (3B.7)

Nerlove (1971b) showed that by premultiplying (3B.5) by A, we have

C1C ′
1 = 1

T
A − 1

N T
J, (3B.8)

and premultiplying (3B.5) by D,

C2C ′
2 = 1

N
D − 1

N T
J. (3B.9)

Premultiplying (3B.5) by A and D and using the relations (3B.5), (3B.7), (3B.8),
and (3B.9), we have

C3C ′
3 = IN T − 1

T
A − 1

N
D + 1

N T
J = Q̃. (3B.10)

Because Ṽ −1 = C�−1C ′, it follows that

Ṽ −1 = 1

σ 2
u + T σ 2

α

(
1

T
A − 1

N T
J

)
+ 1

σ 2
u + Nσ 2

λ

(
1

N
D − 1

N T
J

)
+ 1

σ 2
u

Q̃ + 1

σ 2
u + T σ 2

α + Nσ 2
λ

(
1

N T
J

)
. (3B.11)



CHAPTER 4

Dynamic Models with Variable Intercepts

4.1 INTRODUCTION

In the last chapter we discussed the implications of treating the specific effects
as fixed or random and the associated estimation methods for the linear static
model

yit = �′xi t + α∗
i + λt + uit , i = 1, . . . , N ,

t = 1, . . . , T,
(4.1.1)

where xi t is a K × 1 vector of explanatory variables, including the constant term;
� is a K × 1 vector of constants; α∗

i and λt are the (unobserved) individual-
and time-specific effects, which are assumed to stay constant for given i over
t and for given t over i , respectively; and uit represents the effects of those
unobserved variables that vary over i and t . Very often we also wish to use
panel data to estimate behavioral relationships that are dynamic in character,
namely, models containing lagged dependent variables such as1

yit = γ yi,t−1 + �′xi t + α∗
i + λt + uit , i = 1, . . . , N ,

t = 1, . . . , T,
(4.1.2)

where Euit = 0, and Euit u js = σ 2
u if i = j and t = s, and Euit u js = 0 other-

wise. It turns out that in this circumstance the choice between a fixed-effects
formulation and a random-effects formulation has implications for estimation
that are of a different nature than those associated with the static model.

Roughly speaking, two issues have been raised in the literature regarding
whether the effects, α∗

i and λt , should be treated as random or as fixed for a
linear static model, namely, the efficiency of the estimates and the independence
between the effects and the regressors [i.e., the validity of the strict exogeneity
assumption of the regressors (equation (3.4.1))]; (see, e.g., Maddala (1971a),
Mundlak (1978a) and Chapter 3). When all the explanatory variables are ex-
ogenous, the covariance estimator is the best linear unbiased estimator under
the fixed-effects assumption and a consistent and unbiased estimator under the
random-effects assumption, even though it is not efficient when T is fixed.



70 Dynamic Models with Variable Intercepts

However, when there exist omitted individual attributes that are correlated with
the included exogenous variables, the covariance estimator does not suffer from
bias due to omission of these relevant individual attributes, because their ef-
fects have been differenced out; but a generalized least-squares estimator for
the random-effects model under the assumption of independence between the
effects and explanatory variables will be biased. Furthermore, in a linear static
model, if the effects are correlated with the explanatory variables, a correctly
formulated random-effects model leads to the same covariance estimator (CV)
as the fixed-effects model (Mundlak (1978a), also see Section 3.4). Thus, the
fixed-effects model has assumed paramount importance in empirical studies
(e.g., Ashenfelter (1978); Hausman (1978); Kiefer (1979)).

However, if lagged dependent variables also appear as explanatory variables,
strict exogeneity of the regressors no longer holds. The maximum-likelihood
estimator (MLE) or the CV under the fixed-effects formulation is no longer
consistent in the typical situation in which a panel involves a large number
of individuals, but over only a short period of time. The initial values of a
dynamic process raise another problem. It turns out that with a random-effects
formulation, the interpretation of a model depends on the assumption of initial
observation. The consistency property of the MLE and the generalized least-
squares estimator (GLS) also depends on this assumption and on the way in
which the number of time-series observations (T ) and the number of cross-
sectional units (N ) tend to infinity.

In Section 4.2, we show that the CV (or the least-squares dummy variable)
estimator is inconsistent for a panel-dynamic model, whether the effects are
treated as fixed or random. Section 4.3 discusses the random-effects model.
We discuss the implications of various formulation and methods of estimation.
We show that the ordinary least-squares estimator is inconsistent but the MLE,
the instrumental variable (IV), and the generalized method of moments (GMM)
estimator are consistent. Procedures to test initial conditions are also discussed.
In Section 4.4, we use Balestra and Nerlove’s model (1966) of demand for nat-
ural gas to illustrate the consequences of various assumptions for the estimated
coefficients.

Section 4.5 discusses the estimation of fixed-effects dynamic model. We
show that although the conventional MLE and CV estimators are inconsistent
when T is fixed and N tends to infinity, there exists a transformed likelihood
approach that does not involve the incidental parameter and is consistent and
efficient under proper formulation of initial conditions. We also discuss the IV
and GMM estimators that do not need the formulation of initial conditions.
Procedures to test fixed versus random effects are also suggested.

In Section 4.6, we relax the assumption on the specific serial-correlation
structure of the error term and propose a system approach to estimating dynamic
models. Section 4.7 discusses the estimation of fixed effects vector autoregres-
sive models. For ease of exposition, we assume that the time-specific effects λt

do not appear.
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4.2 THE COVARIANCE ESTIMATOR

The CV estimator is consistent for the static model whether the effects are fixed
or random. In this section we show that the CV (or LSDV) is inconsistent for a
dynamic panel data model with individual effects, whether the effects are fixed
or random.

Consider2

yit = γ yi,t−1 + α∗
i + uit , |γ | < 1, i = 1, . . . , N ,

t = 1, . . . , T,
(4.2.1)

where for simplicity we let α∗
i = αi + µ to avoid imposing the restriction that∑N

i=1 αi = 0. We also assume that yi0 are observable, Euit = 0, and Euit u js =
σ 2

u if i = j and t = s, and Euit u js = 0 otherwise.
Let ȳi = ∑T

t=1 yit/T, ȳi,−1 = ∑T
t=1 yi,t−1/T , and ūi = ∑T

t=1 uit/T . The
LSDV estimators for α∗

i and γ are

α̂∗
i = ȳi − γ̂CV ȳi,−1, i = 1, . . . , N , (4.2.2)

γ̂CV =
∑N

i=1

∑T
t=1(yit − ȳi )(yi,t−1 − ȳi,−1)∑N

i=1

∑T
t=1(yi,t−1 − ȳi,−1)2

(4.2.3)

= γ +
∑N

i=1

∑T
t=1(yi,t−1 − ȳi,−1)(uit − ūi )/N T∑N

i=1

∑T
t=1(yi,t−1 − ȳi,−1)2/N T

.

The CV exists if the denominator of the second term of (4.2.3) is nonzero.
It is consistent if the numerator of the second term of (4.2.3) converges to zero.

By continuous substitution, we have

yit = uit + γ ui,t−1 + · · · + γ t−1ui1 + 1 − γ t

1 − γ
α∗

i + γ t yi0. (4.2.4)

Summing yi,t−1 over t , we have

T∑
t=1

yi,t−1 = 1 − γ T

1 − γ
yi0 + (T − 1) − T γ + γ T

(1 − γ )2
α∗

i

+ 1 − γ T −1

1 − γ
ui1 + 1 − γ T −2

1 − γ
ui2 + · · · + ui,T −1. (4.2.5)

Because uit are uncorrelated with α∗
i and are independently and identically

distributed, by a law of large numbers (Rao (1973)), and using (4.2.5), we can
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show that when N tends to infinity,

plim
N→∞

1

N T

N∑
i=1

T∑
t=1

(yi,t−1 − ȳi,−1)(uit − ūi )

= −plim
N→∞

1

N

N∑
i=1

ȳi,−1ūi

= −σ 2
u

T 2
· (T − 1) − T γ + γ T

(1 − γ )2
. (4.2.6)

By similar manipulations we can show that the denominator of (4.2.3) con-
verges to

σ 2
u

1 − γ 2

{
1 − 1

T
− 2γ

(1 − γ )2
· (T − 1) − T γ + γ T

T 2

}
. (4.2.7)

If T also tends to infinity, then (4.2.6) converges to zero, and (4.2.7) converges
to a nonzero constant σ 2

u /(1 − γ 2); hence, (4.2.2) and (4.2.3) are consistent
estimators of α∗

i and γ . If T is fixed, then (4.2.6) is a nonzero constant, and
(4.2.2) and (4.2.3) are inconsistent estimators no matter how large N is. The
asymptotic bias of the CV of γ is

plim
N→∞

(γ̂CV − γ ) = − 1 + γ

T − 1

(
1 − 1

T

1 − γ T

1 − γ

)
×

{
1 − 2γ

(1 − γ )(T − 1)

[
1 − 1 − γ T

T (1 − γ )

]}−1

.

(4.2.8)

The bias of γ̂ is caused by having to eliminate the unknown individual
effects α∗

i from each observation, which creates a correlation of order (1/T )
between the explanatory variables and the residuals in the transformed model
(yit − ȳi ) = γ (yi,t−1 − ȳi,−1) + (uit − ūi ). When T is large, the right-hand-side
variables become asymptotically uncorrelated. For small T , this bias is always
negative if γ > 0. Nor does the bias go to zero as γ goes to zero. Because a
typical panel usually contains a small number of time-series observations, this
bias can hardly be ignored. For instance, when T = 2, the asymptotic bias is
equal to −(1 + γ )/2, and when T = 3, it is equal to −(2 + γ )(1 + γ )/2. Even
with T = 10 and γ = 0.5, the asymptotic bias is −0.167.

The CV for dynamic fixed-effects model remains biased with the introduc-
tion of exogenous variables if T is small; for details of the derivation, see
Anderson and Hsiao (1982) and Nickell (1981); for Monte Carlo studies, see
Nerlove (1971a). Fortunately, if the existence of the consistent (or asymptotic
unbiased) estimator of the common slope coefficient is a concern, a consis-
tent estimator of γ can be obtained by using instrumental-variable methods or
a properly formulated likelihood approach, to be discussed in the following
sections.
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4.3 RANDOM-EFFECTS MODELS

When the specific effects are treated as random, they can be considered to be
either correlated or not correlated with the explanatory variables. In the case
in which the effects are correlated with the explanatory variables, ignoring
this correlation and simply using the covariance estimator no longer yields the
desirable properties as in the case of static regression models. Thus, a more
appealing approach here would be to take explicit account of the linear depen-
dence between the effects and the exogenous variables by letting αi = a′x̄i + ωi

(Mundlak (1978a)) (see Section 3.4) and use a random-effects framework of
the model

yi = yi,−1γ + Xi � + ex̄′
i a + eωi + ui , (4.3.1)

where now E(xi tωi ) = 0, and E(xi t uit ) = 0. However, because x̄i is time-
invariant and the (residual) individual effect ωi possesses the same property
as αi when the assumption Eαi x′

i t = 0′ holds, the estimation of (4.3.1) is for-
mally equivalent to the estimation of the model

yi = yi,−1γ + Xi � + ez′
i � + eαi + ui , (4.3.2)

with Xi now denoting the T × K1 time-varying explanatory variables, z′
i being

the 1 × K2 time-invariant explanatory variables including the intercept term,
and Eαi = 0, Eαi z′

i = 0′, and Eαi x′
i t = 0′. So, for ease of exposition, we

assume in this section that the effects are uncorrelated with the exogenous
variables.3

We first show that the ordinary-least-squares (OLS) estimator for dynamic
error-component models is biased. We then discuss how the assumption about
the initial observations affects interpretation of a model. Finally we discuss
estimation methods and their asymptotic properties under various assumptions
about initial conditions and sampling schemes.

4.3.1 Bias in the OLS Estimator

In the static case in which all the explanatory variables are exogenous and
are uncorrelated with the effects, we can ignore the error-component structure
and apply the OLS method. The OLS estimator, although less efficient, is still
unbiased and consistent. But this is no longer true for dynamic error-component
models. The correlation between the lagged dependent variable and individual-
specific effects would seriously bias the OLS estimator.

We use the following simple model to illustrate the extent of bias. Let

yit = γ yi,t−1 + αi + uit , |γ | < 1, i = 1, . . . , N ,

t = 1, . . . , T,
(4.3.3)

where uit is independently, identically distributed over i and t . The OLS
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estimator of γ is

γ̂LS =
∑N

i=1

∑T
t=1 yit · yi,t−1∑N

i=1

∑T
t=1 y2

i,t−1

= γ +
∑N

i=1

∑T
t=1(αi + uit )yi,t−1∑N

i=1

∑T
t=1 y2

i,t−1

.

(4.3.4)

The asymptotic bias of the OLS estimator is given by the probability limit of
the second term on the right-hand side of (4.3.4). Using a manipulation similar
to that in Section 4.2, we can show that

plim
N→∞

1

N T

N∑
i=1

T∑
t=1

(αi + uit )yi,t−1

= 1

T

1 − γ T

1 − γ
Cov(yi0, αi ) + 1

T

σ 2
α

(1 − γ )2
[(T − 1) − T γ + γ T ],

(4.3.5)

plim
N→∞

1

N T

N∑
i=1

T∑
t=1

y2
i,t−1

= 1 − γ 2T

T (1 − γ 2)
·
∑N

i=1 y2
i0

N

+ σ 2
α

(1 − γ )2
· 1

T

(
T − 2

1 − γ T

1 − γ
+ 1 − γ 2T

1 − γ 2

)
+ 2

T (1 − γ )

(
1 − γ T

1 − γ
− 1 − γ 2T

1 − γ 2

)
Cov(αi , yi0)

+ σ 2
u

T (1 − γ 2)2
[(T − 1) − T γ 2 + γ 2T ]. (4.3.6)

Usually, yi0 are assumed either to be arbitrary constants or to be gener-
ated by the same process as any other yit , so that Cov(yi0, αi ) is either zero
or positive.4 Under the assumption that the initial values are bounded, namely,
that plimN→∞

∑N
i=1 y2

i0/N is finite, the OLS method overestimates the true
autocorrelation coefficient γ when N or T or both tend to infinity. The overes-
timation is more pronounced the greater the variance of the individual effects,
σ 2

α . This asymptotic result also tends to hold in finite samples according to the
Monte Carlo studies conducted by Nerlove (1967) (N = 25, T = 10).

The addition of exogenous variables to a first-order autoregressive process
does not alter the direction of bias of the estimator of the coefficient of the
lagged dependent variable, although its magnitude is somewhat reduced. The
estimator of the coefficient of the lagged dependent variable remains biased
upward, and the coefficients of the exogenous variables are biased toward zero.

Formulas for the asymptotic bias of the OLS estimator for a pth-order au-
toregressive process and for a model also containing exogenous variables were
given by Trognon (1978). The direction of the asymptotic bias for a higher-order
autoregressive process is difficult to identify a priori.
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4.3.2 Model Formulation

When T is fixed, the interpretation of a model depends on the assumption about
the behavior of the initial values yi0. The statistical properties of the maximum
likelihood and generalized least squares (GLS) estimation methods also depend
on the assumption about yi0, but not those of the IV or the GMM methods.

Consider a model of the form5

yit = γ yi,t−1 + �′zi + �′xi t + vit , i = 1, . . . , N ,

t = 1, . . . , T,
(4.3.7)

where |γ | < 1, vit = αi + uit ,

Eαi = Euit = 0,

Eαi z′
i = 0′, Eαi x′

i t = 0′,

Eαi u jt = 0,

Eαiα j =
{
σ 2

α if i = j,
0 otherwise,

Euit u js =
{
σ 2

u if i = j, t = s,

0 otherwise,

and where zi is a K2 × 1 vector of time-invariant exogenous variables such as
the constant term or an individual’s sex or race, xi t is a K1 × 1 vector of time-
varying exogenous variables, γ is 1 × 1, and � and � are K2 × 1 and K1 × 1
vectors of parameters, respectively. Equation (4.3.7) can also be written in the
form

wit = γ wi,t−1 + �′zi + �′xi t + uit , (4.3.8)

yit = wit + ηi , (4.3.9)

where

αi = (1 − γ )ηi , Eηi = 0, Var(ηi ) = σ 2
η = σ 2

α

/
(1 − γ )2.

(4.3.10)

Algebraically, (4.3.7) is identical to (4.3.8) and (4.3.9). However, the inter-
pretation of how yit is generated is not the same. Equation (4.3.7) implies that
apart from a common response to its own lagged value and the exogenous vari-
ables, each individual process is also driven by the unobserved characteristicsαi ,
which are different for different individuals. Equations (4.3.8) and (4.3.9) imply
that the dynamic process {wit } is independent of the individual effect ηi . Condi-
tional on the exogenous variables, individuals are driven by an identical stochas-
tic process with independent (and different) shocks that are random draws from
a common population [equation (4.3.8)]. It is the observed value of the latent
variable wit , yit , that is shifted by the individual time-invariant random variable
ηi [equation (4.3.9)]. This difference in means can be interpreted as a difference
in individual endowments or a common measurement error for the i th process.
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If we observed wit , we could distinguish (4.3.7) from (4.3.8) and (4.3.9). Un-
fortunately, wit are unobservable. However, knowledge of initial observations
can provide information to distinguish these two processes. Standard assump-
tions about initial observations are either that they are fixed or that they are
random. If (4.3.7) is viewed as the model, we have two fundamental cases:
(I) yi0 fixed and (II) yi0 random. If (4.3.8) and (4.3.9) are viewed as the basic
model, we have (III) wi0 fixed and (IV) wi0 random.

Case I: yi0 fixed. A cross-sectional unit may start at some arbitrary po-
sition yi0 and gradually move toward a level (αi + �′zi )/(1 − γ ) +
�′ ∑

j=0 xi,t− jγ
j . This level is determined jointly by the unobserv-

able effect (characteristic) αi , observable time-invariant character-
istics zi , and time-varying variables xi t . The individual effect, αi ,
is a random draw from a population with mean zero and variance
σ 2

α . This appears to be a reasonable model. But if the decision about
when to start sampling is arbitrary and independent of the values
of yi0, treating yi0 as fixed might be questionable because the as-
sumption Eαi yi0 = 0 implies that the individual effects, αi , are not
brought into the model at time 0, but affect the process at time 1
and later. If the process has been going on for some time, there is
no particular reason to believe that yi0 should be viewed differently
than yit .

Case II: yi0 random. We can assume that the initial observations are
random, with a common mean µ0 and variance σ 2

y0. Namely, let

yi0 = µy0 + εi . (4.3.11)

A rationalization of this assumption is that we can treat yit as a
state. We do not care how the initial state is reached, as long as
we know that it has a distribution with finite mean and variance.
Or, alternatively, we can view εi as representing the effect of initial
individual endowments (after correction for the mean). Depending
on the assumption with regard to the correlation between yi0 and
αi , we can divide this case into two subcases:
Case IIa: yi0 independent of αi ; that is, Cov(εi , αi ) = 0. In this case

the impact of initial endowments gradually diminishes over time
and eventually vanishes. The model is somewhat like case I, in
which the starting value and the effect αi are independent, except
that now the starting observable value is not a fixed constant but
a random draw from a population with mean µy0 and variance
σ 2

y0.
Case IIb: yi0 correlated with αi . We denote the covariance

between yi0 and αi by φσ 2
y0. Then, as time goes on, the

impact of initial endowments (εi ) affects all future values of yit

through its correlation with αi and eventually reaches a level [φεi/
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(1 − γ )] = limt→∞ E[yit − �′zi/(1−γ ) − �′ ∑t−1
j=0 xi,t− jγ

j | εi ].
In the special case that φσ 2

y0 = σ 2
α , namely, εi = αi , the indi-

vidual effect can be viewed as completely characterized by the
differences in initial endowments. The eventual impact of this
initial endowment equals [αi/(1 − γ )] = ηi .

Case III: wi0 fixed. Here the unobserved individual process {wit }
has an arbitrary starting value. In this respect, this case is sim-
ilar to case I. However, the observed cross-sectional units, yit ,
are correlated with the individual effects ηi . That is, each of the
observed cross-sectional units may start at some arbitrary posi-
tion yi0 and gradually move toward a level ηi + �′zi/(1 − γ ) +
�′ ∑t−1

j=0 xi,t− jγ
j . Nevertheless, we allow for the possibility that

the starting period of the sample observations need not coincide
with the beginning of a stochastic process by letting the individual
effect ηi affect all sample observations, including yi0.

Case IV: wi0 random. Depending on whether or not the wi0 are viewed
as having common mean, we have four subcases:
Case IVa: wi0 random, with common mean µw and variance

σ 2
u /(1 − γ 2).

Case IVb: wi0 random, with common mean µw and arbitrary vari-
ance σ 2

w0.
Case IVc: wi0 random, with mean θi0 and variance σ 2

u /(1 − γ 2).
Case IVd: wi0 random, with mean θi0 and arbitrary variance σ 2

w0.

In each of these four subcases we allow correlation between yi0 and ηi . In
other words, ηi affects yit in all periods, including yi0. Cases IVa and IVb are
similar to the state-space representation discussed in case IIa, in which the initial
states are random draws from a distribution with finite mean. Case IVa assumes
that the initial state has the same variance as the latter states. Case IVb allows
the initial state to be nonstationary (with arbitrary variance). Cases IVc and IVd
take a different view in that they assume that the individual states are random
draws from different populations with different means. A rationalization for
this can be seen through successive substitution of (4.3.8), yielding

wi0 = 1

1 − γ
�′zi + �′

∞∑
j=0

xi,− jγ
j + ui0 + γ ui,−1 + γ 2ui,−2 + · · · .

(4.3.12)

Because xi0, xi,−1, . . . are not observable, we can treat the combined cumulative
effects of nonrandom variables for the i th individual as an unknown parameter
and let

θi0 = 1

1 − γ
�′zi + �′

∞∑
j=0

xi,− jγ
j . (4.3.13)
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Case IVc assumes that the process {wit } was generated from the infinite past
and has achieved stationarity of its second moments after conditioning on the
exogenous variables (i.e., wi0 has the same variance as any other wit ). Case
IVd relaxes this assumption by allowing the variance of wi0 to be arbitrary.

4.3.3 Estimation of Random-Effects Models

There are various ways to estimate the unknown parameters. Here we discuss
four methods: the MLE, the GLS, the IV, and the GMM methods.

4.3.3.a Maximum Likelihood Estimator

Different assumptions about the initial conditions imply different forms of
the likelihood functions. Under the assumption that αi and uit are normally
distributed, the likelihood function for case I is6

L1 = (2π )−
N T
2 |V |− N

2

× exp

{
−1

2

N∑
i=1

(yi − yi,−1γ − Zi � − Xi �)′ · V −1(yi − yi,−1γ

−Zi � − Xi �)

}
, (4.3.14)

where yi = (yi1, . . . , yiT )′, yi,−1 = (yi0, . . . , yi,T −1)′, Zi = ez′
i , e = (1, . . . ,

1)′, Xi = (xi1, . . . , xiT )′, and V = σ 2
u IT + σ 2

α ee′. The likelihood function for
case IIa is

L2a = L1 · (2π )−
N
2
(
σ 2

y0

)− N
2 exp

{
− 1

2σ 2
y0

N∑
i=1

(yi0 − µy0)2

}
. (4.3.15)

For case IIb, it is of the form

L2b = (2π )−
N T
2
(
σ 2

u

)− N (T −1)
2

(
σ 2

u + T a
)− N

2

× exp

{
− 1

2σ 2
u

N∑
i=1

T∑
t=1

[yit − γ yi,t−1 − �′zi − �′xi t − φ(yi0 − µy0)]2

+ a

2σ 2
u

(
σ 2

u + T a
)

×
N∑

i=1

{
T∑

t=1

[yit − γ yi,t−1 − �′zi − �′xi t − φ(yi0 − µy0)]

}2}

× (2π )−
N
2
(
σ 2

y0

)− N
2 exp

{
− 1

2σ 2
y0

N∑
i=1

(yi0 − µy0)2

}
, (4.3.16)
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where a = σ 2
α − φ2σ 2

y0. The likelihood function for case III is

L3 = (2π )−
N T
2
(
σ 2

u

)− N T
2

× exp

{
− 1

2σ 2
u

N∑
i=1

T∑
t=1

[(yit − yi0 + wi0) − γ (yi,t−1 − yi0 + wi0)

− �′zi − �′xi t ]
2

}
· (2π )−

N
2
(
σ 2

η

)− N
2

× exp

{
− 1

2σ 2
η

N∑
i=1

(yi0 − wi0)2

}
, (4.3.17)

and for case IVa it is

L4a = (2π )−
N (T +1)

2 |�| − N
2

× exp

{
−1

2

N∑
i=1

(yi0 − µw , yi1 − γ yi0 − �′zi − �′xi1, . . . ,

yiT − γ yi,T −1 − �′zi − �′xiT )

× �−1(yi0 − µw , . . . , yiT − γ yi,T −1 − �′zi − �′xiT )′
}
, (4.3.18)

where

�
(T +1)×(T +1)

= σ 2
u

 1

1 − γ 2
0′

0 IT

 + σ 2
α

 1

1 − γ
e

(
1

1 − γ
, e′

)
,

|�| = σ 2T
u

1 − γ 2

(
σ 2

u + T σ 2
α + 1 + γ

1 − γ
σ 2

α

)
,

�−1 = 1

σ 2
u

[[
1 − γ 2 0′

0 IT

]

−
(

σ 2
u

σ 2
α

+ T + 1 + γ

1 − γ

)−1
[

1 + γ

e

]
(1 + γ, e′)

]
.

(4.3.19)

The likelihood function for case IVb, L4b, is of the form (4.3.18), except that �

is replaced by �, where � differs from � only in that the upper left element of
the first term, 1/(1 − γ 2), is replaced by σ 2

w0/σ
2
u . The likelihood function for

case IVc, L4c, is similar to that for case IVa, except that the mean of yi0 in the
exponential term is replaced by θi0. The likelihood function for case IVd, L4d,
is of the form (4.3.16), with θi0, (1 − γ )σ 2

η /(σ 2
η + σ 2

w0), and σ 2
η + σ 2

w0 replacing
µy0, φ, and σ 2

y0, respectively.
Maximizing the likelihood function with respect to unknown parameters

yields the MLE. The consistency of the MLE depends on the initial conditions
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and on the way in which the numbers of time-series observations (T ) and of
cross-sectional units (N ) tend to infinity. For cases III and IVd, the MLEs do not
exist. By letting yi0 equal wi0 or θi0, the exponential term of the second function
of their respective likelihood function becomes 1. If we let the variances σ 2

η or
σ 2

η + σ 2
w0 approach zero, the likelihood functions become unbounded. However,

we can still take partial derivatives of these likelihood functions and solve for
the first-order conditions. For simplicity of exposition, we shall refer to these
interior solutions as the MLEs and examine their consistency properties in the
same way as in other cases in which the MLEs exist.

When N is fixed, a necessary condition for � being identifiable is that N ≥
K2. Otherwise, the model is subject to strict multicollinearity. However, when
T tends to infinity, even with N greater than K2, the MLEs for � and σ 2

α remain
inconsistent because of insufficient variation across individuals. On the other
hand, the MLEs of γ , �, and σ 2

u are consistent for all these different cases. When
T becomes large, the weight of the initial observations becomes increasingly
negligible, and the MLEs for different cases all converge to the same covariance
estimator.

Table 4.1. Consistency properties of the MLEs for dynamic random-effects
modelsa

N fixed, T fixed,
Case T → ∞ N → ∞
Case I: yi0 fixed γ, �, σ 2

u Consistent Consistent
�, σ 2

α Inconsistent Consistent

Case II: yi0 random
IIa: yi0 independent of αi γ, �, σ 2

u Consistent Consistent
µy0, �, σ 2

α , σ 2
y0 Inconsistent Consistent

IIb: yi0 correlated γ, �, σ 2
u Consistent Consistent

with αi µy0, �, σ 2
α , σ 2

y0, φ Inconsistent Consistent

Case III: wi0 fixed γ, �, σ 2
u Consistent Inconsistent

wi0, �, σ 2
η Inconsistent Inconsistent

Case IV: wi0 random
IVa: mean µw

and variance γ, �, σ 2
u Consistent Consistent

σ 2
u /(1 − γ 2) µw , �, σ 2

η Inconsistent Consistent

IVb: mean µw γ, �, σ 2
u Consistent Consistent

and variance σ 2
w0 σ 2

w0, �, σ 2
η , µw Inconsistent Consistent

IVc: mean θi0 γ, �, σ 2
u Consistent Inconsistent

and variance σ 2
u /(1 − γ 2) θi0, �, σ 2

η Inconsistent Inconsistent

IVd: mean θi0 γ, �, σ 2
u Consistent Inconsistent

and variance σ 2
w0 θi0, �2

η, σ
2
w0 Inconsistent Inconsistent

aIf an MLE does not exist, we replace it by the interior solution.
Source: Anderson and Hsiao (1982).
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For cases IVc and IVd, where wi0 have means θi0, Bhargava and Sargan
(1983) suggest predicting θi0 by all the observed xi t and zi as a way to get
around the incidental-parameters problem.7 If xi t is generated by a homoge-
neous stochastic process

xi t = c +
∞∑
j=0

b j �i,t− j , (4.3.20)

where �i t is independently, identically distributed, then conditional on xi t and
zi , we have

yi0 =
T∑

t=1

�′
0t xi t + �∗′zi + vi0, (4.3.21)

and

vi0 = εi0 + u∗
i0 + ηi , i = 1, . . . , N . (4.3.22)

The coefficients �0t are identical across i (Hsiao, Pesaran, and Tahmiscioglu
(2002)). The error term vi0 is the sum of three components: the prediction
error of θi0, εi0, the cumulative shocks before time zero, u∗

i0 = ui0 + γ ui,−1 +
γ 2ui,−2 + · · · , and the individual effects ηi . The prediction error εi0 is indepen-
dent of uit and ηi , with mean zero and variance σ 2

ε0. Depending on whether or
not the error process of wi0 conditional on the exogenous variables has achieved
stationarity (i.e., whether or not the variance of wi0 is the same as any other
wit ), we have8 case IVc′,

Var(vi0) = σ 2
ε0 + σ 2

u

1 − γ 2
+ σ 2

α

(1 − γ )2
,

(4.3.23)

Cov(vi0, vit ) = σ 2
α

(1 − γ )
, t = 1, . . . , T,

or case IVd′,

Var(vi0) = σ 2
w0 and Cov(vi0, vit ) = σ 2

τ , t = 1, . . . , T .

(4.3.24)

Cases IVc′ and IVd′ transform cases IVc and IVd, in which the number of
parameters increases with the number of observations, into a situation in which
N independently distributed (T + 1)-component vectors depend only on a fixed
number of parameters. Therefore, the MLE is consistent when N → ∞.

The MLE is obtained by solving the first-order conditions of the likelihood
function with respect to unknown parameters. If there is a unique solution to
these partial-derivative equations with σ 2

α > 0, the solution is the MLE. How-
ever, just as in the static case discussed in Section 3.3, a boundary solution with
σ 2

α = 0 may occur for dynamic error-components models as well. Anderson and
Hsiao (1981) have derived the conditions under which the boundary solution
will occur for various cases. Trognon (1978) has provided analytic explanations
based on asymptotic approximations where the number of time periods tends
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to infinity. Nerlove (1967, 1971a) has conducted Monte Carlo experiments to
explore the properties of the MLE. These results show that the autocorrelation
structure of the exogenous variables is a criterion for the existence of boundary
solutions. In general, the more autocorrelated the exogenous variables or the
more important the weight of the exogenous variables, the less likely it is that
a boundary solution will occur.

The solution for the MLE is complicated. We can apply the Newton–
Raphson iterative procedure or the sequential iterative procedure suggested
by Anderson and Hsiao (1982) to obtain a solution. Alternatively, because we
have a cross section of size N repeated successively in T time periods, we
can regard the problems of estimation (and testing) of (4.3.7) as akin to those
for a simultaneous-equations system with T or T + 1 structural equations with
N observations available on each of the equations. That is, the dynamic rela-
tionship (4.3.7) in a given time period is written as an equation in a system of
simultaneous equations,

�Y ′ + B X ′ + P Z ′ = U ′, (4.3.25)

where we now let9

Y
N×(T +1)

=


y10 y11 . . . y1T

y20 y21 . . . y2T
...

...
...

yN0 yN1 . . . yN T

,

X
N×T K1

=


x′

11 x′
12 . . . x′

1T

x′
21 x′

22 . . . x′
2T

...
...

...
x′

N1 x′
N2 . . . x′

N T

,

Z
N×K2

=


z′

1

z′
2
...

z′
N

, i = 1 . . . , N ,

and U is the N × T matrix of the errors if the initial values yi0 are treated
as constants, and the N × (T + 1) matrix of errors if the initial values are
treated as stochastic. The structural-form coefficient matrix A = [� B P] is
T × [(T + 1) + T K1 + K2] or (T + 1) × [(T + 1) + T K1 + K2], depending
on whether the initial values are treated as fixed or random. The earlier serial
covariance matrix [e.g., (3.3.4), (4.3.19), (4.3.23), or (4.3.24)] now becomes the
variance–covariance matrix of the errors on T or (T + 1) structural equations.
We can then use the algorithm for solving the full-information maximum-
likelihood estimator to obtain the MLE.

There are cross-equation linear restrictions on the structural-form coefficient
matrix, and restrictions on the variance–covariance matrix. For instances, in case
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I, where yi0 are treated as fixed constants, we have

A =


−γ 1 0 · · · 0 0 �′ 0′ · · · 0′ 0′ �′

0 −γ 1 · · · 0 0 0′ �′ · · · 0′ 0′ �′
...

...
. . .

. . .
...

...
...

...
. . .

...
...

...
0 0 · · · 1 0 0′ 0′ · · · �′ 0′ �′

0 0 · · · −γ 1 0′ 0′ · · · 0′ �′ �′

.

(4.3.26)

The variance–covariance matrix of U is block-diagonal, with the diagonal
blocks equal to V [equation (3.3.4)]. In case IVd′, where yi0 are treated as
stochastic, the structural-form coefficient matrix A is a (T + 1) × [(T + 1) +
T K1 + K2] matrix of the form

A =


1 0 · · · 0 0 �′

01 �′
02 · · · �′

0T �∗′

−γ 1 · · · 0 0 �′ 0′ · · · 0′ �′

0 −γ · · · 0 0 0′ �′ · · · 0′ �′
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · −γ 1 0′ · · · �′ �′

,

(4.3.27)

and the variance–covariance matrix of U is block-diagonal, with each diagonal
block a (T + 1) × (T + 1) matrix of the form[

σ 2
w0 σ 2

τ e′

σ 2
τ e V

]
. (4.3.28)

Bhargava and Sargan (1983) suggest maximizing the likelihood function of
(4.3.25) by directly substituting the restrictions into the structural-form coeffi-
cient matrix A and the variance–covariance matrix of U ′.

Alternatively, we can ignore the restrictions on the variance–covariance
matrix of U ′ and use three-stage least-squares (3SLS) methods. Because the
restrictions on A are linear, it is easy to obtain the constrained 3SLS estima-
tor of γ , �, �, and �∗ from the unconstrained 3SLS estimator.10 Or we can
use the Chamberlain (1982, 1984) minimum-distance estimator by first ob-
taining the unconstrained reduced-form coefficient matrix �, then solving for
the structural-form parameters (see Section 3.9.). The Chamberlain minimum-
distance estimator has the same limiting distribution as the constrained gen-
eralized 3SLS estimator (see Chapter 5). However, because the maintained
hypothesis in the model implies that the covariance matrix of U ′ is constrained
and in some cases dependent on the parameter γ occurring in the structural
form, the constrained 3SLS or the constrained generalized 3SLS is inefficient
in comparison with the (full-information) MLE.11 But if the restrictions on the
variance–covariance matrix are not true, the (full-information) MLE imposing
the wrong restrictions will in general be inconsistent. But the (constrained)
3SLS or the Chamberlain minimum-distance estimator, because it does not im-
pose any restriction on the covariance matrix of U ′, remains consistent and is
efficient within the class of estimators that do not impose restrictions on the
variance–covariance matrix.
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4.3.3.b Generalized Least-Squares Estimator

We note that except for cases III, IVc, and IVd, the likelihood function only
depends on a fixed number of parameters. Furthermore, conditional on � or σ 2

u ,
σ 2

α , σ 2
y0 and φ, the MLE is equivalent to the GLS estimator. For instance, under

case I, the covariance matrix of (yi1, . . . , yiT ) is the usual error-components
form (3.3.4). Under cases IIa,b, and under cases IVa,b or cases IVc,d when
the conditional mean of θi0 can be represented in the form of (4.3.21), the
covariance matrix Ṽ of vi = (vi0, vi1, . . . , viT ) is of similar form to (4.3.28).
Therefore, a GLS estimator of �′ = (�′, �∗′, γ, �′, �′), can be applied:

�̂GLS =
(

N∑
i=1

X̃ ′
i Ṽ

−1 X̃ i

)−1 (
N∑

i=1

X̃ ′
i Ṽ

−1ỹi

)
, (4.3.29)

where ỹ′
i = (yi0, . . . , yiT ), and

X̃ i =



x′
i1 x′

i2 · · · x′
iT z′

i 0 0′ 0

0′ · · · · · · · · · 0′ yi0 x′
i1 z′

i
...

... yi1 x′
i2 z′

i
...

...
...

...
...

0′ · · · · · · · · · 0′ yi,T −1 x′
iT z′

i


.

The estimator is consistent and asymptotically normally distributed as N → ∞.
Blundell and Smith (1991) suggest a conditional GLS procedure by condi-

tioning (yi1, . . . , yiT ) on vi0 = yi0 − E(yi0 | x′
i , zi ):

yi = yi,−1γ + Zi � + Xi � + 
 vi0 + v∗
i , (4.3.30)

where v∗
i = (v∗

i1, . . . , v∗
iT )′, and 
 is a T × 1 vector of constants with the values

depending on the correlation pattern between yi0 and αi . For case IIa, 
 = 0,
case IIb, 
 = eT · φ. When the covariances between yi0 and (yi1, . . . , yiT ) are
arbitrary, 
 is a T × 1 vector of unrestricted constants. Application of the GLS
to (4.3.30) is consistent as N → ∞.

When the covariance matrix of vi or v∗
i is unknown, a feasible GLS estimator

can be applied. In the first step, we obtain some consistent estimates of the
covariance matrix from the estimated vi or v∗

i . For instance, we can use the
IV estimator, to be discussed in Section 4.3.3.c, to obtain consistent estimators
of γ and �, then substitute them into yit − γ yi,t−1 − �′xi t , and regress the
resulting value on zi across individuals to obtain a consistent estimate of �.
Substituting estimated γ , �, and � into (4.3.2), we obtain estimates of vit for
t = 1, . . . , T . The estimates of vi0 can be obtained as the residuals of the cross-
section regression of (4.3.21). The covariance matrix of vi can then be estimated
using the procedures discussed in Chapter 3. The estimated v∗

i can also be
obtained as the residuals of the cross-sectional regression of yi − yi,−1γ − Xi �
on Zi and ev̂i0. In the second step, we treat the estimated covariance matrix of
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vi or v∗
i as if it were known, and apply the GLS to the system composed of

(4.3.2) and (4.3.21) or the conditional system (4.3.30).
It should be noted that if Cov(yi0, αi ) �= 0, the GLS applied to the system

(4.3.2) is inconsistent when T is fixed and N → ∞. This is easily seen by noting
that conditional on yi0, the system is of the form (4.3.30). Applying GLS to
(4.3.2) is therefore subject to omitted-variable bias. However, the asymptotic
bias of the GLS of (4.3.2) is still smaller than that of the OLS or the within
estimator of (4.3.2) (Sevestre and Trognon (1982)). When T tends to infinity,
GLS of (4.3.2) is again consistent because GLS converges to the within (or
LSDV) estimator, which becomes consistent.

It should also be noted that contrary to the static case, the feasible GLS is
asymptotically less efficient than the GLS knowing the true covariance matrix,
because when a lagged dependent variable appears as one of the regressors,
the estimation of slope coefficients is no longer asymptotically independent of
the estimation of the parameters of the covariance matrix (Amemiya and Fuller
(1967); Hsiao, Pesaran, and Tahmiscioglu (2002); or Appendix 4A).

4.3.3.c Instrumental-Variable Estimator

Because the likelihood functions under different initial conditions are different
when dealing with panels involving large numbers of individuals over a short
period of time, mistaken choices of initial conditions will yield estimators that
are not asymptotically equivalent to the correct one, and hence may not be
consistent. Sometimes we have little information to rely on in making a correct
choice about the initial conditions. A simple consistent estimator that is inde-
pendent of the initial conditions is appealing in its own right and in addition
can be used to obtain initial values for the iterative process that yields the MLE.
One estimation method consists of the following procedure.12

Step 1: Taking the first difference of (4.3.7), we obtain

yit − yi,t−1 = γ (yi,t−1 − yi,t−2) + �′(xi t − xi,t−1) + uit − ui,t−1,

for t = 2, . . . , T . (4.3.31)

Because yi,t−2 or (yi,t−2 − yi,t−3) are correlated with (yi,t−1 −
yi,t−2) but are uncorrelated with (uit − ui,t−1) they can be used
as an instrument for (yi,t−1 − yi,t−2) and estimate γ and � by the
instrumental-variable method. Both(
γ̂iv

�̂iv

)
=

[
N∑

i=1

T∑
t=3

×
(

(yi,t−1 − yi,t−2)(yi,t−2 − yi,t−3) (yi,t−2 − yit−3)(xi t − xi,t−1)′

(xi t − xi,t−1)(yi,t−2 − yi,t−3) (xi t − xi,t−1)(xi t − xi,t−1)′

)]−1

×
[

N∑
i=1

T∑
t=3

(
yi,t−2 − yi,t−3

xi t − xi,t−1

)
(yit − yi,t−1)

]
, (4.3.32)
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and(
γ̃iv

�̃iv

)
=

[
N∑

i=1

T∑
t=2

(
yi,t−2(yi,t−1 − yi,t−2) yi,t−2(xi t − xi,t−1)′

(xi t − xi,t−1)yi,t−2 (xi t − xi,t−1)(xi t − xi,t−1)′

)]−1

×
[

N∑
i=1

T∑
t=2

(
yi,t−2

xi t − xi,t−1

)
(yi,t − yi,t−1)

]
(4.3.33)

are consistent. The estimator (4.3.33) has an advantage over (4.3.32)
in that the minimum number of time periods required is two,
whereas (4.3.33) requires T ≥ 3. In practice, if T ≥ 3, the choice
between (4.3.33) and (4.3.32) depends on the correlations between
(yi,t−1 − yi,t−2) and yi,t−2 or (yi,t−2 − yi,t−3). For a comparison of
asymptotic efficiencies of the instruments yi,t−2 or (yi,t−2 − yi,t−3),
see Anderson and Hsiao (1981).

Step 2: Substitute the estimated � and γ into the equation

ȳi − γ ȳi,−1 − �′x̄i = �′zi + αi + ūi , i = 1, . . . , N , (4.3.34)

where ȳi = ∑T
t=1 yit/T, ȳi,−1 = ∑T

t=1 yi,t−1/T , x̄i = ∑T
t=1 xi t/T ,

and ūi = ∑T
t=1 uit/T . Estimate � by the OLS method.

Step 3: Estimate σ 2
u and σ 2

α by

σ̂ 2
u =

∑N
i=1

∑T
t=2[(yit − yi,t−1) − γ̂ (yi,t−1 − yi,t−2) − �̂

′
(xi t − xi,t−1)]2

2N (T − 1)
,

(4.3.35)

σ̂ 2
α =

∑N
i=1(ȳi − γ̂ ȳi,−1 − �̂′zi − �̂

′
x̄i )2

N
− 1

T
σ̂ 2

u . (4.3.36)

The consistency of these estimators is independent of initial conditions. The
instrumental-variable estimators of γ , �, and σ 2

u are consistent when N or T
or both tend to infinity. The estimators of � and σ 2

α are consistent only when N
goes to infinity. They are inconsistent if N is fixed and T tends to infinity. The
instrumental-variable method is simple to implement. But if we also wish to test
the maintained hypothesis on initial conditions in the random-effects model, it
would seem more appropriate to rely on maximum likelihood methods.

4.3.3.d Generalized Method of Moments Estimator

We note that yi,t−2 or (yi,t−2 − yi,t−3) is not the only instrument for
(yi,t−1 − yi,t−2). In fact, it is noted by Amemiya and MaCurdy (1986),
Arellano and Bond (1991), Breusch, Mizon, and Schmidt (1989), etc. that all
yi,t−2− j , j = 0, 1, . . . , satisfy the conditions E[yi,t−2− j (yi,t−1 − yi,t−2)] �= 0
and E[yi,t−2− j (uit − ui,t−1)] = 0. Therefore, they all are legitimate instru-
ments for (yi,t−1 − yi,t−2). Letting 	 = (1 − L) where L denotes the lag op-
erator and qi t = (yi0, yi1, . . . , yi,t−2, x′

i )
′, where x′

i = (x′
i1, . . . , x′

iT ), we have

Eqi t	uit = 0, t = 2, . . . , T . (4.3.37)
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Stacking the (T − 1) first-differenced equations of (4.3.31) in matrix form,
we have

	yi = 	yi,−1γ + 	Xi � + 	ui , i = 1, . . . , N , (4.3.38)

where 	yi , 	yi,−1, and 	ui are (T − 1) × 1 vectors of the form (yi2 − yi1, . . . ,

yiT − yi,T −1)′, (yi1 − yi0, . . . , yi,T −1 − yi,T −2)′, (ui2 − ui1, . . . , uiT − ui,T −1)′,
respectively, and 	Xi is the (T − 1) × K matrix of (xi2 − xi1, . . . , xiT −
xi,T −1)′. The T (T − 1)[K1 + 1

2 ] orthogonality (or moment) conditions of
(4.3.37) can be represented as

EWi	ui = 0, (4.3.39)

where

Wi =


qi2 0 · · · 0

0 qi3 · · · 0
...

...
. . .

...

0 0 · · · qiT

 (4.3.40)

is of dimension [T (T − 1)(K1 + 1
2 )] × (T − 1). The dimension of (4.3.40) in

general is much larger than K1 + 1. Thus, Arellano and Bond (1991) suggest a
generalized method of moments (GMM) estimator.

The standard method of moments estimator consists of solving the unknown
parameter vector � by equating the theoretical moments with their empirical
counterparts or estimates. For instance, suppose that m(y, x; �) denotes some
population moments of y and/or x (say the first and second moments), which
are functions of the unknown parameter vector � and are supposed to equal
some known constants, say zero. Let m̂(y, x; �) = 1

N

∑N
i=1 m(yi , xi ; �) be their

sample estimates based on N independent samples of (yi , xi ). Then the method
of moments estimator of � is �̂mm, such that

m(y, x; �) = m̂(y, x; �̂mm) = 0. (4.3.41)

For instance, the orthogonality conditions between Q Xi and Qui for the
fixed-effects linear static model (3.2.2), E(X ′

i Qui ) = E[X ′
i Q(yi − eα∗

i −
Xi �)] = 0, lead to the LSDV estimator (3.2.8). In this sense, the method of
moments estimator may be viewed as descendents of the IV method.

If the number of equations in (4.3.41) is equal to the dimension of �, it is in
general possible to solve for �̂mm uniquely. If the number of equations is greater
than the dimension of �, (4.3.41) in general has no solution. It is then necessary
to minimize some norm (or distance measure) of m̂(y, x; �) − m(y, x; �), say

[m̂(y, x; �) − m(y, x; �)]′ A[m̂(y, x; �) − m(y, x; �)], (4.3.42)

where A is some positive definite matrix.
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The property of the estimator thus obtained depends on A. The optimal
choice of A turns out to be

A∗ = {E[m̂(y, x; �) − m(y, x; �)][m̂(y, x; �) − m(y, x; �)]′}−1

(4.3.43)

(Hansen (1982)). The GMM estimation of � is to choose �̂GMM such that it
minimizes (4.3.42) when A = A∗.

The Arellano and Bond GMM estimator of � = (γ, �′)′ is obtained by min-
imizing (

1

N

N∑
i=1

	u′
i W ′

i

)
�−1

(
1

N

N∑
i=1

Wi	ui

)
, (4.3.44)

where � = E[1/N 2 ∑N
i=1 Wi	ui	u′

i W ′
i ]. Under the assumption that uit

is i.i.d. with mean zero and variance σ 2
u , � can be approximated by

(σ 2
u /N 2)

∑N
i=1 Wi ÃW ′

i , where

Ã
(T −1)×(T −1)

=


2 −1 0 · · · 0

−1 2 −1 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . . 2 −1

0 · · · 0 −1 2

. (4.3.45)

Thus, the Arellano–Bover GMM estimator takes the form

�̂GMM,AB =

[

N∑
i=1

(
	y′

i,−1

	X ′
i

)
W ′

i

][
N∑

i=1

Wi ÃW ′
i

]−1[ N∑
i=1

Wi (	yi,−1, 	Xi )

]
−1

×

[

N∑
i=1

(
	y′

i,−1

	X ′
i

)
W ′

i

][
N∑

i=1

Wi ÃW ′
i

]−1[ N∑
i=1

Wi	yi

],

(4.3.46)

with asymptotic covariance matrix

Cov(�̂GMM,AB)

= �2
u


[

N∑
i=1

(
	y′

i,−1

	X ′
i

)
W ′

i

][
N∑

i=1

Wi ÃW ′
i

]−1 [
N∑

i=1

Wi (	yi,−1, 	Xi )

]
−1

.

(4.3.47)

In addition to the moment conditions (4.3.38), Arellano and Bover (1995)
also note that Ev̄i = 0, where v̄i = ȳi − ȳi,−1γ − x̄′

i � − �′zi .13 Therefore, if
instruments q̃i exist (for instance, the constant 1 is a valid instrument) such that

E q̃i v̄i = 0, (4.3.48)
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then a more efficient GMM estimator can be derived by incorporating this
additional moment condition.

Apart from the linear moment conditions (4.3.39) and (4.3.48), Ahn and
Schmidt (1995) note that the homoscedasticity condition on E(v2

i t ) implies the
following T − 2 linear conditions:

E(yit	ui,t+1 − yi,t+1	ui,t+2) = 0, t = 1, . . . , T − 2. (4.3.49)

Combining (4.3.39), (4.3.48), and (4.3.49), a more efficient GMM estimator
can be derived by minimizing14(

1

N

N∑
i=1

u+′
i W +′

i

)
�+−1

(
1

N

N∑
i=1

W +
i u+

i

)
(4.3.50)

with respect to �, where u+
i = (	u′

i , v̄i )′, �+ = E((1/N 2)
∑N

i=1 W +
i u+

i ×
u+′

i W +′
i ), and

W +′
i =

(
W ′

i W ∗′
i 0

0′ 0′ q̃′
i

)
,

where

W ∗
i

(T −2)×(T −1)
=


yi1 −yi2 0 0 · · · 0 0
0 yi2 −yi3 0 · · · 0 0
...

...
. . .

. . .
. . .

...
...

0 0 · · · yi,T −3 −yi,T −2 0 0

0 0 . . . 0 yi,T −2 −yi,T −1 0

.

However, because the covariance matrix (4.3.49) depends on the unknown �,
it is impractical to implement the GMM. A less efficient, but computationally
feasible GMM estimation is to ignore the information that �+ also depends on
� and simply replace � by its consistent estimator

�̂+ =
(

1

N 2

N∑
i=1

W +
i û+

i û+′
i W +′

i

)
(4.3.51)

in the objective function (4.3.50) to derive a linear estimator of form (4.3.46),
where û+

i is derived by using some simple consistent estimator of γ and �, say
the IV discussed in Section 4.3.3.c, into (4.3.38) and the v̄i equation.

In principle, one can improve the asymptotic efficiency of the GMM estima-
tor by adding more moment conditions. For instance, Ahn and Schmidt (1995)
note that in addition to the linear moment conditions of (4.3.39), (4.3.48),
and (4.3.49), there exist (T − 1) nonlinear moment conditions of the form
E((ȳi − γ ȳi,−1 − �′x̄i )	uit ) = 0, t = 2, . . . , T , implied by the homoscedas-
ticity conditions of Ev2

i t . Under the additional assumption that E(αi yi t ) is the
same for all t , this condition and condition (4.3.49) can be transformed into the
(2T − 2) linear moment conditions

E[(yiT − γ yi,T −1 − �′xiT )	yit ] = 0, t = 1, . . . , T − 1, (4.3.52)
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and

E[(yit − γ yi,t−1 − �′xi t )yit − (yi,t−1 − γ yi,t−2 − �′xi,t−1)yi,t−1] = 0,

t = 2, . . . , T . (4.3.53)

While theoretically it is possible to add additional moment conditions to
improve the asymptotic efficiency of GMM, it is doubtful how much efficiency
gain one can achieve by using a huge number of moment conditions in a fi-
nite sample. Moreover, if higher-moment conditions are used, the estimator can
be very sensitive to outlying observations. Through a simulation study, Ziliak
(1997) has found that the downward bias in GMM is quite severe as the num-
ber of moment conditions expands, outweighing the gains in efficiency. The
strategy of exploiting all the moment conditions for estimation is actually not
recommended for panel data applications. For further discussions, see Judson
and Owen (1999), Kiviet (1995), and Wansbeek and Bekker (1996).

4.3.4 Testing Some Maintained Hypotheses on Initial Conditions

As discussed in Sections 4.3.2 and 4.3.3, the interpretation and consistency
property for the MLE and GLS of a random-effects model depend on the initial
conditions. Unfortunately, in practice we have very little information on the
characteristics of the initial observations. Because some of these hypotheses are
nested, Bhargava and Sargan (1983) suggest relying on the likelihood principle
to test them. For instance, when yi0 are exogenous (case I), we can test the
validity of the error-components formulation by maximizing L1 with or without
the restrictions on the covariance matrix V . Let L∗

1 denote the maximum of log
L1 subject to the restriction of model (4.3.7), and let L∗∗

1 denote the maximum
of log L1 with V being an arbitrary positive definite matrix. Under the null
hypothesis, the resulting test statistic 2(L∗∗

1 − L∗
1) is asymptotically chi-square

distributed, with [T (T + 1)/2 − 2] degrees of freedom.
Similarly, we can test the validity of the error-components formulation under

the assumption that yi0 are endogenous. Let the maximum of the log likelihood
function under case IVa and case IVc′ be denoted by L∗

4a and L∗
4c′ , respec-

tively. Let the maximum of the log likelihood function under case IVa or IVc′

without the restriction (4.3.19) or (4.3.23) [namely, the (T + 1) × (T + 1) co-
variance matrix is arbitrary] be denoted by L∗∗

4a or L∗∗
4c′ , respectively. Then,

under the null, 2(L∗∗
4a − L∗

4a) and 2(L∗∗
4c′ − L∗

4c′ ) are asymptotically chi-square,
with [(T + 1)(T + 2)/2 − 2] and [(T + 1)(T + 2)/2 − 3] degrees of freedom,
respectively.

To test the stationarity assumption, we denote the maximum of the log
likelihood function for case IVb and case IVd′ as L∗

4b and L∗
4d′ , respectively.

Then 2(L∗
4b − L∗

4a) and 2(L∗
4d′ − L∗

4c′ ) are asymptotically chi-square, with one
degree of freedom. The statistics 2(L∗∗

4a − L∗
4b) and 2(L∗∗

4c′ − L∗
4d′ ) can also

be used to test the validity of case IVb and case IVd′, respectively. They
are asymptotically chi-square distributed, with [(T + 1)(T + 2)/2 − 3] and
[(T + 1)(T + 2)/2 − 4] degrees of freedom, respectively.
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We can also generalize Bhargava and Sargan’s principle to test the as-
sumption that the initial observations have a common mean µw or have dif-
ferent means θi0 under various assumptions about the error process. The
statistics 2[L∗

4c′ − L∗
4a], 2[L∗∗

4c′ − L∗∗
4a ], and 2[L∗

4d′ − L∗
4b] are asymptotically

chi-square distributed, with q, (q − 1), and (q − 1) degrees of freedom, respec-
tively, where q is the number of unknown coefficients in (4.3.21). We can also
test the combined assumption of a common mean and a variance-components
formulation by using the statistic 2[L∗∗

4c′ − L∗
4a] or 2[L∗∗

4c′ − L∗
4b], which are

asymptotically chi-square distributed, with q + (T + 1)(T + 2)/2 − 3 and
q + (T + 1)(T + 2)/2 − 4 degrees of freedom, respectively.

With regard to the test that yi0 are exogenous, unfortunately it is not pos-
sible to compare L1 directly with the likelihood functions of various forms
of case IV, because in the former case we are considering the density of
(yi1, . . . , yiT ) assuming yi0 to be exogenous, whereas in the latter case it is
the joint density of (yi0, . . . , yiT ). However, we can write the joint likelihood
function of (4.3.7) and (4.3.21) under the restriction that vi0 are independent
of ηi (or αi ) and have variance σ 2

ε0. Namely, we impose the restriction that
Cov(vi0, vit ) = 0, t = 1, . . . , T , in the (T + 1) × (T + 1) variance–covariance
matrix of (yi0, . . . , yiT ). We denote this likelihood function by L5. Let L∗∗

5 de-
note the maximum of log L5 with unrestricted variance–covariance matrix for
(vi0, . . . , viT ). Then we can test the exogeneity of yi0 using 2(L∗∗

4c′ − L∗∗
5 ), which

is asymptotically chi-square with T degrees of freedom under the null.
It is also possible to test the exogeneity of yi0 by constraining the error terms

to have a variance-components structure. Suppose the variance–covariance ma-
trix of (vi1, . . . , viT ) is of the form V [equation (3.3.4)]. Let L∗

5 denote the maxi-
mum of the log likelihood function L5 under this restriction. Let L∗

4d′ denote the
maximum of the log likelihood function of (yi0, . . . , yiT ) under the restriction
that Evi v′

i = Ṽ ∗, but allowing the variance of vi0 and the covariance between
vi0 and vit , t = 1, . . . , T , to be arbitrary constants σ 2

w0 and σ 2
τ . The statistic

2(L∗
4d′ − L∗

5) is asymptotically chi-square with one degree of freedom if yi0

are exogenous. In practice, however, it may not even be necessary to calculate
L∗

4d′ , because L∗
4d′ ≥ L∗

4c′ , and if the null is rejected using 2(L∗
4c′ − L∗

5) against
the critical value of chi-square with one degree of freedom, then 2(L∗

4d′ − L∗∗
5 )

must also reject the null.

4.3.5 Simulation Evidence

In order to investigate the performance of maximum likelihood estimators under
various assumptions about the initial conditions, Bhargava and Sargan (1983)
conducted Monte Carlo studies. Their true model was generated by

yit = 1 + 0.5yi,t−1 − 0.16zi + 0.35xit + αi + uit , i = 1, . . . , 100,

t = 1, . . . , 20,

(4.3.54)
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where αi and uit were independently normally distributed, with means zero and
variances 0.09 and 0.4225, respectively. The time-varying exogenous variables
xit were generated by

xit = 0.1t + φi xi,t−1 + ωi t , i = 1, . . . , 100,
(4.3.55)

t = 1, . . . , 20,

with φi and ωi t independently normally distributed, with means zero and vari-
ances 0.01 and 1, respectively. The time-invariant exogenous variables zi were
generated by

zi = −0.2xi4 + ω∗
i , i = 1, . . . , 100, (4.3.56)

and ω∗
i were independently normally distributed, with mean zero and variance 1.

The z and the x were held fixed over the replications, and the first 10 observations
were discarded. Thus, the yi0 are in fact stochastic and are correlated with
the individual effects αi . Table 4.2 reproduces the results on the biases in the
estimates for various models obtained in 50 replications.

In cases where the yi0 are treated as endogenous, the MLE performs ex-
tremely well, and the biases in the parameters are almost negligible. But this is
not so for the MLE where yi0 are treated as exogenous. The magnitude of the bias
is about one standard error. The boundary solution of σ 2

α = 0 occurs in a number
of replications for the error components formulation as well. The likelihood-
ratio statistics also rejected the exogeneity of yi0 46 and 50 times, respectively,
using the tests 2[L∗∗

4c′ − L∗∗
5 ] and 2[L∗

4c′ − L∗
5]. Under the endogeneity assump-

tion, the likelihood-ratio statistic 2(L∗∗
4c′ − L∗

4c′ ) rejected the error-components
formulation 4 times (out of 50), whereas under the exogeneity assumption, the
statistic 2(L∗∗

1 − L∗
1) rejected the error-components formulation 7 times.15

4.4 AN EXAMPLE

We have discussed the properties of various estimators for dynamic models with
individual-specific effects. In this section we report results from the study of
demand for natural gas conducted by Balestra and Nerlove (1966) to illustrate
the specific issues involved in estimating dynamic models using observations
drawn from a time series of cross sections.

Balestra and Nerlove (1966) assumed that the new demand for gas (inclusive
of demand due to the replacement of gas appliances and the demand due to net
increases in the stock of such appliances), G∗, was a linear function of the
relative price of gas, P , and the total new requirements for all types of fuel, F∗.
Let the depreciation rate for gas appliances be r , and assume that the rate of
utilization of the stock of appliances is constant; the new demand for gas and
the gas consumption at year t , Gt , follow the relation

G∗
t = Gt − (1 − r )Gt−1. (4.4.1)

They also postulated a similar relation between the total new demand for all
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types of fuel and the total fuel consumption F , with F approximated by a linear
function of the total population N and per capita income I . Substituting these
relations into (4.4.1), they obtained

Gt = β0 + β1 Pt + β2	Nt + β3 Nt−1

+ β4	It + β5 It−1 + β6Gt−1 + vt , (4.4.2)

where 	Nt = Nt − Nt−1, 	It = It − It−1, and β6 = 1 − r .
Balestra and Nerlove used annual U.S. data from 36 states over the period

1957–1962 to estimate the model (4.4.2) for residential and commercial demand
for natural gas. Because the average age of the stock of gas appliances during
this period was relatively young, it was expected that the coefficient of the
lagged gas-consumption variable, β6, would be less than 1, but not by much.
The OLS estimates of (4.4.2) are reported in the second column of Table 4.3.
The estimated coefficient of Gt−1 is 1.01. It is clearly incompatible with a
priori theoretical expectations, as it implies a negative depreciation rate for gas
appliances.

One possible explanation for the foregoing result is that when cross-sectional
and time-series data are combined in the estimation of (4.4.2), certain effects
specific to the individual state may be present in the data. To account for such
effects, dummy variables corresponding to the 36 different states were intro-
duced into the model. The resulting dummy-variable estimates are shown in the
third column of Table 4.3. The estimated coefficient of the lagged endogenous

Table 4.3. Various estimates of the parameters of Balestra and Nerlove’s
demand-for-gas model (4.4.2) from the pooled sample, 1957–1962

Coefficient OLS LSDV GLS

β0 −3.650 — −4.091
(3.316)a (11.544)

β1 −0.0451 −0.2026 −0.0879
(0.0270) (0.0532) (0.0468)

β2 0.0174 −0.0135 −0.00122
(0.0093) (0.0215) (0.0190)

β3 0.00111 0.0327 0.00360
(0.00041) (0.0046) (0.00129)

β4 0.0183 0.0131 0.0170
(0.0080) (0.0084) (0.0080)

β5 0.00326 0.0044 0.00354
(0.00197) (0.0101) (0.00622)

β6 1.010 0.6799 0.9546
(0.014) (0.0633) (0.0372)

aFigures in parentheses are standard errors for the corresponding coefficients.
Source: Balestra and Nerlove (1966).
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variable is drastically reduced; in fact, it is reduced to such a low level that it
implies a depreciation rate of gas appliances of over 30 percent – again highly
implausible.

Instead of assuming the regional effect to be fixed, they again estimated
(4.4.2) by explicitly incorporating individual state-effects variables into the
error term, so that vit = αi + uit , where αi and uit are independent random
variables. The two-step GLS estimates under the assumption that the initial ob-
servations are fixed are shown in the fourth column of Table 4.3. The estimated
coefficient of lagged consumption is 0.9546. The implied depreciation rate is
approximately 4.5 percent, which is in agreement with a priori expectation.

The foregoing results illustrate that by properly taking account of the unob-
served heterogeneity in the panel data, Balestra and Nerlove were able to obtain
results that were reasonable on the basis of a priori theoretical considerations
that they were not able to obtain through attempts to incorporate other variables
into the equation by conventional procedures. Moreover, the least-squares and
the least-squares dummy-variables estimates of the coefficient of the lagged
gas-consumption variable were 1.01 and 0.6799, respectively. In previous sec-
tions we showed that for dynamic models with individual-specific effects, the
least-squares estimate of the coefficient of the lagged dependent variable is
biased upward and the least-squares dummy-variable estimate is biased down-
ward if T is small. Their estimates are in agreement with these theoretical
results.16

4.5 FIXED-EFFECTS MODELS

If individual effects are considered fixed and different across individuals, then
because of the strict multicollinearity between the effects and other time-
invariant variables, there is no way one can disentangle the effects from those
of other time-invariant variables. We shall therefore assume zi ≡ 0. When T
tends to infinity, even though lagged y does not satisfy the strict exogene-
ity condition for the regressors, it does satisfy the weak exogeneity condi-
tion E(uit | yi,t−1, yi,t−2, .; αi ) = 0; hence the least-squares regression of yit on
lagged yi,t and xi t and the individual specific constant yields consistent estima-
tor. In the case that T is fixed and N tends to infinity, the number of parameters
in a fixed-effects specification increases with the number of cross-sectional ob-
servations. This is the classical incidental-parameters problem (Neyman and
Scott (1948)). In a static model with strict exogeneity assumption, the presence
of individual specific constants does not affect the consistency of the CV or
MLE estimator of the slope coefficients (see Chapter 3). However, the result no
longer holds if lagged dependent variables also appear as explanatory variables.
The regularity conditions for the consistency of the MLE is violated. In fact, if
uit are normally distributed and yi0 are given constants, the MLE of (4.2.1) is
the CV of (4.2.2) and (4.2.3). The asymptotic bias is given by (4.2.8).

While the MLE is inconsistent, the IV estimator of (4.3.31) or the GMM
estimator (4.3.42) remains consistent and asymptotically normally distributed
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with fixed α∗
i . The transformed equation (4.3.38) does not involve the incidental

parameters α∗
i . The orthogonality condition (4.3.39) remains valid.

In addition to the IV type estimator, a likelihood-based approach based on a
transformed likelihood function can also yield a consistent and asymptotically
normally distributed estimator.

4.5.1 Transformed Likelihood Approach

The first-difference equation (4.3.31) no longer contains the individual ef-
fects α∗

i and is well defined for t = 2, 3, . . . , T, under the assumption that
the initial observations yi0 and xi0 are available. But (4.3.31) is not defined for
	yi1 = (yi1 − yi0), because 	yi0 and 	xi0 are missing. However, by continu-
ous substitution, we can write 	yi1 as

	yi1 = ai1 +
∞∑
j=0

γ j	ui,1− j , (4.5.1)

where ai1 = �′ ∑∞
j=0 	xi,1− jγ

j . Since 	xi,1− j , j = 1, 2, . . . , are unavail-
able, ai1 is unknown. Treating ai1 as a free parameter to be estimated will again
introduce the incidental-parameters problem. To get around this problem, the
expected value of ai1, conditional on the observables, has to be a function of a
finite number of parameters of the form

E(ai1 | 	xi ) = c∗ + �′	xi , i = 1, . . . , N , (4.5.2)

where � is a T K1 × 1 vector of constants, and 	xi is the T K1 × 1 vector
(	x′

i1, . . . , 	x′
iT )′. Hsiao, Pesaran, and Tahmiscioglu (2002) have shown that

if xi t are generated by

xi t = �i + gt +
∞∑
j=0

b j �i,t− j ,

∞∑
j=0

|b j | < ∞, (4.5.3)

where �i t are assumed to be i.i.d. with mean zero and constant covariance matrix,
then (4.5.2) holds. The data-generating process of the exogenous variables xi t

(4.5.3) can allow fixed and different intercepts �i across i , or �i randomly
distributed with a common mean. However, if there exists a trend term in the
data generating process of xi t , then they must be identical across i .

Given (4.5.2), 	yi1 can be written as

	yi1 = c∗ + �′	xi + v∗
i1, (4.5.4)

where v∗
i1 = ∑∞

j=0 γ j	ui,1− j + [ai1 − E(ai1 | 	xi )]. By construction, E(v∗
i1 |

	xi ) = 0, E(v∗2
i1 ) = σ 2

v∗ , E(v∗
i1	ui2) = −σ 2

u , and E(v∗
i1	uit ) = 0, for t =

3, 4, . . . , T . It follows that the covariance matrix of 	u∗
i = (v∗

i1, 	u′
i )

′ has
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the form

�∗ = σ 2
u


h −1 0 · · · 0

−1 2 −1 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . −1
0 . . . 0 −1 2

 = σ 2
u �̃∗, (4.5.5)

where h = σ 2
v∗/σ 2

u .
Combining (4.3.31) and (4.5.4), we can write the likelihood function of

	y∗
i = (	yi1, . . . , 	yiT ), i = 1, . . . , N , in the form

(2π )−
N T
2 |�∗|− N

2 exp

{
−1

2

N∑
i=1

	u∗′
i �∗−1	u∗

i

}
(4.5.6)

if 	u∗
i is normally distributed, where

	u∗
i = [	yi1 − c∗ − �′	xi , 	yi2 − γ	yi1

−�′	xi2, . . . , 	yiT − γ	yi,T −1 − �′	xiT ]′.

The likelihood function again only depends on a fixed number of parameters
and satisfies the standard regularity conditions, so that the MLE is consistent
and asymptotically normally distributed as N → ∞.

Since |�̃∗| = 1 + T (h − 1) and

�̃∗−1 = [1 + T (h − 1)]−1

×


T T − 1 · · · 2 1

T − 1 (T − 1)h · · · 2h h
...

...
...

...
2 2h · · · 2[(T − 2)h − (T − 3)] (T − 2)h − (T − 3)
1 h · · · (T − 2)h − (T − 3) (T − 1)h − (T − 2)

,

(4.5.7)

the logarithm of the likelihood function (4.5.6) is

log L = − N T

2
log 2π − N T

2
log σ 2

u − N

2
log [1 + T (h − 1)]

− 1

2

N∑
i=1

[(	y∗
i − Hi 
)′�∗−1(	y∗

i − Hi 
)], (4.5.8)

where 	y∗
i = (	yi1, . . . , 	yiT )′, 
 = (c∗, �′, γ, �′)′, and

Hi =


1 	x′

i 0 0′

0 0′ 	yi1 	x′
i2

...
...

...
...

0 0′ 	yi,T −1 	x′
iT

 .
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The MLE is obtained by solving the following equations simultaneously:


̂ =
(

N∑
i=1

H ′
i

ˆ̃�
∗−1

Hi

)−1 (
N∑

i=1

H ′
i

ˆ̃�
∗−1

	y∗
i

)
, (4.5.9)

σ̂ 2
u = 1

N T

N∑
i=1

[(	y∗
i − Hi 
̂)′( ˆ̃�

∗
)−1(	y∗

i − Hi 
̂)], (4.5.10)

ĥ = T − 1

T
+ 1

σ̂ 2
u N T 2

N∑
i=1

[(	y∗
i − Hi 
̂)′(JJ′)(	y∗

i − Hi 
̂)],

(4.5.11)

where J′ = (T, T − 1, . . . , 2, 1). One way to obtain the MLE is to iterate among
(4.5.9)–(4.5.11) conditionally on the early round estimates of the other parame-
ters until the solution converges, or to use a Newton–Raphson iterative scheme
(Hsiao, Pesaran, and Tahmiscioglu (2002)).

4.5.2 Minimum-Distance Estimator

Conditional on �∗, the MLE is the minimum-distance estimator (MDE) of the
form

min
N∑

i=1

	u∗′
i �∗−1	u∗

i . (4.5.12)

In the case that �∗ is unknown, a two-step feasible MDE can be implemented.
In the first step we obtain consistent estimators of σ 2

u and σ 2
v∗. For instance,

we can regress (4.5.4) across i to obtain the least-squares residuals v̂∗
i1, then

estimate

σ̂ 2
v∗ = 1

N − T K1 − 1

N∑
i=1

v̂∗2
i1 . (4.5.13)

Similarly, we can apply the IV to (4.3.31) and obtain the estimated residuals
	ûi t and

σ̂ 2
u = 1

N (T − 1)

N∑
i=1

	̂u
′
i Ã−1	̂ui , (4.5.14)

where Ã is defined in (4.3.45).
In the second step, we substitute estimated σ 2

u and σ 2
v∗ into (4.5.5) and treat

them as if they were known, and use (4.5.9) to obtain the MDE of 
, 
̂MDE.
The asymptotic covariance matrix of the MDE, Var(
̂MDE), using the true

�∗ as the weighting matrix, is equal to (
∑N

i=1 H ′
i �

∗−1 Hi )−1. The asymptotic
covariance of the feasible MDE using a consistently estimated �∗, Var(
̂FMDE),
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contrary to the static case, is equal to (Hsiao, Pesaran and Tahmiscioglu (2002))(
N∑

i=1

H ′
i �

∗−1 Hi

)−1

+
(

N∑
i=1

H ′
i �

∗−1 Hi

)−1


0 0′ 0 0′

0 0 0 0
0 0′ d 0′

0 0 0 0


(

1

N

N∑
i=1

H ′
i �

∗−1 Hi

)−1

,

(4.5.15)

where

d = [γ T −2 + 2γ T −3 + · · · + (T − 1)]2

[1 + T (h − 1)]2σ 4
u

× (
σ 4

u Var
(
σ̂ 2

v∗
) + σ 4

v∗Var
(
σ̂ 2

u

) − 2σ 2
u σ 2

v∗ Cov
(
σ̂ 2

v∗ , σ̂
2
u

))
.

The second term of (4.5.15) arises because the estimation of 
 and �∗ are not
asymptotically independent when the lagged dependent variables also appear
as regressors.

4.5.3 Relations between the Likelihood-Based Estimator and the
Generalized Method of Moments Estimated (GMM)

Although normality is assumed to derive the transformed MLE and MDE, it is
not required. Both estimators remain consistent and asymptotically normally
distributed, even though the errors are not normally distributed. Under normal-
ity, the transformed MLE achieves the Cramér–Rao lower bound for the trans-
formed model, and hence is fully efficient. Even without normality, the
transformed MLE or MDE is more efficient than the GMM that only uses
second-moment restrictions if �∗ is known.

Using the formula of the partitioned inverse (e.g., Amemiya (1985)), the
covariance matrix of the MDE of (γ, �) is of the form

Cov

(
γ̂MDE

�̂MDE

)
= σ 2

u

[
N∑

i=1

(
	y′

i,−1

	X ′
i

)(
Ã − 1

h
gg′

)−1

(	yi,−1, 	Xi )

]−1

,

(4.5.16)

where g′ = (−1, 0, . . . , 0). We note that (4.5.16) is smaller than

σ 2
u

[
N∑

i=1

(
	y′

i,−1

	X ′
i

)
Ã−1(	yi,−1, 	Xi )

]−1

, (4.5.17)

in the sense that the difference between the two matrices is a negative
semidefinite matrix, because Ã − ( Ã − 1

h gg′) is a positive semidefinite matrix.



100 Dynamic Models with Variable Intercepts

Furthermore,

N∑
i=1

(
	y′

i,−1

	X ′
i

)
Ã−1(	yi,−1, 	Xi )

−
[

N∑
i=1

(
	y′

i,−1

	X ′
i

)
W ′

i

](
N∑

i=1

Wi ÃW ′
i

)−1 [
N∑

i=1

Wi (	yi,−1, 	Xi )

]
= D′[I − Q(Q′ Q)−1 Q]D, (4.5.18)

is a positive semidefinite matrix, where D = (D′
1, . . . , D′

N )′, Q = (Q′
1,

Q′
2, . . . , Q′

N )′, Di = �′(	yi,−1, 	Xi ), Qi = �−1Wi , and ��′ = Ã−1. There-
fore, the asymptotic covariance matrix (4.3.47) of the GMM estimator (4.3.46)
is greater than (4.5.17), which is greater than (4.5.16) in the sense that the
difference of the two covariance matrix is a positive semidefinite matrix.

When �̃∗ is unknown, the asymptotic covariance matrix of (4.3.46) remains
(4.3.47). But the asymptotic covariance matrix of the feasible MDE is (4.5.15).
Although the first term of (4.5.15) is smaller than (4.3.47), it is not clear that
with the addition of the second term it will remain smaller. However, it is very
likely that it will, for several reasons. First, additional information due to the
	yi1 equation is utilized, which can be substantial (e.g., see Hahn (1999)).
Second, the GMM method uses the (t − 1) instruments (yi0, . . . , yi,t−2)
for the 	yit equation for t = 2, 3, . . . , T . The likelihood-based approach
uses the t instruments (yi0, yi1, . . . , yi,t−1). Third, the likelihood approach
uses the condition E(	u∗

i ) = 0, and the GMM method uses the condition
E( 1

N

∑N
i=1 Wi	ui ) = 0. The grouping of observations in general will lead to a

loss of information.17

Hsiao, Pesaran, and Tahmiscioglu (2002) have conducted Monte Carlo stud-
ies to compare the performance of the IV of (4.3.31), the GMM of (4.3.43), the
MLE, and the MDE. They generate yit by

yit = αi + γ yi,t−1 + βxit + uit , (4.5.19)

where the error term uit is generated from two schemes. One is N (0, σ 2
u ).

The other is the mean adjusted chi-square with two degrees of freedom. The
regressor xit is generated according to

xit = µi + gt + ξi t , (4.5.20)

where ξi t follows an autoregressive moving average process

ξi t − φξi,t−1 = εi t + θεi,t−1, (4.5.21)

and εi t ∼ N (0, σ 2
ε ). The fixed effects µi and αi are generated from a variety of

schemes such as being correlated with xit or uncorrelated with xit but from a
mixture of different distributions. Table 4.4 gives a summary of the different
designs of the Monte Carlo study.

In generating yit and xit , both are assumed to start from zero. But the first
50 observations are discarded. The bias and root mean square error (RMSE)
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Table 4.4. Monte Carlo design

Design number γ β φ θ g R2
	y σε

1 0.4 0.6 0.5 0.5 0.01 0.2 0.800
2 0.4 0.6 0.9 0.5 0.01 0.2 0.731
3 0.4 0.6 1 0.5 0.01 0.2 0.711
4 0.4 0.6 0.5 0.5 0.01 0.4 1.307
5 0.4 0.6 0.9 0.5 0.01 0.4 1.194
6 0.4 0.6 1 0.5 0.01 0.4 1.161
7 0.8 0.2 0.5 0.5 0.01 0.2 1.875
8 0.8 0.2 0.9 0.5 0.01 0.2 1.302
9 0.8 0.2 1 0.5 0.01 0.2 1.104

10 0.8 0.2 0.5 0.5 0.01 0.4 3.062
11 0.8 0.2 0.9 0.5 0.01 0.4 2.127
12 0.8 0.2 1 0.5 0.01 0.4 1.803

Source: Hsiao, Pesaran, and Tahmiscioglu (2002, Table 1).

of various estimators of γ and β when T = 5 and N = 50 based on 2500
replications are reported in Tables 4.5 and 4.6 respectively. The results show
that the bias of the MLE of γ as a percentage of the true value is smaller than
1 percent in most cases. The bias of the IV of γ can be significant for certain
data-generating processes. The MDE and GMM of γ also have substantial
downward biases in all designs. The bias of the GMM estimator of γ can be
as large as 15 to 20 percent in many cases and is larger than the bias of the
MDE. The MLE also has the smallest RMSE, followed by the MDE and then
the GMM. The IV has the largest RMSE.

4.5.4 Random- versus Fixed-Effects Specification

When αi are random, the MLE of the transformed likelihood function (4.5.6) or
the MDE (4.5.12) remains consistent and asymptotically normally distributed.
However, comparing the likelihood function of (4.3.25) with (4.5.6), it is ob-
vious that first-differencing reduces the number of time-series observations by
one per cross-sectional unit, and hence will not be as efficient as the MLE of
(4.3.25) when αi are indeed random. However, if αi are fixed, then the MLE of
(4.3.25) yields an inconsistent estimator.

The transformed MLE or MDE is consistent under a more general data-
generating process of xi t than the MLE of (4.3.25) or the GLS (4.3.29). In order
for the Bhargava–Sargan (1983) MLE of the random-effects model to be con-
sistent, we shall have to assume that the xi t are generated from the same station-
ary process with common means (equation (4.3.20)). Otherwise, E(yi0 | xi ) =
ci + �′

i xi , where ci and �i vary across i , and we have the incidental-parameters
problem again. On the other hand, the transformed likelihood approach allows
xi t to have different means (or intercepts) (equation (4.5.3)). Therefore it ap-
pears that if one is not sure about the assumption on the effects αi , or the
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Table 4.5. Bias of estimators (T = 5 and N = 50)

Bias

Design Coeff. IVE MDE MLE GMM

1 γ = 0.4 0.0076201 −0.050757 −0.000617 −0.069804
β = 0.6 −0.001426 0.0120812 0.0023605 0.0161645

2 γ = 0.4 0.0220038 −0.052165 −0.004063 −0.072216
β = 0.6 −0.007492 0.0232612 0.0027946 0.0321212

3 γ = 0.4 1.3986691 −0.054404 −0.003206 −0.075655
β = 0.6 −0.386998 0.0257393 0.0002997 0.0365942

4 γ = 0.4 0.0040637 −0.026051 −0.001936 −0.03616
β = 0.6 0.0004229 0.0066165 0.0019218 0.0087369

5 γ = 0.4 0.1253257 −0.023365 −0.000211 −0.033046
β = 0.6 −0.031759 0.0113724 0.0016388 0.0155831

6 γ = 0.4 −0.310397 −0.028377 −0.00351 −0.040491
β = 0.6 0.0640605 0.0146638 0.0022274 0.0209054

7 γ = 0.8 −0.629171 −0.108539 0.009826 −0.130115
β = 0.2 −0.018477 0.0007923 0.0026593 0.0007962

8 γ = 0.8 −1.724137 −0.101727 0.0027668 −0.128013
β = 0.2 0.0612431 0.0109865 −0.000011 0.013986

9 γ = 0.8 −0.755159 −0.102658 0.00624 −0.133843
β = 0.2 −0.160613 0.0220208 0.0002624 0.0284606

10 γ = 0.8 0.1550445 −0.045889 0.001683 −0.05537
β = 0.2 0.0096871 0.0000148 0.0007889 −0.000041

11 γ = 0.8 −0.141257 −0.038216 −0.000313 −0.050427
β = 0.2 0.0207338 0.0048828 0.0007621 0.0063229

12 γ = 0.8 0.5458734 −0.039023 0.0005702 −0.053747
β = 0.2 −0.069023 0.0079627 0.0003263 0.010902

Source: Hsiao, Pesaran, and Tahmiscioglu (2002, Table 2).

homogeneity assumption about the data-generating process for xi t , one should
work with the transformed likelihood function (4.5.6) or the MDE (4.5.12),
despite the fact that one may lose efficiency under the ideal condition.

The use of the transformed likelihood approach also offers the possibility
of using a Hausman (1978) test for fixed- versus random-effects specification,
or of testing the homogeneity and stationarity assumption about the xi t process
under the assumption that αi are random. Under the null of random effects and
homogeneity of the xi t process, the MLE of (4.3.25) is asymptotically efficient.
The transformed MLE of (4.5.6) is consistent, but not efficient. On the other
hand, if αi are fixed or xi t is not generated by a homogeneous process but
satisfies (4.5.3), the transformed MLE of (4.5.6) is consistent, but the MLE of
(4.3.25) is inconsistent. Therefore, a Hausman type test statistic (3.5.2) can be
constructed by using the difference between the two estimators.
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Table 4.6. Root mean square error (T = 5 and N = 50)

Root Mean Square Error

Design Coeff. IVE MDE MLE GMM

1 γ = 0.4 0.1861035 0.086524 0.0768626 0.1124465
β = 0.6 0.1032755 0.0784007 0.0778179 0.0800119

2 γ = 0.4 0.5386099 0.0877669 0.0767981 0.11512
β = 0.6 0.1514231 0.0855346 0.0838699 0.091124

3 γ = 0.4 51.487282 0.0889483 0.0787108 0.1177141
β = 0.6 15.089928 0.0867431 0.0848715 0.0946891

4 γ = 0.4 0.1611908 0.0607957 0.0572515 0.0726422
β = 0.6 0.0633505 0.0490314 0.0489283 0.0497323

5 γ = 0.4 2.3226456 0.0597076 0.0574316 0.0711803
β = 0.6 0.6097378 0.0529131 0.0523433 0.0556706

6 γ = 0.4 14.473198 0.0620045 0.0571656 0.0767767
β = 0.6 2.9170627 0.0562023 0.0550687 0.0607588

7 γ = 0.8 27.299614 0.1327602 0.116387 0.1654403
β = 0.2 1.2424372 0.0331008 0.0340688 0.0332449

8 γ = 0.8 65.526156 0.1254994 0.1041461 0.1631983
β = 0.2 3.2974597 0.043206 0.0435698 0.0450143

9 γ = 0.8 89.83669 0.1271169 0.104646 0.1706031
β = 0.2 5.2252014 0.0535363 0.0523473 0.0582538

10 γ = 0.8 12.201019 0.074464 0.0715665 0.0884389
β = 0.2 0.6729934 0.0203195 0.020523 0.0203621

11 γ = 0.8 17.408874 0.0661821 0.0642971 0.0822454
β = 0.2 1.2541247 0.0268981 0.026975 0.02756742

12 γ = 0.8 26.439613 0.0674678 0.0645253 0.0852814
β = 0.2 2.8278901 0.0323355 0.0323402 0.0338716

Source: Hsiao, Pesaran, and Tahmiscioglu (2002, Table 5).

4.6 ESTIMATION OF DYNAMIC MODELS
WITH ARBITRARY CORRELATIONS
IN THE RESIDUALS

In previous sections we discussed estimation of the dynamic model

yit = γ yi,t−1 + �′xi t + α∗
i + uit , i = 1, . . . , N ,

(4.6.1)
t = 1, . . . , T,

under the assumption that uit are serially uncorrelated, where we now again
let xi t stand for a K × 1 vector of time-varying exogenous variables. When
T is fixed and N tends to infinity, we can relax the restrictions on the serial
correlation structure of uit and still obtain efficient estimates of γ and �.

Taking the first difference of (4.6.1) to eliminate the individual effect α∗
i ,

and stacking all equations for a single individual, we have a system of (T − 1)
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equations,

yi2 − yi1 = γ (yi1 − yi0) + �′(xi2 − xi1) + (ui2 − ui1),

yi3 − yi2 = γ (yi2 − yi1) + �′(xi3 − xi2) + (ui3 − ui2),
...

yiT − yi,T −1 = γ (yi,T −1 − yi,T −2) + �′(xiT − xi,T −1)

+ (uiT − ui,T −1), i = 1, . . . , N , (4.6.2)

We complete the system (4.6.2) with the identities

yi0 = E∗(yi0 | xi1, . . . , xiT ) + [yi0 − E∗(yi0 | xi1, . . . , xiT )]

= a0 +
T∑

t=1

�′
0t xi t + εi0, (4.6.3)

and

yi1 = E∗(yi1 | xi1, . . . , xiT ) + [yi1 − E∗(yi1 | xi1, . . . , xiT )]

= a1 +
T∑

t=1

�′
1t xi t + εi1, i = 1, . . . , N , (4.6.4)

where E∗ denotes the projection operator. Because (4.6.3) and (4.6.4) are ex-
actly identified equations, we can ignore them and apply the three-stage least-
squares (3SLS) or generalized 3SLS (see Chapter 5) to the system (4.6.2) only.
With regard to the cross-equation constraints in (4.6.2), one can either directly
substitute them out or first obtain unknown nonzero coefficients of each equation
ignoring the cross-equation linear constraints, then impose the constraints and
use the constrained estimation formula [Theil (1971, p. 281, equation (8.5))].

Because the system (4.6.2) does not involve the individual effects α∗
i , nor

does the estimation method rely on specific restrictions on the serial-correlation
structure of uit , the method is applicable whether α∗

i are treated as fixed
or random or as being correlated with xi t . However, in order to implement
simultaneous-equations estimation methods to (4.6.2) without imposing restric-
tions on the serial-correlation structure of uit , there must exist strictly exogenous
variables xi t such that

E(uit | xi1, . . . , xiT ) = 0. (4.6.5)

Otherwise, the coefficient γ and the serial correlations of uit cannot be disen-
tangled (e.g., Binder, Hsiao, and Pesaran (2000)).
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4.7 FIXED-EFFECTS VECTOR AUTOREGRESSIVE
MODELS

4.7.1 Model Formulation

Vector autoregressive (VAR) models have become a widely used modeling
tool in economics (e.g., Hsiao (1979a,b, 1982); Sims (1980)). To provide more
flexibility to the VAR modeling for panel data, it is common to assume that fixed
individual specific effects �∗

i are present for the panel VAR (PVAR) models
(Holtz-Eakin, Newey, and Rosen (1988)):

�(L)yi t = yi t − �1yi,t−1 − · · · − �pyi,t−p = �∗
i + �i t ,

i = 1, . . . , N , (4.7.1)
t = 1, . . . , T,

where yi t is an m × 1 vector of observed random variables, �∗
i is an m × 1

vector of individual specific constants that vary with i, �i t is an m × 1 vector of
random variables that is independently, identically distributed with mean zero
and covariance matrix �, and �(L) = Im − �1L − · · · − �p L p is a pth-order
polynomial of the lag operator L , Lsyt = yt−s .

It is well known that time-series inference on VARs critically depends on
whether the underlying processes are (trend) stationary, or integrated, or coin-
tegrated, and, if they are cointegrated, on the rank of cointegration18 (e.g., Sims,
Stock, and Watson (1990); Phillips (1991); Johansen (1995); Pesaran, Shin, and
Smith (2000)). To simplify the analysis, instead of considering (4.7.1) directly,
we consider

�(L)(yi t − �i − �t) = �i t , (4.7.2)

where the roots of the determinant equation

|�(ρ)| = 0 (4.7.3)

either are equal to unity or fall outside the unit circle. Under the assumption
that E�i t = 0, it follows that

E(yi t − �i − �t) = 0. (4.7.4)

To allow for the possibility of the presence of unit roots, we assume that

E(yi t − �i − �t)(yi t − �i − �t)′ = �t . (4.7.5)

Model (4.7.2)–(4.7.5) encompasses many well-known PVAR models as spe-
cial cases. For instance:

Case 1: Stationary PVAR with fixed effects. Let � = 0m×1. If all roots
of (4.7.3) fall outside the unit circle, (4.7.2) becomes (4.7.1) with
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�∗
i = −��i , and

� = −
(

Im −
p∑

j=1

� j

)
. (4.7.6)

Case 2: Trend-stationary PVAR with fixed effects. If all roots of (4.7.3)
fall outside the unit circle and � �= 0, we have

�(L)yi t = ai0 + a1t + εi t , (4.7.7)

where ai0 = −��i + (� + �)�,

� = −� +
p∑

j=1

j� j , (4.7.8)

and a1 = −��.
Case 3: PVAR with unit roots (but noncointegrated).

�∗(L)	yi t = −�∗� + �i t , (4.7.9)

where 	 = (1 − L),

�∗(L) = Im −
p−1∑
j=1

�∗
j L j , (4.7.10)

�∗
j = −(Im − ∑ j

�=1 ��), j = 1, 2. . . . , p − 1, and �∗ = −(Im −∑p−1
j=1 �∗

j ).
Case 4: Cointegrated PVAR with fixed effects. If some roots of (4.7.3)

are equal to unity and rank(�) = r, 0 < r < m, then (4.7.2) may be
rewritten in the form of a panel vector error-corrections model

	yi t = �∗
i + (� + �)� + a1t + �yi,t−1 +

p−1∑
j=1

� j	yi,t− j + �i t ,

(4.7.11)

where � j = −∑p
s= j+1 �s, j = 1, . . . , p − 1, and � can be decom-

posed as the product � = J� of two m × r matrices J and �, with
rank r, and J ′

⊥β⊥ is of rank m − r , where J⊥ andβ⊥ are m × (m − r )
matrices of full column rank such that J ′ J⊥ = 0 and �′�⊥ = 0 (Jo-
hansen (1995)).

The reason for formulating the fixed-effects VAR model in terms of (4.7.2)–
(4.7.5) rather than (4.7.1) is that it puts restrictions on the model intercepts
and trend term so that the time-series properties of yi t remain the same in the
presence of unit roots and cointegration. For instance, when � = 0, whether the
roots of (4.7.3) all fall outside the unit circle or one or more roots are equal
to unity, yi t exhibit no trend growth. However, if �∗

i is unrestricted, then yi t

will exhibit differential trend growth if unit roots are present. If � �= 0, (4.7.2)
ensures that the trend growth of yi t is linear whether the roots of (4.7.3) are
all outside the unit circle or some or all are unity. But if the trend term is
unrestricted, then yi t exhibit linear trends if the roots of (4.7.3) all fall outside
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the unit circle and exhibit quadratic trends if one or more roots of (4.7.3) are
equal to unity (e.g. Pesaran, Shin, and Smith (2000)).

When the time dimension of the panel is short, just as in the single-equation
fixed-effects dynamic panel data model (Section 4.5), (4.7.2) raises the classical
incidental-parameters problem and the issue of modeling initial observations.
For ease of exposition, we shall illustrate the estimation and inference by con-
sidering p = 1, namely, the model

(I − �L)(yi t − �i − �t) = �i t , i = 1. . . . , N ,
(4.7.12)

t = 1, . . . , T .

We also assume that yi0 are available.

4.7.2 GMM Estimation

Just as in the single-equation case, the individual effects �i can be eliminated
by first-differencing (4.7.12):

	yi t − � = �(	yi,t−1 − �) + 	�i t , t = 2, . . . , T . (4.7.13)

Thus, we have the orthogonality conditions

E{[(	yi t − �) − �(	yi,t−1 − �)]q′
i t } = 0, t = 2, . . . , T,

(4.7.14)

where

qi t = (1, y′
i0, . . . , y′

i,t−2)′. (4.7.15)

Stacking the (T − 1) (4.7.13) together yields

Si = Ri� + Ei , i = 1, 2, . . . , N , (4.7.16)

where

Si = (	yi2, 	yi3, . . . , 	yiT )′, Ei = (	�i2, . . . , 	�iT )′

Ri = (Si,−1, eT −1), Si,−1 = (	yi1, . . . , 	yi,T −1)′, (4.7.17)

� = (�, a1), a1 = (Im − �)�,

and eT −1 denotes a (T − 1) × 1 vector of ones. Premultiplying (4.7.16) by the
(MT/2 + 1)(T − 1) × (T − 1) block-diagonal instrumental variable matrix

Qi =


qi2 0 · · · 0
0 qis · · · 0
...

...
. . .

...
0 0 · · · qiT

, (4.7.18)

one obtains

Qi Si = Qi Ri� + Qi Ei , (4.7.19)
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the transpose of which in vectorized form becomes19

(Qi ⊗ Im) vec(S′
i ) = (Qi Ri ⊗ Im)�

+ (Qi ⊗ Im) vec(E ′
i ), (4.7.20)

where λ = vec(�′), and vec(·) is the operator that transforms a matrix into a
vector by stacking the columns of the matrix one underneath the other. Thus,
the GMM estimator of � can be obtained by minimizing (Binder, Hsiao, and
Pesaran (2000))[

N∑
i=1

((Qi ⊗ Im) vec(S′
i ) − (Qi Ri ⊗ Im)�)

]′

×
[

N∑
i=1

(Qi ⊗ Im)�(Qi ⊗ Im)′
]−1

×
[

N∑
i=1

((Qi ⊗ Im) vec(S′
i ) − (Qi Ri ⊗ Im)�)

]
, (4.7.21)

where

� =


2� −� 0 · · · 0
−� 2� −� · · · 0

0 −� 2� · · · 0
...

...
...

. . .
...

0 0 0 · · · 2�

 . (4.7.22)

The moment conditions relevant to the estimation of � are given by

E{[	yi t − � − �(	yi,t−1 − �)][	yi t − � − �(	yi,t−1 − �)]′

−2�} = 0, t = 2, 3, . . . , T . (4.7.23)

Also, in the trend-stationary case, upon estimation of a1, � may be obtained as

�̂ = (Im − �̂)−1â1. (4.7.24)

The GMM estimator is consistent and asymptotically normally distributed
as N → ∞ if all the roots of (4.7.3) fall outside the unit circle, but breaks down
if some roots are equal to unity. To see this, note that a necessary condition for
the GMM estimator (4.7.21) to exist is that rank(N−1 ∑N

i=1 Qi Ri ) = m + 1 as
N → ∞. In the case where � = Im , we have 	yi t = � + �i t and yi t = yi0 +
�t + ∑t

�=1 �i�. Thus it follows that for t = 2, 3, . . . , T, j = 0, 1, . . . , t − 2,
as N → ∞,

1

N

N∑
i=1

	yi,t−1y′
i j → �(yi0 + � j)′, (4.7.25)

which is of rank one. In other words, when � = Im , the elements of qi t are not
legitimate instruments.
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4.7.3 (Transformed) Maximum Likelihood Estimator

We note that, conditional on 	yi−1, (4.7.13) is well defined for t = 2, . . . , T .
For 	yi1, from (4.7.12), we have

	yi1 − � = −(I − �)(yi0 − �i ) + �i1. (4.7.26)

We note that by (4.7.4) and (4.7.5), E(	yi1 − �) = −(I − �)E(yi0 − �i ) +
E�i1 = 0 and E(	yi1 − �)(	yi1 − �)′ = −(I − �)�0(I − �)′ + � = �1.
Therefore, the joint likelihood of 	y′

i = (	y′
i1, . . . , 	y′

iT ) is well defined and
does not involve incidental parameters. Under the assumption that �i t is nor-
mally distributed, the likelihood function is given by

N∑
i=1

(2π )−
N T
2 |�∗|− 1

2 exp
[− 1

2 (ri − Hi �)′�∗−1(ri − Hi �)
]
, (4.7.27)

where

Hi = G ′
i ⊗ Im,

Gi = (0, 	yi1 − �, . . . , 	yiT −1 − �),

� = vec(�),

and

�∗ =



�1 −� 0 · · · . . . 0 0
−� 2� −� . . . 0 0

0 −� 2�
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 · · · −� 2� −�

0 0 · · · 0 −� 2�


. (4.7.28)

Maximizing the logarithm of (4.7.27), �(�), with respect to �′ = (�′, �′, �′)′,
where � denotes the unknown element of �∗, yields the (transformed) MLE
that is consistent and asymptotically normally distributed with asymptotic co-
variance matrix given by −E

(
∂2�(�)/∂� ∂�′)−1

as N → ∞, independent of
whether yi t contains unit roots or is cointegrated.

4.7.4 Minimum-Distance Estimator

We note that conditional on �∗, the MLE of � and � is equivalent to the MDE
that minimizes

N∑
i=1

(ri − Hi �)′�∗−1(ri − Hi �). (4.7.29)
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Furthermore, conditional on � and �∗, the MDE of � is given by

�̂ =
(

N∑
i=1

H ′
i �

∗−1 Hi

)−1 (
N∑

i=1

H ′
i �

∗−1ri

)
. (4.7.30)

Conditional on � and �∗, the MDE of � is equal to

�̂ = (N P�∗−1 P ′)−1

[
N∑

i=1

P�∗−1(	yi − Li �)

]
, (4.7.31)

where

P = (Im, Im − �′, Im − �′, . . . , Im − �′), (4.7.32)

and

Li = K ′
i ⊗ Im and Ki = (0, 	yi1, . . . , 	yi,T −1).

Conditional on �,

�̂1 = 1

N

N∑
i=1

(	yi1 − �)(	yi1 − �)′, (4.7.33)

and conditional on �, �,

�̂ = 1

N (T − 1)

N∑
i=1

T∑
t=2

[	yi t − � − �(	yi,t−1 − �)]

× [	yi t − � − �(	yi,t−1 − �)]′. (4.7.34)

We may iterate between (4.7.30) and (4.7.34) to obtained the feasible MDE,
using

�̂
(0) = 1

N T

N∑
i=1

T∑
t=1

	yi t , (4.7.35)

and

�̂(0) =
[

N∑
i=1

T∑
t=3

(	yi t − �)(	yi,t−2 − �)′
]

×
[

N∑
i=1

T∑
t=3

(	yi,t−1 − �)(	yi,t−2 − �)′
]−1

(4.7.36)

to start the iteration.
Conditional on �∗, the MDE of � and � is identical to the MLE. When

� = 0 (no trend term), conditional on �∗, the asymptotic covariance matrix of
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the MLE or MDE of � is equal to[
N∑

i=1

(Ki ⊗ Im)�∗−1(K ′
i ⊗ Im)

]−1

. (4.7.37)

When �∗ is unknown, the asymptotic variance–covariance matrices of the MLE
and MDE of � do not converge to (4.7.37), because when lagged dependent
variables appear as regressors, the estimation of � and �∗ is not asymptotically
independent. The asymptotic variance–covariance matrix of the feasible MDE
is equal to the sum of (4.7.37) and a positive semidefinite matrix attributable to
the estimation error of �∗ (Hsiao, Pesaran, and Tahmiscioglu (2002)).

Both the MLE and MDE always exist, whether yi t contains unit roots or
not. The MLE and MDE are asymptotically normally distributed, independent
of whether yi t is (trend) stationary, integrated, or cointegrated as N → ∞.
Therefore, the conventional likelihood-ratio test statistic or Wald test statistic
of the unit root or the rank of cointegration can be approximated by chi-square
statistics. Moreover, the limited Monte Carlo studies conducted by Binder,
Hsiao, and Pesaran (2000) show that both the MLE and MDE perform very
well in finite samples and dominate the conventional GMM, in particular, if the
roots of (4.7.3) are near unity.

APPENDIX 4A: DERIVATION OF THE
ASYMPTOTIC COVARIANCE MATRIX OF THE
FEASIBLE MDE

The estimation error of 
̂MDE is equal to

√
N (
̂MDE − 
) =

(
1

N

N∑
i=1

H ′
i

ˆ̃�
∗−1

Hi

)−1(
1√
N

N∑
i=1

H ′
i

ˆ̃�
∗−1

	u∗
i

)
.

(4A.1)

When N → ∞,

1

N

N∑
i=1

H ′
i

ˆ̃�
∗−1

Hi → 1

N

N∑
i=1

H ′
i �̃

∗−1 Hi , (4A.2)

but

1√
N

N∑
i=1

H ′
i

ˆ̃�
∗−1

	u∗
i � 1√

N

N∑
i=1

H ′
i �̃

∗−1	u∗
i

+
[

1

N

N∑
i=1

H ′
i

(
∂

∂h
�̃∗−1

)
	u∗

i

]
·
√

N ( ĥ − h),

(4A.3)



112 Dynamic Models with Variable Intercepts

where the right-hand side follows from taking the Taylor series expansion of
ˆ̃�

∗−1

around �̃∗−1. By (4.5.7),

∂

∂h
�̃∗−1 = −T

[1 + T (h − 1)]2
�̃∗−1 + 1

1 + T (h − 1)

×


0 0 . . . 0 0
0 T − 1 . . . 2 1
...

...
...

...
0 2 . . . 2T T − 2
0 1 . . . T − 2 T − 1

. (4A.4)

We have

1

N

N∑
i=1

H ′
i �̃

∗−1	u∗
i → 0,

1

N

N∑
i=1

[
1 	x′

i 0′

0 0 	Xi

]′
· ∂

∂h
�̃∗−1	u∗

i → 0,

1

N

N∑
i=1

	y′
i,−1


T − 1 . . . 1

...
...

2 · · · T − 2
1 · · · T − 1

	u∗
i → [γ T −2 + 2γ T −3 + · · · + (T − 1)]σ 2

u .

Since plim σ̂ 2
u = σ 2

u , and

√
N (ĥ − h) =

√
N

[
σ̂ 2

v∗

σ̂ 2
u

− σ 2
v∗

σ 2
u

]
=

√
N

σ 2
u

(
σ̂ 2

v∗ − σ 2
v∗
) − σ 2

v∗
(
σ̂ 2

u − σ 2
u

)
σ̂ 2

u σ 2
u

,

it follows that the limiting distribution of the feasible MDE converges to
√

N (
̂MDE − 
)

→
(

1

N

N∑
i=1

H ′
i �

∗−1 Hi

)−1

×
{

1√
N

N∑
i=1

H ′
i �

∗−1	u∗
i −


0
0
1
0

 [γ T −2 + 2γ T −3 + · · · + (T − 1)]

[1 + T (h − 1)]σ 2
u

× [
σ 2

u ·
√

N
(
σ̂ 2

v∗ − σ 2
v∗
) − σ 2

v∗ ·
√

N
(
σ̂ 2

u − σ 2
u

)]}
,

(4A.5)

with the asymptotic covariance matrix equal to (4.5.15).



CHAPTER 5

Simultaneous-Equations Models

5.1 INTRODUCTION

In Chapters 3 and 4, we discussed the approach of decomposing the effect
of a large number of factors that affect the dependent variables, but are not
explicitly included as explanatory variables, into effects specific to individual
units, to time periods, and to both individual units and time periods as a means
to take account of the heterogeneity in panel data in estimating single-equation
models. However, the consistency or asymptotic efficiency of various estimators
discussed in previous chapters depends on the validity of the single-equation
model assumptions. If they are not true, this approach may solve one problem,
but aggravate other problems.

For instance, consider the income-schooling model,

y = β0 + β1S + β2 A + u, (5.1.1)

where y is a measure of income, earnings, or wage rate, S is a measure of
schooling, and A is an unmeasured ability variable that is assumed to be posi-
tively related to S. The coefficients β1 and β2 are assumed positive. Under the
assumption that S and A are uncorrelated with u, the least-squares estimate
of β1 that ignores A is biased upward. The standard left-out-variable formula
gives the size of this bias as

E(β̂1,LS) = β1 + β2
σAS

σ 2
S

, (5.1.2)

where σ 2
S is the variance of S, and σAS is the covariance between A and S.

If the omitted variable A is a purely “family” one,1 that is, if siblings have
exactly the same level of A, then estimating β1 from within-family data (i.e.,
from differences between the brothers’ earnings and differences between the
brothers’ education) will eliminate this bias. But if ability, apart from having a
family component, also has an individual component, and this individual com-
ponent is not independent of the schooling variable, the within-family estimates
are not necessarily less biased.
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Suppose

Ait = αi + ωi t , (5.1.3)

where i denotes the family, and t denotes members of the family. If ωi t is
uncorrelated with Sit , the combination of (5.1.1) and (5.1.3) is basically of the
same form as (3.3.3). The expected value of the within (or LSDV) estimator
is unbiased. On the other hand, if the within-family covariance between A and
S, σsω, is not equal to zero, the expected value of the within estimator is

E(β̂1,w ) = β1 + β2
σS�

σ 2
S|w

, (5.1.4)

where σ 2
S|w is the within-family variance of S. The estimator remains biased.

Furthermore, if the reasons for the correlation between A and S are largely
individual rather than familial, then going to within data will drastically reduce
σ 2

S|w , with little change to σAS (or σSω), which would make this source of bias
even more serious.

Moreover, if S is also a function of A and other social–economic variables,
(5.1.1) is only one behavioral equation in a simultaneous-equations model. Then
the probability limit of the least-squares estimate, β̂1,LS, is no longer (5.1.2) but
is of the form

plim β̂1,LS = β1 + β2
σAS

σ 2
S

+ σuS

σ 2
S

, (5.1.5)

where σuS is the covariance between u and S. If, as argued by Griliches (1977,
1979), schooling is the result, at least in part, of optimizing behavior by indi-
viduals and their family, σuS could be negative. This opens the possibility that
the least-squares estimates of the schooling coefficient may be biased down-
ward rather than upward. Furthermore, if the reasons for σuS being negative
are again largely individual rather than familial, and the within-family covari-
ance between A and S reduces σAS by roughly the same proportion as σ 2

S|w
is to σ 2

S , there will be a significant decline in the β̂1,w relative to β̂1,LS. The
size of this decline will be attributed to the importance of ability and “family
background,” but in fact it reflects nothing more than the simultaneity problems
associated with the schooling variable itself. In short, the simultaneity problem
could reverse the single-equation conclusions.

In this chapter we focus on estimating simultaneous-equations models from
a time series of cross sections. Suppose the model is2

�yi t + Bxi t + � = vi t , i = 1, . . . , N ,
(5.1.6)

t = 1, . . . , T,

where � and B are G × G and G × K matrices of coefficients; yi t is a G × 1
vector of observed endogenous variables, xi t is a K × 1 vector of observed
exogenous variables; � is the G × 1 vector of intercepts, vi t is a G × 1 vector
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of unobserved disturbances, with

vi t = �i + � t + ui t , (5.1.7)

where � i , � t , and ui t are each G × 1 random vectors that have zero means and
are independent of one another, and

Exi t v′
js = 0,

E� i �
′
j =

{
�α = (

σ 2
αg�

)
if i = j,

0 if i �= j,
(5.1.8)

E� t �
′
s =

{
�λ = (

σ 2
λg�

)
if t = s,

0 if t �= s,

Eui t u′
js =

{
�u = (

σ 2
ug�

)
if i = j, and t = s,

0 otherwise.

Multiplying (5.1.6) by �−1, we have the reduced form

yi t = �∗ + �xi t + �i t , (5.1.9)

where �∗ = −�−1�, � = −�−1B, and �i t = �−1vi t . The reduced-form error
term �i t again has an error-component structure3

�i t = �∗
i + �∗

t + u∗
i t , (5.1.10)

with

E�∗
i = E�∗

t = Eu∗
i t = 0, E�∗

i �∗′
t = E�∗

i u∗′
i t = E�∗

t u∗′
i t = 0,

E�∗
i �∗′

j =
{
�∗

α = (
σ ∗2

αg�

)
if i = j,

0 if i �= j,

E�∗
t �∗′

s =
{
�∗

λ = (
σ ∗2

λg�

)
if t = s,

0 if t �= s,
(5.1.11)

Eu∗
i t u

∗′
js =

{
�∗

u = (
σ ∗2

ug�

)
if i = j and t = s,

0 otherwise.

If the G × G covariance matrices �α, �λ, and �u are unrestricted, there
are no restrictions on the variance–covariance matrix. The usual order and rank
conditions are the necessary and sufficient conditions for identifying a particular
equation in the system (e.g., Hsiao (1983)). If there are restrictions on �α, �λ,
or �u , we can combine these covariance restrictions with the restrictions on the
coefficient matrices to identify a model and obtain efficient estimates of the pa-
rameters. We shall first discuss estimation of the simultaneous-equations model
under the assumption that there are no restrictions on the variance–covariance
matrix, but the rank condition for identification holds. Estimation of reduced-
form or stacked equations will be discussed in Section 5.2, and estimation of
the structural form will be dealt with in Section 5.3. We then discuss the case in
which there are restrictions on the variance–covariance matrix in Section 5.4.
Because a widely used structure for longitudinal microdata is the triangular
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structure (e.g., Chamberlain (1976, 1977a, 1977b); Chamberlain and Griliches
(1975)), we shall use this special case to illustrate how the covariance restric-
tions can be used to identify an otherwise unidentified model and to improve
the efficiency of the estimates.

5.2 JOINT GENERALIZED-LEAST-SQUARES
ESTIMATION TECHNIQUE

We can write an equation of a reduced form (5.1.9) in the more general form
in which the explanatory variables in each equation can be different4:

yg = eN T �∗
g + Xg�g + �g, g = 1, . . . , G, (5.2.1)

where yg and eN T are N T × 1, Xg is N T × Kg, �∗
g is the 1 × 1 intercept term

for the gth equation, �g is Kg × 1, and �g = (IN ⊗ eT )�∗
g + (eN ⊗ IT )�∗

g +
u∗

g , where �∗
g = (�∗

1g, �∗
2g, . . . , �∗

Ng)′, �∗
g = (λ∗

1g, λ
∗
2g, . . . , λ

∗
T g)′, and u∗

g =
(u∗

11g, u∗
12g, . . . , u∗

1T g, u∗
21g, . . . , u∗

N T g)′ are N × 1, T × 1, and N T × 1 random
vectors, respectively. Stacking the set of G equations, we get

y
G N T ×1

= (IG ⊗ eN T )�∗ + X� + �, (5.2.2)

where

y
G N T ×1

=

y1
...

yG

 , X
G N T ×(

∑G
g=1 Kg)

=


X1 0 · · · 0

0 X2
...

...
. . . 0

0 · · · 0 XG

 ,

�∗
G×1

=


�∗

1
�∗

2
...

�∗
G

 , �
(
∑G

g=1 Kg)×1
=

�1
...

�G

 , � =

�1
...

�G

 ,

with

V = E(��′) = [Vg�], (5.2.3)

where Vg� denotes the g�th block submatrix of V , which is given by

Vg�

N T ×N T
= E(�g�′

�) = σ ∗2
αg�

A + σ ∗2
λg�

D + σ ∗2
ug�

IN T , (5.2.4)

where A = IN ⊗ eT e′
T and D = eN e′

N ⊗ IT . Equation (5.2.4) can also be writ-
ten as

Vg� = σ ∗2
1g�

(
1

T
A − 1

N T
J

)
+ σ ∗2

2g�

(
1

N
D − 1

N T
J

)
+ σ ∗2

ug�
Q̃ + σ ∗2

4g�

(
1

N T
J

)
, (5.2.5)
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where J = eN T e′
N T , Q̃ = IN T − (1/T )A − (1/N )D + (1/N T )J , σ ∗2

1g�
= σ ∗2

ug�
+

T σ ∗2
αg�

, σ ∗2
2g�

= σ ∗2
ug�

+ Nσ ∗2
λg�

, and σ ∗2
4g�

= σ ∗2
ug�

+ T σ ∗2
αg�

+ Nσ ∗2
λg�

. It was shown in

Appendix 3B that σ ∗2
1g�

, σ ∗2
2g�

, σ ∗2
ug�

, and σ ∗2
4g�

are the distinct characteristic roots of
Vg� of multiplicity N − 1, T − 1, (N − 1)(T − 1), and 1, with C1, C2, C3, and
C4 as the matrices of their corresponding characteristic vectors.

We can rewrite V as

V = V1 ⊗
(

1

T
A − 1

N T
J

)
+ V2 ⊗

(
1

N
D − 1

N T
J

)
+ �∗

u ⊗ Q̃ + V4 ⊗
(

1

N T
J

)
, (5.2.6)

where V1 = (σ ∗2
1g�

), V2 = (σ ∗2
2g�

), and V4 = (σ ∗2
4g�

) all of dimension G × G. Using

the fact that [(1/T )A − (1/N T )J ], [(1/N )D − (1/N T )J ], Q̃, and [(1/N T )J ]
are symmetric idempotent matrices, mutually orthogonal, and sum to the iden-
tity matrix IN T , we can write down the inverse of V explicitly as (Avery (1977);
Baltagi (1980))5

V −1 = V −1
1 ⊗

(
1

T
A − 1

N T
J

)
+ V −1

2 ⊗
(

1

N
D − 1

N T
J

)
+ �∗−1

u ⊗ Q̃ + V −1
4 ⊗

(
1

N T
J

)
. (5.2.7)

The GLS estimators of �∗ and � are obtained by minimizing the distance
function

[y − (IG ⊗ eN T )�∗ − X�]′V −1[y − (IG ⊗ eN T )�∗ − X�]. (5.2.8)

Taking partial derivatives of (5.2.8) with respect to �∗ and �, we obtain the
first-order conditions

(IG ⊗ eN T )′V −1[y − (IG ⊗ eN T )�∗ − X�] = 0, (5.2.9)

−X ′V −1[y − (IG ⊗ eN T )�∗ − X�] = 0. (5.2.10)

Solving (5.2.9) and making use of the relations [(1/T )A − (1/N T )J ]eN T =
0, [(1/N )D − (1/N T )J ]eN T = 0, Q̃eN T = 0, and (1/N T )JeN T = eNT, we
have

�̂∗ =
(

IG ⊗ 1

N T
e′

N T

)
(y − X�). (5.2.11)

Substituting (5.2.11) into (5.2.10), we have the GLS estimator of � as6

�̂GLS = [X ′Ṽ −1 X ]−1(X ′Ṽ −1y), (5.2.12)
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where

Ṽ −1 = V −1
1 ⊗

(
1

T
A − 1

N T
J

)
+ V −1

2 ⊗
(

1

N
D − 1

N T
J

)
+ �∗−1

u ⊗ Q̃. (5.2.13)

If E(�g�′
�) = 0 for g �= � then V is block-diagonal, and equation (5.2.12) is

reduced to applying the GLS estimation method to each equation separately.
If both N and T tend to infinity and N/T tends to a nonzero constant, then
lim V −1

1 = 0, lim V −1
2 = 0, and lim V −1

4 = 0. Equation (5.2.12) becomes the
least-squares dummy-variable (or fixed-effects) estimator for the seemingly
unrelated regression case,

plim �̂GLS = plim
N→∞

T →∞

[
1

N
X ′(�∗−1

u ⊗ Q̃
)
X

]−1

×
[

1

N T
X ′(�∗−1

u ⊗ Q̃
)
y
]
. (5.2.14)

In the case of the standard reduced form, X1 = X2 = · · · = XG = X̄ ,

�̂GLS =
[

V −1
1 ⊗ X̄ ′

(
1

T
A − 1

N T
J

)
X̄

+ V −1
2 ⊗ X̄ ′

(
1

N
D − 1

N T
J

)
X̄ + �∗−1

u ⊗ X̄ ′ Q̃ X̄

]−1

×
{[

V −1
1 ⊗ X̄ ′

(
1

T
A − 1

N T
J

)]
y

+
[

V −1
2 ⊗ X̄ ′

(
1

N
D − 1

N T
J

)]
y + [

�∗−1
u ⊗ X̄ ′ Q̃

]
y
}
.

(5.2.15)

We know that in the conventional case when no restriction is imposed on the
reduced-form coefficients vector �, estimating each equation by the least-
squares method yields the best linear unbiased estimate. Equation (5.2.15)
shows that in a seemingly unrelated regression model with error components,
the fact that each equation has an identical set of explanatory variables is not a
sufficient condition for the GLS performed on the whole system to be equivalent
to estimating each equation separately.

Intuitively, by stacking different equations together we shall gain efficiency
in the estimates, because knowing the residual of the �th equation helps in pre-
dicting the gth equation when the covariance terms between different equations
are nonzero. For instance, if the residuals are normally distributed, E(�g | ��) =
Cov(�g, ��)Var(��)−1�� �= 0. To adjust for this nonzero mean, it would be ap-
propriate to regress yg − Cov(�g, ��)Var(��)−1�� on (eN T , Xg). Although in
general �� is unknown, asymptotically there is no difference if we replace it by
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the least-squares residual, �̂�. However, if the explanatory variables in different
equations are identical, namely, Xg = X� = X̄ , there is no gain in efficiency by
bringing different equations together when the cross-equation covariances are
unrestricted; because Cov(�g, ��) = σεg�

IN T , Var(��) = σε��
IN T , and �̂� is or-

thogonal to (eN T , Xg) by construction, the variable σε�
σ−1

ε��
�̂� can have no effect

on the estimate of (µg, �′
g) when it is subtracted from yg . But the same cannot

be said for the error-components case, because Cov(�g, ��)Var(��)−1 is not pro-
portional to an identity matrix. The weighted variable Cov(�g, ��)Var(��)−1�̂�

is no longer orthogonal to (eN T , X̄ ). Therefore, in the error-components case
it remains fruitful to exploit the covariances between different equations to
improve the accuracy of the estimates.

When V1, V2, and �∗
u are unknown, we can replace them by their consistent

estimates. In Chapter 3, we discussed methods of estimating variance com-
ponents. These techniques can be straightforwardly applied to the multiple-
equations model as well (Avery (1977); Baltagi (1980)).

The model discussed earlier assumes the existence of both individual and
time effects. Suppose we believe that the covariances of some of the components
are zero. The same procedure can be applied to the simpler model with some
slight modifications. For example, if the covariance of the residuals between
equations g and � is composed of only two components (an individual effect
and overall effect), then σ 2

λg�
= 0. Hence, σ ∗2

1g�
= σ ∗2

4g�
, and σ ∗2

2g�
= σ ∗2

ug�
. These

adjusted roots can be substituted into the appropriate positions in (5.2.6) and
(5.2.7), with coefficient estimates following directly from (5.2.12).

5.3 ESTIMATION OF STRUCTURAL EQUATIONS

5.3.1 Estimation of a Single Equation in the Structural Model

As (5.2.12) shows, the generalized least-squares estimator of the slope coeffi-
cients is invariant against centering the data around overall sample means; so
for ease of exposition we shall assume that there is an intercept term and that all
sample observations are measured as deviations from their respective overall
means and consider the gth structural equation as

yg
N T ×1

= Yg�g + Xg�g + vg

= Wg�g + vg, g = 1, . . . , G, (5.3.1)

where Yg is an N T × (Gg − 1) matrix of N T observations of Gg − 1 included
joint dependent variables, Xg is an N T × Kg matrix of N T observations of Kg

included exogenous variables, Wg = (Yg, Xg), and �g = (�′
g, �′

g)′, The vg is
an N T × 1 vector of error terms,

vg = (IN ⊗ eT )� g + (eN ⊗ IT )�g + ug, (5.3.2)
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with � g = (α1g, . . . , αNg)′, �g = (λ1g, . . . , λT g)′, and ug = (u11g, . . . , u1T g,

u21g, . . . , uN T g)′ satisfying assumption (5.1.3). So the covariance matrix be-
tween the gth and the �th structural equations is

�g� = E(vgv′
�) = σ 2

αg�
A + σ 2

λg�
D + σ 2

ug�
IN T

= σ 2
1g�

(
1

T
A − 1

N T
J

)
+ σ 2

2g�

(
1

N
D − 1

N T
J

)
+ σ 2

3g�
Q̃ + σ 2

4g�

(
1

N T
J

)
, (5.3.3)

where σ 2
1g�

= σ 2
ug�

+ T σ 2
αg�

, σ 2
2g�

= σ 2
ug�

+ Nσ 2
λg�

, σ 2
3g�

= σ 2
ug�

, and σ 2
4g�

= σ 2
ug�

+
T σ 2

αg�
+ Nσ 2

λg�
. We also assume that each equation in (5.3.1) satisfies the rank

condition for identification with K ≥ Gg + Kg − 1, g = 1, . . . , G.
We first consider estimation of a single equation in the structural model.

To estimate the gth structural equation, we take account only of the a priori
restrictions affecting that equation and ignore the restrictions affecting all other
equations. Therefore, suppose we are interested in estimating the first equation.
The limited-information principle of estimating this equation is equivalent to
the full-information estimation of the system

y1i t = w′
1i t

�1 + v1i t ,

y2i t = x′
i t �2 + ε2i t ,

... (5.3.4)

yGit = x′
i t �G + εGit , i = 1, . . . , N ,

t = 1, . . . , T,

where there are no restrictions on �2, . . . , �G .
We can apply the usual two-stage least-squares (2SLS) method to estimate

the first equation in (5.3.4). The 2SLS estimator is consistent. However, if
the v1i t are not independently identically distributed over i and t , the 2SLS
estimator is not efficient even within the limited-information context. To allow
for arbitrary heteroscedasticity and serial correlation in the residuals, we can
generalize Chamberlain’s (1982, 1984) minimum-distance or generalized 2SLS
estimator.

We first consider the minimum-distance estimator. Suppose T is fixed and
N tends to infinity. Stacking the T period equations for a single individual’s
behavioral equation into one system, we create a model of GT equations,

y1i
T ×1

= W1i �1 + v1i ,

y2i
T ×1

= Xi �2 + �2i ,

(5.3.5)
...

yGi = Xi �G + �Gi , i = 1, . . . , N .
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Let y′
i = (y′

1i
, . . . , y′

Gi
). The reduced form of yi is

yi =


y1i

y2i

...
yGi

 = (IG ⊗ X̃ i )�̃ + �i , i = 1, . . . , N , (5.3.6)

where

X̃ i
T ×T K

=


x′

i1 0
x′

i2
. . .

0 x′
iT

,

(5.3.7)
�̃ = vec(�̃′),

�̃
GT ×K

= � ⊗ eT , and � = E(yi t | xi t ). (5.3.8)

The unconstrained least-squares regression of yi on (IG ⊗ X̃ i ) yields a con-
sistent estimate of �̃, ˆ̃�. If �i are independently distributed over i , then√

N ( ˆ̃� − �̃) is asymptotically normally distributed, with mean zero and
variance–covariance matrix

�̃
GT K×GT K

= (
IG ⊗ �−1

xx

)
Ṽ
(
IG ⊗ �−1

xx

)
, (5.3.9)

where �xx = E X̃ ′
i X̃ i = diag{E(xi1x′

i1), . . . , E(xiT x′
iT )}, and Ṽ is a GTK ×

GTK matrix, with the g�th block a TK × TK matrix of the form

Ṽ g� = E


�gi1 ��i1 xi1x′

i1 �gi1 ��i2 xi1x′
i2 · · · �gi1 ��iT xi1x′

iT
�gi2 ��i1 xi2x′

i1 �gi2 ��i2 xi2 x′
i2 · · · �gi2 ��iT x i2 x′

iT
...

...
...

�giT ��i1 xiT x′
i1 �giT ��i2 xiT x′

i2 · · · �giT ��iT xiT x′
iT

 .

(5.3.10)

One can obtain a consistent estimator of �̃ by replacing the population mo-
ments in �̃ by the corresponding sample moments (e.g., Exi1x′

i1 is replaced by∑N
i=1 xi1x′

i1/N ).
Let �′ = (�′

1, �′
2, . . . , π

′
G), and specify the restrictions on �̃ by the condition

that �̃ = f(�). Choose � to minimize the following distance function:

[ ˆ̃� − f̃(�)]′ ˆ̃�
−1

[ ˆ̃� − f̃(�)]. (5.3.11)

Then
√

N (�̂ − �) is asymptotically normally distributed with mean zero
and variance–covariance matrix (F̃ ′�̃−1 F̃)−1, where F̃ = ∂ f̃/∂�′. Noting that
�̃ = � ⊗ eT , and evaluating the partitioned inverse, we obtain the asymptotic
variance–covariance matrix of

√
N (�̂1 − �1) as{

�̃w1x�
−1
11 �̃′

w1x

}−1
, (5.3.12)
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where �̃w1x = [E(w1i1 x′
i1), E(w1i2 x′

i2), . . . , E(w1iT x′
iT )], and

�11 = E


v2

1i1
xi1x′

i1 v1i1 v1i2 xi1x′
i2 · · · v1i1 v1i1 xi1x′

iT
v1i2 v1i1 xi2x′

i1 v2
1i2

xi2x′
i2 · · · v1i2 v1iT xi2x′

iT
...

...
...

v1iT v1i1 xiT x′
i1 v1iT v1i2 xiT x′

i2 · · · v1iT v1iT xiT x′
iT

 .

(5.3.13)

The limited-information minimum-distance estimator of (5.3.11) is asymp-
totically equivalent to the following generalization of the 2SLS estimator:

�̂1,G2SLS = (
S̃w1x�̂

−1
11 S̃′

w1x

)−1(
S̃w1x�̂

−1
11 sxy1

)
, (5.3.14)

where

S̃w1x =
[

1

N

N∑
i=1

w1i1 x′
i1,

1

N

N∑
i=1

w1i2 x′
i2, . . . ,

1

N

N∑
i=1

w1iT x′
iT

]
,

sxy1 =



1

N

N∑
i=1

xi1 y1i1

1

N

N∑
i=1

xi2 y1i2

...

1

N

N∑
i=1

xiT y1iT


,

�̂11 = 1

N



N∑
i=1

v̂2
1i1

xi1x′
i1

N∑
i=1

v̂1i1 v̂1i2 xi1x′
i2 · · ·

N∑
i=1

v̂1i1 v̂1iT xi1x′
iT

...
...

...
N∑

i=1

v̂1iT v̂1i1 xiT x′
i1

N∑
i=1

v̂1iT v̂1i2 x iT x i2 · · ·
N∑

i=1

v̂1iT v̂1iT xiT x′
iT


,

and v̂1iT = y1i t − w′
1i t

�̂1, with �̂1 any consistent estimator of �1. The generalized
2SLS coverges to the 2SLS if v1i t is independently identically distributed over
i and t and Exi t x′

i t = Exisx′
is . But the generalized 2SLS, like the minimum-

distance estimator of (5.3.11), makes allowance for the heteroscedasticity and
arbitrary serial correlation in ν1i t , whereas the 2SLS does not.

When the variance–covariance matrix
∑

gg possesses an error-component
structure as specified in (5.3.3), although both the 2SLS estimator and the
minimum-distance estimator of (5.3.11) (or the generalized 2SLS estimator)
remain consistent, they are no longer efficient even within a limited-information
framework, because, as shown in the last section, when there are restrictions on
the variance–covariance matrix the least-squares estimator of the unconstrained
� is not as efficient as the generalized least-squares estimator7. An efficient
estimation method has to exploit the known restrictions on the error structure.
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Baltagi (1981a) has suggested using the following error-component two-stage
least-squares (EC2SLS) method to obtain a more efficient estimator of the
unknown parameters in the gth equation.

Transforming (5.3.1) by the eigenvectors of
∑

gg, C ′
1, C ′

2, and C ′
3, we have8

y(h)
g = Y (h)

g �g + X (h)
g �g + v(h)

g = W (h)
g �g + v(h)

g , (5.3.15)

where y(h)
g = C ′

hyg, W (h)
g = C ′

h Wg, v(h)
g = C ′

hvg for h = 1, 2, 3, and C ′
1, C ′

2,
and C ′

3 are as defined in Appendix 3B. The transformed disturbance term v(h)
g

is mutually orthogonal and has a covariance matrix proportional to an identity
matrix. We can therefore use X (h) = C ′

h X as the instruments and apply the
Aitken estimation procedure to the system of equationsX (1)′y(1)

g

X (2)′y(2)
g

X (3)′y(3)
g

 =

X (1)′W (1)
g

X (2)′W (2)
g

X (3)′W (3)
g

[
�g

�g

]
+

X (1)′v(1)
g

X (2)′v(2)
g

X (3)′v(3)
g

 . (5.3.16)

The resulting Aitken estimator of (�′
g, �′

g) is

�̂g,EC2SLS =
{

3∑
h=1

[
1

σ 2
hgg

W (h)′
g PX (h)W (h)

g

]}−1

(5.3.17){
3∑

h=1

[
1

σ 2
hgg

W (h)′
g PX (H )y(h)

g

]}
,

where PX (h) = X (h)(X (h)′ X (h))−1 X (h)′. It is a weighted combination of the
between-groups, between-time-periods, and within-groups 2SLS estimators of
(�′

g, �′
g). The weights σ 2

hgg can be estimated by substituting the transformed
2SLS residuals in the usual variance formula,

σ̂ 2
hgg = (

y(h)
g − W (h)

g �̂
(h)
g,2SLS

)′(
y(h)

g − W (h)
g �̂

(h)
g,2SLS

)/
n(h), (5.3.18)

where �̂
(h)
g,2SLS = [W (h)′

g PX (h)W (h)
g ]−1[W (h)′

g PX (h)y(h)
g ], and n(1) = N − 1,

n(2) = T − 1, n(3) = (N − 1)(T − 1). If N → ∞, T → ∞, and N/T tends
to a nonzero constant, then the probability limit of the EC2SLS tends to the
2SLS estimator based on the within-groups variation alone.

In the special case in which the source of correlation between some of the
regressors and residuals comes from the unobserved time-invariant individ-
ual effects alone, the correlations between them can be removed by removing
the time-invariant component from the corresponding variables. Thus, instru-
ments for the correlated regressors can be chosen from “inside” the equation,
as opposed to the conventional method of being chosen from “outside” the
equation. Hausman and Taylor (1981) noted that for variables that are time-
varying and are correlated with αig , transforming them into deviations from
their corresponding time means provides legitimate instruments, because they
will no longer be correlated with αig . For variables that are time-invariant, the
time means of those variables that are uncorrelated with αig can be used as
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instruments. Hence, a necessary condition for identification of all the param-
eters within a single-equation framework is that the number of time-varying
variables that are uncorrelated with αig be at least as great as the number of
time-invariant variables that are correlated with αig . They further showed that
when the variance-component structure of the disturbance term is taken ac-
count of, the instrumental-variable estimator with instruments chosen this way
is efficient among the single-equation estimators.

5.3.2 Estimation of the Complete Structural System

The single-equation estimation method considered earlier ignores restrictions
in all equations in the structural system except the one being estimated. In
general, we expect to get more efficient estimates if we consider the additional
information contained in the other equations. In this subsection we consider the
full-information estimation methods.

Let y = (y′
1, . . . , y′

G)′, v = (v′
1, . . . , v′

G)′,

W =


W1 0 · · · 0
0 W2 · · · 0
...

...
...

0 0 · · · WG

 , and � =

�1
...

�G

 .

We write the set of G structural equations as

y = W � + v. (5.3.19)

We can estimate the system (5.3.19) by the three-stage least-squares (3SLS)
method. But just as in the limited-information case, the 3SLS estimator is
efficient only if (v1i t , v2i t , . . . , vGit ) are independently identically distributed
over i and t . To allow for arbitrary heteroscedasticity or serial correlation, we
can use the full-information minimum-distance estimator or the generalized
3SLS estimator.

We first consider the minimum-distance estimator. When T is fixed and
N tends to infinity, we can stack the T period equations for an individual’s
behavioral equation into a system to create a model of GT equations,

y1i
T ×1

= W1i �1 + v1i ,

y2i = W2i �2 + v2i , (5.3.20)...

yGi = WGi �G + vGi , i = 1, . . . , N .

We obtain a minimum-distance estimator of � by choosing �̂ to minimize
[ ˆ̃� − f̃(�)]′ ˆ̃�

−1

[ ˆ̃� − f̃(�)], where ˆ̃� is the unconstrained least-squares estima-
tor of regressing yi on (IG ⊗ X̃ i ), and ˆ̃� is a consistent estimate of �̃ [equa-
tion (5.3.9)]. Noting that �̃ = � ⊗ eT and vec(�′) = � = vec[−�−1 B]′ for all
elements of � and B not known a priori, and making use of the formula ∂�/∂�′
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[equation (3.8.25)], we can show that if vi are independently distributed over
i , then

√
N (�̂ − �) is asymptotically normally distributed, with mean zero and

variance–covariance matrix

{�wx�
−1�′

wx }−1, (5.3.21)

where

�wx =


�̃w1x 0 · · · 0

0 �̃w2x 0
...

. . .
...

0 0 · · · �̃wG x

,

�̃wg x = [E(wgi1 x′
i1), E(wgi2 x′

i2), . . . , E(wgiT x′
iT )],

(5.3.22)

�
GT K×GT K

=


�11 �12 · · · �1G

�21 �22 · · · �2G
...

...
...

�G1 �G2 · · · �GG

,

�g�

T K×T K
= E

 vgi1 v�i1 xi1x′
i1 vgi1 v�i2 xi1x′

i2 · · · vgi1 v�iT xi1x′
iT

...
...

...
vgiT v�i1 x iT x′

i1 vgiT v�i2 xiT x′
i2 · · · vgiT v�iT xiT x′

iT

.

We can also estimate (5.3.20) by using a generalized 3SLS estimator,

�̂G3SLS = (Swx�̂
−1S′

w x )−1(Sw x�̂
−1Sxy), (5.3.23)

where

Swx =


S̃w1x 0 · · · 0

0 S̃w2x 0
...

...
. . .

...
0 0 · · · S̃wG x

,

S̃wg x =
[

1

N

N∑
i=1

wgi1 x′
i1,

1

N

N∑
i=1

wgi2 x′
i2, . . . ,

1

N

N∑
i=1

wgiT x′
iT

]
,

Sxy =


sxy1

sxy2

...
sxyG

,

sxyg

T K×1

=



1

N

N∑
i=1

xi1 ygi1

...

1

N

N∑
i=1

xiT ygiT ,


,
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and �̂ is � [equation (5.3.22)] with vi t replaced by v̂i t = �̂yi t + B̂xi t , where
�̂ and B̂ are any consistent estimates of � and B. The generalized 3SLS is
asymptotically equivalent to the minimum-distance estimator.

Both the 3SLS and the generalized 3SLS are consistent. But just as in the
limited-information case, if the variance–covariance matrix possesses an error-
component structure, they are not fully efficient. To take advantage of the known
structure of the covariance matrix, Baltagi (1981a) suggested the following
error-component three-stage least-squares estimator (EC3SLS).

The g�th block of the covariance matrix � is of the form (5.3.3). A key point
that is evident from Appendix 3B is that the set of eigenvectors C1, C2, C3, and
C4 of (5.3.3) is invariant with respect to changes in the parameters σ 2

λg�
, σ 2

αg�
,

and σ 2
ug�

. Therefore, premultiplying (5.3.19) by IG ⊗ C ′
h , we have9

y(h) = W (h)� + v(h), h = 1, 2, 3, (5.3.24)

where y(h) = (IG ⊗ C ′
h)y, W (h) = (IG ⊗ C ′

h)W, v(h) = (IG ⊗ C ′
h)v, with

E(v(h)v(h)′) = �(h) ⊗ In(h), where �(h) = (σ 2
hg�

) for h = 1, 2, and 3. Because
W (h) contains endogenous variables that are correlated with v(h), we first pre-
multiply (5.3.24) by (IG ⊗ X (h))′ to purge the correlation between W (h) and v(h).
Then apply the GLS estimation procedure to the resulting systems of equations
to obtain

�̂GLS =
[

3∑
h=1

{W (h)′[(�(h))−1 ⊗ PX (h)]W (h)}
]−1

×
[

3∑
h=1

{W (h)′[(�(h))−1 ⊗ PX (h)]y(h)

]
. (5.3.25)

Usually we do not know �(h). Therefore, the following three-stage procedure
is suggested:

1. Estimate the �̂
(h)
g by 2SLS.

2. Use the residuals from the hth 2SLS estimate to estimate σ̂ 2
hg�

[equa-
tion (5.3.18)].

3. Replace �(h) by the estimated covariance matrix. Estimate � by
(5.3.25).

The resulting estimator is called the EC3SLS estimator. It is a weighted com-
bination of three 3SLS (within, between-groups, and between-time-periods)
estimators of the structural parameters (Baltagi (1981a)).

The EC3SLS estimator is asymptotically equivalent to the full-information
maximum-likelihood estimator. In the case in which � is block-diagonal, the
EC3SLS reduces to the EC2SLS. But, contrary to the usual simultaneous-
equations models, when the error terms have an error-component structure, the
EC3SLS does not necessarily reduce to the EC2SLS, even if all the structural
equations are just identified. For details, see Baltagi (1981a).



5.4 Triangular System 127

5.4 TRIANGULAR SYSTEM

The model discussed earlier assumes that residuals of different equations in
a multiequation model have an unrestricted variance-component structure.
Under this assumption, the panel data only improve the precision of the es-
timates by providing a large number of sample observations. It does not offer
additional opportunities that are not standard. However, quite often the residual
correlations may simply be due to one or two common omitted or unobserv-
able variables (Chamberlain (1976, 1977a, 1977b); Chamberlain and Griliches
(1975); Goldberger (1972); Zellner (1970). For instance, in the estimation of in-
come and schooling relations or individual-firm production and factor-demand
relations, it is sometimes postulated that the biases in different equations are
caused by a common left-out “ability” or “managerial-differences” variable.
When panel data are used, this common omitted variable is again assumed to
have a within- and between-group structure. The combination of this factor-
analytic structure with error-components formulations puts restrictions on the
residual covariance matrix that can be used to identify an otherwise unidenti-
fied model and improve the efficiency of the estimates. Because a widely used
structure for longitudinal microdata is the triangular structure, and because its
connection with the general simultaneous-equations model in which the resid-
uals have a factor-analytic structure holds in general, in this section we focus
on the triangular structure to illustrate how such information can be used to
identify and estimate a model.

5.4.1 Identification

A convenient way to model correlations across equations, as well as the corre-
lation of a given individual at different times (or different members of a group),
is to use latent variables to connect the residuals. Let ygit denote the value of
the variable yg for the i th individual (or group) at time t (or tth member). We
can assume that

vgit = dghit + ugit , (5.4.1)

where the ug are uncorrelated across equations and across i and t . The corre-
lations across equations are all generated by the common omitted variable h,
which is assumed to have a variance-component structure:

hit = αi + ωi t , (5.4.2)

where αi is invariant over t but is independently identically distributed across i
(groups), with mean zero and variance σ 2

α , and ωi t is independently identically
distributed across i and t , with mean zero and variance σ 2

ω and is uncorrelated
with αi .

An example of the model with Γ lower-triangular and v of the form (5.4.1)
is (Chamberlain (1977a, 1977b); Chamberlain and Griliches (1975); Griliches



128 Simultaneous-Equations Models

(1979))

y1i t = �′
1xi t + d1hit + u1i t ,

y2i t = −γ21 y1i t + �′
2xi t + d2hit + u2i t , (5.4.3)

y3i t = −γ31 y1i t − γ32 y2i t + �′
3xi t + d3hit + u3i t ,

where y1, y2, and y3 denote years of schooling, a late (postschool) test score, and
earnings, respectively, and xi t are exogenous variables (which may differ from
equation to equation via restrictions on �g). The unobservable h can be inter-
preted as early “ability,” and u2 as measurement error in the test. The index i in-
dicates groups (or families), and t indicates members in each group (or family).

Without the h variables, or if dg = 0, equation (5.4.3) would be only a simple
recursive system that could be estimated by applying least squares separately to
each equation. The simultaneity problem arises when we admit the possibility
that dg �= 0. In general, if there were enough exogenous variables in the first
(schooling) equation that did not appear again in the other equations, the system
could be estimated using 2SLS or EC2SLS procedures. Unfortunately, in the
income–schooling–ability model using sibling data [e.g., see the survey by
Griliches (1979)] there usually are not enough distinct x’s to identify all the
parameters. Thus, restrictions imposed on the variance–covariance matrix of
the residuals will have to be used.

Given that h is unobservable, we have an indeterminate scale

d2
g

(
σ 2

α + σ 2
ω

) = cd2
g

(
1

c
σ 2

α + 1

c
σ 2

ω

)
. (5.4.4)

So we normalize h by letting σ 2
α = 1. Then

Evi t v′
i t = (

1 + σ 2
ω

)
dd′ + diag

(
σ 2

1 , . . . , σ 2
G

) = �, (5.4.5)

Evi t v′
is = dd′ = �w if t �= s, (5.4.6)

Evi t v′
js = 0 if i �= j, (5.4.7)

where d = (d1, . . . , dG), and diag(σ 2
1 , . . . , σ 2

G) denotes a G × G diagonal ma-
trix with σ 2

1 , σ 2
2 , . . . , σ 2

G on the diagonal.
Under the assumption that αi ,ωi t , and ugit are normally distributed, or if we

limit our attention to second-order moments, all the information with regard to
the distribution of y is contained in

Cytt = Γ−1BCxtt B
′Γ′−1 + Γ−1�Γ′−1, (5.4.8)

Cyts = Γ−1BCxts B
′Γ′−1 + Γ−1�wΓ′−1, t �= s, (5.4.9)

Cyxts = −Γ−1BCxts , (5.4.10)

where Cyts = Eyi t y′
is, Cyxts = Eyi t x′

is , and Cxts = Exi t x′
is .

Stack the coefficient matrices � and B into a 1 × G(G + K ) vector �′ =
(�′

1, . . . , �′
G, �′

1, . . . , �′
G). Suppose � is subject to M a priori constraints:

�(�) = �, (5.4.11)
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where � is an M × 1 vector of constants. Then a necessary and sufficient
condition for local identification of Γ, B, d, σ 2

ω, and σ 2
1 , . . . , σ 2

G is that the
rank of the Jacobian formed by taking partial derivatives of (5.4.8)–(5.4.11)
with respect to the unknowns is equal to G(G + K ) + 2G + 1 (e.g., Hsiao
(1983)).

Suppose there is no restriction on the matrix B. The GK equations (5.4.10) can
be used to identify B provided that Γ is identifiable. Hence, we can concentrate
on

Γ
(
Cytt − Cyxtt C

−1
xtt

C ′
yxtt

)
Γ′ = �, (5.4.12)

Γ
(
Cyts − Cyxts C

−1
xts

C ′
yxts

)
Γ′ = �w , t �= s, (5.4.13)

We note that � is symmetric, and we have G(G + 1)/2 independent equa-
tions from (5.4.12). But �w is of rank 1; therefore, we can derive only G
independent equations from (5.4.13). Suppose Γ is lower-triangular and the
diagonal elements of Γ are normalized to be unity; there are G(G − 1)/2 un-
knowns in Γ, and 2G + 1 unknowns of (d1, . . . , dG), (σ 2

1 , . . . , σ 2
G), and σ 2

ω.
We have one less equation than the number of unknowns. In order for the
Jacobian matrix formed by (5.4.12), (5.4.13), and a priori restrictions to be
nonsingular, we need at least one additional a priori restriction. Thus, for the
system

Γyi t + Bxi t = vi t , (5.4.14)

whereΓ is lower-triangular, B is unrestricted, and vi t satisfies (5.4.1) and (5.4.2),
a necessary condition for the identification under exclusion restrictions is that
at least one γg� = 0 for g > �. [For details, see Chamberlain (1976) or Hsiao
(1983).]

5.4.2 Estimation

We have discussed how the restrictions in the variance–covariance matrix can
help identify the model. We now turn to the issues of estimation. Two methods
are discussed: the purged-instrumental-variable method (Chamberlain (1977a))
and the maximum-likelihood method (Chamberlain and Griliches 1975)). The
latter method is efficient, but computationally complicated. The former method
is inefficient, but it is simple and consistent. It also helps to clarify the previous
results on the sources of identification.

For simplicity, we assume that there is no restriction on the coefficients of
exogenous variables. Under this assumption we can further ignore the existence
of exogenous variables without loss of generality, because there are no excluded
exogenous variables that can legitimately be used as instruments for the endoge-
nous variables appearing in the equation. The instruments have to come from
the group structure of the model. We illustrate this point by considering the
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following triangular system:

y1i t = + v1i t ,

y2i t = γ21 y1i t + v2i t ,
...

yGit = γG1 y1i t + · · · + γG,G−1 yG−1i t + vGit ,

(5.4.15)

where vgit satisfy (5.4.1) and (5.4.2). We assume one additional γ�k = 0 for
some � and k, � > k, for identification.

The reduced form of (5.4.15) is

ygit = aghit + εgit , g = 1, . . . , G, (5.4.16)

where

a =


a1

a2

a3
...

aG

 =


d1

d2 + γ21d1

d3 + γ31d1 + γ32(d2 + γ21d1)
...

 , (5.4.17)

�i t =



ε1i t

ε2i t

ε3i t

...
εgit

...


=



u1i t

u2i t + γ21u1i t

u3i t + γ31u1i t + γ32(u2i t + γ21u1i t )
...

ugit +
g−1∑
k=1

γ ∗
gkukit

...


, (5.4.18)

where γ ∗
gk = γgk + ∑g−1

i=k+1 γgiγ
∗
ik if g > 1 and k + 1 < g, and γ ∗

gk = γgk if
k + 1 = g.

5.4.2.a Instrumental-Variable Method

The trick of the purged instrumental-variable (IV) method is to leave h in the
residual and construct instruments that are uncorrelated with h. Before going
to the general formula, we use several simple examples to show where the
instruments come from.

Consider the case that G = 3. Suppose γ21 = γ31 = 0. Using y1 as a proxy
for h in the y3 equation, we have

y3i t = γ32 y2i t + d3

d1
y1i t + u3i t − d3

d1
u1i t . (5.4.19)

If T ≥ 2 then y1is , s �= t , is a legitimate instrument for y1i t , because it is uncorre-
lated with u3i t − (d3/d1)u1i t but it is correlated with y1i t provided that d1σ

2
α �= 0.

Therefore, we can use (y2i t, y1is ) as instruments to estimate (5.4.19).
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Next, suppose that only γ32 = 0. The reduced form of the model becomesy1

y2

y3

 =
d1

d2 + γ21d1

d3 + γ31d1

 hit +
u1i t

u2i t + γ21u1i t

u3i t + γ31u1i t


=

a1

a2

a3

 hit +
ε1i t

ε2i t

ε3i t

. (5.4.20)

In this case, the construction of valid instruments is more complicated. It re-
quires two stages. The first stage is to use y1 as a proxy for h in the reduced-form
equation for y2:

y2i t = a2

a1
y1i t + ε2i t − a2

a1
ε1i t . (5.4.21)

Equation (5.4.21) can be estimated by using y1is , s �= t , as an instrument for
y1i t , provided that d1σ

2
α �= 0. Then form the residual, thereby purging y2 of its

dependence on h:

z2i t = y2i t − a2

a1
y1i t = ε2i t − a2

a1
ε1i t . (5.4.22)

The second stage is to use z2 as an instrument for y1 in the structural equation
y3:

y3i t = γ31 y1i t + d3hit + u3i t . (5.4.23)

The variable z2 is an appropriate IV because it is uncorrelated with h and u3, but
it is correlated with y1, provided d2σ

2
1 �= 0. (If d2 = 0, then z2 = y2 − γ21 y1 =

u2. It is no longer correlated with y1.) Therefore, we require that h appear
directly in the y2 equation and that y1 not be proportional to h – otherwise we
could never separate the effects of y1 and h.

In order to identify the y2 equation

y2i t = γ21 y1i t + d2hit + u2i t , (5.4.24)

we can interchange the reduced-form y2 and y3 equations and repeat the two
stages. With γ21 and γ31 identified, in the third stage we form the residuals

v2i t = y2i t − γ21 y1i t = d2hit + u2i t , (5.4.25)
v3i t = y3i t − γ31 y1i t = d3hit + u3i t .

Then use y1 as a proxy for h:

v2i t = d2

d1
y1i t + u2i t − d2

d1
u1i t ,

(5.4.26)

v3i t = d3

d1
y1i t + u3i t − d3

d1
u1i t .
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Now d2/d1 and d3/d1 can be identified by a third application of instrumental
variables, using y1is , s �= t , as an instrument for y1i t . (Note that only the ratio of
the d’s is identified, because of the indeterminate scale of the latent variable.)

Now come back to the construction of IVs for the general system (5.4.15)–
(5.4.18). We assume that T ≥ 2. The instruments are constructed over several
stages. At the first stage, let y1 be a proxy for h. Then the reduced-form equation
for yg becomes

ygit = ag

a1
y1i t + εgit − ag

a1
ε1i t , g = 2, . . . , � − 1. (5.4.27)

If T ≥ 2, ag/a1 can be consistently estimated by using different members in the
same group (e.g., y1is and y1i t , t �= s) as instruments for the yg equation (5.4.27)
when d1σ

2
α �= 0. Once ag/a1 is consistently estimated, we form the residual

zgit = ygit − ag

a1
y1i t = εgit − ag

a1
ε1i t , g = 2, . . . , � − 1. (5.4.28)

The zg are uncorrelated with h. They are valid instruments for yg provided
dgσ

2
1 �= 0. There are � − 2 IVs for the � − 2 variables that remain on the right-

hand side of the �th structural equation after yk has been excluded.
To estimate the equations that follow y�, we form the transformed variables

y∗
2i t

= y2i t − γ21 y1i t ,

y∗
3i t

= y3i t − γ31 y1i t − γ32 y2i t , (5.4.29)
...

y∗
�i t

= y�i t − γ�1 y1i t − · · · − γ�,�−1 y�−1i t ,

and rewrite the y�+1 equation as

y�+1i t = γ ∗
�+1,1 y1i t + γ ∗

�+1,2 y∗
2i t

+ · · +γ ∗
�+1,�−1 y∗

�−1i t
+ γ�+1,�y∗

�i t

+ d�+1hit + u�+1i t , (5.4.30)

where γ ∗
�+1, j = γ�+1, j + ∑�

m= j+1 γ�+1,mγ ∗
mj for j < �. Using y1 as a proxy for

h, we have

y�+1i t = γ ∗
�+1,2 y∗

2i t
+ · · · + γ�+1,�y∗

�i t
(5.4.31)

+
(

γ ∗
�+1,1 + d�+1

d1

)
y1i t + u�+1i t − d�+1

d1
u1i t ,

Because u1 is uncorrelated with y∗
g for 2 ≤ g ≤ �, we can use y∗

git
together

with y1is , s �= t as instruments to identify γ�+1, j . Once γ�+1, j are identified, we
can form y∗

�+1 = y�+1 − γ�+1,1 y1 − · · · − γ�+1,�y� and proceed in a similar
fashion to identify the y�+2 equation, and so on.

Once all the γ are identified, we can form the estimated residuals, v̂i t . From
v̂i t we can estimate dg/d1 by the same procedure as (5.4.26). Or we can form

the matrix �̂ of variance–covariances of the residuals, and the matrix ˆ̄� of
variance–covariances of averaged residuals (1/T )

∑T
t=1 v̂i t , then solve for d,
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(σ 2
1 , . . . , σ 2

G), and σ 2
ω from the relations

�̂ = (
1 + σ 2

ω

)
dd′ + diag

(
σ 2

1 , . . . , σ 2
G

)
, (5.4.32)

ˆ̄� = (
1 + σ 2

ω

)
dd′ + 1

T
diag

(
σ 2

1 , . . . , σ 2
G

)
. (5.4.33)

The purged IV estimator is consistent. It also will often indicate quickly if
a new model is identified. For instance to see the necessity of having at least
one more γg� = 0 for g > � to identify the foregoing system, we can check if
the instruments formed by the foregoing procedure satisfy the required rank
condition. Consider the example where G = 3 and all γg� �= 0 for g > �. In
order to follow the strategy of allowing h to remain in the residual, in the third
equation we need IVs for y1 and y2 that are uncorrelated with h. As indicated
earlier, we can purge y2 of its dependence on h by forming z2 = y2 − (a2/a1)y1.
A similar procedure can be applied to y1. We use y2 as a proxy for h, with y2is

as an IV for y2i t . Then form the residual z1 = y1 − (a1/a2)y2. Again z1 is
uncorrelated with h and u3. But z1 = −(a1/a2)z2, and so an attempt to use both
z2 and z1 as IVs fails to meet the rank condition.

5.4.2.b Maximum-Likelihood Method

Although the purged IV method is simple to use, it is likely to be inefficient,
because the correlations between the endogenous variables and the purged IVs
will probably be small. Also, the restriction that (5.4.6) is of rank 1 is not
being utilized. To obtain efficient estimates of the unknown parameters, it is
necessary to estimate the covariance matrices simultaneously with the equation
coefficients. Under the normality assumptions for αi , ωi t and uit , we can obtain
efficient estimates of (5.4.15) by maximizing the log likelihood function

log L = − N

2
log |V |

− 1

2

N∑
i=1

(y′
1i , y′

2i , . . . , y′
Gi )V

−1(y′
1i , . . . , y′

Gi )
′, (5.4.34)

where

ygi
T ×1

= (ygi1 , . . . , ygiT )′, g = 1, . . . , G,

V
GT ×GT

= � ⊗ IT + aa′ ⊗ eT e′
T , (5.4.35)

�
G×G

= E(�i t �
′
i t ) + σ 2

ωaa′.

Using the relations10

V −1 = �−1 ⊗ IT − cc′ ⊗ eT e′
T , (5.4.36)

|V | = |�|T |1 − T c′�c|−1, (5.4.37)
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we can simplify the log likelihood function as11

log L = − N T

2
log |�| + N

2
log(1 − T c′�c)

− N T

2
tr(�−1 R) + N T 2

2
c′ R̄c, (5.4.38)

where c is a G × 1 vector proportional to �−1a, R is the matrix of the sums
of the squares and cross-products of the residuals divided by N T , and R̄ is the
matrix of sums of squares and cross-products of the averaged residuals (over
t for i) divided by N . In other words, we simplify the log likelihood function
(5.4.34) by reparameterizing it in terms of c and �.

Taking partial derivatives of (5.4.38), we obtain the first-order conditions12

∂ log L

∂�−1
= N T

2
� + N T

2

1

(1 − T c′�c)
�cc′� − N T

2
R = 0,

(5.4.39)
∂ log L

∂c
= − N T

1 − T c′�c
�c + N T 2 R̄c = 0. (5.4.40)

Postmultiplying (5.4.39) by c and regrouping the terms, we have

�c = 1 − T c′�c
1 − (T − 1)c′�c

Rc. (5.4.41)

Combining (5.4.40) and (5.4.41), we obtain[
R̄ − 1

T [1 − (T − 1)c′�c]
R

]
c = 0. (5.4.42)

Hence, the MLE of c is a characteristic vector corresponding to a root of

|R̄ − λR| = 0. (5.4.43)

The determinate equation (5.4.43) has G roots. To find which root to use,
substitute (5.4.39) and (5.4.40) into (5.4.38):

log L = − N T

2
log |�| + N

2
log(1 − T c′�c)

− N T

2
(G + T tr c′ R̄c) + N T 2

2
tr(c′ R̄c)

= − N T

2
log |�| + N

2
log(1 − T c′�c) − N T G

2
. (5.4.44)

Let the G characteristic vectors corresponding to the G roots of (5.4.43)
be denoted as c1(= c), c2, . . . , cG . These characteristic vectors are determined
only up to a scalar. Choose the normalization c∗′

g Rc∗
g = 1, g = 1, . . . , G, where

c∗
g = (c′

g Rcg)−1/2cg . Let C∗ = [c∗
1, . . . , c∗

G]; then C∗′ RC∗ = IG . From (5.4.39)
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and (5.4.41) we have

C∗′�C∗ = C∗′ RC∗ − 1 − T c′�c
[1 − (T − 1)c′�c]2

C∗′ Rcc′ RC∗

= IG − 1 − T c′�c
[1 − (T − 1)c′�c]2

×


(c′ Rc)1/2

0
...
0

 [(c′ Rc)1/2 0 · · · 0]. (5.4.45)

Equation (5.4.41) implies that (c′ Rc) = {[1 − (T − 1)c′�c]/[1 − T c′�c]}c′�c.
Therefore, the determinant of (5.4.45) is {[1 − T c′�c]/[1 − (T − 1)c′�c]}.
Using C∗′−1C∗−1 = R, we have |�| = {[1 − T c′�c]/[1 − (T − 1)c′�c]}|R|.
Substituting this into (5.4.44), the log likelihood function becomes

log L = − N T

2
{log |R| + log(1 − T c′�c)

− log[1 − (T − 1)c′�c]}
+ N

2
log[1 − T c′�c] − N T G

2
, (5.4.46)

which is positively related to c′�c within the admissible range (0, 1/T ).13 So
the MLE of c is the characteristic vector corresponding to the largest root of
(5.4.43). Once c is obtained, from Appendix 5A and (5.4.39) and (5.4.40) we
can estimate a and � by

a′ = T (1 + T 2c′ R̄c)−1/2c′ R̄, (5.4.47)

and

� = R − aa′. (5.4.48)

Knowing a and �, we can solve for the coefficients of the joint dependent
variables �.

When exogenous variables also appear in the equation, and with no re-
strictions on the coefficients of exogenous variables, we need only replace the
exponential term of the likelihood function (5.4.34),

−1

2

N∑
i=1

(y′
1i , . . . , y′

Gi )V
−1(y′

1i , . . . , y′
Gi )

′,

with

−1

2

N∑
i=1

(y′
1i − �′

1 X ′
i , . . . , y′

Gi − �′
G X ′

i )

× V −1(y′
1i − �′

1 X ′
i , . . . , y′

Gi − �′
G X ′

i )
′.
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The MLEs of c, a, and � remain the solutions of (5.4.43), (5.4.47), and (5.4.48).
From knowledge of � and a we can solve for � and σ 2

ω. The MLE of � condi-
tional on V is the GLS of �. Knowing � and �, we can solve for B = −��.

Thus, Chamberlain and Griliches (1975) suggested the following iterative
algorithm to solve for the MLE. Starting from the least-squares reduced-form
estimates, we can form consistent estimates of R and R̄. Then estimate c by
maximizing14

c′ R̄c
c′ Rc

. (5.4.49)

Once c is obtained, we solve for a and � by (5.4.47) and (5.4.48). After obtaining
� and a, the MLE of the reduced-form parameters is just the generalized least-
squares estimate. With these estimated reduced-form coefficients, one can form
new estimates of R and R̄ and continue the iteration until the solution converges.
The structural-form parameters are then solved from the convergent reduced-
form parameters.

5.4.3 An Example

Chamberlain and Griliches (1975) used the Gorseline (1932) data of the highest
grade of schooling attained (y1), the logarithm of the occupational (Duncan’s
SES) standing (y2), and the logarithm of 1927 income (y3) for 156 pairs of broth-
ers from Indiana (U.S.) to fit a model of the type (5.4.1)–(5.4.3). Specifically,
they let

y1i t = �′
1xi t + d1hit + u1i t ,

y2i t = γ21 y1i t + �′
2xi t + d2hit + u2i t , (5.4.50)

y3i t = γ31 y1i t + �′
3xi t + d3hit + u3i t .

The set X contains a constant, age, and age squared, with age squared appearing
only in the income equation.

The reduced form of (5.4.50) is

yi t = �xi t + ahit + �i t , (5.4.51)

where

Π =
�′

1
γ21�′

1 + �′
2

γ31�′
1 + �′

3

,

a =
d1

d2 + γ21d1

d3 + γ31d1

, (5.4.52)

�i t =
u1i t

u2i t + γ21u1i t

u3i t + γ31u1i t

.
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Therefore,

E�i t �
′
i t =

σ 2
u1 γ21σ

2
u1 γ31σ

2
u1

σ 2
u2 + γ 2

21σ
2
u1 γ21γ31σ

2
u1

σ 2
u3 + γ 2

31σ
2
u1

, (5.4.53)

and

� =
σ11 σ12 σ13

σ22 σ23

σ33

 = E(�i t �
′
i t ) + σ 2

ωaa′. (5.4.54)

We show that knowing a and � identifies the structural coefficients of the
joint dependent variables as follows: For a given value of σ 2

ω, we can solve for

σ 2
u1 = σ11 − σ 2

ωa2
1, (5.4.55)

γ21 = σ12 − σ 2
ωa1a2

σ 2
u1

, (5.4.56)

γ31 = σ13 − σ 2
ωa1a3

σ 2
u1

. (5.4.57)

Equating

γ21γ31 = σ23 − σ 2
ωa2a3

σ 2
u1

(5.4.58)

with the product of (5.4.56) and (5.4.57), and making use of (5.4.55), we have

σ 2
ω = σ12σ13 − σ11σ23

σ12a1a3 + σ13a1a2 − σ11a2a3 − σ23a2
1

. (5.4.59)

The problem then becomes one of estimating a and �. Table 5.1 presents
the MLE of Chamberlain and Griliches (1975) for the coefficients of schooling
and (unobservable) ability variables with σ 2

α normalized to equal 1. Their least-
squares estimates ignore the familial information, and the covariance estimates
in which each brother’s characteristics (his income, occupation, schooling, and
age) are measured around his own family’s mean are also presented in Table 5.1.

The covariance estimate of the coefficient-of-schooling variable in the
income equation is smaller than the least-squares estimate. However, the
simultaneous-equations model estimate of the coefficient for the ability variable
is negative in the schooling equation. As discussed in Section 5.1, if schooling
and ability are negatively correlated, the single-equation within-family estimate
of the schooling coefficient could be less than the least-squares estimate (here
0.080 versus 0.082). To attribute this decline to “ability” or “family background”
is erroneous. In fact, when schooling and ability were treated symmetrically, the
coefficient-of-schooling variable (0.088) became greater than the least-squares
estimate 0.082.
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Table 5.1. Parameter estimates and their standard errors for the income–
occupation–schooling model

Method

Least-squares Covariance
Coefficients of the structural equations estimate estimate MLE

Schooling in the:
Income equation 0.082 0.080 0.088

(0.010)a (0.011) (0.009)

Occupation equation 0.104 0.135 0.107
(0.010) (0.015) (0.010)

“Ability” in the:
Income equation 0.416

(0.038)

Occupation equation 0.214
(0.046)

Schooling equation −0.092
(0.178)

aStandard errors in parentheses.
Source: Chamberlain and Griliches (1975, p. 429).

APPENDIX 5A

Let

V = � ⊗ IT + aa′ ⊗ eT e′
T . (5A.1)

Because � is positive definite and aa′ is positive semidefinite, there exists a
G × G nonsingular matrix F such that (Anderson (1958, p. 341))

F ′�F = IG and F ′aa′F =


ψ1 0

0
. . .

0 0

 ,

where ψ1 is the root of

|aa′ − λ�| = 0. (5A.2)

Next, choose a T × T orthogonal matrix E , with the first column of E being
the vector (1/

√
T )eT . Then

E ′E = IT and E ′eT e′
T E =

[
T 0′

0 0

]
. (5A.3)
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Now F ⊗ E can be used to diagonalize V ,

(F ⊗ E)′V (F ⊗ E) = IGT +
[
ψ1 0′

0 0

]
G×G

⊗
[

T 0′

0 0

]
T ×T

, (5A.4)

and factor V −1,

V −1 = �−1 ⊗ IT − F ′

 ψ1

1 + T ψ1
0′

0 0


G×G

F ⊗ eT e′
T

= �−1 ⊗ IT − cc′ ⊗ eT e′
T , (5A.5)

where c′ = [ψ1/(1 + T ψ1)]1/2f ′
1, and f1 is the first column of F .

The determinant of V can be obtained from (5A.4):

|V | = |�|T · (1 + T ψ1). (5A.6)

This can be expressed in terms of c and � by noting that

c′�c = ψ1

1 + T ψ1
. (5A.7)

Thus, we have

1 − T c′�c = 1

1 + T ψ1
, (5A.8)

and

|V | = |�|T · |1 − T c′�c|−1. (5A.9)

From V · V −1 = IGT it is implied that

−�cc′ + aa′�−1 − T aa′cc′ = 0. (5A.10)

Premultiplying (5A.10) by c′, we obtain

a = c′a
[c′�c + (c′a)2]

�c. (5A.11)

Also, from f ′
1a = ψ1/2 and a proportional to c1 [equation (5A.11)], and

hence f1, we have

a = ψ1/2

f ′
1f1

f1 = 1

(1 + T ψ1)1/2(c′c)
c. (5A.12)

Premultiplying (5.4.40) by c′, we obtain

c′ R̄c = c′�c
T (1 − T c′�c)

= 1

T
ψ1. (5A.13)
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Combining (5.4.40) with (5A.8), (5A.12), and (5A.13), and using �f1 =
(1/f ′

1f1)f1, we obtain

R̄c = 1

T
(1 + T ψ1)�c

= 1

T
(1 + T ψ1)1/2a

= 1

T
(1 + T 2c′ R̄c)1/2a. (5A.14)

From (5.4.39) and (5A.12), we have

� = R − 1

(1 − T c′�c)
�cc′�

= R − aa′ (5A.15)



CHAPTER 6

Variable-Coefficient Models

6.1 INTRODUCTION

So far we have confined our discussion to models in which the effects of omit-
ted variables are either individual-specific or time-specific or both. But there
are cases in which there are changing economic structures or different so-
cioeconomic and demographic background factors that imply that the response
parameters may be varying over time and/or may be different for different cross-
sectional units. For example, in Chapter 2 we reported a study (Kuh (1963)) on
investment expenditures of 60 small and middle-sized firms in capital-goods-
producing industries from 1935 to 1955, excluding the war years (1942–1945).
In a majority of the cases Kuh investigated, the hypothesis of common inter-
cept and slope coefficients for all firms, as well as that of variable intercept but
common slope, was rejected (Tables 2.3 and 2.4). Similar results were found by
Swamy (1970), who used the annual data on 11 U.S. corporations from 1935
to 1954 to fit the Grunfeld (1958) investment functions. His preliminary test of
a variable intercept but common coefficients for the value of a firm’s outstand-
ing shares at the beginning of the year and its beginning-of-year capital stock
yielded an F value of 14.4521. That is well above the 5 percent value of an F
distribution with 27 and 187 degrees of freedom.1

When data do not support the hypothesis of coefficients being the same, yet
the specification of the relationships among variables appears proper or it is not
feasible to include additional conditional variables, then it would seem reason-
able to allow variations in parameters across cross-sectional units and/or over
time as a means to take account of the interindividual and/or interperiod het-
erogeneity. A single-equation model in its most general form can be written as

yit =
K∑

k=1

βki t xkit + uit , i = 1, . . . , N ,
(6.1.1)

t = 1, . . . , T,

where, in contrast to previous chapters, we no longer treat the intercept dif-
ferently than other explanatory variables and let x1i t = 1. However, if all the
coefficients are treated as fixed and different for different cross-sectional units
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in different time periods, there are N K T parameters with only N T observa-
tions. Obviously, there is no way we can obtain any meaningful estimates of
βki t . We are thus led to search for an approach that allows the coefficients of
interest to differ, but provides some method of modeling the cross-sectional
units as a group rather than individually.

One possibility would be to introduce dummy variables into the model that
would indicate differences in the coefficients across individual units and/or
over time, that is, to develop an approach similar to the least-squares dummy-
variable approach. In the case in which only cross-sectional differences are
present, this approach is equivalent to postulating a separate regression for
each cross-sectional unit,2

yit = �′
i xi t + uit , i = 1, . . . , N ,

(6.1.2)
t = 1, . . . , T,

where �i and xi t are K × 1 vectors of parameters and explanatory variables.
Alternatively, each regression coefficient can be viewed as a random variable

with a probability distribution (e.g., Hurwicz (1950); Klein (1953); Theil and
Mennes (1959); Zellner (1966)). The random-coefficient specification reduces
the number of parameters to be estimated substantially, while still allowing the
coefficients to differ from unit to unit and/or from time to time. Depending on the
type of assumption about the parameter variation, it can be further classified into
one of two categories: stationary and nonstationary random-coefficient models.

Stationary random-coefficient models regard the coefficients as having con-
stant means and variance–covariances. Namely, the K × 1 vector of parameters
�i t is specified as

�i t = �̄ + �i t , i = 1, . . . , N ,
(6.1.3)

t = 1, . . . , T,

where �̄ is a K × 1 vector of constants, and �i t is a K × 1 vector of stationary
random variables with zero means and constant variance–covariances. For this
type of model we are interested in (1) estimating the mean coefficient vector �̄,
(2) predicting each individual component �i t , (3) estimating the dispersion of
the individual-parameter vector, and (4) testing the hypothesis that the variances
of �i t are zero.

The nonstationary random-coefficient models do not regard the coefficient
vector as having constant mean or variance. Changes in coefficients from one
observation to the next can be the result of the realization of a nonstationary
stochastic process or can be a function of exogenous variables. In this case we
are interested in (1) estimating the parameters characterizing the time-evolving
process, (2) estimating the initial value and the history of parameter realizations,
(3) predicting the future evolutions, and (4) testing the hypothesis of random
variation.

Because of the computational complexities, variable-coefficient models have
not gained as wide acceptance in empirical work as has the variable-intercept
model. However, that does not mean that there is less need for taking account



6.2 Coefficients That Vary over Cross-Sectional Units 143

of parameter heterogeneity in pooling the data. For instance, take the empirical
studies of economic growth as an example, the per capita output growth rates
are assumed to depend over a common horizon on two sets of variables. One
set of variables consists of the initial per capita output and the savings and
population growth rates, variables that are suggested by the Solow growth
model. The second set of variables consists of control variables that correspond
to whatever additional determinants of growth a researcher wishes to examine
(e.g., Durlauf (2001); Durlauf and Quah (1999)). However, there is nothing
in growth theory which would lead one to think that the marginal effect of a
change in high school enrollment percentages on the per capita growth of the
U.S. should be the same as the effect on a country in SubSaharan Africa. In fact,
any parsimonious regression will necessarily leave out many factors that from
the perspective of economic theory would be likely to affect the parameters of
the included variables (e.g., Canova (1999); Durlauf and Johnson (1995)).

In this chapter we shall survey some of the popular single-equation varying-
coefficient models. We shall first discuss the single-equation model with ex-
ogenous explanatory variables, then discuss models involving lagged dependent
variables (e.g., Hsiao and Mountain (1994); Hsiao and Tahmiscioglu (1997);
Hsiao, Pesaran, and Tahmiscioglu (1999); Liu and Tiao (1980) Nicholls and
Quinn (1982); and Swamy (1974)). We shall not discuss simultaneous-equations
models with random coefficients (e.g., see Chow (1983); Kelejian (1977); and
Raj and Ullah (1981)). Further discussion of the subject of this chapter can also
be found in Amemiya (1983), Chow (1983), Judge et al. (1980), and Raj and
Ullah (1981).

In Section 6.2, we discuss models with coefficients varying over individuals,
and in Section 6.3, we discuss models with coefficients varying over individ-
uals and time. Section 6.4 concerns models with time-evolving coefficients.
Models with coefficients that are functions of other exogenous variables will
be discussed in Section 6.5. Section 6.6 proposes a mixed fixed- and random-
coefficient model as a unifying framework for various approaches to controlling
unobserved heterogeneity. Section 6.7 discusses issues of dynamic models.
Section 6.8 provides an analysis of liquidity constraints and firm investment
expenditure.

6.2 COEFFICIENTS THAT VARY OVER
CROSS-SECTIONAL UNITS

When regression coefficients are viewed as invariant over time, but varying
from one unit to another, we can write the model as

yit =
K∑

k=1

βki xkit + uit

(6.2.1)
=

K∑
k=1

(β̄k + αki )xkit + uit , i = 1, . . . , N ,

t = 1, . . . , T,
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where �̄ = (β̄1, . . . , β̄K )′ can be viewed as the common-mean-coefficient
vector, and � i = (α1i , . . . , αK i )′ as the individual deviation from the common
mean �̄. If individual observations are heterogeneous or the performance of
individual units from the data base is of interest, then � i are treated as fixed
constants. If conditional on xkit , individual units can be viewed as random draws
from a common population or the population characteristics are of interest, then
αki are generally treated as random variables having zero means and constant
variances and covariances.

6.2.1 Fixed-Coefficient Model

When �i are treated as fixed and different constants, we can stack the N T
observations in the form of the Zellner (1962) seemingly unrelated regression
model 

y1

y2
...

yN

 =


X1 0

X2

. . .
0 X N




�1

�2
...

�N

 +


u1

u2
...

uN

 , (6.2.2)

where yi and ui are T × 1 vectors (yi1, . . . , yiT )′ and (ui1, . . . , uiT )′, and Xi

is the T × K matrix of the time-series observations of the i th individual’s
explanatory variables with the t th row equal to x′

i t . If the covariances between
different cross-sectional units are not zero (Eui u′

j �= 0), the GLS estimator of
(�′

1, . . . , �′
N ) is more efficient than the single-equation estimator of �i for each

cross-sectional unit. If Xi are identical for all i or Eui u′
i = σ 2

i I and Eui u′
j = 0

for i �= j , the GLS estimator for (�′
1, . . . , �′

N ) is the same as applying least
squares separately to the time-series observations of each cross-sectional unit.

6.2.2 Random-Coefficient Model

6.2.2.a The Model

When �i = �̄ + � i are treated as random, with common mean �̄, Swamy
(1970) assumed that3

E� i = 0,

E� i �
′
j

K×K

=
{
	 if i = j,
0 if i �= j,

Exi t �
′
j = 0, E� i u′

j = 0,

Eui u′
j =

{
σ 2

i IT if i = j,
0 if i �= j.

(6.2.3)
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Stacking all N T observations, we have

y = X �̄ + X̃� + u, (6.2.4)

where

y
N T ×1

= (y′
1, . . . , y′

N )′,

X
N T ×K

=


X1

X2
...

X N

 , X̃
N T ×N K

=


X1 0

X2

. . .
0 X N

= diag(X1, . . . , X N ),

u = (u′
1, . . . , u′

N )′, and � = (� ′
1, . . . , � ′

N )′. The covariance matrix for the com-
posite disturbance term X̃� + u is block-diagonal, with the i th diagonal block
given by

�i = Xi	X ′
i + σ 2

i IT . (6.2.5)

6.2.2.b Estimation

Under Swamy’s assumption, the simple regression of y on X will yield an un-
biased and consistent estimator of � if (1/N T )X ′ X converges to a nonzero
constant matrix. But the estimator is inefficient, and the usual least-squares
formula for computing the variance–covariance matrix of the estimator is in-
correct, often leading to misleading statistical inferences. Moreover, when the
pattern of parameter variation is of interest in its own right, an estimator ig-
noring parameter variation is incapable of shedding light on this aspect of the
economic process.

The best linear unbiased estimator of �̄ for (6.2.4) is the GLS estimator4

ˆ̄�GLS =
(

N∑
i=1

X ′
i�

−1
i Xi

)−1 (
N∑

i=1

X ′
i�

−1
i yi

)

=
N∑

i=1

Wi �̂i , (6.2.6)

where

Wi =
{

N∑
i=1

[
	 + σ 2

i (X ′
i Xi )

−1
]−1

}−1 [
	 + σ 2

i (X ′
i Xi )

−1
]−1

,

and

�̂i = (X ′
i Xi )

−1 X ′
i yi .

The last expression of (6.2.6) shows that the GLS estimator is a matrix-
weighted average of the least-squares estimator for each cross-sectional unit,
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with the weights inversely proportional to their covariance matrices. It also
shows that the GLS estimator requires only a matrix inversion of order K , and
so it is not much more complicated to compute than the simple least-squares
estimator.

The covariance matrix for the GLS estimator is

Var( ˆ̄�GLS) =
(

N∑
i=1

X ′
i�

−1
i Xi

)−1

=
{

N∑
i=1

[
	 + σ 2

i (X ′
i Xi )

−1
]−1

}−1

. (6.2.7)

Swamy proposed using the least-squares estimators �̂i = (X ′
i Xi )−1 X ′

i yi and
their residuals ûi = yi − Xi �̂i to obtain5 unbiased estimators of σ 2

i and 	,

σ̂ 2
i = û′

i ûi

T − K

= 1

T − K
y′

i [I − Xi (X ′
i Xi )

−1 X ′
i ]yi , (6.2.8)

	̂ = 1

N − 1

N∑
i=1

(
�̂i − N−1

N∑
i=1

�̂i

)(
�̂i − N−1

N∑
i=1

�̂i

)′

− 1

N

N∑
i=1

σ̂ 2
i (X ′

i Xi )
−1. (6.2.9)

Again, just as in the error-component model, the estimator (6.2.9) is not nec-
essarily nonnegative definite. In this situation, Swamy [see also Judge et al.
(1980)] has suggested replacing (6.2.9) by

	̂ = 1

N − 1

N∑
i=1

(
�̂i − N−1

N∑
i=1

�̂i

)(
�̂i − N−1

N∑
i=1

�̂i

)′
. (6.2.10)

This estimator, although not unbiased, is nonnegative definite and is consistent
when T tends to infinity. Alternatively, we can use the Bayes mode estimator
suggested by Lindley and Smith (1972) and Smith (1973),

	∗ = {R + (N − 1)	̂}
(N + ρ − K − 2)

, (6.2.11)

where R and ρ are prior parameters, assuming that 	−1 has a Wishart distribu-
tion with ρ degrees of freedom and matrix R. For instance, we may let R = 	̂

and ρ = 2 as in Hsiao, Pesaran, and Tahmiscioglu (2002).
Swamy proved that substituting σ̂ 2

i and 	̂ for σ 2
i and 	 in (6.2.6) yields an

asymptotically normal and efficient estimator of �̄. The speed of convergence
of the GLS estimator is N 1/2. This can be seen by noting that the inverse of the
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covariance matrix for the GLS estimator [equation (6.2.7)] is6

Var( ˆ̄�GLS)−1 = N	−1 − 	−1

[
N∑

i=1

(
	−1 + 1

σ 2
i

X ′
i Xi

)−1
]

	−1

= O(N ) − O(N/T ). (6.2.12)

Swamy (1970) used the model (6.2.3) and (6.2.4) to reestimate the Grunfeld
investment function with the annual data of 11 U.S. corporations. His GLS es-
timates of the common-mean coefficients of the firms’ beginning-of-year value
of outstanding shares and capital stock are 0.0843 and 0.1961, with asymp-
totic standard errors 0.014 and 0.0412, respectively. The estimated dispersion
measure of these coefficients is

	̂ =
[

0.0011 −0.0002
0.0187

]
. (6.2.13)

Zellner (1966) has shown that when each �i can be viewed as a random
variable with a constant mean, and �i and xi are uncorrelated, thereby satisfying
Swamy’s assumption, the model will not possess an aggregation bias. In this
sense, Swamy’s estimate can also be interpreted as an average relationship
indicating that in general the value of a firm’s outstanding shares is an important
variable explaining the investment.

6.2.2.c Predicting Individual Coefficients

Sometimes one may wish to predict the individual component �i , because it
provides information on the behavior of each individual and also because it
provides a basis for predicting future values of the dependent variable for a
given individual. Swamy (1970, 1971) has shown that the best linear unbiased
predictor, conditional on given �i , is the least-squares estimator �̂i . However,
if the sampling properties of the class of predictors are considered in terms of
repeated sampling over both time and individuals, Lee and Griffiths (1979) [also
see Lindley and Smith (1972) or Section 6.6] have suggested predicting �i by

�̂
∗
i = ˆ̄�GLS + 	X ′

i

(
Xi	X ′

i + σ 2
i IT

)−1
(yi − Xi

ˆ̄�GLS). (6.2.14)

This predictor is the best linear unbiased estimator in the sense that
E(�̂

∗
i − �i ) = 0, where the expectation is an unconditional one.

6.2.2.d Testing for Coefficient Variation

An important question in empirical investigation is whether or not the regres-
sion coefficients are indeed varying across cross-sectional units. Because the
effect of introducing random coefficient variation is to give the dependent vari-
able a different variance at each observation, models with this feature can be
transformed into a particular heteroscedastic formulation, and likelihood-ratio
tests can be used to detect departure from the constant-parameter assumption.
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However, computation of the likelihood-ratio test statistic can be complicated.
To avoid the iterative calculations necessary to obtain maximum likelihood es-
timates of the parameters in the full model, Breusch and Pagan (1979) have
proposed a Lagrange-multiplier test for heteroscedasticity. Their test has the
same asymptotic properties as the likelihood-ratio test in standard situations,
but it is computationally much simpler. It can be computed simply by repeatedly
applying least-squares regressions.

Dividing the individual-mean-over-time equation by σ−1
i , we have

1

σi
ȳi = 1

σi
x̄′

i �̄ + ωi , i = 1, . . . , N , (6.2.15)

where

ωi = 1

σi
x̄′

i � i + 1

σi
ūi .

When the assumption (6.2.3) holds, (6.2.15) is a model with heteroscedas-
tic variances, Var(ωi ) = (1/T ) + (1/σ 2

i )x̄′
i	x̄i , i = 1, . . . , N . Under the null

hypothesis that 	 = 0, (6.2.15) has homoscedastic variances, Var(ωi ) = 1/T,

i = 1, . . . , N . Thus, we can generalize Breusch and Pagan’s (1979) test of
heteroscedasticity to test for random-coefficient variation here.

Following the procedures of Rao (1973, pp. 418–419) we can show that the
transformed Lagrange-multiplier statistic7 for testing the null hypothesis leads
to computing one-half the predicted sum of squares in a regression of

(
T ω2

i − 1
) = 1

σ 2
i

[
K∑

k=1

K∑
k ′=1

x̄ ki x̄ k ′iσ
2
αkk′

]
+ εi , i = 1, . . . , N ,

(6.2.16)

where σ 2
αkk′ = E(αkiαk ′i ).8 Because ωi and σ 2

i usually are unknown, we can
replace them by their estimated values ω̂i and σ̂ 2

i , where ω̂i is the least-squares
residual of (6.2.15) and σ̂ 2

i is given by (6.2.8). When both N and T tend to
infinity, the transformed Lagrange-multiplier statistic has the same limiting
distribution as chi-square with [K (K + 1)]/2 degrees of freedom under the
null hypothesis of 	 = 0.

Breusch and Pagan’s (1979) Lagrange-multiplier test can be put into the
framework of the White (1980) information-matrix test. Chesher (1984) has
shown that the many variants of varying parameters of the same general type
of model under consideration can be tested using the statistic

DN (�̂N ) = 1

N

N∑
i=1

T∑
t=1

∂2 log f (yit | xi t , �̂N )

∂� ∂�′

+ 1

N

N∑
i=1

[
T∑

t=1

∂ log f (yit | xi t , θ̂N )

∂�

][
T∑

t=1

∂ log f (yit | xi t ; �̂N )

∂�′

]
,

(6.2.17)
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where f (yit | xi t , �) denotes the conditional density of yit given xi t and � under
the null of no parameter variation, and �̂N denotes the maximum likelihood
estimator of �. The elements of

√
N DN (�̂N ) are asymptotically jointly normal

with mean zero and the covariance matrix given by White (1980) and simplified
by Chesher (1983) and Lancaster (1984).

Alternatively, because � i is fixed for given i , we can test for random variation
indirectly by testing whether or not the fixed-coefficient vectors �i are all equal.
That is, we form the null hypothesis

H0 : �1 = �2 = · · · = �N = �̄.

If different cross-sectional units have the same variance, σ 2
i = σ 2, i =

1, . . . , N , the conventional analysis-of-covariance test for homogeneity dis-
cussed in Chapter 2 (F3) can be applied. If σ 2

i are assumed different, as postu-
lated by Swamy (1970, 1971), we can apply the modified test statistic

F∗
3 =

N∑
i=1

(�̂i − ˆ̄�
∗
)′ X ′

i Xi (�̂i − ˆ̄�
∗
)

σ̂ 2
i

, (6.2.18)

where

ˆ̄�
∗ =

[
N∑

i=1

1

σ̂ 2
i

X ′
i Xi

]−1 [
N∑

i=1

1

σ̂ 2
i

X ′
i yi

]
.

Under H0, (6.2.18) is asymptotically chi-square-distributed, with K (N − 1)
degrees of freedom, as T tends to infinity and N is fixed.

6.2.2.e Fixed or Random Coefficients

The question whether �i should be assumed fixed and different or random and
different depends on whether �i can be viewed as coming from a heterogeneous
population or as random draws from a common population, and on whether we
are making inferences conditional on the individual characteristics or making
unconditional inferences on the population characteristics. If �i are heteroge-
neous or we are making inferences conditional on the individual characteristics,
the fixed-coefficient model should be used. If �i can be viewed as random draws
from a common population and inference is on the population characteristics,
the random-coefficient model should be used. However, extending his work on
the variable-intercept model, Mundlak (1978b) has raised the issue of whether
or not the variable coefficients are correlated with the explanatory variables. If
they are, the assumptions of the Swamy random-coefficient model are unrea-
sonable, and the GLS estimator of the mean coefficient vector will be biased. To
correct this bias, Mundlak (1978b) suggested that the inferences of f (yi | Xi , �)
be viewed as

∫
f (yi | Xi , �̄, � i ) f (� i | Xi ) d� i , where f (yi | Xi , �̄, � i ) denotes

the conditional density of yi given Xi , �̄, and � i , and f (� i | Xi ) denotes the
conditional density of � i given Xi , which provides auxiliary equations for the
coefficient vector � i as a function of the i th individual’s observed explanatory
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variables. Because this framework can be viewed as a special case of a random-
coefficient model with the coefficients being functions of other explanatory
variables, we shall maintain the assumption that the random coefficients are
not correlated with the explanatory variables, and we shall discuss estimation
of the random coefficients that are functions of other explanatory variables in
Section 6.5.

6.2.2.f An Example

To illustrate the specific issues involved in estimating a behavioral equation
using temporal cross-sectional observations when the data do not support the
hypothesis that the coefficients are the same for all cross-sectional units, we
report a study conducted by Barth, Kraft, and Kraft (1979). They used quarterly
observations on output prices, wages, materials prices, inventories, and sales
for 17 manufacturing industries for the period from 1959 (I) to 1971 (II) to
estimate a price equation for the U.S. manufacturing sector. Assuming het-
eroscedastic disturbance, but common intercept and slope coefficients across
industries, and using the two-step Aitken estimator, they obtained

ŷ = 0.0005 + 0.2853x2 + 0.0068x3 + 0.0024x4,
(0.0003) (0.0304) (0.005) (0.0017)

(6.2.19)

where yt is the quarterly change in output price, x2 is labor costs, x3 is mate-
rials input prices, and x4 is a proxy variable for demand, constructed from the
ratio of finished inventory to sales. The standard errors of the estimates are in
parentheses.

The findings (6.2.19) are somewhat unsettling. The contribution of materials
input costs is extremely small, less than 1 percent. Furthermore, the proxy
variable has the wrong sign. As the inventory-to-sales ratio increases, one would
expect the resulting inventory buildup to exert a downward pressure on prices.

There are many reasons that (6.2.19) can go wrong. For instance, pricing
behavior across industries is likely to vary, because input combinations are
different, labor markets are not homogeneous, and demand may be more elastic
or inelastic in one industry than another. In fact, a modified one-way analysis-
of-covariance test for the common intercept and slope coefficients,

H0 : �1 = �2 = · · · = �N , N = 17,

using the statistic (6.2.18), has a value of 449.28. That is well above the
chi-square critical value of 92.841 for the 1 percent significance level with
64 ((N − 1)K ) degrees of freedom.

The rejection of the hypothesis of homogeneous price behavior across indus-
tries suggests a need to modify the model to allow for heterogeneous behavior
across industries. However, previous studies have found that output prices are
affected mainly by unit labor and materials input costs, and only secondarily,
if at all, by demand factors. Thus, to account for heterogeneous behavior, one
can assume that the relationships among variables are proper, but the coefficients
are different across industries. But if these coefficients are treated as fixed and
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different, this will imply a complicated aggregation problem for the price be-
havior of the U.S. manufacturing sector (e.g., Theil (1954)). On the other hand,
if the coefficients are treated as random, with common means, there is no aggre-
gation bias (Zellner (1966)). The random-coefficient formulation will provide
a microeconomic foundation for aggregation, as well as permit the aggregate-
price equation to capture more fully the disaggregated industry behavior.

Therefore, Barth, Kraft, and Kraft (1979) used the Swamy random-
coefficient formulation, (6.2.3) and (6.2.4), to reestimate the price equation.
Their new estimates, with standard errors in parentheses, are

ŷ = −0.0006 + 0.3093x2 + 0.2687x3 − 0.0082x4.
(0.0005) (0.0432) (0.0577) (0.0101)

(6.2.20)

The estimated dispersion of these coefficients is

β1 β2 β3 β4

	̂ =


0.0000 −0.0002 0.0000 −0.0001

0.0020 0.0003 0.0081

0.0320 0.0030

0.0014

. (6.2.21)

The results of the Swamy random-coefficient formulation appear more plausible
than the previous aggregate price specification [equation (6.2.19), which ignores
variation across industries] from several points of view: (1) both labor costs and
materials costs are now dominant in determining output prices; (2) the proxy
variable for demand has the correct sign, although it plays only a small and
insignificant role in the determination of manufacturing prices; (3) productivity,
as captured in the intercept term, appears to be increasing.

This example suggests that one must be careful about drawing conclusions
on the basis of aggregate data or pooled estimates that do not allow for individual
heterogeneity. Such estimates can be misleading with regard to both the size of
coefficients and the significance of variables.

6.3 COEFFICIENTS THAT VARY OVER TIME
AND CROSS-SECTIONAL UNITS

6.3.1 The Model

Just as in the variable-intercept models, it is possible to assume that the coeffi-
cient of the explanatory variable has a component specific to an individual unit
and a component specific to a given time period such that

yit =
K∑

k=1

(β̄k + αki + λkt )xkit + uit , i = 1, . . . , N ,
(6.3.1)

t = 1, . . . , T .

Stacking all N T observations, we can rewrite (6.3.1) as

y = X �̄ + X̃� + X
¯

� + u, (6.3.2)
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where y, X, X̃ , u, and � are defined in Section 6.2,

X
¯N T ×T K

=


X1¯
X2

.̄..
XN¯

 , Xi¯T ×T K
=


x′

i1 0′

x′
i2

. . .
0 x′

iT

 ,

and

�
K T ×1

= (� ′
1, . . . , � ′

T )′, � t
K×1

= (λ1t , . . . , λK t )
′.

We can also rewrite (6.3.2) as

y = X �̄ + U1�1 + U2�2 + · · · + UK � K

+ UK+1�1 + · · · + U2K �K + U2K+1u, (6.3.3)

where

Uk
N T ×N

=



xk11
... 0

xk1T

xk21
...

xk2T

. . .
xk N1

0
...

xk N T



, k = 1, . . . , K , (6.3.4a)

UK+k
N T ×T

=



xk11 0
xk12

...
0 xk1T

xk21 0
xk22

. . .
0 xk2T

. . . . . .

xk N1 0
. . .

0 xk N T



, k = 1. . . . , K , (6.3.4b)

U2K+1 = IN T , (6.3.4c)

� k
N×1

= (αk1, . . . , αk N )′, �k
T ×1

= (λk1, . . . , λkT )′. (6.3.4d)
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When � k and �k as well as �̄ are considered fixed, it is a fixed-effects model;
when � k and �k are considered random, with �̄ fixed, equation (6.3.3) cor-
responds to the mixed analysis-of-variance model (Hartley and Rao (1967),
Miller (1977)). Thus, model (6.3.1) and its special case (6.2.1) fall within the
general analysis-of-variance framework.

6.3.2 Fixed-Coefficient Model

When � k and �k are treated as fixed, as mentioned earlier, (6.3.1) can be
viewed as a fixed-effects analysis-of-variance model. However, the matrix of
explanatory variables is N T × (T + N + 1)K , but its rank is only (T + N −
1)K ; so we must impose 2K independent linear restrictions on the coefficients
� k and �k for estimation of �̄, � , and �. A natural way of imposing the
constraints in this case is to let9

N∑
i=1

αik = 0, (6.3.5)

and
T∑

t=1

λkt = 0, k = 1, . . . , K . (6.3.6)

Then the best linear unbiased estimators (BLUEs) of �, � , and � are the solu-
tions of

min(y − X �̄ − X̃� − X
¯

�)′(y − X �̄ − X̃� − X
¯

�) (6.3.7)

subject to (6.3.5) and (6.3.6).

6.3.3 Random-Coefficient Model

When � i and � t are treated as random, Hsiao (1974a, 1975) assumes that

E� i �
′
j

K×K

=
{
	 if i = j,
0 if i �= j,

(6.3.8)
E� t �

′
s

K×K

=
{
� if t = s,
0 if t �= s,

E� i �
′
t = 0, E� i x′

i t = 0, E� t x′
i t = 0,

and

Eui u′
j =

{
σ 2

u IT if i = j,

0 if i �= j.

Then the composite error term,

v = X̃� + X
¯

� + u, (6.3.9)
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has a variance–covariance matrix

� = Evv′ =


X1	X ′

1 0
X2	X ′

2
. . .

0 X N 	X ′
N



+


D(X1�X ′

1) D(X1�X ′
2) · · · D(X1�X ′

N )

D(X2�X ′
1) D(X2�X ′

2) . . . D(X2�X ′
N )

...
...

. . .
...

D(X N �X ′
1) D(X N �X ′

2) · · · D(X N �X ′
N )

 + σ 2
u IN T ,

(6.3.10)

where

D(Xi�X ′
j )

T ×T

=


x′

i1�x j1 0
x′

i2�x j2

. . .
0 x′

iT �x jT

 .

We can estimate �̄ by the least-squares method, but as discussed in
Section 6.2.2.b, it is not efficient. Moreover, the associated sampling theory
is misleading.

If � is known, the BLUE of �̄ is the GLS estimator,

ˆ̄�GLS = (X ′�−1 X )−1(X ′�−1y). (6.3.11)

The variance–covariance matrix of the GLS estimator is

Var( ˆ̄�GLS) = (X ′�−1 X )−1. (6.3.12)

Without knowledge of �, we can estimate �̄ and � simultaneously by the
maximum likelihood method. However, because of the computational difficulty,
a natural alternative is to first estimate �, then substitute the estimated � in
(6.3.11).

When 	 and � are diagonal, it is easy to see from (6.3.3) that � is a linear
combination of known matrices with unknown weights. So the problem of es-
timating the unknown covariance matrix is actually the problem of estimating
the variance components. Statistical methods developed for estimating the vari-
ance (and covariance) components can be applied here (e.g., Anderson (1969,
1970); Rao (1970, 1972)). In this section we shall describe only a method due
to Hildreth and Houck (1968).10

Consider the time-series equation for the i th individual,

yi = Xi (�̄ + � i ) + Xi¯
� + ui . (6.3.13)

We can treat � i as if it is a vector of constants. Then (6.3.13) is a lin-
ear model with heteroscedastic variance. The variance of the error term
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rit = ∑K
k=1 λkt xkit + uit is

θi t = E
[
r2

i t

] =
K∑

k=1

σ 2
λk x2

ki t + σ 2
u . (6.3.14)

Let �i = (θi1, . . . , θiT )′; then

�i = Ẋi �
2
λ, (6.3.15)

where Ẋi is Xi with each of its elements squared, and �2
λ = (σ 2

λ1 +
σ 2

u , σ 2
λ2, . . . , σ

2
λK )′.

An estimate of ri can be obtained as the least-squares residual, r̂i =
yi − Xi �̂i = Mi yi , where �̂i = (X ′

i Xi )−1 X ′
i yi and Mi = IT − Xi (X ′

i Xi )−1 X ′
i .

Squaring each element of r̂i and denoting it by r̂i , we have

E(˙̂ri ) = Ṁi �i = Fi �
2
λ, (6.3.16)

where Ṁi is Mi with each of its elements squared, and Fi = Ṁi Ẋ i .
Repeating the foregoing process for all i gives

E(˙̂r) = F�2
λ, (6.3.17)

where ˙̂r = (˙̂r1, . . . , ˙̂rN )′, and F = (F ′
1, . . . , F ′

N )′. Application of least squares
to (6.3.17) yields a consistent estimator of σ2

λ,

�̂2
λ = (F ′F)−1 F ′ ˙̂r. (6.3.18)

Similarly, we can apply the same procedure with respect to each time period
to yield a consistent estimator of �2

α = (σ 2
α1

+ σ 2
u , σ 2

α2
, . . . , σ 2

αK
)′. To obtain

separate estimates of σ 2
u , σ 2

α1
, and σ 2

λ1
, we note that E(x′

i t � i + uit )(x′
i t � t +

uit ) = σ 2
u . So, letting ŝi t denote the residual obtained by applying least squares

separately to each time period, we can consistently estimate σ 2
u by

σ̂ 2
u = 1

N T

N∑
i=1

T∑
t=1

r̂i t ŝi t . (6.3.19)

Subtracting (6.3.19) from an estimated σ 2
α1

+ σ 2
u and σ 2

λ1
+ σ 2

u , we obtain con-
sistent estimates of σ 2

α1
, and σ 2

λ1
, respectively.

Substituting consistently estimated values of �2
α , �2

λ, and σ 2
u into (6.3.11),

one can show that when N and T both tend to infinity and N/T tends to a
nonzero constant, the two-stage Aitken estimator is asymptotically as efficient
as if one knew the true �. Also, Kelejian and Stephan (1983) have pointed out
that, contrary to the conventional regression model, the speed of convergence
of ˆ̄�GLS here is not (N T )1/2, but max(N 1/2, T 1/2).

If one is interested in predicting the random components associated with an
individual, Lee and Griffiths (1979) have shown that the predictor

�̂ = (IN ⊗ 	)X ′�−1(y − X ˆ̄�GLS) (6.3.20)

is the BLUE.
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To test for the random variation of the coefficients, we can again apply
the Breusch–Pagan (1979) Lagrange-multiplier test for heteroscedasticity. Be-
cause, for given i , � i is fixed, the error term x′

i t � t + uit will be homoscedastic
if the coefficients are not varying over time. Therefore, under the null, one-half
the explained sum of squares in a regression11

û2
i t

σ̂ 2
u

= ẋ′
i t �

2
λ + εi t , i = 1, . . . , N ,

(6.3.21)
t = 1, . . . , T,

is distributed asymptotically as chi-square, with K − 1 degrees of freedom,
where ûi t = yit − �̂′

i xi t , σ̂
2
u = ∑N

i=1

∑T
t=1(yit − �̂′

i xi t )2/N T , and ẋi t is xi t

with each element squared.12

Similarly, we can test for random variation across cross-sectional units by
regressing

û∗2
i t

σ̂ ∗2
u

= ẋ′
i t �

2
α + ε∗

i t , i = 1, . . . , N ,
(6.3.22)

t = 1, . . . , T,

where û∗
i t = yit − �̂

′
t xi t , σ̂

∗2
u = ∑N

t=1

∑T
t=1 û∗2

i t /N T , and �̂t is the least-
squares estimate of �t = �̄ + � t across cross-sectional units for a given t .
Under the null hypothesis of no random variation across cross-sectional units,
one-half the explained sum of squares of (6.3.22) is asymptotically chi-square-
distributed, with K − 1 degrees of freedom.

We can also test the random variation indirectly by applying the classic
analysis-of-covariance test. For details, see Hsiao (1974a).

Swamy and Mehta (1977) have proposed a more general type of time-
varying-component model by allowing E� t �

′
t = �t to vary over t . However,

models with the coefficients varying randomly across cross-sectional units and
over time have not gained much acceptance in empirical investigation. Part of
the reason is that the inversion of � is at least of order max(N K , T K ) (Hsiao
(1974a)). For any panel data of reasonable size, this would be a computationally
demanding problem.

6.4 COEFFICIENTS THAT EVOLVE OVER TIME13

6.4.1 The Model

In most models with coefficients evolving over time it is assumed that there is no
individual heterogeneity (e.g., Zellner, Hong, and Min (1991)). At a given t , the
coefficient vectors �t are identical for all cross-sectional units. For this reason
we shall discuss the main issues of time-varying-parameter models assuming
that N = 1, then indicate how this analysis can be modified when N > 1.
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As shown by Chow (1983, Chapter 10), a wide variety of time-varying-
parameter models can be put in the general form

yt = �′
t xt + ut , (6.4.1)

and

�t = H�t−1 + �t , t = 1, . . . , T, (6.4.2)

where xt is a K × 1 vector of exogenous variables, ut is independent normal
with mean zero and variance σ 2

u , �t is a K -variant independent normal random
variable with mean zero and covariance matrix �, and � and u are indepen-
dent. For instance, when H = IK , it is the random-walk model of Cooley and
Prescott (1976). When H = IK and � = 0, this model is reduced to the standard
regression model.

The Rosenberg (1972, 1973) return-to-normality model can also be put in this
form. The model corresponds to replacing �t and �t−1 in (6.4.2) by (�t − �̄)
and (�t−1 − �̄) and restricting the absolute value of the characteristic roots of
H to less than 1. Although this somewhat changes the formulation, if we define
�∗

t = �t − �̄ and �t = �̄, the return-to-normality model can be rewritten as

yt = (x′
t , x′

t )

[
�t

�∗
t

]
+ ut ,

(6.4.3)[
�t

�∗
t

]
=

[
I 0
0 H

][
�t−1

�∗
t−1

]
+

[
0
�t

]
,

which is a special case of (6.4.1) and (6.4.2).
Similarly, we can allow �t to be stationary, with constant mean �̄ (Pagan

(1980)). Suppose

yt = x′
t �̄ + x′

t �
∗
t + ut ,

(6.4.4)
�∗

t = �t − �̄ = A−1(L)�t ,

where A(L) is a ratio of polynomials of orders p and q in the lag operator
L (L�t = �t−1), and � is independent normal, so that �∗

t follows an autoregres-
sive moving-average (ARMA) (p, q) process. Because an ARMA of order p
and q can be written as a first-order autoregressive process, this model can again
be put in the form of (6.4.1) and (6.4.2). For example,

�∗
t = B1�∗

t−1 + B2�∗
t−2 + �t + B3�t−1 (6.4.5)

can be written as

�̃
∗
t =

 �∗
t

�∗
t−1

�t

=
B1 B2 B3

I 0 0
0 0 0


�∗

t−1

�∗
t−2

�t−1

+
�t

0
�t

= H �̃
∗
t−1 + �t .

(6.4.6)
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Thus, we can write Pagan’s model in the form

yt = (x′
t , x̃′

t )

[
�t

�̃
∗
t

]
+ ut , (6.4.4a)

where x̃ ′
t = (x′

t , 0′, 0′). Equation (6.4.4a) is then formally equivalent to (6.4.3).
The Kalman filter (Kalman (1960)) provides a basis for computing the max-

imum likelihood estimators and predicting the evolution of the time path of �t

for this type of model. In this section we first consider the problem of estimating
�t using informationIs , up to the time s, assuming that σ 2

u , �, and H are known.
We denote the conditional expectation of �t , given Is , as E(�t | Is) = �t |s . The
evaluation of �t |s is called filtering when t = s; it is called smoothing when
s > t ; it is called prediction when s < t . We then study the problem of estimat-
ing σ 2

u , �, and H by the method of maximum likelihood. Finally, we consider
the problem of testing for constancy of the parameters.

6.4.2 Predicting �t by the Kalman Filter

Denote (y1, . . . , yt ) by Yt . By definition, the conditional mean of �t , given
Yt , is

�t |t = E(�t | yt , Yt−1)

= E(�t | Yt−1) + Lt [yt − E(yt | Yt−1)]

= �t |t−1 + Lt [yt − x′
t �t |t−1], (6.4.7)

where yt − E(yt | Yt−1) denotes the additional information of yt not contained
in Yt−1, and Lt denotes the adjustment of �t |t−1 due to this additional infor-
mation. If Lt is known, (6.4.7) can be used to update our estimate �t |t−1 to
form �t |t .

To derive Lt , we know from our assumption on �t and ut that, conditional on
xt , yt and �t are jointly normally distributed. The normal-distribution theory
(Anderson (1958, Chapter 2)) states that, conditional on Yt−1 (and Xt ), the
mean of �t , given yt , is E(�t | Yt−1) + Cov(�t , yt | Yt−1) Var(yt | Yt−1)−1[yt −
E(yt | Yt−1)]. Therefore,

Lt = [E(�t − �t |t−1)(yt − yt |t−1)] Var(yt | Yt−1)−1, (6.4.8)

where yt |t−1 = E(yt | Yt−1) = x′
t �t |t−1. Denoting the covariance matrix

Cov(�t | Yt−1) = E(�t − �t |t−1)(�t − �t |t−1)′ by �t |t−1, we have

E(�t − �t |t−1)(yt − yt |t−1)

= E{(�t − �t |t−1)[(�t − �t |t−1)′xt + ut ]} = �t |t−1xt , (6.4.9)

and

Var(yt | Yt−1) = E[x′
t (�t − �t |t−1) + ut ][(�t − �t |t−1)′xt + ut ]

= x′
t�t |t−1xt + σ 2

u . (6.4.10)
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Hence, (6.4.8) becomes

Lt = �t |t−1xt
(
x′

t�t |t−1xt + σ 2
u

)−1
. (6.4.11)

From (6.4.2) we have

�t |t−1 = H�t−1 | t−1. (6.4.12)

Thus, we can compute �t |t−1 recursively by

�t |t−1 = E(�t − H�t−1|t−1)(�t − H�t−1|t−1)′

= E[H (�t−1 − �t−1|t−1) + �t ]

× [H (�t−1 − �t−1|t−1) + �t ]
′

= H�t−1|t−1 H ′ + �. (6.4.13)

Next, from (6.4.1) and (6.4.7) we can write

�t − �t |t = �t − �t |t−1 − Lt [x′
t (�t − �t |t−1) + ut ]. (6.4.14)

Taking the expectation of the product of (6.4.14) and its transpose, and using
(6.4.11), we obtain

�t |t = �t |t−1 − Lt
(
x′

t�t |t−1xt + σ 2
u

)
L ′

t

= �t |t−1 − �t |t−1xt
(
x′

t�t |t−1xt + σ 2
u

)−1
x′

t�t |t−1. (6.4.15)

Equations (6.4.13) and (6.4.15) can be used to compute �t |t (t = 1, 2, . . .) suc-
cessively, given �0|0. Having computed �t |t−1, we can use (6.4.11) to compute
Lt . Given Lt , (6.4.7) and (6.4.12) can be used to compute �t |t from �t−1|t−1 if
�0|0 is known.

Similarly, we can predict �t using future observations yt+1, yt+2, . . . , yt+n .
We first consider the regression of �t on yt+1, conditional on Yt . Analogous to
(6.4.7) and (6.4.11) are

�t |t+1 = �t |t + Ft |t+1(yt+1 − yt+1|t ), (6.4.16)

and

Ft |t+1 = [E(�t − �t |t )(yt+1 − yt+1|t )′][Cov(yt+1 | Yt )]
−1. (6.4.17)

To derive the matrix Ft |t+1 of regression coefficients, we use (6.4.1) and (6.4.2)
to write

yt+1 − yt+1|t = x′
t+1(�t+1 − �t+1|t ) + ut+1

= x′
t+1 H (�t − �t |t ) + x′

t+1�t+1 + ut+1. (6.4.18)

Combining (6.4.17), (6.4.18), (6.4.10), and (6.4.11), we have

Ft |t+1 = �t |t H ′xt+1
(
x′

t+1�t+1|t xt+1 + σ 2
u

)−1

= �t |t H ′�−1
t+1|t Lt+1. (6.4.19)



160 Variable-Coefficient Models

Therefore, from (6.4.19) and (6.4.14), we can rewrite (6.4.16) as

�t |t+1 = �t |t + �t |t H ′�−1
t+1|t (�t+1|t+1 − �t+1|t ). (6.4.20)

Equation (6.4.20) can be generalized to predict �t using future observations
yt+1, . . . , yt+n:

�t |t+n = �t |t+n−1 + F∗
t (�t+1|t+n − �t+1|t+n−1), (6.4.21)

where F∗
t = �t |t H ′�−1

t+1|t . The proof of this is given by Chow (1983,
Chapter 10).

When H , �, and σ 2
u are known, (6.4.7) and (6.4.21) trace out the time path of

�t and provide the minimum-mean-squared-error forecast of the future values
of the dependent variable, given the initial values �0|0 and �0|0. To obtain the
initial values of �0|0 and �0|0, Sant (1977) suggested using the generalized
least-squares method on the first K observations of yt and xt . Noting that

�t = H�t−1 + �t

= H 2�t−2 + �t + H�t−1

= H t− j � j + �t + H�t−1 + · · · + H t− j−1� j , (6.4.22)

and assuming that H−1 exists, we can also write yk in the form

yk = x′
k�k + uk

= x′
k[H−K+k�K − H−K+k�K − · · · − H−1�k+1] + uk .

Thus, (y1, . . . , yK ) can be written as
y1

y2
...

yK

 =


x′

1 H−K+1

x′
2 H−K+2

...
x′

K

 �K +


u1

u2
...

uK



−


x′

1 H−1 x′
1 H−2 . . . x′

1 H−K+1

0′ x′
2 H−1 . . . x′

2 H−K+2

. . .
...

x′
K−1 H−1

0′




�2
�3
...

�K

 . (6.4.23)

Applying GLS to (6.4.23) gives

�K |K = σ 2
u {[H ′−K+1x1, H ′−K+2x2, . . . , xK ]

× [IK + AK (IK−1 ⊗ P)A′
K ]−1[H−K+1x1, . . . , xK ]′}−1,

(6.4.24)



6.4 Coefficients That Evolve over Time 161

and

�K |K = 1

σ 2
u

�K |K [H ′−K+1x1, H ′−K+2x2, . . . , xK ]

× [IK + AK (IK−1 ⊗ P)A′
K ]−1

 y1
...

yK

 , (6.4.25)

where P = σ−2
u �, and AK is the coefficient matrix of (�2, . . . , �K )′ in (6.4.23).

The initial estimators, �K |K and �K |K , are functions of σ 2
u , �, and H .

6.4.3 Maximum Likelihood Estimation

When H , �, and σ 2
u are unknown, (6.4.7) opens the way for maximum likeli-

hood estimation without the need for repeated inversions of covariance matrices
of large dimensions. To form the likelihood function, we note that

yt − yt |t = x′
t (�t − �t |t−1) + ut = yt − x ′

t �t |t−1 (6.4.26)

is normal and serially uncorrelated. Hence, the joint density of (y1, . . . , yT )
can be written as the product of the conditional density of (yK+1, . . . , yT |
y1, . . . , yK ) and the marginal density of (y1, . . . , yK ). The log likelihood func-
tion of (yK+1, . . . , yT ), given (y1, . . . , yK ), is

log L = −T − K

2
log 2π − 1

2

T∑
t=K+1

log
(
x′

t�t |t−1xt + σ 2
u

)
− 1

2

T∑
t=K+1

(yt − x′
t �t |t−1)2

x′
t�t |t−1xt + σ 2

u

. (6.4.27)

The first K observations are used to compute �K |K and �K |K [equations (6.4.24)
and (6.4.25)] as functions of σ 2

u , �, and H . Hence, the data �t |t−1 and �t |t−1

(t = K + 1, . . . , T ) required to evaluate log L are functions of σ 2
u , �, and H ,

as given by (6.4.13), (6.4.15), (6.4.12), and (6.4.11). To find the maximum of
(6.4.27), numerical methods will have to be used.

When we estimate the model (6.4.1) and (6.4.2) using panel data, all the
derivations in Section 6.4.2 remain valid if we replace yt , xt , ut , and σ 2

u by the
N × 1 vector yt = (y1t , . . . , yNt )′, the N × K matrix Xt = (x1t , . . . , xN T )′, the
N × 1 vector ut = (u1t , . . . , uNt )′, and σ 2

u IN in appropriate places. The MLE
can be carried out in the same way as outlined in this section, except that the
likelihood function (6.4.27) is replaced by

log L = const − 1

2

∑
t

log
∣∣X ′

t�t |t−1 Xt + σ 2
u IN

∣∣
− 1

2

∑
t

(yt − Xt �t |t−1)′

× (
Xt�t |t−1 X ′

t + σ 2
u IN

)−1
(yt − Xt �t |t−1). (6.4.27′)
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However, we no longer need to use the first K period observations to start the
iteration. If N > K , we need to use only the first-period cross-sectional data to
obtain �1|1 and �1|1. Additional details with regard to the computation can be
found in Harvey (1978) and Harvey and Phillips (1982).

6.4.4 Tests for Parameter Constancy

A simple alternative to the null hypothesis of constancy of regression coeffi-
cients over time is

�t = �t−1 + �t , (6.4.28)

where �t is assumed independently normally distributed, with mean zero and
a diagonal covariance matrix �. Regarding �0 as fixed, we have

�t = �0 +
t∑

s=1

�s . (6.4.29)

Thus, the regression model becomes

yt = x′
t �t + ut = x′

t �0 + ut + x′
t

(
t∑

s=1

�s

)
= x′

t �0 + u∗
t , (6.4.30)

where u∗
t = ut + x′

t (
∑t

s=1�s) has variance

Eu∗2
t = σ 2

u + tx′
t�xt . (6.4.31)

For � = diag{ψkk}, (6.4.31) becomes

Eu∗2
t = σ 2

u + t
K∑

k=1

x2
ktψkk, t = 1. . . . , T . (6.4.32)

The null hypothesis states that � = 0. Hence, the Breusch–Pagan
(1979) Lagrange-multiplier test applied here is to regress û2

t /σ̂
2
u on

t(1, x2
2t , . . . , x2

K t ), t = 1, . . . , T , where ût is the least-squares residual ût =
yt − �̂

′
xt , �̂ = (

∑T
t=1 xt x′

t )
−1(

∑T
t=1 xt yt ), and σ̂ 2

u = ∑T
t=1 û2

t /T . Under the
null hypothesis, one-half the explained sum of squares of this regression is
asymptotically chi-square-distributed, with K degrees of freedom.14

When panel data are available, it is possible to test for parameter constancy
indirectly using the classic analysis-of-covariance test. By the assumption that
the parameter vector �t is constant over cross-sectional units in the sample
period, an indirect test is to postulate the null hypothesis

H0 : �1 = �2 = · · · = �T = �.

If the disturbances of the regression model yit = �′
t xi t + uit are independently

normally distributed over i and t , then the test statistic F ′
3 from Chapter 2 has
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an F distribution with (T − 1)K and N (T − K ) degrees of freedom under the
null.

If the null hypothesis is rejected, we can use the information that under mild
regularity conditions plimN→∞�̂t = �t , t = 1, . . . , T , to investigate the nature
of variation in the parameters over time. We can apply the Box–Jenkins (1970)
method on �̂t to identify a suitable stochastic process with which to model the
parameter variation.

6.5 COEFFICIENTS THAT ARE FUNCTIONS OF
OTHER EXOGENOUS VARIABLES

Sometimes, instead of assuming that parameters are random draws from a com-
mon distribution, an investigation of possible dependence of �i t on characteris-
tics of the individuals or time is of considerable interest (e.g., Amemiya (1978b);
Hendricks, Koenker, and Poirier (1979); Singh et al. (1976); Swamy and Tinsley
(1977); Wachter (1970)). A general formulation of stochastic-parameter models
with systematic components can be expressed within the context of the linear
model. Suppose that

yi = Xi1�1 + Xi2�2i + ui , i = 1, . . . , N , (6.5.1)

and

�2i = Zi � + �2i (6.5.2)

where Xi1 and Xi2 denote the T × K1 and T × K2 matrices of the time-series
observations of the first K1 and last K2 (= K − K1) exogenous variables for
the i th individual, �1 is a K1 × 1 vector of fixed constants, �2i is a K2 × 1
vector that varies according to (6.5.2), Zi and � are a K2 × M matrix of known
constants and a M × 1 vector of unknown constants, respectively, and ui and �2i

are T × 1 and K2 × 1 vectors of unobservable random variables. For example,
in Wachter (1970), yi is a vector of time-series observations on the logarithm
of the relative wage rate in the i th industry. Xi1 contains the logarithms of such
variables as the relative value added in the i th industry and the change in the
consumer price, Xi2 consists of a single vector of time-series observations on
the logarithm of unemployment, and Zi contains the degree of concentration
and the degree of unionization in the i th industry.

For simplicity, we assume that ui and �2i are uncorrelated with each other
and have zero means. The variance–covariance matrices of ui and �2i are given
by

Eui u′
j = σi j IT , (6.5.3)

and

E�2i �
′
2 j =

{
� if i = j,
0 if i �= j.

(6.5.4)
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Let � = (σi j ). We can write the variance–covariance matrices of u =
(u′

1, . . . , u′
N )′ and �2 = (�′

21, . . . , �′
2N )′ as

Euu′ = � ⊗ IT , (6.5.5)

and

E�2�′
2 =

� 0
. . .

0 �

 = �̃. (6.5.6)

Combining (6.5.1) and (6.5.2), we have

y = X1�1 + W� + X̃2�2 + u, (6.5.7)

where

y
N T ×1

= (y′
1, . . . , y′

N )′,

X1
N T ×K1

= (X ′
11, . . . , X ′

N1)′,

W
N T ×M

= (Z ′
1 X ′

12, Z ′
2 X ′

22, . . . , Z ′
N X ′

N2)′,

X̃2
N T ×N K2

=


X12 0

X22

. . .
0 X N2

 ,

and

�2
N K2×1

= (�′
21, . . . , �′

2N )′.

The BLUE of �1 and � of (6.5.7) is the GLS estimator[
�̂1
�̂

]
GLS

=
{[

X ′
1

W ′

]
[� ⊗ IT + X̃2�̃X̃ ′

2]−1(X1, W )

}−1

×
{[

X ′
1

W ′

]
[� ⊗ IT + X̃2�̃X̃ ′

2]−1y
}

. (6.5.8)

If � is diagonal, the variance–covariance matrix of the stochastic term of
(6.5.7) is block-diagonal, with the i th diagonal block equal to

�i = Xi2�X ′
i2 + σi i IT . (6.5.9)

The GLS estimator (6.5.8) can be simplified as[
�̂1
�̂

]
GLS

=
[

N∑
i=1

[
X ′

i1

Z ′
i X ′

i2

]
�−1

i (Xi1, X2i Zi )

]−1

×
[

N∑
i=1

[
X ′

i1

Z ′
i X ′

i2

]
�−1

i yi

]
. (6.5.10)
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Amemiya (1978b) suggested estimating � and σi j as follows. Let

y1
...

yN

 =

 X11
...

X N1

 �1 +


X12

0
...
0

 �21 +


0

X22
...
0

 �22

+ · · · +

 0
...

X N2

 �2N +

u1
...

uN

 . (6.5.11)

Apply the least-squares method to (6.5.11). Denote the resulting estimates by
�̂1 and �̂2i , i = 1, . . . , N . Then σi j can be estimated by

σ̂i j = 1

T
(yi − Xi1�̂1 − Xi2�̂2i )

′(y j − X j1�̂1 − X j2�̂2 j ), (6.5.12)

and � can be estimated by

�̂ =
(

N∑
i=1

Z ′
i Zi

)−1 (
N∑

i=1

Z ′
i �̂2i

)
. (6.5.13)

We then estimate � by

�̂ = 1

N

N∑
i=1

(�̂2i − Zi �̂)(�̂2i − Zi �̂)′. (6.5.14)

Once consistent estimates of σi j and � are obtained (as both N and T ap-
proach infinity), we can substitute them into (6.5.8). The resulting two-stage
Aitken estimator of (�′

1, �′) is consistent and asymptotically normally dis-
tributed under general conditions. A test of the hypothesis that � = 0 can be
performed in the usual regression framework using

Var(�̂GLS) = [W ′�̃−1W − W ′�̃−1 X1(X ′
1�̃

−1 X1)−1 X ′
1�̃

−1W ]−1,

(6.5.15)

where

�̃ = X̃2�̃X̃ ′
2 + � ⊗ IT .

6.6 A MIXED FIXED- AND
RANDOM-COEFFICIENTS MODEL

6.6.1 Model Formulation

Many of the previously discussed models can be treated as special cases of a
general mixed fixed- and random-coefficients model. For ease of exposition,
we shall assume that only time-invariant cross-sectional heterogeneity exists.



166 Variable-Coefficient Models

Suppose that each cross-sectional unit is postulated to be different, so that

yit =
K∑

k=1

βki xkit +
m∑

�=1

γ�i w�i t + uit , i = 1, . . . , N ,
(6.6.1)

t = 1, . . . , T,

where xi t and wi t are each a K × 1 and an m × 1 vector of explanatory vari-
ables that are independent of the error of the equation, uit . Stacking the N T
observations together, we have

y = X� + W � + u, (6.6.2)

where

X
N T ×N K

=


X1 0 . . . 0
0 X2 . . . 0
...

. . .
...

0 X N

 ,

W
N T ×Nm

=


W1 0 . . . 0
0 W2 . . . 0
...

. . .
...

0 WN

 ,

u
N T ×1

= (u′
1, . . . , u′

N ),

�
N K×1

= (�′
1, . . . , �′

N )′ and �
Nm×1

= (�′
1, . . . , �′

N )′.

Equation (6.6.1), just like (6.2.2), assumes a different behavioral-equation rela-
tion for each cross-sectional unit. In this situation, the only advantage of pooling
is to put the model (6.6.2) in Zellner’s (1962) seemingly unrelated regression
framework to obtain efficiency of the estimates of the individual behavioral
equation.

The motivation of a mixed fixed- and random-coefficients model is that
while there may be fundamental differences among cross-sectional units, by
conditioning on these individual specific effects one may still be able to draw
inferences on certain population characteristics through the imposition of a pri-
ori constraints on the coefficients of xi t and wi t . We assume that there exist two
kinds of restrictions, stochastic and fixed (e.g., Hsiao (1991a); Hsiao, Appelbe,
and Dineen (1993)), in the following form:

A.6.6.1. The coefficients of xi t are assumed to be subject to stochastic restric-
tions of the form

� = A1�̄ + �, (6.6.3)

where A1 is an N K × L matrix with known elements, �̄ is an L × 1
vector of constants, and � is assumed to be (normally distributed)
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random variables with mean 0 and nonsingular constant covariance
matrix C and is independent of xi t .

A.6.6.2. The coefficients of wi t are assumed to be subject to

� = A2�̄, (6.6.4)

where A2 is an Nm × n matrix with known elements, and �̄ is an
n × 1 vector of constants.

Since A2 is known, we may substitute (6.6.4) into (6.6.2) and write the
model as

y = X� + W̃ �̄ + u (6.6.5)

subject to (6.6.3), where W̃ = W A2.
A.6.6.2 allows for various possible fixed parameter configurations. For in-

stance, if � is different across cross-sectional units, we can let A2 = IN ⊗ Im .
On the other hand, if we wish to constrain �i = � j , we can let A2 = eN ⊗ Im .

Many of the linear panel data models with unobserved individual specific
but time-invariant heterogeneity can be treated as special cases of the model
(6.6.2)–(6.6.4). These include:

i. A common model for all cross-sectional units. If there is no in-
terindividual difference in behavioral patterns, we may let X = 0,
A2 = eN ⊗ Im , so (6.6.2) becomes

yit = w′
i t �̄ + uit . (6.6.6)

ii. Different models for different cross-sectional units. When each indi-
vidual is considered different, then X = 0, A2 = IN ⊗ Im , and (6.6.2)
becomes

yit = w′
i t �i + uit . (6.6.7)

iii. Variable-intercept model (e.g., Kuh (1963, Section 3.2)). If conditional
on the observed exogenous variables, the interindividual differences
stay constant through time. Let X = 0, and

A2 = (IN ⊗ im,
...eN ⊗ I ∗

m−1), �̄ = (γ11, . . . , γN1, γ̄2, . . . , γ̄m)′,

where we arrange Wi = (eT , wi2, . . . , wim), i = 1, . . . , N , im =
(1, 0, . . . , 0)′, and

I ∗
m−1

m×(m−1)

= (0
...Im−1)′.

Then (6.6.2) becomes

yit = γi1 + γ̄2wit2 + · · · + γ̄mwitm + uit . (6.6.8)

iv. Error-components model (e.g., Balestra and Nerlove (1966); Wallace
and Hussain (1969); or Section 3.3). When the effects of the individual-
specific, time-invariant omitted variables are treated as random vari-
ables just as in the assumption on the effects of other omitted variables,
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we can let Xi = eT , � ′ = (α1, . . . , αN ), A1 = eN , C = σ 2
α IN , β̄ be an

unknown constant, and wi t not contain an intercept term. Then (6.4.2)
becomes

yit = β̄ + �̄′wi t + αi + uit . (6.6.9)

v. Random-coefficients model (Swamy (1970), or Section 6.2.2). Let
Z = 0, A1 = eN ⊗ IK , and C = IN ⊗ 	. Then we have model (6.2.4).

6.6.2 A Bayes Solution

The formulation of (6.6.5) subject to (6.6.3) can be viewed from a Bayesian
perspective, as there exists an informative prior on � (6.6.3), but not on �̄. In the
classical sampling approach, inferences are made typically by assuming that
the probability law f (y, �) generating the observations y is known, but not the
vector of constant parameters �. Estimators �̂(y) of the parameters � are chosen
as functions of y so that their sampling distributions, in repeated experiments,
are, in some sense, concentrated as closely as possible about the true values
of �. In the Bayesian approach, a different line is taken. First, all quantities,
including the parameters, are considered random variables. Second, all proba-
bility statements are conditional, so that in making a probability statement it is
necessary to refer to the conditioning event as well as the event whose prob-
ability is being discussed. Therefore, as part of the model, a prior distribution
p(�) of the parameter � is introduced. The prior distribution is supposed to ex-
press a state of knowledge (or ignorance) about � before the data are obtained.
Given the probability model f (y; �), the prior distribution, and the data y, the
probability distribution of � is revised to p(� | y), which is called the posterior
distribution of �, according to Bayes’ theorem (e.g., Kaufman (1977),
Intriligator, Bodkin, and Hsiao (1996)):15

P(� | y) ∝ p(�) f (y | �), (6.6.10)

where the sign “∝” denotes “is proportional to,” with the factor of proportion-
ality being a normalizing constant.

Under the assumption that

A.6.6.3. u ∼ N (0, �),

we may write the model (6.6.5) as follows:

A.1. Conditional on X, W̃ , �, and �̄,

y ∼ N (X� + W̃ �̄, �). (6.6.11)

A.2. The prior distributions of � and �̄ are independent:

P(�, �̄) = P(�) · P(�̄). (6.6.12)

A.3. P(�) ∼ N (A1�̄, C).



6.6 A Mixed Fixed- and Random-Coefficients Model 169

A.4. There is no information about �̄ and �̄; therefore P(�̄) and P(�̄) are
independent and

P(�̄) ∝ constant,

P(�̄) ∝ constant.

Conditional on � and C , repeatedly applying the formulas in Appendix 6A
yields (Hsiao, Appelbe, and Dineen (1993)):

i. The posterior distribution of �̄ and �̄ given y is

N

((
β̄∗

�̄∗

)
, D1

)
, (6.6.13)

where

D1 =
[(

A′
1 X ′

W̃ ′

)
(� + XC X ′)−1(X A1, W̃ )

]−1

, (6.6.14)

and(
�̄

∗

�̄∗

)
= D1

[
A′

1 X ′

W̃ ′

]
(� + XC X ′)−1y. (6.6.15)

ii. The posterior distribution of � given �̄ and y is N (�∗, D2), where

D2 = {X ′[�−1 − �−1W̃ (W̃ ′�−1W̃ )−1W̃ ′�−1]X + C−1}−1,

(6.6.16)

�∗ = D2{X ′[�−1 − �−1W̃ (W̃ ′�−1W̃ )−1W̃ ′�−1]y + C−1 A1�̄}.
(6.6.17)

iii. The (unconditional) posterior distribution of � is N (�∗∗, D3), where

D3 = {X ′[�−1 − �−1W̃ (W̃ ′�−1W̃ )−1W̃ ′�−1]X + C−1

− C−1 A1(A′
1C−1 A1)−1 A′

1C−1}−1, (6.6.18)

�∗∗ = D3{X ′[�−1 − �−1W̃ (W̃ ′�−1W̃ )−1W̃ ′�−1]y}
= D2{X ′[�−1 − �−1W̃ (W̃ ′�−1W̃ )−1W̃ ′�−1]X �̂ + C−1 A1�̄

∗},
(6.6.19)

where �̂ is the GLS estimate of (6.6.5),

�̂ = {X ′[�−1 − �−1W̃ (W̃ ′�−1W̃ )−1W̃ ′�−1]X}−1

× {X ′[�−1 − �−1W̃ (W̃ ′�−1W̃ )−1W̃ ′�−1]y}. (6.6.20)

Given a quadratic loss function of the error of the estimation, a Bayes point
estimate is the posterior mean. The posterior mean of �̄ and �̄ (6.6.15) is the
GLS estimator of the model (6.6.5) after substituting the restriction (6.6.3),

y = X A1�̄ + W̃ �̄ + v, (6.6.21)

where v = X� + u. However, the posterior mean of � is not the GLS estimator
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of (6.6.5). It is the weighted average between the GLS estimator of � and the
overall mean �̄ (6.6.17) or �̄

∗
(6.6.19) with the weights proportional to the in-

verse of the precision of respective estimates. The reason is that although both
(6.2.2) and (6.6.5) allow the coefficients to be different across cross-sectional
units, (6.6.3) has imposed the additional prior information that � are randomly
distributed with mean A1�̄. For (6.2.2), the best linear predictor for an individ-
ual outcome is to substitute the best linear unbiased estimator of the individual
coefficients into the individual equation. For model of (6.6.5) and (6.6.3), be-
cause the expected �i is the same across i and the actual difference can be
attributed to a chance outcome, additional information about �i may be ob-
tained by examining the behavior of others, hence (6.6.17) or (6.6.19).

In the special case of the error-components model (6.6.9), X = IN ⊗ eT .
Under the assumption that wi t contains an intercept term (i.e., β̄ = 0) and uit

is i.i.d., the Bayes estimator ((6.6.15)) of �̄ is simply the GLS estimator of
(6.6.21) �̄∗. The Bayes estimator of αi (6.6.17) is

α∗∗
i =

(
T σ 2

α

T σ 2
α + σ 2

u

)
ˆ̄vi , (6.6.22)

where ˆ̄vi = 1
T

∑T
τ=1 v̂i t and v̂i t = yit − �̄∗wi t . Substituting �̄∗, and α∗∗

i for the
unknown �̄, and αi in (6.6.9), Wansbeek and Kapteyn (1978) and Taub (1979)
show that

ŷi,T +S = �̄∗′
wi,t+s + α∗∗

i (6.6.23)

is the best linear unbiased predictor (BLUP) for the i th individual s periods
ahead.16

6.6.3 An Example

In a classical framework, it makes no sense to predict the independently drawn
random variable �i (or � i ). However, in panel data, we actually operate with
two dimensions – a cross-sectional dimension and a time-series dimension.
Even though �i is an independently distributed random variable across i , once
a particular �i is drawn, it stays constant over time. Therefore, it makes sense
to predict �i . The classical predictor of �i is the generalized least-squares
estimator of the model (6.6.5). The Bayes predictor (6.6.19) is the weighted
average between the generalized least-squares estimator of � for the model
(6.6.5) and the overall mean A1�̄ if �̄ is known, or A1�̄

∗
if �̄ is unknown,

with the weights proportional to the inverse of the precisions of respective
estimates. The Bayes estimator of the individual coefficients, �i , “shrinks” the
GLS estimator of �i toward the grand mean �̄ or �̄

∗
. The reason for doing so

stems from DeFinetti’s (1964) exchangeability assumption. When there are not
enough time-series observations to allow for precise estimation of individual
�i (namely, T is small), additional information about �i may be obtained by



6.6 A Mixed Fixed- and Random-Coefficients Model 171

Table 6.1. Long-haul regression coefficientsa

Price coefficient,

Route unconstrained Mixed coefficients

1 −0.0712(−0.15) −0.2875(N/A)
2 0.1694(0.44) −0.0220(N/A)
3 −1.0142(−5.22) −0.7743(N/A)
4 −0.4874(−2.29) −0.1686(N/A)
5 −0.3190(−2.71) −0.2925(N/A)
6 0.0365(0.20) −0.0568(N/A)
7 −0.3996(−3.92) −0.3881(N/A)
8 −0.1033(−0.95) −0.2504(N/A)
9 −0.3965(−4.22) −0.2821(N/A)

10 −0.6187(−4.82) −0.5934(N/A)

Average N/A −0.3116

Route Income coefficient

1 1.4301(3.07) 0.4740(N/A)
2 −0.348(−0.09) 0.2679(N/A)
3 0.3698(1.95) 0.3394(N/A)
4 0.2497(0.70) 0.3145(N/A)
5 0.5556(2.71) 0.3501(N/A)
6 0.1119(0.95) 0.1344(N/A)
7 0.9197(8.10) 0.5342(N/A)
8 0.3886(3.88) 0.5255(N/A)
9 0.6688(6.16) 0.5648(N/A)

10 0.1928(2.39) 0.2574(N/A)

Average N/A 0.3762

at-statistics in parentheses.
Source: Hsiao, Appelbe, and Dineen (1993, Table 3).

examining the behavior of others because the expected response is assumed the
same and the actual differences in response among individuals are the work of
a chance mechanism.

Table 6.1 presents Canadian route-specific estimates of the demand for
customer-dialed long-haul long-distance service (>920 miles) based on quar-
terly data from 1980 (I) to 1989 (IV) (Hsiao, Appelbe, and Dineen (1993)).
Some of the point-to-point individual route estimates (unconstrained model) of
the price and income coefficients have the wrong signs (Table 6.1, column 2) per-
haps because of multicollinearity. However, if one invokes the representative-
consumer argument by assuming that consumers respond in more or less the
same way to price and income changes (thus considering the coefficients of
these variables across routes as random draws from a common population with
constant mean and variance–covariance matrix), but also allows route-specific
effects to exist by assuming that the coefficients of the intercept and seasonal
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dummies are fixed and different for different routes, then all the estimated
route-specific price and income coefficients have the correct signs (Table 6.1,
column 3).

6.6.4 Random or Fixed Parameters

6.6.4.a An Example

When homogeneity is rejected by the data, whether to treat unobserved hetero-
geneity as fixed or random has paramount importance in panel data modeling.
For instance, in a study of Ontario, Canada regional electricity demand, Hsiao
et al. (1989) estimate a model of the form

yit = γi yi,t−1 + �′
i di t + �′

i xi t + uit , (6.6.24)

where yit denotes the logarithm of monthly kilowatt-hour or kilowatt demand
for region i at time t , di t denotes 12 monthly dummies, and xi t denotes the
climatic factor and the logarithm of income, own price, and price of its close
substitutes, all measured in real terms. Four different specifications are consid-
ered:

1. The coefficients �′
i = (γi , �′

i , �′
i ) are fixed and different for different

regions.
2. The coefficients �i = �′ = (γ, �′, �′) for all i .
3. The coefficients vectors �i are randomly distributed with common

mean � and covariance matrix 	.
4. The coefficients �i are randomly distributed with common mean �̄

and covariance matrix 	11, and the coefficients γi and �i are fixed and
different for different i .

Monthly data for Hamilton, Kitchener–Waterloo, London, Ottawa, St.
Catherines, Sudbury, Thunder Bay, Toronto, and Windsor from January 1967 to
December 1982 are used to estimate these four different specifications. Com-
parisons of the one-period-ahead root-mean-square prediction error√√√√ T + f∑

t=T +1

(yit − ŷi t )2/ f

from January 1983 to December 1986 are summarized in Tables 6.2 and 6.3.
As one can see from these tables, the simple pooling (model 2) and random-
coefficients (model 3) formulations on average yield less precise prediction for
regional demand. The mixed fixed- and random-coefficient model (model 4)
performs the best. It is interesting to note that combining information across
regions together with a proper account of region-specific factors is capable of
yielding better predictions for regional demand than the approach of simply
using region-specific data (model 1).
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Table 6.2. Root-mean-square prediction error of log kilowatt-hours
(one-period-ahead forecast)

Root Mean Square Error

Region- Random
Municipality specific Pooled coefficients Mixed

Hamilton 0.0865 0.0535 0.0825 0.0830
Kitchener–Waterloo 0.0406 0.0382 0.0409 0.0395
London 0.0466 0.0494 0.0467 0.0464
Ottawa 0.0697 0.0523 0.0669 0.0680
St. Catharines 0.0796 0.0724 0.0680 0.0802
Sudbury 0.0454 0.0857 0.0454 0.0460
Thunder Bay 0.0468 0.0615 0.0477 0.0473
Toronto 0.0362 0.0497 0.0631 0.0359
Windsor 0.0506 0.0650 0.0501 0.0438
Unweighted average 0.0558 0.0586 0.0568 0.0545
Weighted averagea 0.0499 0.0525 0.0628 0.0487

aThe weight is kilowatt-hours of demand in the municipality in June 1985.
Source: Hsiao et al. (1989, p. 584).

6.6.4.b Model Selection

The above example demonstrates that the way in which individual heterogeneity
is taken into account makes a difference in the accuracy of inference. The various
estimation methods discussed so far presuppose that we know which coefficients

Table 6.3. Root-mean-square prediction error of log kilowatts (one-period-
ahead forecast)

Root Mean Square Error

Regional Random
Municipality specific Pooled coefficients Mixed

Hamilton 0.0783 0.0474 0.0893 0.0768
Kitchener–Waterloo 0.0873 0.0440 0.0843 0.0803
London 0.0588 0.0747 0.0639 0.0586
Ottawa 0.0824 0.0648 0.0846 0.0768
St. Catharines 0.0531 0.0547 0.0511 0.0534
Sudbury 0.0607 0.0943 0.0608 0.0614
Thunder Bay 0.0524 0.0597 0.0521 0.0530
Toronto 0.0429 0.0628 0.0609 0.0421
Windsor 0.0550 0.0868 0.0595 0.0543
Unweighted average 0.0634 0.0655 0.0674 0.0619
Weighted averagea 0.0558 0.0623 0.0673 0.0540

aThe weight is kilowatt-hours of demand in the municipality in June 1985.
Source: Hsiao et al. (1989, p. 584).
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should be treated as fixed (and different) and which coefficients should be treated
as random. In practice, we have very little prior information for selecting the
appropriate specifications. Various statistical tests have been suggested to select
an appropriate formulation (e.g., Breusch and Pagan (1979); Hausman (1978);
or Section 6.2.2.d). However, all these tests essentially exploit the implications
of a certain formulation in a specific framework. They are indirect in nature. The
distribution of a test statistic is derived under a specific null, but the alternative is
composite. The rejection of a null does not automatically imply the acceptance
of a specific alternative. It would appear more appropriate to treat the fixed-
coefficient, random-coefficient, or various forms of mixed fixed- and random-
coefficient models as different models and use model selection criteria to select
an appropriate specification (Hsiao and Sun (2000)). For instance, one can use
a well-known model selection criterion such as Akaike’s (1973) information
criterion, or Schwarz’s (1978) Bayesian information criterion that selects the
model Hj among j = 1, . . . , J different specifications if it yields the smallest
value of

−2 log f (y | Hj ) + 2m j , j = 1, . . . , J, (6.6.25)

or

−2 log f (y | Hj ) + m j log N T , j = 1, . . . , J, (6.6.26)

where log f (y | Hj ) and m j denote the log likelihood values of y and the num-
ber of unknown parameters of the model Hj . Alternatively, Hsiao (1995) and
Min and Zellner (1993) suggest selecting the model that yields the highest
predictive density. In this framework, time-series observations are divided into
two periods: 1 to T1, denoted by y1, and T1 + 1 to T , denoted by y2. The first
T1 observations are used to obtain the probability distribution P(� j | y1) of
the parameters � j associated with Hj . The predictive density is then evaluated
as ∫

f (y2 | � j )p(� j | y1) d� j , (6.6.27)

where f (y2 | � j ) is the density of y2 conditional on � j . Given the sensitivity of
the Bayesian approach to the choice of prior, the advantage of using (6.6.27) is
that the choice of a model does not have to depend on the prior. One can use
the noninformative (or diffuse) prior to derive P(� j | y1). It is also consistent
with the theme that “a severe test for an economic theory, the only test and the
ultimate test is its ability to predict” (Klein (1988, p. 21); see also Friedman
(1953)).

When y2 only contains a limited number of observations, the choice of model
in terms of predictive density may become heavily sample-dependent. If too
many observations are put in y2, then a lot of sample information is not utilized
to estimate unknown parameters. One compromise is to modify (6.6.27) by
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recursively updating the estimates,∫
f (yT | � j , yT −1)P(� j | yT −1) d� j

×
∫

f (yT −1 | � j , yT −2)P(� j | yT −2) d� j · · ·

×
∫

f (yT1+1 | � j , y1)P(� j | y1) d� j , (6.6.28)

where P(� j | yT ) denotes the posterior distribution of � given observations
from 1 to T . While the formula may look formidable, it turns out that the Bayes
updating formula is fairly straightforward to compute. For instance, consider
the model (6.6.5). Let � = (�, �̄), �t , and Vt denote the posterior mean and
variance of � based on the first t observations. Then

�t = Vt−1
(
Q′

t�
−1yt + V −1

t−1�t−1
)
, (6.6.29)

Vt = (
Q′

t�
−1 Qt + V −1

t−1

)−1
, t = T1 + 1, . . . , T, (6.6.30)

and

P(yt+1 | yt ) =
∫

P(yt+1 | �, yt )P(� | yt ) d�

∼ N (Qt+1�t , � + Qt+1Vt Q′
t+1), (6.6.31)

where y′
t = (y1t , y2t , . . . , yNt ), Qt = (x′

t , w′
t ), xt = (x1t , . . . , xNt ), wt =

(w1t , . . . , wNt ), � = Eut u′
t , and u′

t = (u1t , . . . , uNt ) (Hsiao, Appelbe, and
Dineen (1993)).

Hsiao and Sun (2000) have conducted limited Monte Carlo studies to evaluate
the performance of these model selection criteria in selecting the random-,
fixed-, and mixed random–fixed-coefficient specification. They all appear to
have very good performance in selecting the correct specification.

6.7 DYNAMIC RANDOM-COEFFICIENT MODELS

For ease of exposition and without loss of the essentials, instead of considering
generalizing (6.6.5) to the dynamic model, in this section we consider the
generalization of the random-coefficient model (6.2.1) to the dynamic model
of the form17

yit = γi yi,t−1 + β ′
i xi t + uit , |γi | < 1, i = 1, . . . , N ,

(6.7.1)
t = 1, . . . , T,

where xi t is a k × 1 vector of exogenous variables, and the error term uit is
assumed to be independently, identically distributed over t with mean zero
and variance σ 2

ui
and is independent across i . The coefficients �i = (γi , �′

i )
′ are

assumed to be independently distributed across i with mean �̄ = (γ̄ , �̄
′
)′ and
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covariance matrix 	. Let

�i = �̄ + � i , (6.7.2)

where � i = (αi1, � ′
i2). We have

E� i = 0, E� i �
′
j =

{
	 if i = j,

0 otherwise,
(6.7.3)

and18

E� i x′
j t = 0. (6.7.4)

Stacking the T time-series observations of the i th individuals in matrix form
yields

yi
T ×1

= Qi �i + ui , i = 1, . . . , N , (6.7.5)

where yi = (yi1, . . . , yi t )
′, Qi = (yi,−1, Xi ), yi,−1 = (yi0, . . . , yi,T −1)′, Xi =

(xi1, . . . , xi t )
′, ui = (ui1, . . . , ui t )

′, and for ease of exposition we assume that
yi0 are observable.19

We note that because yi,t−1 depends on γi , we have E Qi �
′
i �= 0, i.e., the

independence between the explanatory variables and � i (equation (6.2.3)) is
violated. Substituting �i = �̄ + � i into (6.7.5) yields

yi = Qi �̄ + vi , i = 1, . . . , N , (6.7.6)

where

vi = Qi � i + ui . (6.7.7)

Since

yi,t−1 =
∞∑
j=0

(γ̄ + αi1) j x′
i,t− j−1(�̄ + � i2) +

∞∑
j=0

(γ̄ + αi1) j ui,t− j−1,

(6.7.8)

it follows that E(vi | Qi ) �= 0. Therefore, contrary to the static case, the least-
squares estimator of the common mean, �̄, is inconsistent.

Equations (6.7.7) and (6.7.8) also demonstrate that the covariance matrix V
of vi is not easily derivable. Thus, the procedure of premultiplying (6.7.6) by
V −1/2 to transform the model into one with serially uncorrelated error is not
implementable. Neither does the instrumental-variable method appear imple-
mentable, because the instruments that are uncorrelated with vi are most likely
uncorrelated with Qi as well.

Pesaran and Smith (1995) have noted that as T → ∞, the least-squares
regression of yi on Qi yields a consistent estimator �̂i of �i . They suggest
finding a mean group estimator of �̄ by taking the average of �̂i across i ,

ˆ̄� = 1

N

N∑
i=1

�̂i . (6.7.9)
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The mean group estimator (6.7.9) is consistent and asymptotically normally
distributed so long as

√
N/T → 0 as both N and T → ∞ (Hsiao, Pesaran,

and Tahmiscioglu (1999)).
Panels with large T are the exception in economics. Nevertheless, under

the assumption that yi0 are fixed and known and � i and uit are independently
normally distributed, we can implement the Bayes estimator of �̄ conditional on
σ 2

i and 	 using the formula (6.6.19), just as in the mixed-model case discussed
in Section 6.6. The Bayes estimator condition on 	 and σ 2

i is equal to

ˆ̄�B =
{

N∑
i=1

[
σ 2

i (Q′
i Qi )

−1 + 	
]−1

}−1 N∑
i=1

[
σ 2

i (Q′
i Qi )

−1 + 	
]−1

�̂i ,

(6.7.10)

which is a weighted average of the least-squares estimator of individual units
with the weights being inversely proportional to individual variances. When
T → ∞, N → ∞, and

√
N/T 3/2 → 0, the Bayes estimator is asymptoti-

cally equivalent to the mean group estimator (6.7.9) (Hsiao, Pesaran, and
Tahmiscioglu (1999)).

In practice, the variance components, σ 2
i and 	, are rarely known, so the

Bayes estimator (6.7.10) is rarely calculable. One approach is to substitute
the consistently estimated σ 2

i and 	, say (6.2.8) and (6.2.9), into the formula
(6.7.10), and treat them as if they were known. For ease of reference, we shall
call (6.7.10) with known σ 2

i and 	 the infeasible Bayes estimator. We shall call
the estimator obtained by replacing σ 2

i and 	 in (6.7.10) with their consistent
estimates, say (6.2.8) and (6.2.9), the empirical Bayes estimator.

The other approach is to follow Lindley and Smith (1972) and assume that
the prior distributions of σ 2

i and 	 are independent and are distributed as

P
(
	−1, σ 2

1 , . . . , σ 2
N

) = W (	−1 | (ρR)−1, ρ)
N∏

i=1

σ−1
i , (6.7.11)

where W represents the Wishart distribution with scale matrix (ρR) and degrees
of freedom ρ (e.g., Anderson (1958)). Incorporating this prior into the model
(6.7.1)–(6.7.2), we can obtain the marginal posterior densities of the parameters
of interest by integrating out σ 2

i and 	 from the joint posterior density. However,
the required integrations do not yield closed-form solutions. Hsiao, Pesaran, and
Tahmiscioglu (1999) have suggested using Gibbs sampler to calculate marginal
densities.

The Gibbs sampler is an iterative Markov-chain Monte Carlo method which
only requires the knowledge of the full conditional densities of the parameter
vector (e.g., Gelfand and Smith (1990)). Starting from some arbitrary initial
values, say (�(0)

1 , �(0)
2 , . . . , �(0)

k ), for a parameter vector � = (�1, . . . , �k), it
samples alternatively from the conditional density of each component of the
parameter vector, conditional on the values of other components sampled in the
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latest iteration. That is:

1. sample �
( j+1)
1 from P(�1 | �

( j)
2 , �

( j)
3 , . . . , �

( j)
k , y),

2. sample �
( j+1)
2 from P(�2 | �

( j+1)
1 , �

( j)
3 , . . . , �

( j)
k , y),

...
k. sample �

( j+1)
k from P(�k | �

( j+1)
1 , . . . , �

( j+1)
k−1 , y).

The vectors �(0), �(1), . . . , �(k) forms a Markov chain with the transition
probability from stage �( j) to the next stage �( j+1) given by

K
(
�( j), �( j+1)) = P

(
�1

∣∣ �
( j)
2 , . . . , �

( j)
k , y

)
P
(
�2

∣∣ �
( j+1)
1 , �

( j)
3 , . . . , �

( j)
k , y

)
× · · · × P

(
�k

∣∣ �
( j+1)
1 , . . . , �

( j+1)
k−1 , y

)
.

As the number of iterations j approaches infinity, the sampled values in effect
can be regarded as drawing from true joint and marginal posterior densities.
Moreover, the ergodic averages of functions of the sample values will be con-
sistent estimates of their expected values.

Under the assumption that the prior of �̄ is N (�̄
∗
, �), the relevant conditional

distributions that are needed to implement the Gibbs sampler for (6.7.1)–(6.7.2)
are easily obtained from

P
(
�i

∣∣ y, �̄, 	−1, σ 2
1 , . . . , σ 2

N

)∼ N
{

Ai
(
σ−2

i Q′
i yi + 	−1�̄

)
, Ai

}
,

i = 1, . . . , N ,

P
(
�̄
∣∣ y, �1, . . . , �N , 	−1, σ 2

1 , . . . , σ 2
N

)∼ N {D(N	−1 ˆ̄� + �−1�∗), B},

P
(
	−1

∣∣ y, �1, . . . , �N , �̄, σ 2
1 , . . . , σ 2

N

)∼ W

[(
N∑

i=1

(�i − �̄)

× (�i − �̄)′ + ρR

)−1

, ρ + N

]
,

P
(
σ 2

i

∣∣ yi , �1, . . . , �N , �̄, 	−1
)∼ IG[T/2, (yi − Qi �i )

′(yi − Qi �i )/2],

i = 1, . . . , N ,

where Ai = (σ−2
i Q′

i Qi + 	−1)−1, D = (N	−1 + �−1)−1, ˆ̄� = 1
N

∑N
i=1 �i ,

and IG denotes the inverse gamma distribution.
Hsiao, Pesaran, and Tahmiscioglu (1999) have conducted Monte Carlo ex-

periments to study the finite-sample properties of (6.7.10), referred to as the
infeasible Bayes estimator; the Bayes estimator using (6.7.11) as prior for 	

and σ 2
i obtained through the Gibbs sampler, referred to as the hierarchical Bayes

estimator; the empirical Bayes estimator; the group-mean estimator (6.7.8); the
bias-corrected group-mean estimator obtained by directly correcting the finite-
T bias of the least-squares estimator �̂i , using the formula of Kiviet (1995) and
Kiviet and Phillips (1993), then taking the average; and the pooled least-squares
estimator. Table 6.4 presents the bias of the different estimators of γ̄ for N = 50
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and T = 5 or 20. The infeasible Bayes estimator performs very well. It has
small bias even for T = 5. For T = 5, its bias falls within the range of 3 to 17
percent. For T = 20, the bias is at most about 2 percent. The hierarchical Bayes
estimator also performs well,20 followed by the empirical Bayes estimator when
T is small; but the latter improves quickly as T increases. The empirical Bayes
estimator gives very good results even for T = 5 in some cases, but the bias
also appears to be quite large in certain other cases. As T gets larger its bias
decreases considerably. The mean-group and the bias-corrected mean-group es-
timator both have large bias when T is small, with the bias-corrected estimator
performing slightly better. However, the performance of both improves as T in-
creases, and both are still much better than the least-squares estimator. The least-
squares estimator yields significant bias, and its bias persists as T increases.

The Bayes estimator is derived under the assumption that the initial observa-
tions yi0 are fixed constants. As discussed in Chapter 4 or Anderson and Hsiao
(1981, 1982), this assumption is clearly unjustifiable for a panel with finite T .
However, contrary to the sampling approach, where the correct modeling of ini-
tial observations is quite important, Bayesian approach appears to perform fairly
well in the estimation of the mean coefficients for dynamic random-coefficient
models even the initial observations are treated as fixed constants. The Monte
Carlo study also cautions against the practice of justifying the use of certain
estimators on the basis of their asymptotic properties. Both the mean-group and
the corrected mean-group estimator perform poorly in panels with very small
T . The hierarchical Bayes estimator appears preferable to the other consistent
estimators unless the time dimension of the panel is sufficiently large.

6.8 AN EXAMPLE --- LIQUIDITY CONSTRAINTS
AND FIRM INVESTMENT EXPENDITURE

The effects of financial constraints on company investment have been subject
to intensive debate by economists. At one extreme, Jorgenson (1971) claims
that “the evidence clearly favors the Modigliani–Miller theory [Modigliani
and Miller (1958), Miller and Modigliani (1961)]. Internal liquidity is not an
important determinant of the investment, given the level of output and external
funds.” At the other extreme, Stiglitz and Weiss (1981) argue that because
of imperfections in the capital markets, costs of internal and external funds
generally will diverge, and internal and external funds generally will not be
perfect substitutes for each other. Fazzari, Hubbard, and Petersen (1988), Bond
and Meghir (1994), etc. tested for the importance of internal finance by studying
the effects of cash flow across different groups of companies – identified, e.g.,
according to company retention practices. If the null hypothesis of a perfect
capital market is correct, then no difference should be found in the coefficient
of the cash-flow variable across groups. However, these authors find that the
cash-flow coefficient is large for companies with low dividend payout rates.

However, there is no sound theoretical basis for assuming that only low-
dividend-payout companies are subject to financial constraints. The finding
that larger companies have larger cash-flow coefficients is inconsistent with



6.8 Liquidity Constraints and Firm Investment Expenditure 181

both the transaction-costs and asymmetric-information explanations of liquidity
constraints. Whether firm heterogeneity can be captured by grouping firms
according to some indicators remains open to question.

Hsiao and Tahmiscioglu (1997) use COMPUSTAT annual industrial files of
561 firms in the manufacturing sector for the period 1971–1992 to estimate the
following five different investment expenditure models with and without using
liquidity models:(

I

K

)
i t

= α∗
i + γi

(
I

K

)
i,t−1

+ βi1

(
LIQ

K

)
i,t−1

+ εi t , (6.8.1)

(
I

K

)
i t

= α∗
i + γi

(
I

K

)
i,t−1

+ βi1

(
LIQ

K

)
i,t−1

+ βi2qit + εi t ,

(6.8.2)(
I

K

)
i t

= α∗
i +γi

(
I

K

)
i,t−1

+βi1

(
LIQ

K

)
i,t−1

+βi2

(
S

K

)
i,t−1

+εi t ,

(6.8.3)(
I

K

)
i t

= α∗
i + γi

(
I

K

)
i,t−1

+ βi2qit + εi t , (6.8.4)

(
I

K

)
i t

= α∗
i + γi

(
I

K

)
i,t−1

+ βi2

(
S

K

)
i,t−1

+ εi t . (6.8.5)

where Iit is firm i’s capital investment at time t ; LIQi t is a liquidity variable
(defined as cash flow minus dividends); Sit is sales, qit is Tobin’s q (Brainard
and Tobin (1968), Tobin (1969)), defined as the ratio of the market value of
the firm to the replacement value of capital; and Kit is the beginning-of-period
capital stock. The coefficient βi1 measures the short-run effect of the liquidity
variable on firm i’s investment in each of these three specifications. Models
4 and 5 ((6.8.4) and (6.8.5)) are two popular variants of investment equations
that do not use the liquidity variable as an explanatory variable – the Tobin q
model (e.g., Hayashi (1982), Summers (1981)) and the sales capacity model
(e.g., Kuh (1963)). The sales variable can be regarded as a proxy for future
demand for the firm’s output. The q theory relates investment to marginal q,
which is defined as the ratio of the market value of new investment goods to
their replacement cost. If a firm has unexploited profit opportunities, then an
increase of its capital stock of $1 will increase its market value by more than $1.
Therefore, firm managers can be expected to increase investment until marginal
q equals 1. Thus, investment will be an increasing function of marginal q.
Because marginal q is unobservable, it is common in empirical work to replace
it with the average or Tobin’s q.

Tables 6.5 and 6.6 present some summary information from the firm-by-firm
regressions of these five models. Table 6.5 shows the percentage of significant
coefficients at the 5 percent significance level for a one-tailed test. Table 6.6
shows the first and third quartiles of the estimated coefficients. The estimated
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Table 6.5. Individual firm regressions (percentage of firms with significant
coefficients)

Percentage of firms

Model 1 2 3 4 5

Coefficient for:
(LIQ/K )t−1 46 36 31
q 31 38
(S/K )t−1 27 44

Percentage of firms
with significant
autocorrelation 14 12 13 20 15

Actual F 2.47 2.98 2.01 2.66 2.11
Critical F 1.08 1.08 1.08 1.06 1.06

Note: The number of firms is 561. The significance level is 5 percent for a one-tailed
test. Actual F is the F statistic for testing the equality of slope coefficients across firms.
For the F test, the 5 percent significance level is chosen. To detect serial correlation,
Durbin’s t-test at the 5 percent significance level is used.
Source: Hsiao and Tahmiscioglu (1997, Table 1).

coefficients vary widely from firm to firm. The F test of slope homogeneity
across firms while allowing for firm-specific intercepts is also rejected (see
Table 6.5).

The approach of relating the variation of βi1 to firm characteristics such as
dividend payout rate, company size, sales growth, capital intensity, standard
deviation of retained earnings, debt–equity ratio, measures of liquidity stocks
from the balance sheet, number of shareholders, and industry dummies is un-
successful. These variables as a whole do not explain the variation of estimated
�i1 well. The maximum R̄2 is only 0.113. Many of the estimated coefficients are
not significant under various specifications. Neither can one substitute functions
of the form (6.5.2) into (6.8.1)–(6.8.5) and estimate the coefficients directly,
because of perfect multicollinearity. So Hsiao and Tahmiscioglu (1997) classify

Table 6.6. Coefficient heterogeneity: slope estimates at first and third
quartiles across a sample of 561 firms

Slope estimates

Model (I/K )i,t−1 (LIQ/K )i,t−1 qit (S/K )i,t−1

1 .026, .405 .127, .529
2 −.028, .359 .062, .464 0, .039
3 .100, .295 .020, .488 −.005, .057
4 .110, .459 .007, .048
5 −.935, .367 .012, .077

Source: Hsiao and Tahmiscioglu (1997, Table 2).
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Table 6.7. Variable intercept estimation of models for less- and more-
capital-intensive firms

Variable intercept estimate

Variable Less-capital-intensive firms More-capital-intensive firms

(I/K )i,t−1 .265 .198 .248 .392 .363 .364
(.011) (.012) (.011) (.022) (.023) (.022)

(LIQ/K )i,t−1 .161 .110 .119 .308 .253 .278
(.007) (.007) (.007) (.024) (.027) (.025)

(S/K )i,t−1 .023 .025
(.001) (.006)

qit .011 .009
(.0006) (.002)

Actual F 2.04 1.84 2.22 2.50 2.19 2.10
Critical F 1.09 1.07 1.07 1.20 1.17 1.17
Numerator d.f. 834 1,251 1,251 170 255 255
Denominator d.f. 6,592 6,174 6,174 1,368 1,282 1,282
Number of firms 418 418 418 86 86 86

Note: The dependent variable is (I/K )i t . Less-capital-intensive firms are those with min-
imum (K/S) between 0.15 and 0.55 over the sample period. For more-capital-intensive
firms, the minimum (K/S) is greater than 0.55. The regressions include company-
specific intercepts. Actual F is the F statistic for testing the homogeneity of slope
coefficients. For the F test, a 5 percent significance level is chosen. The estimation
period is 1974–1992. Standard errors are in parentheses.
Source: Hsiao and Tahmiscioglu (1997, Table 5).

firms into reasonably homogeneous groups using the capital intensity ratio of
0.55 as a cutoff point. Capital intensity is defined as the minimum value of the
ratio of capital stock to sales over the sample period. It is the most statistically
significant and most stable variable under different specifications.

Table 6.7 presents the variable intercept estimates for the groups of less- and
more-capital-intensive firms. The liquidity variable is highly significant in all
three variants of the liquidity model. There are also significant differences in
the coefficients of the liquidity variable across the two groups. However, Table
6.7 also shows that the null hypothesis of the equality of slope coefficients
conditioning on the firm-specific effects is strongly rejected for all specifications
for both groups. In other words, using the capital intensity ratio of 0.55 as a
cutoff point, there is still substantial heterogeneity within the groups.

Since neither does there appear to be a set of explanatory variables that
adequately explains the variation of βi1, nor can homogeneity be achieved by
classifying firms into groups, one is left with either treating �i as fixed and
different or treating �i as random draws from a common distribution. Within
the random-effects framework, individual differences are viewed as random
draws from a population with constant mean and variance. Therefore, it is
appropriate to pool the data and try to draw some generalization about the
population. On the other hand, if individual differences reflect fundamental
heterogeneity or if individual response coefficients depend on the values of
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Table 6.8. Estimation of mixed fixed- and random-coefficient models for less-
and more-capital-intensive firms

Estimate

Variable Less-capital-intensive firms More-capital-intensive firms

(I/K )i,t−1 .230 .183 .121 .321 .302 .236
(.018) (.017) (.019) (.036) (.037) (.041)

(LIQ/K )i,t−1 .306 .252 .239 .488 .449 .416
(.021) (.023) (.027) (.065) (.067) (.079)

(S/K )i,t−1 .024 .038
(.003) (.015)

qit .019 .022
(.003) (.008)

Number of firms 418 418 418 86 86 86

Note: The dependent variable is (I/K )i t . The regressions include fixed firm-specific
effects. The estimation period is 1974–1992. Standard errors are in parentheses.
Source: Hsiao and Tahmiscioglu (1997, Table 7).

the included explanatory variables, estimation of the model parameters based
on the conventional random-effects formulation can be misleading. To avoid
this bias, heterogeneity among individuals must be treated as fixed. In other
words, one must investigate investment behavior firm by firm, and there is no
advantage in pooling. Without pooling, the shortage of degrees of freedom
and multicollinearity can render the resulting estimates meaningless and make
drawing general conclusions difficult.

Table 6.8 presents the estimates of the mixed fixed- and random-coefficient
model of the form (6.6.24) by assuming that, conditional on company-specific
effects, the remaining slope coefficients are randomly distributed around a cer-
tain mean within the less- and the more-capital-intensive groups. To evaluate
the appropriateness of these specifications, Table 6.9 presents the comparison
of the recursive predictive density of the mixed fixed- and random-coefficients
model and the fixed-coefficient model, assuming that each company has dif-
ferent coefficients for the three variants of the liquidity model, by dividing
the sample into pre- and post-1989 periods. The numbers reported in the table
are the logarithms of (6.6.28). The results indicate that the mixed fixed- and
random-coefficient model is favored over the fixed-coefficient model for both
groups. Similar comparison between the liquidity model, Tobin’s q, and sales
accelerator models also favor liquidity as an important explanatory variable.

Table 6.8 shows that the estimated liquidity coefficients are highly significant
and there are significant differences between different classes of companies.
The mean coefficient of the liquidity variable turns out to be 60–80 percent
larger for the more-capital-intensive group than for the less-capital-intensive
group. The implied long-run relationships between the liquidity variable and
the fixed investment variable are also statistically significant. For instance,
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Table 6.9. Prediction comparison of fixed-coefficient and mixed fixed- and
random-coefficient models for Less- and more-capital-intensive firms
(recursive predictive density)

Liquidity Liquidity
Sample Model Liquidity with q with sales

Less-capital- Fixed-slope coefficients 2,244 2,178 2,172
intensive firms Random-slope coefficients 2,299 2,272 2,266

More-capital- Fixed-slope coefficients 587 544 557
intensive firms Random-slope coefficients 589 556 576

Note: The recursive predictive density is the logarithm of (6.6.28). Columns 3, 4, and 5
correspond to models 1, 2 and 3. The fixed-coefficient model assumes different coeffi-
cients for each firm. The random-coefficient model assumes randomly distributed slope
coefficients with constant mean conditional on fixed firm-specific effects. The prediction
period is 1990–1992.
Source: Hsiao and Tahmiscioglu (1997, Table 6).

for model (6.8.1), a 10 percent increase in liquidity capital ratio leads to a
4 percent increase in fixed investment capital ratio in the long run for the
less-capital-intensive group, compared to a 7 percent increase in the ratio for
the more-capital-intensive group. The mixed model also yields substantially
larger coefficient estimates of the liquidity variable than those obtained from
the variable-intercept model. If the coefficients are indeed randomly distributed
and the explanatory variables are positively autocorrelated, the downward bias
is precisely what one would expect from the within-group estimates (Pesaran
and Smith (1995)).

In short, there are substantial differences in investment behavior across firms.
When these differences are ignored by constraining the parameters to be iden-
tical across firms, the effect of liquidity variable on firm investment is seriously
underestimated. The mixed fixed- and random-coefficient model appears to fit
the data well. The mixed model allows pooling and allows some general conclu-
sions to be drawn about a group of firms. The estimation results and prediction
tests appear to show that financial constraints are the most important factor af-
fecting actual investment expenditure, at least for a subset U.S. manufacturing
companies.

APPENDIX 6A: COMBINATION OF TWO NORMAL
DISTRIBUTIONS

Suppose that, conditional on X , �, we have y ∼ N (X�, �) and � ∼
N (A�̄, C). Then the posterior of � and �̄ given y is

P(�, �̄ | y)

∝ exp − 1

2
{(y − X�)′�−1(y − X�)

+ (� − A�̄)′C−1(� − A�̄)}, (6A.1)
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where ∝ denotes proportionality. Using the identities (e.g., Rao (1973, p. 33 )

(D + B F B ′)−1 = D−1 − D−1 B(B ′ D−1 B + F−1)−1 B ′ D−1, (6A.2)

and

(D + F)−1 = D−1 − D−1(D−1 + F−1)−1 D−1, (6A.3)

we can complete the squares of

(� − A�̄)′C−1(� − A�̄) + (y − X�)′�−1(y − X�)

= �′C−1� + �̄
′
A′C−1 A�̄ − 2�′C−1 A�̄

+ y′�−1y + �′ X ′�−1 X� − 2�′ X ′�−1y. (6A.4)

Let

Q1 = [� − (X ′�−1 X + C−1)−1(X�−1y + C−1 A�̄)]′

× (C−1 + X ′�−1 X )[� − (X ′�−1 X + C−1)−1

× (X ′�−1y + C−1 A�̄)]. (6A.5)

Then

�′C−1� + �′ X ′�−1 X� − 2�′C−1 A�̄ − 2�′ X ′�−1y

= Q1 − (X ′�−1y + C−1 A�̄)′(X ′�−1 X + C−1)−1

× (X ′�−1y + C−1 A�̄).

(6A.6)

Substituting (6A.6) into (6A.4) yields

Q1 + y′[�−1 − �−1 X (X ′�−1 X + C−1)−1 X ′�−1]y

+ �̄
′
A′[C−1 − C−1(X ′�−1 X + C−1)−1C−1]A�̄

− 2�̄
′
A′C−1(X ′�−1 X + C−1)−1 X ′�−1y

= Q1 + y′(XC X ′ + �)−1y + �̄
′
A′ X ′(XC X ′ + �)−1 X A�̄

− 2�̄
′
A′ X ′(XC X ′ + �)−1y

= Q1 + Q2 + Q3, (6A.7)

where

Q2 = {�̄ − [A′ X ′(XC X ′ + �)−1 X A]−1[A′ X ′(XC X ′ + �)−1 y]}′
× [A′ X ′(XC X ′ + �)−1 X A]{�̄ − [A′ X ′(XC X ′ + �)−1 X A]−1

× [A′ X ′(XC X ′ + �)−1y]}, (6A.8)

Q3 = y′{(XC X ′ + �)−1

− (XC X ′ + �)−1 X A[A′ X (XC X ′ + �)−1 X A]−1

× A′ X ′(XC X ′ + �)−1} y. (6A.9)
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Since Q3 is a constant independent of � and �̄, we can write P(�, �̄ | y) in the
form P(� | �̄, y)P(�̄ | y), which becomes

P{�, �̄ | y} ∝ exp
{− 1

2 Q1
}

exp
{− 1

2 Q2
}
, (6A.10)

where exp{− 1
2 Q1} is proportional to P(� | �̄, y) and exp{− 1

2 Q2} is propor-
tional to P(�̄ | y). That is, P(� | �̄, y) is N {(X ′�−1 X + C−1)−1(X ′�−1y +
C−1 A�̄), (C−1 + X ′�−1 X )−1}, and P(�̄ | y) is N {[A′ X ′(XC X ′ + �)−1 X A]−1

× [A′ X ′(XC X ′ + �)−1y], [A′ X ′(XC X ′ + �)−1 X A]−1}.
Alternatively, we may complete the square of the left side of (6A.4) with the

aim of writing P(�, �̄ | y) in the form P(�̄ | �, y)P(� | y):

Q4 + �′[X ′�−1 X + C−1 − C−1 A(A′C A)−1 A′C−1]�

− 2�′ X ′�−1y + y′�−1y

= Q4 + Q5 + Q3, (6A.11)

where

Q4 = [�̄ − (A′C−1 A)−1 A′C−1�]′(A′C−1 A)

× [�̄ − (A′C−1 A)−1 A′C−1�], (6A.12)

Q5 = [� − D−1 X ′�−1y]′ D[� − D−1 X ′�−1y], (6A.13)

and

D = X ′�−1 X + C−1 − C−1 A(A′C−1 A)−1 A′C−1. (6A.14)

Therefore, P(�̄ | �, y) ∼ N {(A′C−1 A)−1C−1�, (A′C−1 A)−1}, and P(� | y) ∼
N {D−1 X ′�−1 y, D−1}.



CHAPTER 7

Discrete Data

7.1 INTRODUCTION

In this chapter, we consider situations in which an analyst has at his disposal
a random sample of N individuals, having recorded histories indicating the
presence or absence of an event in each of T equally spaced discrete time
periods. Statistical models in which the endogenous random variables take
only discrete values are known as discrete, categorical, qualitative-choice, or
quantal-response models. The literature, both applied and theoretical, on this
subject is vast. Amemiya (1981), Maddala (1983), and McFadden (1976, 1984)
have provided excellent surveys. Thus, the focus of this chapter will be only
on controlling for unobserved characteristics of individual units to avoid spec-
ification bias. Many important and more advanced topics are omitted, such
as continuous-time and duration-dependence models (Chamberlain (1978b);
Flinn and Heckman (1982); Heckman and Borjas (1980); Heckman and Singer
(1982); Lancaster (1990); Nickell (1979); Singer and Spilerman (1976)).

7.2 SOME DISCRETE-RESPONSE MODELS

In this section, we briefly review some widely used discrete-response models.
We first consider the case in which the dependent variable y can assume only
two values, which for convenience and without any loss of generality will be the
value 1 if an event occurs and 0 if it does not. Examples of this include purchases
of durables in a given year, participation in the labor force, the decision to enter
college, and the decision to marry.

The discrete outcome of y can be viewed as the observed counterpart of a
latent continuous random variable crossing a threshold. Suppose that the con-
tinuous latent random variable, y∗, is a linear function of a vector of explanatory
variables, x,

y∗ = �′x + v, (7.2.1)

where the error term v is independent of x with mean zero. Suppose, instead of
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observing y∗, we observe y, where

y =
{

1 if y∗ > 0,

0 if y∗ ≤ 0.
(7.2.2)

Then the expected value of yi is the probability that the event will occur,

E(y | x) = 1 · Pr(v > −�′x) + 0 · Pr(v ≤ −�′x)

= Pr(v > −�′x)

= Pr(y = 1 | x). (7.2.3)

When the probability law for generating v follows a two-point distribution
(1 − �′x) and (−�′x), with probabilities �′x and (1 − �′x), respectively, we
have the linear-probability model

y = �′x + v, (7.2.4)

with Ev = �′x(1 − �′x) + (1 − �′x)(−�′x) = 0. When the probability den-
sity function of v is a standard normal density function, (1/

√
2π )

× exp(−v2/2) = φ(v), we have the probit model,

Pr(y = 1 | x) =
∫ ∞

−�′x
φ(v) dv

=
∫ �′x

−∞
φ(v) dv = �(�′x). (7.2.5)

When the probability density function is a standard logistic,

exp(v)

(1 + exp(v))2
= [(1 + exp(v))(1 + exp(−v))]−1,

we have the logit model

Pr(y = 1 | x) =
∫ ∞

−�′x

exp(v)

(1 + exp(v))2
dvi = exp(�′x)

1 + exp(�′x)
. (7.2.6)

Let F(�′x) = E(yi | x). Then the three commonly used parametric models
for the binary choice may be summarized with a single index w as follows:

Linear-probability model,

F(w) = w . (7.2.7)

Probit model,

F(w) =
∫ w

−∞

1√
2π

e− u2

2 du = �(w). (7.2.8)

Logit model,

F(w) = ew

1 + ew
. (7.2.9)
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The linear-probability model is a special case of the linear regression model
with heteroscadastic variance, �′x(1 − �′x). It can be estimated by least
squares or weighted least squares (Goldberger (1964)). But it has an obvi-
ous defect in that �′x is not constrained to lie between 0 and 1 as a probability
should, whereas in the probit and logit models it is.

The probability functions used for the probit and logit models are the standard
normal distribution and the logistic distribution, respectively. We use cumulative
standard normal because in the dichotomy case there is no way to identify the
variance of a normal density. The logit probability density function is symmetric
around 0 and has a variance of π2/3. Because they are distribution functions,
the probit and logit models are bounded between 0 and 1.

The cumulative normal distribution and the logistic distribution are very
close to each other; the logistic distribution has sightly heavier tails (Cox
(1970)). Moreover, the cumulative normal distribution � is reasonably well
approximated by a linear function for the range of probabilities between 0.3
and 0.7. Amemiya (1981) has suggested an approximate conversion rule for
the coefficients of these models. Let the coefficients for the linear-probability,
probit, and logit models be denoted as �̂LP, �̂Φ, �̂L , respectively. Then

�̂L � 1.6�̂Φ,

�̂LP � 0.4�̂Φ except for the constant term, (7.2.10)

and

�̂LP � 0.4�̂Φ + 0.5 for the constant term.

For a random sample of N individuals, (yi , xi ), i = 1, . . . , N , the likelihood
function for these three models can be written in general form as

L =
N∏

i=1

F(�′xi )
yi [1 − F(�′xi )]

1−yi . (7.2.11)

Differentiating the logarithm of the likelihood function yields the vector of first
derivatives and the matrix of second-order derivatives as

∂ log L

∂�
=

N∑
i=1

yi − F(�′xi )

F(�′xi )[1 − F(�′xi )]
F ′(�′xi )xi , (7.2.12)

and

∂2 log L

∂�∂�′ =
{

−
N∑

i=1

[
yi

F2(�′xi )
+ 1 − yi

[1 − F(�′xi )]2

]
[F ′(�′xi )]

2

+
N∑

i=1

[
yi − F(�′xi )

F(�′xi )[1 − F(�′xi )]

]
F ′′(�′xi )

}
xi x′

i ,

(7.2.13)

where F ′(�′xi ) and F ′′(�′xi ) denote the first and second derivatives of F(�′xi )
with respect to �′xi . If the likelihood function (7.2.11) is concave, as in the
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models discussed here (e.g., Amemiya (1985, p. 273)), then a Newton–Raphson
method,

�̂
( j) = �̂

( j−1) −
(

∂2 log L

∂� ∂�′

)−1

�=�̂
( j−1)

(
∂ log L

∂�

)
�=�̂

( j−1)
, (7.2.14)

or a method of scoring,

�̂
( j) = �̂

( j−1) −
[

E
∂2 log L

∂� ∂�′

]−1

�=�̂
( j−1)

(
∂ log L

∂�

)
�=�̂

( j−1)
, (7.2.15)

can be used to find the maximum likelihood estimator (MLE) of � with arbitrary
initial values �̂

(0)
, where �̂

( j)
denotes the j th iterative solution.

In the case in which there are repeated observations of y for a specific value
of x, the proportion of y = 1 for individuals with the same characteristic x
is a consistent estimator of p = F(�′x). Taking the inverse of this function
yields F−1(p) = �′x. Substituting p̂ for p, we have F−1( p̂) = �′x + ζ , where
ζ denotes the approximation error of using F−1( p̂) for F−1(p). Since ζ has a
nonscalar covariance matrix, we can apply the weighted least-squares method
to estimate �. The resulting estimator, which is generally referred to as the
minimum-chi-square estimator, has the same asymptotic efficiency as the MLE
and computationally may be simpler than the MLE. Moreover, in finite samples,
the minimum-chi-square estimator may even have a smaller mean squared error
than the MLE (e.g., Amemiya (1974, 1976, 1980b); Berkson (1944, 1955,
1957, 1980); Ferguson (1958); Neyman (1949)). However, despite its statistical
attractiveness, the minimum-chi-square method is probably less useful than
the maximum likelihood method in analyzing survey data than it is in the
laboratory setting. Application of the minimum-chi-square method requires
repeated observations for each value of the vector of explanatory variables.
In survey data, most explanatory variables are continuous. The survey sample
size has to be extremely large for the possible configurations of explanatory
variables. Furthermore, if the proportion of y = 1 is 0 or 1 for a given x,
the minimum-chi-square method is not defined, but the maximum likelihood
method can still be applied. For this reason, we shall confine our attention to
the maximum likelihood method.1

When the dependent variable yi can assume more than two values, things
are more complicated. We can classify these cases into ordered and unordered
variables. An example of ordered variables is

yi =


0 if the price of a home bought < $49,999,

1 if the price of a home bought is $50,000−$99,999,

2 if the price of a home bought > $100,000.

An example of unordered variables is

yi =


1 if mode of transport is car,
2 if mode of transport is bus,
3 if mode of transport is train.
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In general, ordered models are used whenever the values taken by the discrete
random variable yi correspond to the intervals within which a continuous latent
random variable y∗

i falls. Unordered models are used when more than one latent
continuous random variable is needed to characterize the responses of yi .

Assume that the dependent variable yi takes mi + 1 values 0, 1, 2, . . . , mi

for the i th unit. To simplify the exposition without having to distinguish ordered
from unordered models, we define

∑N
i=1(mi + 1) binary variables as

yi j =
{

1 if yi = j, i = 1, . . . , N ,

0 if yi �= j, j = 0, 1, . . . , mi .
(7.2.16)

Let Prob(yi j = 1 | xi ) = Fi j . We can write the likelihood function as

L =
N∏

i=1

mi∏
j=0

F
yi j

i j . (7.2.17)

The complication in the multivariate case is in the specification of Fi j . Once
Fi j is specified, general results concerning the methods of estimation and their
asymptotic distributions for the dichotomous case also apply here. However,
contrary to the univariate case, the similarity between the probit and logit spec-
ifications no longer holds. In general, they will lead to different inferences.

The multivariate probit model follows from the assumption that the errors
of the latent response functions across alternatives are multivariate normally
distributed. Its advantage is that it allows the choice among alternatives to have
arbitrary correlation. Its disadvantage is that the evaluation of Prob(yi = j)
involves multiple integrations, which can be computationally infeasible.

The conditional logit model follows from the assumption that the errors
of the latent response functions across alternatives are independently, identi-
cally distributed with type I extreme value distribution (McFadden (1974)). Its
advantage is that the evaluation of Prob(yi = j) does not involve multiple inte-
gration. Its disadvantage is that the relative odds between two alternatives are
independent of the presence or absence of the other alternatives – the so-called
independence of irrelevant alternatives. If the errors among alternatives are not
independently distributed, this can lead to grossly false predictions of the out-
comes. For discussion of model specification tests, see Hausman and McFadden
(1984), Hsiao (1992b), Lee (1982, 1987), and Small and Hsiao (1985).

Because in many cases a multiresponse model can be transformed into a
dichotomous model characterized by the

∑N
i=1(mi + 1) binary variables as

in (7.2.16),2 for ease of exposition we shall concentrate on the dichotomous
model.3

When there is no information about the probability laws for generating vi , a
semiparametric approach can be used to estimate � subject to a certain normal-
ization rule (e.g., Klein and Spady (1993); Manski (1985); Powell, Stock, and
Stoker (1989)). However, whether an investigator takes a parametric or semi-
parametric approach, the cross-sectional model assumes that the error term vi in
the latent response function (7.2.1) is independently, identically distributed and
is independent of xi . In other words, conditional on xi , everyone has the same
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probability that an event will occur. It does not allow the possibility that the
average behavior given x can be different from individual probabilities, that is,
that it does not allow Pr(yi = 1 | x) �= Pr(y j = 1 | x). The availability of panel
data provides the possibility of distinguishing average behavior from individual
behavior by decomposing the error term vit into

vit = αi + λt + uit , (7.2.18)

where αi and λt denote the effects of omitted individual-specific and
time-specific variables, respectively. In this chapter we shall demonstrate the
misspecifications that can arise because of failure to control for unobserved
characteristics of the individuals in panel data, and discuss possible remedies.

7.3 PARAMETRIC APPROACH TO STATIC
MODELS WITH HETEROGENEITY

Statistical models developed for analyzing cross-sectional data essentially ig-
nore individual differences and treat the aggregate of the individual effect
and the omitted-variable effect as a pure chance event. However, as stated in
Chapter 1, a discovery of a group of married women having an average yearly
labor participation rate of 50 percent could lead to diametrically opposite infer-
ences. At one extreme, each woman in a homogeneous population could have
a 50 percent chance of being in the labor force in any given year, whereas at the
other extreme 50 percent of women in a heterogeneous population might always
work and 50 percent never work. Either explanation is consistent with the given
cross-sectional data. To discriminate among the many possible explanations, we
need information on individual labor-force histories in different subintervals of
the life cycle. Panel data, through their information on intertemporal dynamics
of individual entities, provide the possibility of separating a model of individual
behavior from a model of the average behavior of a group of individuals.

For simplicity, we shall assume that the heterogeneity across cross-sectional
units is time-invariant,4 and these individual-specific effects are captured by
decomposing the error term vit in (7.2.1) as αi + uit . When the αi are treated
as fixed, Var(vit | αi ) = Var(uit ) = σ 2

u . When they are treated as random, we
assume that Eαi = Euit = Eαi uit = 0 and Var(vit ) = σ 2

u + σ 2
α . However, as

discussed earlier, when the dependent variables are binary, the scale factor is
not identifiable. Thus, for ease of exposition, we normalize the variance σ 2

u of
u to be equal to 1 for the specifications discussed in the rest of this chapter.

The existence of such unobserved permanent components allows individuals
who are homogeneous in their observed characteristics to be heterogeneous in
their response probabilities F(�′xi t +αi ). For example, heterogeneity will im-
ply that the sequential-participation behavior of a woman, F(�′x+αi ), within
a group of observationally identical women differs systematically from F(�′x)
or the average behavior of the group,

∫
F(�′x + α) d H (α | x), where H (α | x)

gives the population probability (or empirical distribution) for α conditional
on x.5 In this section, we discuss statistical inference of the common parame-
ters � based on a parametric specification of F(·).
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7.3.1 Fixed-Effects Models

7.3.1.a Maximum Likelihood Estimator

If the individual-specific effect, αi , is assumed to be fixed,6 then both αi and �
are unknown parameters to be estimated for the model Prob(yit = 1 | xi t , αi ) =
F(�′xi t +αi ). When T tends to infinity, the MLE is consistent. However, T is
usually small for panel data. There are only a limited number of observations to
estimate αi . Thus, we have the familiar incidental-parameter problem (Neyman
and Scott (1948)). Any estimation of the αi is meaningless if we intend to judge
the estimators by their large-sample properties. We shall therefore concentrate
on estimation of the common parameters, �.

Unfortunately, contrary to the linear-regression case where the individual
effects αi can be eliminated by taking a linear transformation such as the first
difference, in general no simple transformation exists to eliminate the incidental
parameters from a nonlinear model. The MLEs for αi and � are not independent
of each other for the discrete-choice models. When T is fixed, the inconsistency
of α̂i is transmitted into the MLE for �. Hence, even if N tends to infinity, the
MLE of � remains inconsistent.

We demonstrate the inconsistency of the MLE for � by considering a logit
model. The log likelihood function for this model is

log L = −
N∑

i=1

T∑
t=1

log[1 + exp(�′xi t +αi )] +
N∑

i=1

T∑
t=1

yit (�
′xi t +αi ).

(7.3.1)

For ease of illustration, we consider the special case of T = 2 and one ex-
planatory variable, with xi1 = 0 and xi2 = 1. Then the first-derivative equations
are

∂ log L

∂β
=

N∑
i=1

2∑
t=1

[
− eβxit+αi

1 + eβxit+αi
+ yit

]
xit

=
N∑

i=1

[
− eβ+αi

1 + eβ+αi
+ yi2

]
= 0, (7.3.2)

∂ log L

∂αi
=

2∑
t=1

[
− eβxit+αi

1 + eβxit+αi
+ yit

]
= 0. (7.3.3)

Solving (7.3.3), we have

α̂i =


∞ if yi1 + yi2 = 2,

−∞ if yi1 + yi2 = 0,

−β

2
if yi1 + yi2 = 1.

(7.3.4)

Inserting (7.3.4) into (7.3.2), and letting n1 denote the number of individuals
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with yi1 + yi2 = 1 and n2 the number of individuals with yi1 + yi2 = 2, we
have7

N∑
i=1

eβ+αi

1 + eβ+αi
= n1

eβ/2

1 + eβ/2
+ n2 =

N∑
i=1

yi2. (7.3.5)

Therefore,

β̂ = 2

{
log

(
N∑

i=1

yi2 − n2

)
− log

(
n1 + n2 −

N∑
i=1

yi2

)}
. (7.3.6)

By a law of large numbers (Rao (1973, Chapter 2)),

plim
N→∞

1

N

(
N∑

i=1

yi2 − n2

)
= 1

N

N∑
i=1

Prob(yi1 = 0, yi2 = 1 | β, αi )

= 1

N

N∑
i=1

eβ+αi

(1 + eαi )(1 + eβ+αi )
, (7.3.7)

plim
N→∞

1

N

(
n1 + n2 −

N∑
i=1

yi2

)
= 1

N

N∑
i=1

Prob(yi1 = 1, yi2 = 0 | β, αi )

= 1

N

N∑
i=1

eαi

(1 + eαi )(1 + eβ+αi )
. (7.3.8)

Substituting α̂i = − β

2 into (7.3.7) and (7.3.8), we obtain

plim
N→∞

β̂ = 2β, (7.3.9)

which is not consistent.

7.3.1.b Conditions for the Existence of a Consistent Estimator

Neyman and Scott (1948) suggested a general principle to find a consistent
estimator for the (structural) parameter � in the presence of the incidental
parameters αi .8 Their idea is to find K functions

�N j (y1, . . . , yN | �), j = 1, . . . , K , (7.3.10)

that are independent of the incidental parameters αi and have the property
that when � are the true values, �N j (y1, . . . , yN | �) converges to zero in
probability as N tends to infinity. Then an estimator �̂ derived by solving
�N j (y1, . . . , yN | �̂) = 0 is consistent under suitable regularity conditions. For
instance, β̂∗ = ( 1

2 )β̂ for the foregoing example of a fixed-effect logit model
(7.3.1)–(7.3.3) is such an estimator.

In the case of a linear-probability model, either taking first differences over
time or taking differences with respect to the individual mean eliminates the



196 Discrete Data

individual-specific effect. The least-squares regression of the differenced equa-
tions yields a consistent estimator for � when N tends to infinity.

But in the general nonlinear models, simple functions for � are not always
easy to find. For instance, in general we do not know the probability limit of the
MLE of a fixed-effects logit model. However, if a minimum sufficient statistic
τi for the incidental parameter αi exists and is not dependent on the structural
parameter �, then the conditional density,

f ∗(yi | �, τi ) = f (yi | �, αi )

g(τi | �, αi )
for g(τi | �, αi ) > 0, (7.3.11)

no longer depends on αi .9 Andersen (1970, 1973) has shown that maximizing
the conditional density of y1, . . . , yN given τ1, . . . , τN ,

N∏
i=1

f ∗ (
yi | �, τi

)
, (7.3.12)

yields the first-order conditions �N j (y1, . . . , yN | �̂, τ1, τ2, . . . τN ) = 0 for j =
1, . . . , K . Solving for these functions will give a consistent estimator of the
common (structural) parameter � under mild regularity conditions.10

To illustrate the conditional maximum likelihood method, we use the logit
model as an example. The joint probability of yi is

Prob(yi ) =
exp

{
αi

∑T
t=1 yit + �′ ∑T

t=1 xi t yi t

}
∏T

t=1[1 + exp(�′xi t + αi )]
. (7.3.13)

It is clear that
∑T

t=1 yit is a minimum sufficient statistic for αi . The conditional
probability for yi , given

∑T
t=1 yit , is

Prob

(
yi

∣∣∣∣ T∑
t=1

yit

)
=

exp
[
�′ ∑T

t=1 xi t yi t

]
∑

Di j ∈B̃i
exp

{
�′ ∑T

t=1 xi t di j t

} , (7.3.14)

where B̃i = {Di j = (di j1, . . . , di jT ) | di jt = 0 or 1 and
∑T

t=1 di jt = ∑T
t=1 yit =

s, j = 1, 2, . . . , T !
s!(T −s)! } is the set of all possible distinct sequences (di j1,

di j2, . . . di jT ) satisfying
∑T

t=1 di jt = ∑T
t=1 yit = s. There are T + 1 distinct

alternative sets corresponding to
∑T

t=1 yit = 0, 1, . . . , T . Groups for which∑T
t=1 yit = 0 or T contribute zero to the likelihood function, because the cor-

responding conditional probability in this case is equal to 1 (with αi = −∞ or
∞). So only T − 1 alternative sets are relevant. The alternative sets for groups
with

∑T
t=1 yit = s have ( T

s ) elements, corresponding to the distinct sequences
of T trials with s successes.

Equation (7.3.14) is in a conditional logit form (McFadden (1974)), with
the alternative sets (B̃i ) varying across observations i . It does not depend on
the incidental parameters αi . Therefore, the conditional maximum likelihood
estimator of � can be obtained by using standard maximum likelihood logit
programs, and it is consistent under mild conditions. For example, with T = 2,
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the only case of interest is yi1 + yi2 = 1. The two possibilities are ωi = 1, if
(yi1, yi2) = (0, 1), and ωi = 0, if (yi1, yi2) = (1, 0).

The conditional probability of wi = 1 given yi1 + yi2 = 1 is

Prob(ωi = 1 | yi1 + yi2 = 1) = Prob(ωi = 1)

Prob(ωi = 1) + Prob(ωi = 0)

= exp[�′(xi2 − xi1)]

1 + exp[�′(xi2 − xi1)]

= F[�′(xi2 − xi1)]. (7.3.15)

Equation (7.3.15) is in the form of a binary logit function in which the two
outcomes are (0, 1) and (1, 0), with explanatory variables (xi2 − xi1). The con-
ditional log likelihood function is

log L∗ =
∑
i∈B̃1

{ωi log F[�′(xi2 − xi1)]

+ (1 − ωi ) log(1 − F[�′(xi2 − xi1)])}, (7.3.16)

where B̃1 = {i | yi1 + yi2 = 1}.
Although B̃1 is a random set of indices, Chamberlain (1980) has shown

that the inverse of the information matrix based on the conditional-likelihood
function provides an asymptotic covariance matrix for the conditional MLE of
� as N tends to infinity. This can be made more explicit by defining di = 1
if yi1 + yi2 = 1, and di = 0 otherwise, for the foregoing case in which T = 2.
Then we have

JB̃1
= ∂2 log L∗

∂� ∂�′ = −
N∑

i=1

di F[�′(xi2 − xi1)]

×{1 − F[�′(xi2 − xi1)]}(xi2 − xi1) · (xi2 − xi1)′. (7.3.17)

The information matrix is

J = E(JB̃1
)

= −
N∑

i=1

Pi F[�′(xi2 − xi1)]

× {1 − F[�′(xi2 − xi1)]}(xi2 − xi1) · (xi2 − xi1)′,
(7.3.18)

where Pi = E(di | αi ) = F(�′xi1 + αi )[1 − F(�′xi2 + αi )] + [1 − F(�′xi1 +
αi )]F(�′xi2 + αi ). Because di are independent, with Edi = Pi , and both F and
the variance of di are uniformly bounded, by a strong law of large numbers we
have

1

N
JB̃1

− 1

N
J → 0 almost surely as N → ∞

if
N∑

i=1

1

i2
mi m′

i < ∞, (7.3.19)
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where mi replaces each element of (xi2 − xi1) with its square. The condition
for convergence clearly holds if xi t is uniformly bounded.

For the case of T > 2, there is no loss of generality in choosing the sequence
Di1 = (di11, . . . , di1T ),

∑T
t=1 di1t = ∑T

t=1 yit = s, 1 ≤ s ≤ T − 1, as the nor-
malizing factor. Hence we may rewrite the conditional probability (7.3.14) as

Prob

(
yi |

T∑
t=1

yit

)
=

exp
{

�′{∑T
t=1 xi t (yit − di1t )

}}
1 + ∑

Di j ∈(B̃i −Di1) exp
{

�′ ∑T
t=1 xi t (di jt − di1t )

} .

(7.3.20)

Then the conditional log-likelihood function takes the form

log L∗ =
∑
i∈C

{
�′

T∑
t=1

xi t (yit − di1t )

− log

1 +
∑

Di j ∈(B̃i −Di1)

exp

{
�′

T∑
t=1

xi t (di jt − di1t )

},

(7.3.21)

where C = {i | ∑T
t=1 yit �= T,

∑T
t=1 yit �= 0}.

Although we can find simple transformations of linear-probability and logit
models that will satisfy the Neyman–Scott principle, we cannot find simple
functions for the parameters of interest that are independent of the nuisance pa-
rameters αi for probit models. That is, there does not appear to exist a consistent
estimator of � for the fixed-effects probit models.

7.3.1.c Some Monte Carlo Evidence

Given that there exists a consistent estimator of � for the fixed-effects logit
model, but not for the fixed-effects probit model, and that in the binary case
the probit and logit models yield similar results, it appears that a case can be
made for favoring the logit specification because of the existence of a consistent
estimator for the structural parameter �. However, in the multivariate case, logit
and probit models yield very different results. In this situation it will be useful
to know the magnitude of the bias if the data actually call for a fixed-effects
probit specification.

Heckman (1981b) conducted a limited set of Monte Carlo experiments to get
some idea of the order of bias of the MLE for the fixed-effects probit models.
His data were generated by the model

y∗
i t = βxit + αi + uit , i = 1, 2, . . . , N , t = 1, . . . , T,

(7.3.22)
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Table 7.1. Average values of β̂ for the
fixed-effects probit model

β̂

σ 2
α β = 1 β = −0.1 β = −1

3 0.90 −0.10 −0.94
1 0.91 −0.09 −0.95
0.5 0.93 −0.10 −0.96

Source: Heckman (1981b, Table 4.1).

and

yit =
{

1 if y∗
i t ≥ 0,

0 otherwise.

The exogenous variable xit was generated by a Nerlove (1971a) process,

xit = 0.1t + 0.5xi,t−1 + εi t , (7.3.23)

where εi t is a uniform random variable having mean zero and range −1/2 to
1/2. The variance σ 2

u was set at 1. The scale of the variation of the fixed effect,
σ 2

α , is changed for different experiments. In each experiment, 25 samples of
100 individuals (N = 100) were selected for eight periods (T = 8).

The results of Heckman’s experiment with the fixed-effects MLE of probit
models are presented in Table 7.1. For β = −0.1, the fixed-effects estimator
does well. The estimated value comes very close to the true value. For β = −1
or β = 1, the estimator does not perform as well, but the bias is never more
than 10 percent and is always toward zero. Also, as the scale of the variation in
the fixed-effects decreases, so does the bias.11

7.3.2 Random-Effects Models

When the individual specific effects αi are treated as random, we may still
use the fixed effects estimators to estimate the structural parameters �. The
asymptotic properties of the fixed effects estimators of � remain unchanged.
However, if αi are random, but are treated as fixed, the consequence, at its best,
is a loss of efficiency in estimating �, but it could be worse, namely, the resulting
fixed-effects estimators may be inconsistent, as discussed in Section 7.3.1.

When αi are independent of xi and are a random sample from a univariate
distribution G, indexed by a finite number of parameters �, the log likelihood
function becomes

log L =
N∑

i=1

log
∫ T∏

t=1

F(�′xi t + α)yit [1 − F(�′xi t + α)]1−yit dG(α | �),

(7.3.24)
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where F(·) is the distribution of the error term conditional on both xi and αi .
Equation (7.3.24) replaces the probability function for y conditional on α by a
probability function that is marginal on α. It is a function of a finite number of
parameters (�′, �′). Thus, maximizing (7.3.24), under weak regularity condi-
tions, will give consistent estimators for � and � as N tends to infinity.

If αi is correlated with xi t , maximizing (7.3.24) will not eliminate the
omitted-variable bias. To allow for dependence between α and x, we must
specify a distribution G(α | x) for α conditional on x, and consider the marginal
log likelihood function

log L =
N∑

i=1

log
∫ T∏

t=1

F(�′xi t + α)yit

× [1 − F(�′xi t + α)]1−yit dG(α | x). (7.3.24′)

A convenient specification suggested by Chamberlain (1980, 1984) is to as-
sume that αi = ∑T

t=1 a′
t xi t + ηi = a′xi + ηi , where a′ = (a′

1, . . . a′
T ), x′

i =
(x′

i1, . . . , x′
iT ), and ηi is the residual. However, there is a very important dif-

ference in this step compared with the linear case. In the linear case it was not
restrictive to decompose αi into its linear projection on xi and an orthogonal
residual. Now we are assuming that the regression function E(αi | xi ) is actu-
ally linear, that ηi is independent of xi , and that ηi has a specific probability
distribution.

Given these assumptions, the log likelihood function under our random-
effects specification is

log L =
N∑

i=1

log
∫ T∏

t=1

F(�′xi t + a′xi + η)yit

× [1 − F(�′xi t + a′xi + η)]1−yit dG∗ (η) ,

(7.3.25)

where G∗ is a univariate distribution function for η. For example, if F is a
standard normal distribution function and we choose G∗ to be the distribution
function of a normal random variable with mean 0 and variance σ 2

η , then our
specification gives a multivariate probit model:

yit = 1 if �′xi t + a′xi + ηi + uit > 0, (7.3.26)

where ui + eηi is independent normal, with mean 0 and variance–covariance
matrix IT + σ 2

η ee′.
The difference between (7.3.25) and (7.3.24) is only in the inclusion of the

term a′xi to capture the dependence between the incidental parameters αi and
xi . Therefore, the essential characteristics with regard to estimation of (7.3.24)
and (7.3.25) are the same. So we shall discuss only the procedure to estimate
the more general model (7.3.25).

Maximizing (7.3.25) involves integration of T dimensions, which can be
computationally cumbersome. An alternative approach, which simplifies the
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computation of the MLE to a univariate integration is to note that conditional
on αi , the error terms vit = αi + uit are independently normally distributed
with mean αi and variance 1, with probability density denoted by φ (vit | αi )
(Heckman (1981a)). Then

Pr(yi1, . . . yiT ) =
∫ bi1

ci1

. . .

∫ biT

ciT

T∏
t=1

φ(vit | αi )G(αi | xi ) dαi dvi1 · · · dviT

=
∫ ∞

−∞
G(αi | xi )

T∏
t=1

[�(bit | αi ) − �(cit | αi )] dαi , (7.3.27)

where �(· | αi ) is the cumulative distribution function (cdf) of φ(· | αi ),
cit = −�′xi t , bit = ∞ if yit = 1 and cit = −∞, bit = −�′xi t if yit = 0, and
G(αi | xi ) is the probability density function of αi given xi . If G(αi | xi ) is as-
sumed to be normally distributed with variance σ 2

α , the expression (7.3.27)
reduces a T -dimensional integration to a single integral whose integrand is
a product of one normal density and T differences of normal cdfs for which
highly accurate approximations are available. For instance, Butler and Moffit
(1982) suggest using Gaussian quadrature to achieve gains in computational
efficiency. The Gaussian quadrature formula for evaluation of the necessary
integral is the Hermite integration formula

∫ ∞
−∞ e−z2

g(z) dz = ∑l
j=1 w j g(z j ),

where l is the number of evaluation points, w j is the weight given to the j th
point, and g(z j ) is g(z) evaluated at the j th point of z. The points and weights are
available from Abramowitz and Stegun (1965) and Stroud and Secrest (1966).

A key question for computational feasibility of the Hermite formula is the
number of points at which the integrand must be evaluated for accurate approxi-
mation. Several evaluations of the integral using four periods of arbitrary values
of the data and coefficients on right-hand-side variables by Butler and Moffitt
(1982) show that even two-point integration is highly accurate. Of course, in the
context of a maximization algorithm, accuracy could be increased by raising the
number of evaluation points as the likelihood function approaches its optimum.

Although maximizing (7.3.25) or (7.3.24) provides a consistent and efficient
estimator for �, computationally it is still fairly involved. However, if both uit

and ηi (or αi ) are normally distributed, a computationally simple approach that
avoids numerical integration is to make use of the fact that the distribution for
yit conditional on xi but marginal on αi also has a probit form:

Prob(yit = 1) = �
[(

1 + σ 2
η

)−1/2
(�′xi t + a′xi )

]
. (7.3.28)

Estimating each of t cross-sectional univariate probit specifications by maxi-
mum likelihood gives �̂t , t = 1, 2, . . . , T , which will converge to12

� = (
1 + σ 2

η

)−1/2
(IT ⊗ �′ + ea′) (7.3.29)

as N tends to infinity. Therefore, consistent estimators of (1 + σ 2
η )−1/2�

and (1 + σ 2
η )−1/2a can be easily derived from (7.3.29). We can then fol-

low Heckman’s suggestion (1981a) by substituting these estimated values
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into (7.3.25) and optimizing the functions with respect to σ 2
η conditional on

(1 + σ 2
η )−1/2� and (1 + σ 2

η )−1/2a.
A more efficient estimator that also avoids numerical integration is to impose

the restriction (7.3.29) by � = vec(Π′) = f(�), where �′ = (�′, a′, σ 2
η ), and

use a minimum-distance estimator (see Section 3.9), just as in the linear case.
Chamberlain (1984) suggests that we choose �̂ to minimize13

[�̂ − f(�)]′�̂−1[�̂ − f(�)], (7.3.30)

where �̂ is a consistent estimator of

� = J−1	J−1, (7.3.31)

where

J =


J1 0 · · · 0
0 J2
...

. . .
0 JT

,

Jt = E

{
φ2

i t

�i t (1 − �i t )
xi x′

i

}
,

	 = E[�i ⊗ xi x′
i ],

and where the t, s element of the T × T matrix �i is ψi t = cit cis , with

cit = yit − �i t

�i t (1 − �i t )
φi t , t = 1, . . . , T .

The standard normal distribution function �i t and the standard normal density
function φi t are evaluated at �′xi . We can obtain a consistent estimator of � by
replacing expectations by sample means and using �̂ in place of �.

7.4 SEMIPARAMETRIC APPROACH
TO STATIC MODELS

The parametric approach to estimating discrete choice models suffers from two
drawbacks: (1) Conditional on x, the probability law of generating (uit , αi ) is
known a priori, or conditional on x and αi , the probability law of uit is known
a priori. (2) When αi are fixed, it appears that apart from the logit and linear
probability models, there does not exist a simple transformation that can get
rid of the incidental parameters. The semiparametric approach not only avoids
assuming a specific distribution of uit , but also allows consistent estimation of
� up to a scale, whether αi is treated as fixed or random.
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7.4.1 Maximum Score Estimator

Manski (1975, 1985, 1987) suggests a maximum score estimator that maximizes
the sample average function

HN (b) = 1

N

N∑
i=1

T∑
t=2

sgn(	x′
i t b)	yit (7.4.1)

subject to the normalization condition b′b =1, where 	xi t = xi t − xi,t−1,

	yit = yit − yi,t−1, and sgn(w) = 1 if w > 0, 0 if w = 0, and −1 if w < 0.
This is because under fairly general conditions (7.4.1) converges uniformly to

H (b) = E[sgn(	x′
i t b)	yit ], (7.4.2)

where H (b) is maximized at b = �∗ with �∗ = �
‖�‖ and ‖�‖ the Euclidean

norm
∑K

k=1 β2
k .

To see this, we note that the binary-choice model can be written in the form

yit =
{

1 if y∗
i t > 0,

0 if y∗
i t ≤ 0,

(7.4.3)

where y∗
i t is given by (7.2.1) with vit = αi + uit . Under the assumption that

uit is independently, identically distributed and is independent of xi and αi for
given i , (i.e., xi t is strictly exogenous), we have

x′
i t � > x′

i,t−1� ⇔ E(yit | xi t ) > E(yi,t−1 | xi,t−1),

x′
i t � = x′

i,t−1� ⇔ E(yit | xi t ) = E(yi,t−1 | xi,t−1), (7.4.4)

x′
i t � < x′

i,t−1� ⇔ E(yit | xi t ) < E(yi,t−1 | xi,t−1).

Rewriting (7.4.4) in terms of first differences, we have the equivalent represen-
tation

	x′
i t � > 0 ⇔ E(yit − yi,t−1 | 	xi t ) > 0,

	x′
i t � = 0 ⇔ E(yit − yi,t−1 | 	xi t ) = 0, (7.4.5)

	x′
i t � < 0 ⇔ E(yit − yi,t−1 | 	xi t ) < 0.

It is obvious that (7.4.5) continues to hold for any �̃ = �c where c > 0.
Therefore, we shall only consider the normalized vector �∗ = �

‖�‖ .
Then, for any b (satisfying b′b = 1) such that b �= �∗,

H (�∗) − H (b) = E{[sgn(	x′
i t �

∗) − sgn(	x′
i t b)](yit − yi,t−1)}

= 2
∫

Wb

sgn(	x′
i t �

∗)E[yt − yt−1 | 	x] d F	x, (7.4.6)

where Wb = [	x : sgn(	x′�∗) �= sgn(	x′b)], and F	x denotes the distribution
of 	x. Because of (7.4.5) the relation (7.4.6) implies that for all 	x,

sgn(	x′�∗)E[yt − yt−1 | 	x] = |E[yt − yt−1 | 	x]|.
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Therefore, under the assumption on the x′s,

H (�∗) − H (b) = 2
∫

Wb

|E[yt − yt−1 | 	x] | d F	x > 0. (7.4.7)

Manski (1985, 1987) has shown that under fairly general conditions, the es-
timator maximizing the criterion function (7.4.1) yields a strongly consistent
estimator of �∗.

As discussed in Chapter 3 and early sections of this chapter, when T is
small the MLE of the (structural) parameters � is consistent as N → ∞ for
the linear model and inconsistent for the nonlinear model in the presence of
incidental parameters αi , because in the former case we can eliminate αi by
differencing, while in the latter case we cannot. Thus, the error of estimating αi

is transmitted into the estimator of � in the nonlinear case. The semiparametric
approach allows one to make use of the linear structure of the latent-variable
representation (7.2.1) or (7.4.4). The individual-specific effects αi can again be
eliminated by differencing, and hence the lack of knowledge of αi no longer
affects the estimation of �.

The Manski maximum score estimator is consistent as N → ∞ if the con-
ditional distribution of uit given αi and xi t , xi,t−1 is identical to the conditional
distribution of ui,t−1 given αi and xi t , xi,t−1. However, it converges at the rate
N 1/3, which is much slower than the usual speed of N 1/2 for the parametric
approach. Moreover, Kim and Pollard (1990) have shown that N 1/3 times the
centered maximum score estimator converges in distribution to the random vari-
able that maximizes a certain Gaussian process. This result cannot be used in
application, since the properties of the limiting distribution are largely unknown.

The objective function (7.4.1) is equivalent to

max
b

H∗
N (b) = N−1

N∑
i=1

T∑
t=2

[2 · 1(	yit = 1) − 1]1(	x′
i t b ≥ 0),

(7.4.8)

subject to b′b =1, where 1(A) is the indicator of the event A, with 1(A) = 1
if A occurs and 0 otherwise. The complexity of the maximum score estimator
and its slow convergence are due to the discontinuity of the function HN (b)
or H∗

N (b). Horowitz (1992) suggests avoiding these difficulties by replacing
H∗

N (b) with a sufficiently smooth function H̃ N (b) whose almost sure limit as
N → ∞ is the same as that of H∗

N (b). Let K (·) be a continuous function of the
real line into itself such that

i. |K (v)| < M for some finite M and all v in (−∞, ∞),
ii. limv→−∞ K (v) = 0 and limv→∞ K (v) = 1.

The K (·) here is analogous to a cumulative distribution function. Let
{σN : N = 1, 2, . . .} be a sequence of strictly positive real numbers satisfying
limN→∞ σN = 0. Define

H̃ N (b) = N−1
N∑

i=1

T∑
t=2

[2 · 1(	yit = 1) − 1]K (b′	xi t/σN ). (7.4.9)
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Horowitz (1992) defines a smoothed maximum score estimator as any solution
that maximizes (7.4.9). Like Manski’s estimator, � can be identified only up
to scale. Instead of using the normalization ‖�∗‖ = 1, Horowitz (1992) finds it
more convenient to use the normalization that the coefficient of one component
of 	x, say 	x1, is to be equal to 1 in absolute value if β1 �= 0, and the probability
distribution of 	x1 conditional on the remaining components is absolutely
continuous (with respect to Lebesgue measure).

The smoothed maximum score estimator is strongly consistent under the
assumption that the distribution of 	uit = uit − ui,t−1 conditional on 	xi t is
symmetrically distributed with mean equal to zero. The asymptotic behavior of
the estimator can be analyzed using the Taylor series methods of asymptotic
theory by taking a Taylor expansion of the first-order conditions and applying a
version of the central limit theorem and the law of large numbers. The smoothed
estimator of � is consistent and, after centering and suitable normalization, is
asymptotically normally distributed. Its rate of convergence is at least as fast
as N−2/5 and, depending on how smooth the distribution of u and �′	x are,
can be arbitrarily close to N−1/2.

7.4.2 A Root-N Consistent Semiparametric Estimator

The speed of convergence of the smoothed maximum score estimator depends
on the speed of convergence of σN → 0. Lee (1999) suggests a root-N consis-
tent semiparametric estimator that does not depend on a smoothing parameter
by maximizing the double sums

{N (N − 1)}−1
∑
i �= j

T∑
t=2

sgn(	x′
i t b−	x′

j t b)(	yit − 	y jt )	y2
i t 	y2

j t

=
(

N
2

)−1 ∑
i

i< j,

∑
j

	yit �=	y jt

T∑
t = 2

	yit �=0, 	y jt �=0

sgn(	x′
i t b − 	x′

j t b)(	yit − 	y jt )

(7.4.10)

with respect to b. The consistency of the Lee estimator b̂ follows from the
fact that although 	yit − 	y jt can take five values (0, ±1, ±2), the event that
(	yit − 	y jt )	y2

i t 	y2
j t �= 0 excludes (0, ±1) and thus makes 	yit − 	y jt bi-

nary (2 or − 2). Conditional on given j, the first average over i and t converges
to

E
{
sgn(	x′b−	x′

j b)(	y − 	y j )	y2 	y2
j

∣∣	x j , 	y j
}
. (7.4.11)

The
√

N speed of convergence follows from the second average of the smooth
function (7.4.10).

Normalizing β1 = 1, the asymptotic covariance matrix of
√

N ( b̃− �̃) is
equal to

4 · (E∇2
 )−1(E∇1
 ∇1
 ′)(E∇2
 )−1, (7.4.12)
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where �̃ = (β2, . . . , βK )′, b̃ is its estimator,

τ (	y j , 	x j , b̃) ≡ Ei | j
{
sgn(	x′

i b − 	x′
j b)(	yi − 	y j )	y2

i 	y2
j

}
,

i �= j,

with Ei | j denoting the conditional expectation of (	yi , 	x′
i ) conditional on

(	y j , 	x′
j ), and ∇1
 and ∇2
 denote the first- and second-order derivative

matrices of τ (	y j , 	x j , b̃) with respect to b̃.
The parametric approach requires the specification of the distribution of u.

If the distribution of u is misspecified, the MLE of � is inconsistent. The semi-
parametric approach does not require the specification of the distribution of u
and permits its distribution to depend on x in an unknown way (heteroscedas-
ticity of unknown form). It is consistent up to a scale, whether the unobserved
individual effects are treated as fixed or correlated with x. However, the step of
differencing xi t eliminates time-invariant variables from the estimation. Lee’s
(1999) root-N consistent estimator takes the additional differencing across in-
dividuals, 	xi − 	x j , and further reduces the dimension of estimable parame-
ters by eliminating “period individual-invariant” variables (e.g., time dummies
and macroeconomic shocks common to all individuals) from the specification.
Moreover, the requirement that uit and ui,t−1 be identically distributed condi-
tional on (xi t , xi t−1, αi ) does not allow the presence of the lagged dependent
variables in xi t . Neither can a semiparametric approach be used to generate the
predicted probability conditional on x as in the parametric approach. All it can
estimate is the relative effects of the explanatory variables.

7.5 DYNAMIC MODELS

7.5.1 The General Model

The static models discussed in the previous sections assume that the probability
of moving (or staying) in or out of a state is independent of the occurrence or
nonoccurrence of the event in the past. However, in a variety of contexts, such
as in the study of the incidence of accidents (Bates and Neyman (1951)), brand
loyalty (Chintagunta, Kyriazidou, and Perktold (2001)), labor-force participa-
tion (Heckman and Willis (1977); Hyslop (1999)), and unemployment (Layton
(1978)), it is often noted that individuals who have experienced an event in
the past are more likely to experience the event in the future than individuals
who have not. In other words, the conditional probability that an individual will
experience the event in the future is a function of past experience.

To analyze the intertemporal relationships among discrete variables,
Heckman (1978a, 1981b) proposed a general framework in terms of a latent-
continuous-random-variable crossing the threshold. He let the continuous
random variable y∗

i t be a function of xi t and past occurrence of the event:

y∗
i t = �′xi t +

t−1∑
l=1

γl yi,t−l + φ

t−1∑
s=1

s∏
l=1

yi,t−l + vit ,

i = 1, . . . , N , t = 1, . . . , T, (7.5.1)
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and

yit =
{

1 if y∗
i t > 0,

0 if y∗
i t ≤ 0.

(7.5.2)

The error term vit is assumed to be independent of xi t and is independently
distributed over i , with a general intertemporal variance–covariance matrix
Evi v′

i = �. The coefficient γl measures the effect of experience of the event l
periods ago on current values of y∗

i t . The coefficient φ measures the effect of
the cumulative recent spell of experience in the state, for those still in the state,
on the current value of y∗

i t .
Specifications (7.5.1) and (7.5.2) accommodate a wide variety of stochastic

models that appear in the literature. For example, let xi t = 1, and let vit be
independently identically distributed. If γl = 0, l = 2, . . . , T − 1, and φ = 0,
equations (7.5.1) and (7.5.2) generate a time-homogenous first-order Markov
process. If γl = 0, l = 1, . . . , T − 1, and φ �= 0, a renewal process is generated.
If γl = 0, l = 1, . . . , T − 1, and φ = 0, a simple Bernoulli model results. If
one allows vit to follow an autoregressive moving-average scheme, but keeps
the assumption that γl = 0, l = 1, . . . , T − 1, and φ = 0, the Coleman (1964)
latent Markov model emerges.

As said before, repeated observations of a given group of individuals over
time permit us to construct a model in which individuals may differ in their
propensity to experience the event. Such heterogeneity is allowed by decom-
posing the error term vit as

vit = αi + uit , i = 1, . . . , N , t = 1, . . . , T, (7.5.3)

where uit is independently distributed over i with arbitrary serial correlation,
and αi is individual-specific and can be treated as a fixed constant or as random.
Thus, for example, if the previous assumptions on the Markov process

γl = 0, l = 2, . . . , T − 1, and φ = 0

hold, but vit follows a “components-of-variance” scheme (7.5.3), then a
compound first-order Markov process, closely related to previous work on
the mover–stayer model (Goodman (1961); Singer and Spilerman (1976)), is
generated.

Specifications (7.5.1)–(7.5.3) allow for three sources of persistence (after
controlling for the observed explanatory variables x). Persistence can be the
result of serial correlation in the error term uit , or the result of “unobserved
heterogeneity” αi , or the result of true state dependence through the term γ yi,t−l

or φ
∑t−l

s=1

∏s
l=1 yi,t−l . Distinguishing the sources of persistence is important

because a policy that temporarily increases the probability that y = 1 will have
different implications about future probabilities of experiencing an event.

When the conditional probability of an individual staying in a state is a
function of past experience, two new issues arise. One is how to treat the ini-
tial observations. The second is how to distinguish true state dependence from
spurious state dependence in which the past value appears in the specification
merely as a proxy for the unobserved individual effects. The first issue is crucial
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in deriving consistent estimators for a given model. The second issue is impor-
tant because the time dependence among observed events could be arising either
from the fact that the actual experience of an event has modified individual be-
havior, or from unobserved components that are correlated over time, or from
a combination of both.

7.5.2 Initial Conditions

When dependence among time-ordered outcomes is considered, just as in the
dynamic linear-regression model, the problem of initial conditions must be
solved before parameters generating the stochastic process can be estimated.
In order to focus the discussion on the essential aspects of the problem of
initial conditions and its solutions, we assume that there are no exogenous
variables and that the observed data are generated by a first-order Markov
process. Namely,

y∗
i t = β0 + γ yi,t−1 + vit ,

(7.5.4)

yit =
{

1 if y∗
i t > 0,

0 if y∗
i t ≤ 0.

For ease of exposition we shall also assume that uit is independently normally
distributed, with mean zero and variance σ 2

u normalized to be equal to 1. It
should be noted that the general conclusions of the following discussion also
hold for other types of distributions.

In much applied work in the social sciences, two assumptions for initial con-
ditions are typically invoked: (1) the initial conditions or relevant presample
history of the process is assumed to be truly exogenous, or (2) the process is
assumed to be in equilibrium. Under the assumption that yi0 is a fixed non-
stochastic constant for individual i , the joint probability of y′

i = (yi1, . . . , yiT ),
given αi , is

T∏
t=1

F(yit | yi,t−1, αi ) =
T∏

t=1

�{(β0 + γ yi,t−1 + αi )(2yit − 1)}, (7.5.5)

where � is the standard normal cumulative distribution function. Under the
assumption that the process is in equilibrium, the limiting marginal probability
for yi0 = 1 for all t , given αi , is (Karlin and Taylor (1975))14

Pi = �(β0 + αi )

1 − �(β0 + γ + αi ) + �(β0 + αi )
, (7.5.6)

and the limiting probability for yi0 = 0 is 1 − Pi . Thus the joint probability of
(yi0, . . . , yiT ), given αi , is

T∏
t=1

�{(β + γ yi,t−1 + αi )(2yit − 1)}P yi0
i (1 − Pi )

1−yi0 . (7.5.7)
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If αi is random, with distribution G(α), the likelihood function for the
random-effects model under the first assumption is

L =
N∏

i=1

∫ T∏
t=1

�{(β0 + γ yi,t−1 + α)(2yit − 1)} dG(α). (7.5.8)

The likelihood function under the second assumption is

L =
N∏

i=1

∫ T∏
t=1

�{(β0 + γ yi,t−1 + α)(2yit − 1)}

× P yi0
i (1 − Pi )

1−yi0 dG(α). (7.5.9)

The likelihood functions (7.5.8) and (7.5.9) under both sets of assumptions
about initial conditions are in closed form. When αi is treated as random,
the MLEs for β0, γ, and σ 2

α are consistent if N tends to infinity or if both
N and T tend to infinity. When αi is treated as a fixed constant (7.5.5), the
MLEs for β0, γ, and αi are consistent only when T tends to infinity. If T
is finite, the MLE is biased. Moreover, the limited results from Monte Carlo
experiments suggest that, contrary to the static case, the bias is significant
(Heckman (1981b)).

However, the assumption that initial conditions are fixed constants may be
justifiable only if the disturbances that generate the process are serially indepen-
dent and if a genuinely new process is fortuitously observed at the beginning of
the sample. If the process has been in operation prior to the time it is sampled,
or if the disturbances of the model are serially dependent as in the presence
of individual-specific random effects, the initial conditions are not exogenous.
The assumption that the process is in equilibrium also raises problems in many
applications, especially when time-varying exogenous variables are driving the
stochastic process.

Suppose that the analyst does not have access to the process from the
beginning; then the initial state for individual i , yi0, cannot be assumed fixed.
The initial state is determined by the process generating the panel sample. The
sample likelihood function for the fixed-effects model is

L =
N∏

i=1

T∏
t=1

�{(β0 + γ yi,t−1 + αi )(2yit − 1)} f (yi0 | αi ), (7.5.10)

and the sample likelihood function for the random-effects model is

L =
N∏

i=1

∫ ∞

−∞

T∏
t=1

�{(β0 + γ yi,t−1 + α)(2yit − 1)} f (yi0 | α) dG(α),

(7.5.11)

where f (yi0 | α) denotes the marginal probability of yi0 given αi . Thus, unless
T is very large, maximizing (7.5.5) or (7.5.8) yields inconsistent estimates.15

Because yi0 is a function of unobserved past values, besides the fact that the
marginal distribution of f (yi0 | α) is not easy to derive, maximizing (7.5.10) or
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(7.5.11) is also considerably involved. Heckman (1981b) therefore suggested
that we approximate the initial conditions for a dynamic discrete choice model
by the following procedure:

1. Approximate the probability of yi0, the initial state in the sample, by
a probit model, with index function

y∗
i0 = Q(xi ) + εi0, (7.5.12)

and

yi0 =
{

1 if y∗
i0 > 0,

0 if y∗
i0 ≤ 0,

(7.5.13)

where Q(xi ) is a general function of xi t , t = 0, . . . , T , usually speci-
fied as linear in xi t , and εi0 is assumed to be normally distributed, with
mean zero and variance 1.

2. Permit εi0 to be freely correlated with vit , t = 1, . . . , T .
3. Estimate the model by maximum likelihood without imposing any

restrictions between the parameters of the structural system and pa-
rameters of the approximate reduced-form probability for the initial
state of the sample.

Heckman (1981b) conducted Monte Carlo studies comparing the perfor-
mance of the MLEs when assumptions on initial yi0 and αi conform with the
true data generating process, an approximate reduced-form probability for yi0,
and false fixed yi0 and αi for a first-order Markov process. The data for his
experiment were generated by the random-effects model

y∗
i t = βxit + γ yi,t−1 + αi + uit ,

(7.5.14)

yit =
{

1 if y∗
i t > 0,

0 if y∗
i t ≤ 0,

where the exogenous variable xit was generated by (7.3.23). He let the process
operate for 25 periods before selecting samples of 8 (=T ) periods for each
of the 100 (=N ) individuals used in the 25 samples for each parameter set.
Heckman’s Monte Carlo results are shown in Table 7.2.

These results show that, contrary to the static model, the fixed-effects probit
estimator performs poorly. The greater the variance of the individual effects
(σ 2

α ), the greater the bias. The t statistics based on the estimated information
matrix also lead to a misleading inference by not rejecting the false null hy-
potheses of γ = β = 0 in the vast majority of samples.

By comparison, Heckman’s approximate solution performs better. Although
the estimates are still biased from the true values, their biases are not significant,
particularly when they are compared with the ideal estimates. The t statistics
based on the approximate solutions are also much more reliable than in the
fixed-effects probit model, in that they lead to a correct inference in a greater
proportion of the samples.
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Table 7.2. Monte Carlo results for first-order Markov process

σ 2
α = 3 σ 2

α = 1

γ β = −0.1 β = 1 β = 0 β = −0.1 β = 1 β = 0

Values of γ̂ and β̂ for the random-effects estimator with known initial conditionsa

0.5 γ̂ n.a.c 0.57 n.a.c

β̂ n.a.c 0.94 —d

0.1 γ̂ 0.13 0.12 0.14
β̂ −0.11 1.10 —

Values of γ̂ and β̂ for the approximate random-effects estimationa

0.5 γ̂ 0.63 0.60 0.70 n.a.c 0.54 0.62
β̂ −0.131 0.91 — n.a.c 0.93 —

0.1 γ̂ 0.14 0.13 0.17 0.11 0.11 0.13
β̂ −0.12 0.92 — −0.12 0.95 —

Values of γ̂ and β̂ for the fixed-effects estimatorb

0.5 γ̂ 0.14 0.19 0.03 n.a.c 0.27 0.17
β̂ −0.07 1.21 — n.a.c 1.17 —

0.1 γ̂ −0.34 −0.21 −0.04 −0.28 −0.15 −0.01
β̂ −0.06 1.14 — −0.08 1.12 —

a N = 100; T = 3.
b N = 100; T = 8.
cData not available because the model was not estimated.
d Not estimated.
Source: Heckman (1981b, Table 4.2).

Heckman’s Monte Carlo results also point to a disquieting feature. Namely,
the MLE produces a biased estimator even under ideal conditions with a
correctly specified likelihood function. Because a panel with 100 observations
of three periods is not uncommon, this finding deserves serious consideration.

7.5.3 A Conditional Approach

The likelihood approach cannot yield a consistent estimator when T is fixed
and N tends to infinity if the individual effects are fixed. If the individual effects
are random and independent of x, the consistency of the MLE depends on the
correct formulation of the probability distributions of the effects and initial ob-
servations. A semiparametric approach cannot be implemented for a dynamic
model, because the strict exogeneity condition of explanatory variables is vio-
lated with the presence of lagged dependent variables as explanatory variables.
When that condition is violated, E(	uit | xi t , xi,t−1, yi,t−1, yi,t−2) �= 0. In other
words, the one-to-one correspondence relation of the form (7.4.4) is violated.
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Hence, the Manski (1985) maximum score estimator cannot be implemented.
Neither can the (unrestricted) conditional approach be implemented. Consider
the case of T = 2. The basic idea of the conditional approach is to consider the
probability of yi2 = 1 or 0 conditional on explanatory variables in both periods
and conditonal on yi1 �= yi2. If the explanatory variables of Prob(yi2 = 1) in-
clude yi1, then the conditional probability is either 1 or 0 according as yi1 = 0
or 1, and hence provides no information about γ and �.

However, in the case that T ≥ 3 and xi t follows a certain special pat-
tern, Honoré and Kyriazidou (2000a) show that it is possible to generalize the
conditional-probability approach to consistently estimate the unknown param-
eters for the logit model or to generalize the maximum score approach with-
out the need of formulating the distribution of αi or the probability distribution
of the initial observations for certain types of discrete choice models. However,
the estimators converge to the true values at the speed considerably slower
than the usual

√
N rate.

Consider the model (7.5.4) with the assumption that uit is logistically dis-
tributed. Then the model of (yi0, . . . yiT ) is of the form

P(yi0 = 1 | αi ) = P0(αi ), (7.5.15)

P(yit = 1 | αi , yi0, . . . , yi,t−1) = exp(γ yi,t−1 + αi )

1 + exp(γ yi,t−1 + αi )

for t = 1, 2, . . . , T . (7.5.16)

When T ≥ 3, Chamberlain (1993) shows that the inference on γ can be made
independent of αi by using a conditional approach.

For ease of exposition, we shall assume that T = 3. Consider the events

A = {yi0, yi1 = 0, yi2 = 1, yi3},
B = {yi0, yi1 = 1, yi2 = 0, yi3},

where yi0 and yi3 can be either 1 or 0. Then

P(A) = P0(αi )
yi0 [1 − P0(αi )]

1−yi0 · 1

1 + exp(γ yi0 + αi )

× exp(αi )

1 + exp(αi )
· exp[(γ + αi )yi3]

1 + exp(γ + αi )
, (7.5.17)

and

P(B) = P0(αi )
yi0 [1 − P0(αi )]

1−yi0 · exp(γ yi0 + αi )

1 + exp(γ yi0 + αi )

× 1

1 + exp(γ + αi )
· exp(αi yi3)

1 + exp(αi )
. (7.5.18)
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Hence,

P(A | A ∪ B) = P(A | yi0, yi1 + yi2 = 1, yi3)

= exp(γ yi3)

exp(γ yi3) + exp(γ yi0)

= 1

1 + exp[γ (yi0 − yi3)]
, (7.5.19)

and

P(B | A ∪ B) = P(B | yi0, yi1 + yi2 = 1, yi3)

= 1 − P(A | A ∪ B)

= exp[γ (yi0 − yi3)]

1 + exp[γ (yi0 − yi3)]
. (7.5.20)

Equations (7.5.19) and (7.5.20) are in the binary logit form and do not depend
on αi . Let di = 1 if A occurs and 0 if B occurs. The conditional log likelihood

log L̃ =
N∑

i=1

1(yi1 + yi2 = 1)

× {yi1[γ (yi0 − yi3)] − log[1 + exp γ (yi0 − yi3)]} (7.5.21)

is in the conditional logit form. Maximizing (7.5.21) yields a
√

N -consistent
estimator of γ , where 1(A) = 1 if A occurs and 0 otherwise.

When exogenous variables xi t also appear as explanatory variables in the
latent response function

y∗
i t = �′xi t + γ yi,t−1 + αi + uit , (7.5.22)

we may write

P(yi0 = 1 | xi , αi ) = P0(xi , αi ), (7.5.23)

P(yit = 1 | xi , αi , yi0, . . . , yi,t−1) = exp(x′
i t � + γ yi,t−1 + αi )

1 + exp(x′
i t � + γ yi,t−1 + αi )

,

t = 1, . . . , T . (7.5.24)

In general, P(A | xi , αi , A ∪ B) will depend on αi . However, if xi2 = xi3,
Honoré and Kyriazidou (2000a), using the same conditioning method, show
that

P(A | xi , αi , A ∪ B, xi2 = xi3)

= 1

1 + exp[(xi1 − xi2)′� + γ (yi0 − yi3)]
, (7.5.25)

which does not depend on αi . If xi t is continuous, it may be rare that xi2 = xi3.
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Honoré and Kyriazidou (2000a) propose estimating β and γ by maximizing

N∑
i=1

1(yi1 + yi2 = 1)K

(
xi2 − xi3

σN

)
log

{
exp[(xi1 − xi2)′b + γ (yi0 − yi3)]yi1

1 + exp[(xi1 − xi2)′b + γ (yi0 − yi3)]

}
(7.5.26)

with respect to b and γ (over some compact set) if P(xi2 = xi3) > 0. Here K (·)
is a kernel density function which gives appropriate weight to observation i ,
while σN is a bandwidth which shrinks to zero as N tends to infinity at a speed
that is also a function of the dimension of x. The asymptotic theory will require
that K (·) be chosen so that a number of regularity conditions are satisfied, such
as |K (·)| < M for some constant M , K (v) → 0 as |v| → ∞, and

∫
K (v) dv = 1.

For instance, K (v) is often taken to be the standard normal density function,
and σN = cN−1/5 for some constant c when there is only one regressor. The
effect of the factor K ((xi2 − xi3)/σN ) is to give more weight to observations
for which xi2 is close to xi3. Their estimator is consistent and asymptotically
normal, although their rate of convergence is only

√
Nσ k

N , which is considerably
slower than

√
N , where k is the dimension of xi t .

The conditional approach works for the logit model, but it does not seem
applicable for general nonlinear models. However, if the nonlinearity can be
put in the single-index form F(a) with the transformation function F being a
strictly increasing distribution function, then Manski’s (1987) maximum score
estimator for the static case can be generalized to the case where the lagged
dependent variable is included in the explanatory variable set by considering

P(A | xi , αi , xi2 = xi3)

= P0(xi , αi )
yi0 [1 − P0(xi , αi )]

1−yi0

× [1 − F(x′
i1� + γ yi0 + αi )] × F(x′

i2� + αi )

× [1 − F(x′
i2� + γ + αi )]

1−yi3 × F(x′
i2� + γ + αi )

yi3 , (7.5.27)

and

P(B | xi , αi , xi2 = xi3)

= P0(xi , αi )
yi0 [1 − P0(xi , αi )]

1−yi0

× F(x′
i1� + γ yi0 + αi ) × [1 − F(x′

i2� + γ + αi )]

× [1 − F(x′
i2� + αi )]

1−yi3 × F(x′
i2� + αi )

yi3
. (7.5.28)

If yi3 = 0, then

P(A | xi , αi , xi2 = xi3)

P(B | xi , αi , xi2 = xi3)

= 1 − F(x′
i1� + γ yi0 + αi )

1 − F(x′
i2� + αi )

× F(x′
i2� + αi )

F(x′
i1� + γ yi0 + αi )

= 1 − F(x′
i1� + γ yi0 + αi )

1 − F(x′
i2� + γ yi3 + αi )

× F(x′
i2� + γ yi3 + αi )

F(x′
i1� + γ yi0 + αi )

, (7.5.29)
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where the second equality follows from the fact that yi3 = 0. If yi3 = 1, then

P(A | xi , αi , xi2 = xi3)

P(B | xi , αi , xi2 = xi3)

= 1 − F(x′
i1� + γ yi0 + αi )

1 − F(x′
i2� + γ + αi )

× F(x′
i2� + γ + αi )

F(x′
i1� + γ yi0 + αi )

= 1 − F(x′
i1� + γ yi0 + αi )

1 − F(x′
i2� + γ yi3 + αi )

× F(x′
i2� + γ yi3 + αi )

F(x′
i1� + γ yi0 + αi )

, (7.5.30)

where the second equality follows from the fact that yi3 = 1, so that γ yi3 = γ .
In either case, the monotonicity of F implies that

P(A)

P(B)

{
> 1 if x′

i2� + γ yi3 > x′
i1� + γ yi0,

< 1 if x′
i2� + γ yi3 < x′

i1� + γ yi0.

Therefore,

sgn[P(A | xi , αi , xi2 = xi3) − P(B | xi , αi , xi2 = xi3)]

= sgn[(xi2 − xi1)′� + γ (yi3 − yi0)]. (7.5.31)

Hence, Honoré and Kyriazidou (2000) propose a maximum score estimator that
maximizes the score function

N∑
i=1

K

(
xi2 − xi3

σN

)
(yi2 − yi1)sgn[(xi2 − xi1)′� + γ (yi3 − yi0)] (7.5.32)

with respect to � and γ . Honoré and Kyriazidou’s estimator is consistent (up
to a scale) if the density f (xi2 − xi3) of xi2 − xi3 is strictly positive at zero
[ f (0) > 0]. (This assumption is required for consistency.)

We have discussed the estimation of panel data dynamic discrete-choice
models assuming that T = 3. It can be easily generalized to the case of T > 3
by maximizing the objective function that is based on sequences where an
individual switches between alternatives in any two of the middle T − 1 periods.
For instance, for the logit model (7.5.24), the objective function becomes:

N∑
i=1

∑
1≤s≤t≤T −1

1{yis + yit = 1}K

(
xi,t+1 − xi,s+1

σN

)
× log

(
exp[(xis − xi t )′� + �(yi,s−1 − yi,t+1) + �(yi,s+1 − yi,t−1)1(t − s ≥ 3)]yis

1 + exp[(xis − xi t )′� + �(yi,s−1 − yi,t+1) + �(yi,s+1 − yi,t−1)1(t − s ≥ 3)]

)
.

(7.5.33)

The conditional approach does not require modeling of the initial observa-
tions of the sample. Neither does it make any assumptions about the statistical
relationship of the individual effects with the observed explanatory variables
or with the initial conditions. However, it also suffers from the limitation that
xis − xi t has support in a neighborhood of 0 for any t �= s, which rules out time
dummies as explanatory variables.16 The fact that individual effects cannot
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be estimated also means that it is not possible to make predictions or compute
elasticities for individual agents at specified values of the explanatory variables.

7.5.4 State Dependence versus Heterogeneity

There are two diametrically opposite explanations for the often observed empir-
ical regularity with which individuals who have experienced an event in the past
are more likely to experience that event in the future. One explanation is that
as a consequence of experiencing an event, preferences, prices, or constraints
relevant to future choices are altered. A second explanation is that individuals
may differ in certain unmeasured variables that influence their probability of
experiencing the event but are not influenced by the experience of the event. If
these variables are correlated over time and are not properly controlled, previous
experience may appear to be a determinant of future experience solely because
it is a proxy for such temporally persistent unobservables. Heckman (1978a,
1981a, 1981c) has termed the former case true state dependence and the latter
case spurious state dependence, because in the former case, past experience has
a genuine behavioral effect in the sense that an otherwise identical individual
who has not experienced the event will behave differently in the future than an
individual who has experienced the event. In the latter case, previous experience
appears to be a determinant of future experience solely because it is a proxy for
temporally persistent unobservables that determine choices.

The problem of distinguishing between true and spurious state dependence
is of considerable substantive interest. To demonstrate this, let us consider
some work in the theory of unemployment. Phelps (1972) argued that current
unemployment has a real and lasting effect on the probability of future unem-
ployment. Hence, short-term economic policies that alleviate unemployment
tend to lower aggregate unemployment rates in the long run by preventing
the loss of work-enhancing market experience. On the other hand, Cripps and
Tarling (1974) maintained the opposite view in their analysis of the incidence
and duration of unemployment. They assumed that individuals differ in their
propensity to experience unemployment and in their unemployment duration
times and that those differences cannot be fully accounted for by measured
variables. They further assumed that the actual experience of having been un-
employed or the duration of past unemployment does not affect future incidence
or duration. Hence, in their model, short-term economic policies have no effect
on long-term unemployment.

Because the unobserved individual effects αi persist over time, ignoring these
effects of unmeasured variables (heterogeneity) creates serially correlated resid-
uals. This suggests that we cannot use the conditional probability, given past
occurrence not equal to the marginal probability alone [Prob(yit | yi,t−s, xi t ) �=
Prob(yit | xi t )], to test for true state dependence against spurious state depen-
dence, because this inequality may be a result of past information on y yielding
information on the unobserved specific effects. A proper test for dependence
should control for the unobserved individual-specific effects.
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When, conditional on the individual effects αi , the error term uit is serially
uncorrelated, a test for state dependence can be easily implemented by control-
ling the individual effects and testing for the conditional probability equal to
the marginal probability,17

Prob(yit | yi,t−s, xi t , αi ) = Prob(yit | xi t , αi ). (7.5.34)

If the conditional distribution G(α | x) of αi given xi is known, a more
powerful test is to use an unconditional approach. Thus, one may test true
state dependence versus spurious state dependence by testing the significance
of the MLE of γ of the log likelihood

N∑
i=1

log
∫ T∏

t=1

{F(x′
i t � + γ yi,t−1 + αi )

yit [1 − F(x′
i t � + γ yi,t−1 + αi )]

1−yit

× P0(xi , α)yi0 [1 − P(xi , α)]1−yi0}G(α | xi ) dα. (7.5.35)

When, conditional on the individual effects αi , the error term uit remains
serially correlated, the problem becomes more complicated. The conditional
probability Prob(yit | yi,t−l , αi ) might fail to be equal to the marginal probabil-
ity Prob(yit | αi ) because of past yit containing information on uit . A test for
state dependence cannot simply rely on the multinomial distribution of the se-
quence (yi1, . . . , yiT ). The general framework (7.5.1) and (7.5.2) proposed by
Heckman (1978a, 1981a, 1981b) accommodates very general sorts of hetero-
geneity and structural dependence. It permits an analyst to combine models and
test among competing specifications within a unified framework. However, the
computations of maximum likelihood methods for the general models are quite
involved. It would be useful to rely on simple methods to explore data before
employing the computationally cumbersome maximum likelihood method for
a specific model.

Chamberlain (1978b) suggested a simple method to distinguish true state
dependence from spurious state dependence. He noted that just as in the contin-
uous models, a key distinction between state dependence and serial correlation
is whether or not there is a dynamic response to an intervention. This distinction
can be made clear by examining (7.5.1). If γ = 0, a change in x has its full effect
immediately, whereas if γ �= 0, one has a distributed-lag response to a change
in x. The lag structure relating y to x is not related to the serial correlation in u. If
x is increased in period t and then returned to its former level, the probability of
yi,t+1 is not affected if γ = 0, because by assumption the distribution of uit was
not affected. If γ �= 0, then the one-period shift in x will have lasting effects. An
intervention that affects the probability of y in period t will continue to affect
the probability of y in period t + 1, even though the intervention was presented
only in period t . In contrast, an interpretation of serial correlation is that the
shocks (u) tend to persist for more than one period and that yit is informative
only in helping to infer uit and hence to predict uit . Therefore, a test that should
not be very sensitive to functional form is to simply include lagged xs without
lagged y. After conditioning on the individual-specific effect αi , there may be



218 Discrete Data

two outcomes. If there is no state dependence, then

Prob(yit = 1 | xi t , xi,t−1, . . . , αi ) = Prob(yit = 1 | xi t , αi ), (7.5.36)

and if there is state dependence, then

Prob(yit = 1 | xi t , xi,t−1, . . . , αi ) �= Prob(yit = 1 | xi t , αi ). (7.5.37)

While the combination of (7.5.34), (7.5.36), and (7.5.37) provides a simple
form to distinguish pure heterogeneity, state dependence, and serial correlation,
we cannot make further distinctions with regard to different forms of state
dependence, heterogeneity, and serial correlation. Models (7.5.1) and (7.5.2)
will have to be used to further narrow down possible specifications.

7.5.5 Two Examples

The control of heterogeneity plays a crucial role in distinguishing true state
dependence from spurious state dependence. Neglecting heterogeneity and the
issue of initial observations can also seriously bias the coefficient estimates. It
is important in estimating dynamic models that the heterogeneity in the sample
be treated correctly. To demonstrate this, we use the female-employment mod-
els estimated by Heckman (1981c) and household brand choices estimated by
Chintagunta, Kyriazidou, and Perktold (2001) as examples.

7.5.5.a Female Employment

Heckman (1981c) used the first three-year sample of women aged 45–59 in
1968 from the Michigan Panel Survey of Income Dynamics to study married
women’s employment decisions. A woman is defined to be a market participant
if she works for money any time in the sample year. The set of explanatory
variables is as follows: the woman’s education; family income, excluding the
wife’s earnings; number of children younger than six; number of children at
home; unemployment rate in the county in which the woman resides; the wage
of unskilled labor in the county (a measure of the availability of substitutes for
a woman’s time in the home); the national unemployment rate for prime-age
males (a measure of aggregate labor-market tightness); and two types of prior
work experience: within-sample and presample. The effect of previous work
experience is broken into two components, because it is likely that presample
experience exerts a weaker measured effect on current participation decisions
than more recent experience. Furthermore, because the data on presample work
experience are based on a retrospective question and therefore are likely to be
measured with error, Heckman replaces them with predicted values based on a
set of regressors.

Heckman fitted the data with various multivariate probit models of the
form (7.5.1) and (7.5.2) to investigate whether or not work experience raises
the probability that a woman will work in the future (by raising her wage
rates) and to investigate the importance of controlling for heterogeneity in
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utilizing panel data. Maximum likelihood coefficient estimates for the state-
dependent models under the assumptions of stationary intertemporal covariance
matrix

� =
1 ρ12 ρ13

1 ρ23

1

,

first-order Markov process (vit = ρvi,t−1 + uit ), and no heterogeneity (vit =
uit ) are presented in columns 1, 2, and 3, respectively, of Table 7.3.18 Coef-
ficient estimates for no state dependence with general stationary intertemporal
correlation, first-order Markov process, conventional error-component formu-
lation [vit = αi + uit , equivalent to imposing the restriction that ρ12 = ρ13 =
ρ23 = σ 2

α/(σ 2
u + σ 2

α )], and no heterogeneity are presented in columns 4, 5, 6,
and 7, respectively. A Heckman–Willis (1977) model with time-invariant exo-
genous variables and conventional error-component formulation was also esti-
mated and is presented in column 8.

Likelihood-ratio test statistics (twice the difference of the log likelihood
value) against the most general model (column 1 of Table 7.3) indicate the
acceptance of recent labor-market experience as an important determinant of
current employment decision, with unobservables determining employment
choices following a first-order Markov process (column 2 of Table 7.3) as a
maintained hypothesis, and the statistics clearly reject all other formulations.
In other words, the study found that work experience, as a form of general
and specific human-capital investment, raises the probability that a woman will
work in the future, even after allowing for serial correlation of a very general
type. It also maintained that there exist unobserved variables that affect labor
participations. However, initial differences in unobserved variables tend to be
eliminated with the passage of time. But this homogenizing effect is offset in
part by the effect of prior work experience, which tends to accentuate initial
differences in the propensity to work.

Comparison of the estimates of the maintained hypothesis with estimates
of other models indicates that the effect of recent market experience on em-
ployment is dramatically overstated in a model that neglects heterogeneity.
The estimated effect of recent market experience on current employment status
recorded in column 3 of Table 7.3, overstates the effect by a factor of 10 (1.46
versus 0.143)! Too much credit will be attributed to past experience as a determi-
nant of employment if intertemporal correlation in the unobservables is ignored.
Likewise for the estimated effect of national unemployment on employment. On
the other hand, the effect of children on employment is understated in models
that ignore heterogeneity.

Comparisons of various models’ predictive performance on sample-run pat-
terns (temporal employment status) are presented in Table 7.4. It shows that
dynamic models ignoring heterogeneity underpredict the number of individu-
als who work all of the time and overpredict the number who do not work at
all. It also overstates the estimated frequency of turnover in the labor force. In
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Table 7.3. Estimates of employment models for women aged 45–59 in 1968a

Variable (1) (2) (3)

Intercept −2.576 (4.6) 1.653 (2.5) 0.227 (0.4)

No. of children aged<6 −0.816 (2.7) −0.840 (2.3) −0.814 (2.1)

County unemployment −0.035 (1.5) −0.027 (1.0) −0.018 (0.57)

rate (%)

County wage rate ($/h) 0.104 (0.91) 0.104 (0.91) 0.004 (0.02)

Total no. of children −0.146 (4.3) −0.117 (2.2) −0.090 (2.4)

Wife’s education (years) 0.162 (6.5) 0.105 (2.8) 0.104 (3.7)

Family income, excluding −0.363 × 10−4 (4.8) −0.267 × 10−4 (2.7) −0.32 × 10−4 (3.6)

wife’s earnings

National unemployment −0.106 (0.51) −0.254 (1.4) −1.30 (6)

rate

Recent experience 0.143 (0.95) 0.273 (1.5) 1.46 (12.2)

Predicted presample 0.072 (5.8) 0.059 (3.4) 0.045 (3.4)

experience

Serial-correlation

coefficient:

ρ12 0.913 — —

ρ13 0.845

ρ23 0.910

ρ — 0.873 (14.0) —

σ 2
α /(σ 2

u + σ 2
α ) — — —

Log likelihood −237.74 −240.32 −263.65

aAsymptotic normal test statistics in parentheses; these statistics were obtained from the estimating information

matrix.

fact, comparing the performance of the predicted run patterns for the dynamic
and static models without heterogeneity (columns 3 and 7 of Table 7.3, and
columns 3 and 4 of Table 7.4) suggests that introducing lagged employment
status into a model as a substitute for a more careful treatment of heterogene-
ity is an imperfect procedure. In this case, it is worse than using no proxy
at all. Nor does a simple static model with a components-of-variance scheme
(column 8 of Table 7.3, column 5 of Table 7.4) perform any better. Dynamic
models that neglect heterogeneity (column 3 of Table 7.4) overestimate labor-
market turnover, whereas the static model with a conventional variance-
components formulation (column 5 of Table 7.4) overstates the extent of hetero-
geneity and the degree of intertemporal correlation. It overpredicts the number
who never work during these three years and underpredicts the number who
always work.

This example suggests that considerable care should be exercised in utilizing
panel data to discriminate among the models. Improper control for heterogeneity
can lead to erroneous parameter estimates and dramatically overstate the effect
of past experience on current choices.
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Table 7.3. (cont.)

(4) (5) (6) (7) (8)

−2.367 (6.4) −2.011 (3.4) −2.37 (5.5) −3.53 (4.6) −1.5 (0)

−0.742 (2.6) −0.793 (2.1) −0.70 (2.0) −1.42 (2.3) −0.69 (1.2)

−0.030 (1.5) −0.027 (1.2) −0.03 (1.6) −0.059 (1.3) 0.046 (11)

0.090 (0.93) 0.139 (1.5) 0.13 (1.4) 0.27 (1.1) 0.105 (0.68)

−0.124 (4.9) −0.116 (2.2) −0.161 (4.9) −0.203 (3.9) −0.160 (6.1)

0.152 (7.3) 0.095 (2.5) 0.077 (3) 0.196 (4.8) 0.105 (3.3)

−0.312 × 10−4 (5.2) −0.207 × 10−4 (2.3) −0.2 × 10−4 (2.6) −0.65 × 10−4 (5.1) −0.385 × 10−4 (20)

−0.003 (0.38) −0.021 (0.26) 0.02 (3) 1.03 (0.14) −0.71 (0)

—b — — — —

0.062 (0.38) 0.062 (3.5) 0.091 (7.0) 0.101 (5.4) 0.095 (11.0)

0.917 — — — —

0.873 — — — —

0.946 — — — —

— −0.942 (50) — — —

— — 0.92 (4.5) — 0.941 (4.1)

−239.81 −243.11 −244.7 −367.3 −242.37

bNot estimated.

Source: Heckman (1981c, Table 3.2).

7.5.5.b Household Brand Choices

Chintagunta, Kyriazidou, and Perktold (2001) use the A.C. Nielson data on
yogurt purchases in Sioux Falls, South Dakota between September 17, 1986
and August 1, 1988 to study yogurt brand loyalty. They focus on the 6 oz pack-
ages of the two dominant yogurt brands, Yoplait and Nordica, for the analysis.
These brands account for 18.4 and 19.5 percent of yogurt purchases by weight.
Only data for households that have at least two consecutive purchases of either
one of the two brands are considered. This leaves 737 households and 5,618
purchase occasions, out of which 2,718 are for Yoplait and the remaining 2,900
for Nordica. The panel is unbalanced.19 The minimum number of purchase
occasions per household is 2, and the maximum is 305. The mean number of
purchases is 9.5, and the median is 5.

The model they estimate is given by

Prob(yit = 1 | xi t , yi0, . . . , yi,t−1, αi ) = exp(x′
i t � + γ yi,t−1 + αi )

1 + exp(x′
i t � + γ yi,t−1 + αi )

,

(7.5.38)
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Table 7.4. Comparisons of employment models using run data: Women aged
45–59 in 1968

(1) (2) (3) (4) (5)

Number Probit model Number
predicted from that ignores predicted
state-dependent Probit model heterogeneity and from
model with that ignores recent-sample Heckman–
heterogeneity heterogeneity state dependence Willis model

Run Actual (column 2 of (column 3 of (column 7 of (column 8 of
pattern number Table 7.3) Table 7.3) Table 7.3) Table 7.3)

0,0,0 96 94.2 145.3 36.1 139.5
0,0,1 5 17.6 38.5 20.5 4.1
0,1,0 4 1.8 1.9 20.2 4.1
1,0,0 8 2.6 0.35 20.6 4.1
1,1,0 5 1.4 0.02 21.2 3.6
1,0,1 2 2.4 1.38 21.1 3.6
0,1,1 2 16.4 8.51 21.7 3.6
1,1,1 76 61.5 2.05 36.6 34.9

χ2 c — 48.5 4,419 221.8 66.3

aData for 1971, 1972, and 1973, three years following the sample data, were used to
estimate the model.

b0 corresponds to not working; 1 corresponds to working; thus, 1,1,0 corresponds to a
woman who worked the first two years of the sample and did not work in the final year.

cThis is the standard chi-square statistic for goodness of fit. The higher the value of the
statistic, the worse the fit.

Source: Heckman (1981c).

where yit = 1 if household i chooses Yoplait in period t and yit = 0 if
household i chooses Nordica. The exogenous variables in xi t are the differ-
ence in the natural logarithm of the price (coefficient denoted by βP ) and the
differences in the dummy variables for the two brands that describe whether
the brand was displayed in the store and featured in an advertisement that week
(coefficients denoted by βD and βF respectively). Among the many models they
estimated, Table 7.5 presents the results of:

1. The pooled logit model with the lagged choice treated as exogenous,
assuming there are no individual-specific effects (PLL).

2. The Chamberlain (1982) conditional logit approach with the lagged
choice treated as exogenous (CLL).

3. The pooled logit approach with normally distributed random effects
with mean µ and variance σ 2

α , with the initial choice treated as exoge-
nous (PLLHET).

4. The pooled logit approach with normally distributed random effects
and the initial probability of choosing 1 given (xi , αi ) assumed at the
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Table 7.5. Estimates of brand choices using various approaches
(standard errors in parentheses)

Model βp βd β f γ µα σα

CLL −3.347 0.828 0.924 −0.068
(0.399) (0.278) (0.141) (0.140)

PLL −3.049 0.853 1.392 3.458 −0.333
(0.249) (0.174) (0.091) (0.084) (0.102)

PLLHET −3.821 1.031 1.456 2.126 0.198 1.677
(0.313) (0.217) (0.113) (0.114) (0.150) (0.086)

PLLHETE −4.053 0.803 1.401 1.598 0.046 1.770
(0.274) (0.178) (0.115) (0.115) (0.133) (0.102)

HK05 −3.477 0.261 0.782 1.223
(0.679) (0.470) (0.267) (0.352)

HK10 −3.128 0.248 0.759 1.198
(0.658) (0.365) (0.228) (0.317)

HK30 −2.644 0.289 0.724 1.192
(0.782) (0.315) (0.195) (0.291)

PLLHET-Sa −3.419 1.095 1.291 1.550 0.681 1.161
(0.326) (0.239) (0.119) (0.117) (0.156) (0.081)

aThe PLLHET estimates after excluding those households that are completely
loyal to one brand.

Source: Chintagunta, Kyriazidou, and Perktold (2001, Table 3).

steady state, which is approximated by

F(x̄′
i � + αi )

1 − F(x̄′
i � + γ + αi ) + F(x̄′

i � + αi )
, (7.5.39)

where F(a) = exp(a)/(1 + exp(a)) and x̄i denotes the individual time-
series mean of xi t (PLLHETE).

5. The Honoré–Kyriazidou (2000) approach where σN = c · N−1/5 with
c = 0.5 (HK05), 1.0 (HK10), and 3.0 (HK30).

Table 7.5 reveals that almost all procedures yield statistically significant co-
efficients with the expected signs. An increase in the price of a brand reduces
the probability of choosing the brand, and the presence of a store display or of
a feature advertisement for a brand makes purchase of that brand more likely.
Also, apart from CLL, all methods produce positive and statistically significant
estimates for γ , i.e., a previous purchase of a brand increases the probability
of purchasing the same brand in the next period. The lagged choice is found
to have a large positive effect in brand choice for pooled methods assuming no
heterogeneity: The PLL estimate of γ is 3.5. However, introducing heterogene-
ity lowers it substantially to 2.1 (PLLHET). The estimate of γ further drops to
1.598 (PLLHETE) when the initial observations are treated as endogenous, and
drops to about 1.2 using the Honoré–Kyriazidou estimator. Nevertheless, the
results do indicate that after controlling for the effects of αi , a previous purchase
of a brand increases the probability of purchasing the same brand in the next
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period, although their effect is substaintially reduced from the case of assuming
no heterogeneity. There is also an indication of substantial heterogeneity in
the sample. All methods that estimate random effects give high values for the
standard deviation of the household effects, σα , about 1.7, bearing in mind that
σu is normalized to 1 only.

In general, the size of the estimated parameters varies considerably across
estimation methods. There is also some sensitivity in the HK point estimates of
all coefficients with respect to the bandwidth choice. To investigate this issue
further and identify situations where the different methods are most reliable in
producing point estimates, Chintagunta, Kyriazidou, and Perktold (2001) fur-
ther conducted Monte Carlo studies. Their results indicate that the conditional
likelihood procedures are the most robust in estimating the coefficients on the
exogenous variables. However, the coefficient on the lagged dependent vari-
able is significantly underestimated. The pooled procedures are quite sensitive
to model misspecification, often yielding large biases for key economic pa-
rameters. The estimator proposed by Honoré and Kyriazidou (2000a) performs
quite satisfactory despite a loss of precision because their method de facto only
uses substantially smaller number of observations than other methods, due to
the use of the weighting scheme K ((xi t − xis)/σN ).



CHAPTER 8

Truncated and Censored Data

8.1 INTRODUCTION

In economics, the ranges of dependent variables are often constrained in some
way. For instance, in his pioneering work on household expenditure on durable
goods, Tobin (1958) used a regression model that specifically took account of the
fact that the expenditure (the dependent variable of his regression model) cannot
be negative. Tobin called this type of model the model of limited dependent
variables. It and its various generalization are known as Tobit models because of
their similarities to probit models.1 In statistics they are known as truncated or
censored regression models. The model is called truncated if the observations
outside a specific range are totally lost, and is called censored if we can at least
observe some of the explanatory variables.

Consider a latent response function,

y∗ = �′x + u, (8.1.1)

where x is a K × 1 vector of exogenous variables and u is the error term that
is independently, identically distributed (i.i.d.) with mean 0 and variance σ 2

u .
Without loss of generality, suppose that the observed y are related to y∗ by

y =
{

y∗ if y∗ > 0,

0 if y∗ ≤ 0.
(8.1.2)

Models of the form (8.1.1) and (8.1.2) are called censored regression models
because the data consist of those points of the form (y∗

i , xi ) if y∗
i > 0 and (0, xi )

if y∗
i ≤ 0 for i = 1, . . . , N . The truncated data only consist of points of the form

(y∗
i , xi ) where y∗

i > 0.
The conditional expectation of y given x for truncated data is equal to

E(y | y > 0) = E(y∗ | y∗ > 0) = x′� + E(u | u > −x′�). (8.1.3)

The conditional expectation of y given x for censored data is equal to

E(y | x) = Prob(y = 0) · 0 + Prob(y > 0 | x) · E(y | y > 0, x)

= Prob(u ≤ −x′�) · 0 + Prob(u > −x′�)E(y∗ | x; u > −x′�)

= Prob(u > −x′�)[x′� + E(u | u > −x′�)]. (8.1.4)
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If u is independently normally distributed with mean 0 and variance σ 2
u , then

Prob(u > −x′�) = 1 − �

(−x′�
σu

)
= �

(
x′�
σu

)
, (8.1.5)

and

E(u | u > −x′�) = σu ·
φ

(
x′�
σu

)
�

(
x′�
σu

) , (8.1.6)

where φ(·) and �(·) are standard normal density and cumulative (or integrated)
normal, respectively. Equations (8.1.3) and (8.1.4) show that truncation or cen-
soring of the dependent variables introduces dependence between the error term
and the regressors for the model

y = x′� + ε, (8.1.7)

where the error

ε = ν + E(y | x) − x′�. (8.1.8)

Although ν = y − E(y | x) has E(ν | x) = 0, we have E(ε | x) �= 0. Therefore,
the least-squares estimator of (8.1.7) is biased and inconsistent.

For a sample of N independent individuals, the likelihood function of the
truncated data is equal to

L1 =
∏

1

[Prob(yi > 0 | xi )]
−1 f (yi ), (8.1.9)

where f (·) denotes the density of y∗
i (or ui ), and

∏
1 means the product over

those i for which yi > 0. The likelihood function of the censored data is equal to

L2 =
{∏

0

Prob(yi = 0 | xi ) ·
∏

1

Prob(yi > 0 | xi )

}

×
{∏

1

[Prob(yi > 0 | xi )]
−1 f (yi )

}

=
∏

0

Prob(yi = 0 | xi )
∏

1

f (yi ), (8.1.10)

where
∏

0 means the product over those i for which y∗
i ≤ 0. In the case that

ui is independently normally distributed with mean 0 and variance σ 2
u , we

have f (yi ) = (2π )−
1
2 σ−1

u exp{−(1/2σ 2
u )(yi − x′

i �)2} and Prob(yi = 0 | xi ) =
�(−x′

i �/σu) = 1 − �(x′
i �/σu).

Maximizing (8.1.9) or (8.1.10) with respect to �′ = (�′, σ 2
u ) yields the

maximum likelihood estimator (MLE). The MLE, �̂, is consistent and is
asymptotically normally distributed. The asymptotic covariance matrix of
the MLE, asy cov[

√
N (�̂ − �)], is equal to the inverse of the informa-

tion matrix, [−E(1/N )∂2 log L j/∂� ∂�′]−1, which may be approximated by
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[−(1/N )∂2 log L j/∂� ∂�′ | �=�̂]−1, j = 1, 2. However, the MLE is highly non-
linear. A Newton–Raphson iterative scheme may have to be used to obtain the
MLE. Alternatively, if u is normally distributed, Heckman (1976a) suggests the
following two-step estimator:

1. Maximize the first factor in braces in the likelihood function (8.1.10)
by probit MLE with respect to � = (1/σu)�, yielding �̂.

2. Substitute �̂ for � into the truncated model

yi = E(yi | xi ; yi > 0) + ηi

= x′
i � + σu

φ(x′
i �)

�(x′
i �)

+ ηi for those i such that yi > 0,

(8.1.11)

where E(ηi | xi ) = 0, Var(ηi | xi ) = σ 2
u [1 − (x′

i �)λi − λ2
i ], and λi =

φ(x′
i �)/�(x′

i �). Regress yi on xi and φ(x′
i �̂)/�(x′

i �̂) by least squares,
using only the positive observations of yi .

The Heckman two-step estimator is consistent. The formula for computing
the asymptotic variance–covariance matrix of Heckman’s estimator is given by
Amemiya (1978b). But the Heckman two-step estimator is not as efficient as
the MLE.

Both the MLE of (8.1.10) and the Heckman two-step estimator (8.1.11) are
consistent only if u is independently normally distributed with constant vari-
ance. Of course, the idea of the MLE and the Heckman two-step estimator
can still be implemented with proper modification if the identically distributed
density function of u is correctly specified. A lot of times an investigator does
not have the knowledge of the density function of u, or u is not identically
distributed. Under the assumption that it is symmetrically distributed around 0,
Powell (1986) proves that applying the least-squares method to the symmetri-
cally censored or truncated data yields a consistent estimator which is robust to
the assumption of the probability density function of u and heteroscedasticity
of the unknown form.

The problem of censoring or truncation is that conditional on x, y is no
longer symmetrically distributed around x′� even though u is symmetrically
distributed around zero. Data points for which ui ≤ −x′

i � are either censored
or omitted. However, we can restore symmetry by censoring or throwing away
observations with ui ≥ x′

i � or yi ≥ 2x′
i �, as shown in Figure 8.1, so that the

remaining observations fall between (0, 2x′�). Because of the symmetry of
u, the corresponding dependent variables are again symmetrically distributed
about x′� (Hsiao (1976)).

To make this approach more explicit, consider first the case in which the
dependent variable is truncated at zero. In such a truncated sample, data points
for which ui ≤ −x′

i � are omitted. But if data points with ui ≥ x′
i � are also

excluded from the sample, then any remaining observations would have er-
ror terms lying within the interval (−x′

i �, x′
i �). (Any observations for which

x′
i � ≤ 0 are automatically deleted.) Because of the symmetry of the distribution
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y*

Density of y*

β′x 2β′x 0

Fig. 8.1 Density of y∗ censored or truncated at 0.

of u, the residuals for the symmetrically truncated sample will also be symmet-
rically distributed about zero. The corresponding dependent variable would take
values between zero and 2x′

i � as shown in the region AOB of Figure 8.2. In other
words, points b and c in Figure 8.2 are thrown away (point a is not observed).

Definition of the symmetrically trimmed estimator for a censored sam-
ple is similarly motivated. The error terms of the censored regression model
are of the form u∗

i = max{ui , −x′
i �} (i.e., point a in Figure 8.2 is moved

to the corresponding circle point a′). Symmetric censoring would replace u∗
i

with min{u∗
i , x′

i �} whenever x′
i � > 0, and would delete the observation other-

wise. In other words, the dependent variable yi = max{0, y∗
i } is replaced with

min{yi , 2x′
i �} as the points a,b,c in Figure 8.2 have been moved to the corre-

sponding circle points (a′, b′, c′).
Applying the least-squares principle to the symmetrically trimmed truncated

data is equivalent to requiring the observations falling in the region AOB to
satisfy the following first-order condition:

1

N

N∑
i=1

1(yi < 2�′xi )(yi − �′xi )xi = 0, (8.1.12)

in the limit, where 1(A) denotes the indicator function of the event A, which
takes the value 1 if A occurs and 0 otherwise. Applying the least-squares princi-
ple to the symmetrically censored data is equivalent to requiring the observations
in the region AOB and the boundary OA and OB (the circle points in Figure 8.2)
to satisfy the first-order condition,

1

N

N∑
i=1

1(�′xi > 0)(min{yi , 2�′xi } − �′xi )xi = 0, (8.1.13)
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in the limit. Therefore, Powell (1986) proposes the symmetrically trimmed
least-squares estimator as the �̂ that minimizes

RN (�) =
N∑

i=1

{
yi − max

(
1
2 yi , x′

i �
)}2

(8.1.14)

for the truncated data, and

SN (�) =
N∑

i=1

{
yi − max

(
1
2 yi , �′xi

)}2

+
N∑

i=1

1(yi > 2x′�)
{(

1
2 yi

)2 − [max(0, x′
i �)]2

}
(8.1.15)

for the censored data. The motivation for RN (�) is that if y > 2�′x, it will
have zero weight in the first-order condition (8.1.12) for the truncated sample.
The motivation for SN (�) is that observations greater than 2�′xi if �′x > 0 and
all observations corresponding to x′� < 0 will have zero weight in the first-
order condition (8.1.13) for the censored sample. Powell (1986) shows that the
symmetrically trimmed least-squares estimator is consistent and asymptotically
normally distributed as N → ∞.

The exogenously determined limited-dependent-variable models can be gen-
eralized to consider a variety of endogenously determined sample selection
issues. For instance, in Gronau (1976) and Heckman’s (1976a) female-labor-
supply model the hours worked are observed only for those women who decide
to participate in the labor force. In other words, instead of being exogenously
given, the truncating or censoring value is endogenously and stochastically

O x

βx

B

A

βx2

* , yy

b

c

a

a'

b'

c'

Fig. 8.2 Distribution of y and y∗ under symmetric trimming.
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determined by a selection equation (e.g. Duncan (1980))

d∗
i = w′

i a + vi , i = 1, . . . , N , (8.1.16)

where wi is a vector of exogenous variables, a is the parameter vector, and vi is
the random error term, assumed to be i.i.d. with mean 0 and variance normalized
to 1. The samples (yi , di ), i = 1, . . . , N , are related to y∗

i and d∗
i by the rule

d =
{

1 if d∗ > 0,

0 if d∗ ≤ 0,
(8.1.17)

y =
{

y∗ if d = 1,

0 if d = 0.
(8.1.18)

The model (8.1.1), (8.1.16)–(8.1.18) is called the type II Tobit model by
Amemiya (1985). Then

E(yi | di = 1) = x′
i � + E(ui | vi > −w′

i a). (8.1.19)

The likelihood function of (yi , di ) is

L =
∏

c

Prob(di = 0)
∏

c̄

f (y∗
i | di = 1)Prob(di = 1)

=
∏

c

Prob(di = 0)
∏

c̄

Prob(d∗
i > 0 | yi ) f (yi ), (8.1.20)

where c = {i | di = 0} and c̄ denotes its complement. If the joint distribution
of (u, v) is specified, one can estimate this model by the MLE. For instance, if
(u, v) is jointly normally distributed with mean (0, 0) and covariance matrix(

σ 2
u σuv

σvu 1

)
,

then

E(u | v > −w′a) = σuv
φ(w′a)

�(w′a)
, (8.1.21)

Prob(d = 0) = [1 − �(w′a)] = �(−w′a), (8.1.22)

Prob(di = 1 | yi ) = �

{
w′a + σuv

σu
(y − x′�)

}
. (8.1.23)

Alternatively, Heckman’s (1979) two-stage method can be applied: First,
estimate a by a probit MLE of di , i = 1, . . . , N . Evaluate φ(a′wi )/�(a′wi )
using the estimated a. Second, regress yi on xi and φ(â′wi )/�(âwi ) using data
corresponding to di = 1 only.

Just as in the standard Tobit model, the consistency and asymptotic normality
of the MLE and Heckman two-stage estimator for the endogenously determined
selection depend critically on the correct assumption of the joint probability
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distribution of (u, v). When the distribution of (u, v) is unknown, the coefficients
of x which are not overlapping with w can be estimated by a semiparametric
method.

For ease of exposition, suppose that there are no variables appearing in both
x and w. Then, as noted by Robinson (1988b), the model (8.1.1), (8.1.17),
(8.1.18) conditional on di = 1 becomes a partially linear model of the form

yi = �′xi + λ(wi ) + εi , (8.1.24)

where λ(wi ) denotes the unknown selection factor. The expectation of yi con-
ditional on wi and di = 1 is equal to

E(yi | wi , di = 1) = �′E(xi | wi , di = 1) + λ(wi ). (8.1.25)

Subtracting (8.1.25) from (8.1.24) yields

yi − E(yi | wi , di = 1) = �′(xi − E(xi | wi , di = 1)) + εi , (8.1.26)

where E(εi | wi , xi , di = 1) = 0. Thus, Robinson (1988b) suggests estimating
� by

�̂ = {E[x − E(x | w)][x − E(x | w)]′}−1

× E[(x − E(x | w))][y − E(y | w)], (8.1.27)

using the truncated sample.
The first-stage conditional expectation for the estimator (8.1.27) can be es-

timated by the nonparametric method. For instance, one may use the kernel
method to estimate the density of y at ya (e.g., Härdle (1990); Robinson (1989)):

f̂ (ya) = 1

NhN

N∑
i=1

k

(
yi − ya

hN

)
, (8.1.28)

where hN is a positive number, called the bandwidth or smoothing parameter,
that tends to zero as N → ∞, and k(u) is a kernel function that is a bounded
symmetric probability density function (pdf) that integrates to 1. Similarly, one
can construct a kernel estimator of a multivariate pdf at wa, f (wa) by

f̂ (wa) = 1

N |Hm |
N∑

i=1

km
(
H−1

m (wi − wa)
)
, (8.1.29)

where w is a m × 1 vector of random variables, km is a kernel function on m-
dimensional space, and Hm is a positive definite matrix. For instance, km(u)
can be the multivariate normal density function, or one can have km(u) =∏m

j=1 k(u j ), u′ = (u1, . . . , um), Hm = diag(h1N , . . . , hm N ).
Kernel estimates of a conditional pdf f (ya | wa) or conditional expecta-

tions Eg(y | wa) may be derived from the kernel estimates of the joint pdf and
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marginal pdf. Thus, the conditional pdf may be estimated by

f̂ (ya | wa) = f̂ (ya, wa)

f̂ (wa)
, (8.1.30)

and the conditional expectation by

Eĝ(y | wa) = 1

N |Hm |
N∑

i=1

g(yi )km
(
H−1

m (wi −wa)
)/

f̂ (wa). (8.1.31)

Robinson’s (1988b) approach does not allow the identification of the pa-
rameters of variables that appear both in the regression equation (x) and in
the selection equation (w). When there are variables appearing in both x and
w, Newey (1999) suggests a two-step series method of estimating � provided
that the selection correction term of (8.1.25), λ(wi , di = 1), is a function of the
single index w′

i a:

λ(w, d = 1) = E[u | v(w′a), d = 1]. (8.1.32)

The first step of Newey’s method uses the distribution-free methods discussed
in Chapter 7 and in Klein and Spady (1993) to estimate a. The second step
consists of a linear regression of di yi on di xi and the approximations of λ(wi ).
Newey suggests approximating λ(wi ) by either a polynomial function of (w′

i â)
or a spline function PK

N (w′a) = (P1K (w′a), P2K (w′a), . . . , PK K (w′a))′ with the
property that for large K , a linear combination of PK

N (w′a) can approximate
an unknown function of λ(w′a) well. Newey (1999) shows that the two-step
series estimation of � is consistent and asymptotically normally distributed
when N → ∞, K → ∞, and

√
N K −s−t+1 → 0, where s ≥ 5, and where

K 7/N → 0 if P K
N (w′a) is a power series or m ≥ t − 1, s ≥ 3, and K 4/N → 0

if P K (w′a) is a spline of degree m in (w′a).2

If the selection factor λ(wi ) is a function of a single index w′
i a, and the com-

ponents of wi are not a subset of xi , then instead of subtracting (8.1.26) from
(8.1.25) to eliminate the unknown selection factor λ(wi ), Ahn and Powell (1993)
note that for those individuals with w′

i a = w′
j a, one has λ(w′

i a) = λ(w′
j a).

Thus, conditional on w′
i a = w′

j a, di = 1, d j = 1,

(yi − y j ) = (xi − x j )
′� + (εi − ε j ), (8.1.33)

where the error term (ε j − ε j ) is symmetrically distributed around zero. They
show that ifλ is a sufficiently “smooth” function and â is a consistent estimator of
a, observations for which the difference (wi − w j )′â is close to zero should have
λ(x′

i â) − λ(w′
j â) � 0. Therefore, Powell (2001) proposes a two-step procedure.

In the first step, consistent semiparametric estimates of the coefficients of the
selection equation are obtained. The result is used to obtain estimates of the
single index (x′

i a) variables characterizing the selectivity bias in the equation
of interest. The second step of the approach estimates the parameters of the
interest by a weighted least-squares (or instrumental) variables regression of
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pairwise differences in dependent variables in the sample on the corresponding
differences in explanatory variables:

�̂AP =
[

N−1∑
i=1

N∑
j=i+1

K

(
(wi − w j )′â

hN

)
· (xi − x j )(xi − x j )

′ di d j

]−1

×
[

N−1∑
i=1

N∑
j=i+1

K

(
(wi − w j )′â

hN

)
· (xi − x j )(yi − y j ) di d j

]
,

(8.1.34)

where K (·) is a kernel density weighting function that is bounded, is symmetric,
and tends to zero as the absolute value of its argument increases, and hN is a
positive constant (or bandwidth) that decreases to zero such that N (hN )6 → 0,
and N (hN )8 → 0 as N → ∞. Often, standard normal density is used as a
kernel function. The effect of multiplying by K (·) is to give more weights to
observations with (1/hN )(wi − w j )′â � 0 and less weight to observations for
which w′

i â is different from w′
j â, so that in the limit only observations with

w′
i a = w′

j a are used in (8.1.34), and (8.1.34) converges to a weighted least-
squares estimator for the truncated data,

�̂AP → {E{ f (w′a)[x − E(x | w′a)][x − E(x | w′a)]′}}−1

× {E{ f (w′a)[x − E(x | w′a)][y − E(y | w′a)]}}, (8.1.35)

where f (w′a) denotes the density function of w′a, which is assumed to be
continuous and bounded above.

Both the Robinson (1988b) semiparametric estimator and the Powell-type
pairwise differencing estimator converge to the true value at the speed of N−1/2.
However, neither method can provide estimate of the intercept term, because
differencing the observation conditional on w or w′a, although it eliminates
the selection factor λ(w), also eliminates the constant term, nor can x and w
be identical. Chen (1999) notes that if (u, v) are jointly symmetrical and w
includes a constant term,

E(u | v > −w′a) Prob(v > −w′a) − E(u | v > w′a) Prob(v > w′a)

=
∫ ∞

−∞

∫ ∞

−w′a
u f (u, v) du dv −

∫ ∞

−∞

∫ ∞

w′a
u f (u, v) du dv

=
∫ ∞

−∞

∫ w′a

−w′a
u f (u, v) du dv = 0, (8.1.36)

where, without loss of generality, we let w′a > 0. It follows that

E[di yi − d j y j − (di xi − d j x j )
′� | w′

i a = −w′
j a, wi , w j ]

= E[di ui − d j u j | w′
i a = −w′

j a, wi , w j ] = 0. (8.1.37)

Because E[di − d j | w′
i a = −w′

j a, wi , w j ] = 2Prob(di = 1 | w′
i a) − 1 �= 0
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and the conditioning is on w′
i a = −w′

j a, not on w′
i a = w′

j a, the moment condi-
tion (8.1.37) allows the identification of the intercept and the slope parameters
without the need to impose the exclusion restriction that at least one component
of x is excluded from w. Therefore, Chen (1999) suggests a

√
N -consistent

instrumental variable estimator for the intercept and the slope parameters as

�̂c =
[

N−1∑
i=1

N∑
j=i+1

K

(
(wi + w j )′â

hN

)
(di xi − d j x j )(zi − z j )

′
]−1

×
[

N−1∑
i=1

N∑
j=i+1

K

(
(wi + w j )′â

hN

)
(zi − z j )

′(di yi − d j y j )

]
,

(8.1.38)

where zi are the instruments for di xi . In the case when y are unobservable, but the
corresponding x are observable, the natural instrument will be E(d | w′a)x. An
efficient method for estimating binary-choice models that contain an intercept
term, suggested by Chen (2000), can be used to obtain the first-stage estimate
of a.

8.2 AN EXAMPLE --- NONRANDOMLY
MISSING DATA

8.2.1 Introduction

Attrition is a problem in any panel survey. For instance, by 1981, all four of the
national longitudinal surveys started in the 1960s had lost at least one-fourth of
their original samples. In the Gary income maintenance project, 206 of the sam-
ple of 585 Black, male-headed households, or 35.2 percent, did not complete
the experiment. In Section 9.2 we shall discuss procedures to handle randomly
missing data. However, the major problem in econometrics is not simply miss-
ing data, but the possibility that they are missing for a variety of self-selection
reasons. For instance, in a social experiment such as the New Jersey or Gary
negative-income-tax experiments, some individuals may decide that keeping the
detailed records that the experiments require is not worth the payment. Also,
some may move or may be inducted into the military. In some experiments,
persons with large earnings receive no experimental-treatment benefit and thus
drop out of the experiment altogether. This attrition may negate the randomiza-
tion in the initial experiment design. If the probability of attrition is correlated
with experimental response, then traditional statistical techniques will lead to
biased and inconsistent estimates of the experimental effect. In this section
we show how models of limited dependent variables [e.g., see the surveys of
Amemiya (1984); Heckman (1976a); and Maddala (1983)] can provide both the
theory and the computational techniques for analyzing nonrandomly missing
data (Griliches, Hall, and Hausman (1978); Hausman and Wise (1979)).3
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8.2.2 A Probability Model of Attrition and Selection Bias

Suppose that the structural model is

yit = �′xi t + vit , i = 1, . . . , N ,

t = 1, . . . , T, (8.2.1)

where the error term vit is assumed to follow a conventional error-components
formulation vit = αi + uit . For ease of exposition, we assume that T = 2.

If attrition occurs in the second period, a common practice is to discard
those observations for which yi2 is missing. But suppose that the probability
of observing yi2 varies with its value, as well as the values of other variables;
then the probability of observing yi2 will depend on vi2. Least squares of (8.2.1)
based on observed y will lead to biased estimates of the underlying structural
parameters and the experimental response.

To formalize the argument, let the indicator variable di = 1 if yi2 is observed
in period 2, and di = 0 if yi2 is not observed; in other words, attrition occurs.
Suppose that yi2 is observed (di = 1) if the latent variable

d∗
i = γ yi2 + �′xi2 + �′wi + ε∗

i ≥ 0, (8.2.2)

where wi is a vector of variables that do not enter the conditional expectation of
y but affect the probability of observing y; � and � are vectors of parameters;
and (vi , ε

∗
i ) are jointly normally distributed. Substituting for yi2 leads to the

reduced-form specification

d∗
i = (γ �′ + �′)xi2 + �′wi + γ vi2 + ε∗

i

= �′xi2 + �′wi + εi

= a′ Ri + εi , (8.2.3)

where εi = γ vi2 + ε∗
i , Ri = (x′

i2, w′
i )

′, and a′ = (�′, �′). We further assume
that vit are also normally distributed, and we normalize the variance σ 2

ε of εi

to 1. Then the probabilities of retention and attrition are probit functions given,
respectively, by

Prob(di = 1) = �(a′ Ri ),
(8.2.4)

Prob(di = 0) = 1 − �(a′ Ri ),

where �(·) is the standard normal distribution function.
Suppose we estimate the model (8.2.1) using only complete observations.

The conditional expectation of yi2, given that it is observed, is

E(yi2 | xi2, wi , di = 1) = �′xi2 + E(vi2 | xi2, wi , di = 1). (8.2.5)

From vi2 = σ2εεi + ηi , where σ2ε is the covariance between vi2 and εi , and ηi
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is independent of εi (Anderson (1958, Chapter 2)), we have

E(vi2 | wi , di = 1) = σ2ε E(εi | wi , di = 1)

= σ2ε

�(a′ Ri )

∫ ∞

−a′ Ri

ε · 1√
2π

e−ε2/2 dε

= σ2ε

φ(a′ Ri )

�(a′ Ri )
, (8.2.6)

where φ(·) denotes the standard normal density function. The last equality of
(8.2.6) follows from the fact that the derivative of the standard normal density
function φ(ε) with respect to ε is −εφ(ε). Therefore,

E(yi2 | xi2, wi , di = 1) = �′xi2 + σ2ε

φ(a′ Ri )

�(a′ Ri )
. (8.2.7)

Thus, estimating (8.2.1) using complete observations will lead to biased and
inconsistent estimates of � unless σ2ε = 0. To correct for selection bias, one
can use either Heckman’s two-stage method (1979) (see Section 8.1) or the
maximum likelihood method.

When di = 1, the joint density of di = 1, yi1, and yi2 is given by

f (di = 1, yi1, yi2) = Prob(di = 1 | yi1, yi2) f (yi1, yi2)

= Prob(di = 1 | yi2) f (yi1, yi2)

= �


a′ Ri +

(
σ2ε

σ 2
u + σ 2

α

)
(yi2 − �′xi2)[

1 − σ 2
2ε

σ 2
u + σ 2

α

]1/2


× [

2πσ 2
u

(
σ 2

u + 2σ 2
α

)]−1/2

× exp

{
− 1

2σ 2
u

[
2∑

t=1

(yit − �′xi t )
2 − σ 2

α

σ 2
u + 2σ 2

α

×
(

2∑
t=1

(yit − �′xi t )

)2 ]}
,

(8.2.8)

where the first factor follows from the fact that the conditional density of
f (εi | vi2) is normal, with mean [σ2ε/(σ 2

u + σ 2
α )]vi2 and variance 1 − σ 2

2ε/(σ 2
u +

σ 2
α ). When di = 0, yi2 is not observed and must be integrated out. In this in-

stance, the joint density of di = 0 and yi1 is given by

f (di = 0, yi1) = Prob(di = 0 | yi1) f (yi1)

=

1 − �

a′ Ri + σ1ε

σ 2
u + σ 2

α
(yi1 − �′xi1)[

1 − σ 2
1ε

σ 2
u + σ 2

α

]1/2



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× [
2π

(
σ 2

u + σ 2
α

)]−1/2

× exp

{
− 1

2
(
σ 2

u + σ 2
α

) (yi1 − �′xi1)2

}
. (8.2.9)

The second equality of (8.2.9) follows from the fact that f (εi | vi1) is normal,
with mean [σ1ε/(σ 2

u + σ 2
α )]vi1 and variance 1 − σ 2

1ε/(σ 2
u + σ 2

α ), where σ1ε is
the covariance between vi1 and εi , which is equal to σ2ε = σ 2

α/(σ 2
u + σ 2

α ).
The likelihood function follows from (8.2.8) and (8.2.9). Order the observa-

tions so that the first N1 observations correspond to di = 1, and the remaining
N − N1 correspond to di = 0; then the log likelihood function is given by

log L = −N log 2π − N1

2
log σ 2

u − N1

2
log

(
σ 2

u + 2σ 2
α

)
− N − N1

2
log

(
σ 2

u + σ 2
α

)
− 1

2σ 2

N1∑
i=1

{
2∑

t=1

(yit − �′xi t )
2 − σ 2

α

σ 2
u + 2σ 2

α

[
2∑

t=1

(yit − �′xi t )

]2}

+
N1∑

i=1

log �


a′ Ri + σ2ε

σ 2
u + σ 2

α
(yi2 − �′xi2)[

1 − σ 2
2ε

σ 2
u + σ 2

α

]1/2


− 1

2
(
σ 2

u + σ 2
α

) N∑
i=N1+1

(yi1 − �′xi1)2

+
N∑

i=N1+1

log

1 − �

a′ Ri + σ1ε

σ 2
u + σ 2

α
(yi1 − �′xi1)[

1 − σ 2
1ε

σ 2
u + α2

α

]1/2


. (8.2.10)

The critical parameter for attrition bias is σ2ε . If σ2ε = 0, so does σ1ε . The
likelihood function (8.2.10) then separates into two parts. One corresponds
to the variance-components specification for y. The other corresponds to the
probit specification for attrition. Thus, if attrition bias is not present, this is
identical with the random missing-data situations. Generalized least-squares
techniques used to estimate (8.2.1) will lead to consistent and asymptotically
efficient estimates of the structural parameters of the model.

The Hausman–Wise two-period model of attrition can be extended in a
straightforward manner to more than two periods and to simultaneous-equations
models with selection bias, as discussed in Section 8.2. When T > 2, an attrition
equation can be specified for each period. If attrition occurs, the individual does
not return to the sample; then a series of conditional densities analogous to
(8.2.8) and (8.2.9) result. The last period for which the individual appears in the
sample gives information on which the random term in the attrition equations
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is conditioned. For periods in which the individual remains in the sample, an
equation like (8.2.8) is used to specify the joint probability of no attrition and
the observed values of the dependent variables.

In the case of simultaneous-equations models, all the attrition model does is
to add an equation for the probability of observing an individual in the sample.
Then the joint density of observing in-sample respondents becomes the product
of the conditional probability of the observation being in the sample, given the
joint dependent variable y, and the marginal density of y. The joint density of
incomplete respondents becomes the product of the conditional probability
of the observation being out of the sample, given the before-dropping-out values
of y, and the marginal density of the previous periods’ y. The likelihood function
is simply the product of these two joint densities; see Griliches, Hall, and
Hausman (1978) for a three-equation model.

The employment of probability equations to specify the status of individuals
can be very useful in analyzing the general problems of changing compositions
of the sample over time, in particular when changes are functions of individual
characteristics. For instance, in addition to the problem of attrition in the national
longitudinal surveys’ samples of young men, there is also the problem of sample
accretion, that is, entrance into the labor force of the fraction of the sample origi-
nally enrolled in school. The literature on switching regression models can be
used as a basis for constructing behavioral models for analyzing the changing
status of individuals over time.4

8.2.3 Attrition in the Gary Income-Maintenance Experiment

The Gary income-maintenance project focused on the effect of alternative sets
of income-maintenance structures on work–leisure decisions. The basic project
design was to randomly divide individuals into two groups: controls and experi-
mentals. The controls were not on an experimental-treatment plan, but received
nominal payments for completing periodic questionnaires. The experimentals
were randomly assigned to one of several income-maintenance plans. The ex-
periment had four basic plans defined by an income guarantee and a tax rate.
The two guarantee levels were $4,300 and $3,300 for a family of four and were
adjusted up for larger families and down for smaller families. The two marginal
tax rates were 0.6 and 0.4. Retrospective information of individuals in the ex-
periments was also surveyed for a preexperimental period (normally just prior
to the beginning of the experimental period) so that the behavior of experimen-
tals during the experiment could be compared with their own preexperimental
behavior and also compared with that of the control group to obtain estimates
of the effects of treatment plans.

Two broad groups of families were studied in the Gary experiment: Black
female-headed households and black male-headed households. There was little
attrition among the first group, but the attrition among male-headed families
was substantial. Of the sample of 334 experimentals used by Hausman and
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Wise (1979), the attrition rate was 31.1 percent. Among the 251 controls, 40.6
percent failed to complete the experiment.

If attrition is random, as will be discussed in Section 9.2, it is not a major
problem. What matters is that data are missing for a variety of self-selection
reasons. In this case it is easy to imagine that attrition is related to endogenous
variables. Beyond a breakeven point, experimentals receive no benefits from the
experimental treatment. The breakeven point occurs when the guarantee minus
taxes paid on earnings (wage rate times hours worked) is zero. Individuals with
high earnings receive no treatment payment and may be much like controls
with respect to their incentive to remain in the experiment. But because high
earnings are caused in part by the unobserved random term of the structural
equation (8.2.1), attrition may well be related to it.

Hausman and Wise (1979) estimated structural models of earnings with
and without correcting for attrition. The logarithm of earnings was regressed
against time trend, education, experience, union membership, health status,
and the logarithm of nonlabor family income. To control for the effects of the
treatment, they also used a dummy variable that was 1 if for that period the
household was under one of the four basic income-maintenance plans, and 0
otherwise. Because hourly wages for experimentals and controls did not differ,
the coefficient of this variable provided a reasonable indicator of the effect of
experimental treatment on hours worked.

Because only three observations were available during the experiment, each
for a one-month period, they concentrated on a two-period model: a period
for the preexperiment average monthly earnings and a period for the average
earning of the three monthly observations of the experimental period. Their
generalized-least-squares estimates of the structural parameters that were not
corrected for attrition and the maximum likelihood estimates that incorporated
the effects of attrition, (8.2.1) and (8.2.3), are presented in Table 8.1.

The attrition-bias parameter σ2ε/(σ 2
u + σ 2

α ) was estimated to be −0.1089.
This indicates a small but statistically significant correlation between earn-
ings and the probability of attrition. The estimate of the experimental effect
was very close whether or not the attrition bias was corrected for. However,
the experimental-effect coefficient did increase in magnitude from −0.079 to
−0.082, an increase of 3.6 percent. Some of the other coefficients showed more
pronounced changes. The effect of nonlabor family income on earnings (hence
hours worked) decreased by 23 percent from the generalized-least-squares es-
timates, and the effect of another year of education increased by 43 percent.
These results demonstrate that attrition bias was a potentially important prob-
lem in the Gary experiment. For other examples, see Ridder (1990), Nijman
and Verbeek (1992), and Verbeek and Nijman (1996).

The Hausman–Wise (HW) model assumes that the contemporaneous values
affect the probability of responding. Alternatively, the decision on whether to
respond may be related to past experiences – if in the first period the effort
in responding was high, an individual may be less inclined to respond in the
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second period. When the probability of attrition depends on lagged but not on
contemporaneous variables, individuals are missing at random (MAR) (Rubin
(1976); Little and Rubin (1987)) and the missing data are ignorable. (This case
is sometimes referred to as selection on observables, e.g., Moffitt, Fitzgerald,
and Gottschalk (1997)).

Both sets of models are often used to deal with attrition in panel data sets.
However, they rely on fundamentally different restrictions on the dependence of
the attrition process on time path of the variables and can lead to very different
inferences. In a two-period model one cannot introduce dependence on yi2 in the
MAR model, or dependence on yi1 in the HW model, without relying heavily on
functional-form and distributional assumptions. However, when missing data
are augmented by replacing the units who have dropped out with new units
randomly sampled from the original population, called refreshment samples
by Ridder (1992), it is possible to test between these two types of models
nonparametrically as well as to estimate more general models (e.g., Hirano
et al. (2001)).

8.3 TOBIT MODELS WITH RANDOM
INDIVIDUAL EFFECTS

The most typical concern in empirical work using panel data has been the
presence of unobserved heterogeneity.5 Thus, a linear latent response function
is often written in the form

y∗
i t = αi + �′xi t + uit , i = 1, . . . , N ,

t = 1, . . . , T, (8.3.1)

where the error term is assumed to be independent of xi t and is i.i.d. over time
and across individuals. The observed value yit is equal to y∗

i t if y∗
i t > 0 and is

unobserved for y∗
i ≤ 0 when data are truncated, and is equal to zero when data

are censored. Under the assumption that αi is randomly distributed with density
function g(α) (or g(α | x)), the likelihood function of the standard Tobit model
for the truncated data is of the form

N∏
i=1

∫ [
T∏

t=1

[1 − F(−�′xi t − αi )]
−1 f (yit − �′xi t − αi )

]
g(αi ) dαi ,

(8.3.2)

where f (·) denotes the density function of uit and F(a) = ∫ a
−∞ f (u) du. The

likelihood function of the censored data takes the form
N∏

i=1

∫ [∏
tεci

F(−�′xi t − αi )
∏
tεc̄i

f (yit − αi − �′xi t )

]
g(αi ) dαi ,

(8.3.3)
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where ci = {t | yit = 0} and c̄i denotes its complement. Maximizing (8.3.2) or
(8.3.3) with respect to unknown parameters yields consistent and asymptotically
normally distributed estimators.

Similarly, for the type II Tobit model we may specify a sample selection
equation

d∗
i t = w′

i t a + ηi + νi t , (8.3.4)

with the observed (yit , dit ) following the rule dit = 1 if d∗
i t > 0 and zero other-

wise, as in (8.1.17), and y∗
i t = yit if dit = 1 and unknown otherwise, as in

(8.1.18). Suppose that the joint density of (αi , ηi ) is given by g(α, η). Then the
likelihood function of the type II Tobit model takes the form

N∏
i=1

∫ [∏
t∈ci

Prob(dit = 0 | wi t , αi )
∏
t∈c̄i

Prob(dit = 1 | wi t , αi )

× f (yit | xi t , wi t , αi , ηi , dit = 1)

]
g(αi , ηi ) dαi dηi

=
N∏

i=1

∫ [∏
t∈ci

Prob(dit = 0 | wi t , αi )
∏
t∈c̄i

Prob(dit = 1 | wi t , ηi , αi , yit , xi t )

× f (yit | xi t , αi )

]
g(αi , ηi ) dαi dηi . (8.3.5)

Maximizing the likelihood function (8.3.2), (8.3.3), or (8.3.5) with respect to
unknown parameters yields consistent and asymptotically normally distributed
estimator of � when either N or T or both tend to infinity. However, the com-
putation is quite tedious even with a simple parametric specification of the
individuals effects αi and ηi , because it involves multiple integration.6 Neither
is a generalization of the Heckman (1976a) two-stage estimator easily imple-
mentable (e.g., Nijman and Verbeek (1992); Ridder (1990); Vella and Verbeek
(1999); Wooldridge (1999)). Moreover, both the MLE and the Heckman two-
step estimators are sensitive to the exact specification of the error distribu-
tion. However, if the random effects αi and ηi are independent of xi , then the
Robinson (1988b) and Newey (1999) estimators ((8.1.27) and (8.1.32)) can be
applied to obtain consistent and asymptotically normally distributed estimators
of �. Alteratively, one may ignore the randomness of αi and ηi and apply the
Honoré (1992) fixed-effects trimmed least-squares or least-absolute-deviation
estimator for the panel data censored and truncated regression models, or the
Kyriazidou (1997) two-step semiparametric estimator for the panel data sample
selection model, to estimate � (see Section 8.4).
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8.4 FIXED-EFFECTS ESTIMATOR

8.4.1 Pairwise Trimmed Least-Squares and
Least-Absolute-Deviation Estimators for
Truncated and Censored Regressions

When the effects are fixed and if T → ∞, the MLEs of �′ and αi are straightfor-
ward to implement and are consistent. However, panel data often involve many
individuals observed over few time periods, so that the MLE, in general, will be
inconsistent as described in Chapter 7. In this section, we consider the pairwise
trimmed least-squares (LS) and least-absolute-deviation (LAD) estimators of
Honoré (1992) for panel data censored and truncated regression models that are
consistent without the need to assume a parametric form for the disturbances
uit , nor homoscedasticity across individuals.

8.4.1.a Truncated Regression

We assume a model (8.3.1) and (8.1.2) except that now the individual effects
are assumed fixed. The disturbance uit is again assumed to be independently
distributed over i and i.i.d. over t conditional on xi and αi .

We note that when data are truncated or censored, first-differencing does
not eliminate the individual-specific effects from the specification. To see this,
suppose that the data are truncated. Let

yit = E(yit | xi t , αi , yit > 0) + εi t , (8.4.1)

where

E(yit | xi t , αi , yit > 0) = αi + x′
i t � + E(uit | uit > −αi − x′

i t �).

(8.4.2)

Since xi t �= xis , in general,

E(yit | xi t , αi , yit > 0) − E(yis | xis, αi , yis > 0)

= (xi t − xis)′� + E(uit | uit > −αi − x′
i t �)

− E(uis | uis > −αi − x′
is�). (8.4.3)

In other words,

(yit − yis) = (xi t − xis)′� + E(uit | uit > −αi − x′
i t �)

− E(uis | uis > −αi − x′
is�) + (εi t − εis). (8.4.4)

The truncation correction term, E(uit | uit > −αi − x′
i t �), which is a function

of the individual specific effects αi , remains after first-differencing. However,
we may eliminate the truncation correction term through first-differencing if
we restrict our analysis to observations where yit > (xi t − xis)′� and yis >
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−(xi t − xis)′�. To see this, suppose that (xi t − xis)′� < 0. Then

E(yis | αi , xi t , xis, yis > −(xi t − xis)′�)

= αi + x′
is� + E(uis | uis > −αi − x′

is� − (xi t − xis)′�). (8.4.5)

Since uit conditional on xi and αi is assumed to be i.i.d.,

E(uit | uit > −αi − x′
i t �) = E(uis | uis > −αi − x′

i t �). (8.4.6)

Similarly, if (xi t − xis)′� > 0,

E(uit | uit > −αi − x′
i t � + (xi t − xis)′�)

= E(uit | uit > −αi − x′
is�)

= E(uis | uis > −αi − x′
is�). (8.4.7)

Therefore, by confining our analysis to the truncated observations where
yit > (xi t − xis)′�, yis > −(xi t − xis)′�, yit > 0, yis > 0, we have

(yit − yis) = (xi t − xis)′� + (εi t − εis), (8.4.8)

which no longer involves the incidental parameters αi . Since E[(εi t − εis) |
xi t , xis] = 0, applying least squares to (8.4.8) will yield a consistent estimator
of �.

The idea of restoring symmetry of the error terms of the pairwise differencing
equation (yit − yis) by throwing away observations, where yit < (xi t − xis)′�
and yis < −(xi t − xis)′� can be seen by considering the following graphs,
assuming that T = 2. Suppose that the probability density function of uit is
of the shape shown in Figure 8.3. Since ui1 and ui2 are i.i.d. conditional on
(xi1, xi2, αi ), the probability density of y∗

i1 and y∗
i2 conditional on (xi1, xi2, αi )

should have the same shape except for the location. The top and bottom graphs of
Figure 8.4 postulate the probability density of y∗

i1 and y∗
i2 conditional on

(xi1, xi2, αi ), respectively, assuming that 	x′
i � < 0, where 	xi = 	xi2 =

xi2 − xi1. The truncated data correspond to those sample points where y∗
i t or

yit > 0. Because x′
i1� �= x′

i2�, the probability density of yi1 is different from
that of yi2. However, the probability density of y∗

i1 given y∗
i1 > −	x′

i � (or yi1

given yi1 > −	x′
i �) is identical to the probability density of y∗

i2 given y∗
i2 > 0

(or yi2 given yi2 > 0) as shown in Figure 8.4. Similarly, if 	x′
i � > 0, the proba-

bility density of y∗
i1 given y∗

i1 > 0 (or yi1 given yi1 > 0) is identical to the proba-
bility density of y∗

i2 given y∗
i2 > 	x′

i � as shown in Figure 8.5.7 In other words,
in a two-dimensional diagram of (y∗

i1, y∗
i2) as in Figure 8.6 or 8.7, (y∗

i1, y∗
i2)

conditional on (xi1, xi2, αi ) is symmetrically distributed around the 45-degree
line through (x′

i1� + αi , x′
i2� + αi ), or equivalently, around the 45-degree line

through (x′
i1�, x′

i2�) or (−	x′
i �, 0), e. g., the line L L ′. Since this is true for any

value of αi , the same statement is true for the distribution of (y∗
i1, y∗

i2) conditional
on (xi1, xi2). When 	x′

i � < 0, the symmetry of the distribution of (y∗
i1, y∗

i2)
around L L ′ means that the probability that (y∗

i1, y∗
i2) falls in the region A1 =

{(y∗
i1, y∗

i2) : y∗
i1 > −	x′

i �, y∗
i2 > y∗

i1 + 	x′
i �} equals the probability that it

falls in the region B1 = {(y∗
i1, y∗

i2) : y∗
i1 > −	x′

i �, 0 < y∗
i2 < y∗

i1 + 	x′
i �}
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uit0

f(uit)

Fig. 8.3 Probability density of uit .

(Figure 8.6). When 	x′
i � > 0, the probability that (y∗

i1, y∗
i2) falls in the

region A1 = {(y∗
i1, y∗

i2) : y∗
i1 > 0, y∗

i2 > y∗
i1 + 	x′

i �} equals the probability
that it falls in the region B1 = {(y∗

i1, y∗
i2) : y∗

i1 > 0, 	x′
i � < y∗

i2 < y∗
i1 +

	x′
i �} (Figure 8.7). That is, points in the regions A1 and B1 are not af-

fected by the truncation. On the other hand, points falling into the region
(0 < y∗

i1 < −	x′
i �, y∗

i2 > 0) in Figure 8.6 (corresponding to points (yi1 <

−	x′
i �, yi2)) and (y∗

i1 > 0, 0 < y∗
i2 < 	x′

i �) in Figure 8.7 (corresponding to
points (yi1, yi2 < 	x′

i �)) will have to be thrown away to restore symmetry.
Let C = {i | yi1 > −	x′

i �, yi2 > 	x′
i �}; then (yi1 − x′

i1� − αi ) and
(yi2 − x′

i2� − αi ) for i ∈ C are symmetrically distributed around zero. There-
fore E[(yi2 − yi1) − (xi2 − xi1)′� | xi1, xi2, i ∈ C] = 0. In other words,

E[	yi − 	x′
i � | yi1 > −	x′

i �, yi2 > 	x′
i �]

= E[	yi − 	x′
i � | y∗

i1 > 0, y∗
i1 > −	x′

i �, y∗
i2 > 0

y∗
i2 > 	x′

i �] = 0, (8.4.9a)

and

E[(	yi − 	x′
i �)	xi | yi1 > −	x′

i �, yi2 > 	x′
i �] = 0, (8.4.9b)

where 	yi = 	yi2 = yi2 − yi1. Therefore, Honoré (1992) suggests the
trimmed LAD and LS estimators �̂ and �̃ that minimize the objective functions

QN (�) =
N∑

i=1

[|	yi − 	x′
i �| 1{yi1 > −	x′

i �, yi2 > 	x′
i �}

+ |yi1| 1{yi1 ≥ −	x′
i �, yi2 < 	x′

i �}
+ |yi2| 1{yi1 < −	x′

i �, yi2 ≥ 	x′
i �}]

=
N∑

i=1

ψ(yi1, yi2, 	x′
i �), (8.4.10)
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0 iα+�xi'1�xi'∆−

),|*( 11 iiyf αix

*
1iy

0 iα+�xi'2
*
2iy

),|*( 22 iiyf αix

Fig. 8.4 Conditional densities of y∗
i1 and y∗

i2 given (xi1, xi2, αi ), assuming
	x ′

i � < 0.

and

RN (b) =
N∑

i=1

[(	yi − 	x′
i �)21{yi1 ≥ −	x′

i �, yi2 > 	x′
i �}

+ y2
i11{yi1 > −	x′

i �, yi2 < 	x′
i �}

+ y2
i21{yi1 < −	x′

i �, yi2 > 	x′
i �}]

=
N∑

i=1

ψ(yi1, yi2, 	x′
i �)2, (8.4.11)

respectively. The function ψ(w1, w2, c) is defined for w1 > 0 and w2 > 0 by

ψ(w1, w2, c) =


w1 for w2 < c,
w2 − w1 − c for −w1 < c < w2,

w2 for w1 < −c.



8.4 Fixed-Effects Estimator 247

0

0 iα+�xi1'

iα+�xi2'

*
1iy

*
2iy�x i'∆

),|*( 2 iiyf αi2x

),|*( 11 iiyf αix

Fig. 8.5 Conditional densities of y∗
i1 and y∗

i2 given (xi1, xi2, αi ), assuming
	x ′

i � > 0.

The first-order conditions for (8.4.10) and (8.4.11) are the sample analogues
of

E{[P(yi1 > −	x′
i �, yi2 > yi1 + 	x′

i �)

− P(yi1 > −	x′
i �, 	x′

i � < yi2 < yi1 + 	x′
i �)]	x′

i } = 0′,
(8.4.12)

and

E{(	yi − 	x′
i �) 	xi | (yi1 > −	x′

i �, yi2 > yi1 + 	x′
i �)

∪ (yi1 > −	x′
i �, 	x′

i � < yi2 < yi1 + 	x′
i �)} = 0,

(8.4.13)

respectively. Honoré (1992) proves that �̂ and �̃ are consistent and asymp-
totically normally distributed if the density of u is strictly log-concave.
The asymptotic covariance matrix of

√
N (�̂ − �) and

√
N (�̃ − �) may be
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Fig. 8.6 The distribution of (y∗
i1, y∗

i2) assuming 	x′
i β < 0.

A1 = {(y∗
i1, y∗

i2) : y∗
i1 > −	x′

i �, y∗
i2 > y∗

i1 + 	x′
i �}, A2 = {(y∗

i1, y∗
i2) :

y∗
i1 ≤ −	x′

i �, y∗
i2 > 0},

B1 = {(y∗
i1, y∗

i2) : y∗
i1 > −	x′

i �, 0 < y∗
i2 < y∗

i1 + 	x′
i �}, B2 = {(y∗

i1, y∗
i2) :

y∗
i1 > −	x′

i �, y∗
i2 ≤ 0}.
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Fig. 8.7 The distribution of (y∗
i1, y∗

i2) assuming 	x′
i � > 0.

A1 = {(y∗
i1, y∗

i2) : y∗
i1 > 0, y∗

i2 > y∗
i1 + 	x′

i �}, A2 = {(y∗
i1, y∗

i2) :
y∗

i1 ≤ 0, y∗
i2 > 	x′

i �},
B1 = {(y∗

i1, y∗
i2) : y∗

i1 > 0, 	x′
i � < y∗

i2 < y∗
i1 + 	x′

i �}, B2 = {(y∗
i1, y∗

i2) :
y∗

i1 > 0, y∗
i2 ≤ 	x′

i �}.
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approximated by

Asy Cov(
√

N (�̂ − �)) = �−1
1 V1�

−1
1 , (8.4.14)

and

Asy Cov(
√

N (�̃ − �)) = �−1
2 V2�

−1
2 , (8.4.15)

where V1, V2, �1, and �2 may be approximated by

V̂ 1 = 1

N

N∑
i=1

1{−yi1 < 	x′
i �̂ < yi2}	xi 	x′

i , (8.4.16)

V̂ 2 = 1

N

N∑
i=1

1{−yi1 < 	x′
i �̃ < yi2}(	yi − 	x′

i �̃)2	xi 	x′
i ,

(8.4.17)

�̂
( j,k)
1 = 1

hN

[
1

N

N∑
i=1

(1{	yi < 	xi (�̂ + hN ik) < yi2}

− 1{−yi1 < 	xi (�̂ + hN ik) < 	yi }) 	x( j)
i

+ 1

N

N∑
i=1

(−1{	yi < 	x′
i �̂ < yi2}

+ 1{−yi1 < 	x′
i �̂ < 	yi }) 	x( j)

i

]
,

(8.4.18)

�̂
( j,k)
2 = 1

hN

[
1

N

N∑
i=1

1{−yi1 < 	x′
i (�̃ + hN ik) < yi2}

× (	yi − 	x′
i (�̃ + hN ik)) 	x( j)

i

− 1

N

N∑
i=1

1{−yi1 < 	x′
i �̃ < yi2}(	yi − 	x′

i �̃) 	x( j)
i

]
,

(8.4.19)

where �
( j,k)
� denotes the ( j, k)th element of �� for � = 1, 2, 	x( j)

i denotes the
j th coordinate of 	xi , ik is a unit vector with 1 in its kth place, and hN decreases
to zero with the speed of N− 1

2 . The bandwidth factor hN appears in (8.4.18)
and (8.4.19) because �� is a function of densities and conditional expectations
of y (Honoré (1992)).

8.4.1.b Censored Regressions

When data are censored, observations {yit , xi t } are available for i =
1, . . . , N , t = 1, . . . , T , where yit = max{0, y∗

i t }. In other words, yit can now
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be either 0 or a positive number, rather than just a positive number as in the case
of truncated data. Of course, we can throw away observations of (yit , xi t ) that
correspond to yit = 0 and treat the censored regression model as the truncated
regression model using the methods of Section 8.4.1.a. But this will lead to a
loss of information.

In the case that data are censored, in addition to the relations (8.4.9a,b),
the joint probability of yi1 ≤ −�′	xi and yi2 > 0 is identical to the joint
probability of yi1 > −�′	xi and yi2 = 0 when �′	xi < 0, as shown in
Figure 8.6, regions A2 and B2, respectively. When �′	xi > 0, the joint prob-
ability of yi1 = 0 and yi2 > �′	xi is identical to the joint probability of
yi1 > 0 and yi2 ≤ �′	xi , as shown in Figure 8.7. In other words, (y∗

i1, y∗
i2)

conditional on (xi1, xi2, αi ) is symmetrically distributed around the 45-degree
line through (x′

i1� + αi , x′
i2� + αi ) or equivalently around the 45-degree line

through (−	x′
i �, 0) – the line L L ′ in Figure 8.6 or 8.7. Since this is true for

any value of αi , the same statement is true for the distribution of (y∗
i1, y∗

i2)
conditional on (xi1, xi2). When 	x′

i � < 0, the symmetry of the distribu-
tion of (y∗

i1, y∗
i2) around L L ′ means that the probability that (y∗

i1, y∗
i2) falls

in the region A1 = {(y∗
i1, y∗

i2) : y∗
i1 > −	x′

i �, y∗
i2 > y∗

i1 + 	x′
i �} equals the

probability that it falls in the region B1 = {(y∗
i1, y∗

i2) : y∗
i1 > −	x′

i �, 0 <

y∗
i2 < y∗

i1 + 	x′
i �}. Similarly, the probability that (y∗

i1, y∗
i2) falls in the re-

gion A2 = {(y∗
i1, y∗

i2) : y∗
i1 < −	x′

i �, y∗
i2 > 0} equals the probability that

it falls in the region B2 = {(y∗
i1, y∗

i2) : y∗
i1 > −	x′

i �, y∗
i2 ≤ 0} as shown in

Figure 8.6. When 	x′
i � > 0, the probability that (y∗

i1, y∗
i2) falls in the re-

gion A1 = {(y∗
i1, y∗

i2) : y∗
i1 > 0, y∗

i2 > y∗
i1 + 	x′

i �} equals the probability that
it falls in the region B1 = {(y∗

i1, y∗
i2) : y∗

i1 > 0, 	x′
i � < y∗

i2 < y∗
i1 + 	x′

i �},
and the probability that it falls in the region A2 = {(y∗

i1, y∗
i2) : y∗

i1 ≤ 0, y∗
i >

	x′
i �} equals the probability that it falls in the region B2 = {(y∗

i1, y∗
i2) :

y∗
i1 > 0, y∗

i2 ≤ 	x′
i �}, as seen in Figure 8.7. Therefore, the probability of

(y∗
i1, y∗

i2) conditional on (xi1, xi2) falling in A = (A1 ∪ A2) equals the prob-
ability that it falls in B = (B1 ∪ B2). As neither of these probabilities is af-
fected by censoring, the same is true in the censored sample. This implies
that

E [(1{(yi1, yi2) ∈ A} − 1{(yi1, yi2) ∈ B}) 	xi ] = 0. (8.4.20)

In other words, to restore symmetry of censored observations around their
expected values, observations corresponding to (yi1 = 0, yi2 < 	x′

i �) or
(yi1 < −	x′

i �, yi2 = 0) will have to be thrown away.
By the same argument, conditional on (xi1, xi2), the expected vertical dis-

tance from a (yi1, yi2) in A to the boundary of A equals the expected horizontal
distance from a (yi1, yi2) in B to the boundary of B. For (yi1, yi2) in A1, the
vertical distance to L L ′ is (	yi − 	x′

i �). For (yi1, yi2) in B1, the horizontal
distance to L L ′ is yi1 − (yi2 − 	x′

i �) = −(	yi − 	x′
i �). For (yi1, yi2) in A2,

the vertical distance to the boundary of A2 is yi2 − max (0, 	x′
i �). For (yi1, yi2)
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in B2, the horizontal distance is yi1− max(0, −	x′
i �). Therefore

E[(1{(yi1, yi2) ∈ A1}(	yi − 	x′
i �) + 1{(yi1, yi2) ∈ A2)}

× (yi2 − max(0, 	x′
i �)) − 1{(yi1, yi2) ∈ B1}(	yi − 	x′

i �)

− 1{yi1, yi2 ∈ B2}(yi1 − max(0, −	x′
i �)))	xi ] = 0. (8.4.21)

The pairwise trimmed LAD and LS estimators, �̂
∗

and �̃
∗
, for the estimation

of the censored regression model proposed by Honoré (1992) are obtained by
minimizing the objective functions

Q∗
N (�) =

N∑
i=1

[1 − 1{yi1 ≤ −	x′
i �, yi2 ≤ 0}]

× [1 − 1{yi2 ≤ 	x′
i �, yi1 ≤ 0}]|	yi − 	x′

i �|

=
N∑

i=1

ψ∗(yi1, yi2, 	x′
i �), (8.4.22)

R∗
N (�) =

N∑
i=1

{[max{yi2, 	x′
i �} − max{yi1, −	x′

i �} − 	x′
i �)]2

− 2 × 1{yi1 < −	x′
i �}(yi1 + 	x′

i �)yi2

− 2 × 1{yi2 < 	x′
i �}(yi2 − 	x′

i �)yi1}

=
N∑

i=1

χ (yi1, yi2, 	x′
i �), (8.4.23)

where

ψ∗(w1, w2, c)

=
{

0 for w1 ≤ max{0, −c} and w2 ≤ max(0, c),
| w2 − w1 − c | otherwise,

and

χ(w1, w2, c) =


w2

1 − 2w1(w2 − c) for w2 ≤ c,

(w2 − w1 − c)2 for −w1 < c < w2,

w2
2 − 2w2(c + w1) for w1 ≤ −c.

The first-order conditions for (8.4.22) and (8.4.23) are the sample analogues of
(8.4.20) and (8.4.21), respectively. For instance, when (yi1, yi2) ∈ (A1 ∪ B1),
the corresponding terms in R∗

N become (	yi − 	x′
i �)2. When (yi1, yi2) ∈ A2,

the corresponding terms become y2
i2 − 2 × 1{yi1 < −	x′

i �}(yi1 + 	x′
i �)yi2.

When (yi1, yi2) ∈ B2, the corresponding terms become y2
i1 − 2 × 1{yi2 <

	x′
i �}(yi2 − 	x′

i �)yi1. The partial derivative of the first term with respect to �
converges to E{[1{(yi1, yi2) ∈ A1}(	yi − 	x′

i β) − 1{(yi1, yi2) ∈ B1}(	yi −
	x′

i �)] 	xi }. The partial derivatives of the second and third terms with re-
spect to � yield −2E[1{(yi1, yi2) ∈ A2}yi2 	xi − 1{(yi1, yi2) ∈ B2}yi1 	xi ].
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Because Q∗
N (�) is piecewise linear and convex and R∗

N (�) is continuously
differentiable and convex and twice differentiable except at a finite number of
points, the censored pairwise trimmed LAD and LS estimators, �̂

∗
and �̃

∗
, are

computationally simpler than the truncated estimators �̂ and �̃.
Honoré (1992) shows that �̂

∗
and �̃

∗
are consistent and asymptotically nor-

mally distributed. The asymptotic covariance matrix of
√

N (�̂
∗ − �) is equal

to

Asy Cov(
√

N (�̂
∗ − �)) = �−1

3 V3�
−1
3 , (8.4.24)

and of
√

N (�̃
∗ − �) is equal to

Asy Cov(
√

N (�̃
∗ − �)) = �−1

4 V4�
−1
4 , (8.4.25)

where V3, V4, �3, and �4 may be approximated by

V̂ 3 = 1

N

N∑
i=1

1{[	x′
i �̂

∗
< 	yi , yi2 > max(0, 	x′

i �̂
∗
)]

∪ [	yi < 	x′
i �̂

∗
, yi1 > max(0, −	x′

i �̂
∗
)]} 	xi 	x′

i ,

(8.4.26)

V̂ 4 = 1

N

N∑
i=1

[
y2

i21{	x′
i �̃

∗ ≤ −yi1} + y2
i11{yi2 ≤ 	x′

i �̃
∗}]

+ (	yi − 	x′
1 �̃

∗
)21{−yi1 < 	x′

i �̃
∗

< yi2}] 	xi 	x′
i , (8.4.27)

�̂
( j,k)
3 = −1

hN

{
1

N

N∑
i=1

[1{yi2 > 0, yi2 > yi1 + 	x′
i (�̂

∗ + hN ik)}

− 1{yi1 > 0, yi1 > yi2 − 	x′
i (�̂

∗ + ωnik)}] 	x( j)
i

− 1

N

N∑
i=1

[1{yi2 > 0, yi2 > yi1 + 	x′
i �̂

∗}

− 1{yi1 > 0, yi1 > yi2 − 	x′
i �̂

∗}] 	x( j)
i

}
,

(8.4.28)

and

�̂4 = 1

N

N∑
i=1

1{−yi1 < 	x′
i �̃

∗
< yi2} 	xi	x′

i . (8.4.29)

Both the truncated and censored estimators are presented assuming that
T = 2. They can be easily modified to cover the case where T > 2. For instance,
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(8.4.23) can be modified to be the estimator

�̃
∗ = arg min

N∑
i=1

T∑
t=2

χ (yi,t−1, yit , (xi t − xi t−1)′�), (8.4.30)

when T > 2.

8.4.2 A Semiparametric Two-Step Estimator for the Endogenously
Determined Sample Selection Model

In this subsection, we consider the estimation of the endogenously determined
sample selection model in which the sample selection rule is determined by
the binary-response model (8.3.4) and (8.1.17) for the linear regression model
(8.3.1), where y∗

i t = yit if dit = 1 and y∗
i t is unknown if dit = 0, as in (8.1.18).

We assume that both (8.3.1) and (8.3.4) contain unobserved fixed individual-
specific effects αi and ηi that may be correlated with the observed explana-
tory variables in an arbitrary way. Following the spirit of Heckman’s (1976a),
two-step estimation procedure for the parametric model, Kyriazidou (1997)
proposes a two-step semiparametric method for estimating the main regression
of interest, (8.3.1). In the first step, the unknown coefficients of the selec-
tion equation (8.3.4), a, are consistently estimated by some semiparametric
method. In the second step, these estimates are substituted into the equation
of interest, (8.3.1), conditional on dit = 1, and estimate it by a weighted least-
squares method. The fixed effect from the main equation is eliminated by tak-
ing time differences on the observed yit . The selection effect is eliminated
by conditioning time-differencing of yit and yis on those observations where
w′

i t â � w′
is â, because the magnitude of the selection effect is the same if the

effect of the observed variables determining selection remains the same over
time.

We note that without sample selectivity, that is, dit = 1 for all i and t , or if
uit and νi t are uncorrelated conditional on αi and xi t , then (8.3.1) and (8.1.18)
correspond to the standard variable intercept model for panel data discussed
in Chapter 3 with balanced panel or randomly missing data.8 If uit and νi t are
correlated, sample selection will arise because E(uit | xi t , wi t , αi , dit = 1) �= 0.
Let λ(·) denote the conditional expectation of u conditional on d = 1, x, w, α,
and η; then (8.3.1) and (8.1.19) conditional on dit = 1 can be written as

yit = αi + �′xi t + λ(ηi + w′
i t a) + εi t , (8.4.31)

where E(εi t | xi t , wi t , dit = 1) = 0.
The form of the selection function λ(·) is derived from the joint distribution

of u and ν. For instance, if u and ν are bivariate normal, then we have the
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Heckman sample selection correction

λ(ηi + a′wi t ) = σuv

σv

φ
(

ηi + w′
i t a

σv

)
�

(
ηi + w′

i t a
σv

) .

Therefore, in the presence of sample selection or attrition with short panels,
regressing yit on xi t using only the observed information is invalidated by two
problems – first, the presence of the unobserved effects αi , which introduces
the incidental-parameter problem, and second, the selection bias arising from
the fact that

E(uit | xi t , wi t , dit = 1) = λ(ηi + w′
i t a).

The presence of individual specific effects in (8.4.23) is easily obviated by
time-differencing those individuals that are observed for two time periods t
and s, i.e., who have dit = dis = 1. However, the sample selectivity factors
are not eliminated by time-differencing. But conditional on given i , if (uit , vit )
are stationary and w′

i t a = w′
isa, then λ(ηi + wi t a) = λ(ηi + w′

isa). Then the
difference in (8.4.31) between t and s if both yit and yis are observable no longer
contains the individual-specific effects αi or the selection factor λ(ηi + w′

i t a):

	yits = yit − yis = (xi t − xis)′� + (εi t − εis) = 	x′
i ts� + 	εi ts .

(8.4.32)

As shown by Ahn and Powell (1993), if λ is a sufficiently smooth function,
and â is a consistent estimator of a, observations for which the difference
(wi t − wis)′â is close to zero should have λi t − λis � 0. Therefore, Kyriazidou
(1997) generalizes the pairwise difference concept of Ahn and Powell (1993)
and propose to estimate the fixed-effects sample selection models in two steps:
In the first step, estimate a by either Andersen (1970) and Chamberlain’s (1980)
conditional maximum likelihood approach or Horowitz (1992) and Lee’s (1999)
smoothed version of the Manski (1975) maximum score method discussed in
Chapter 7. In the second step, the estimated â is used to estimate � based
on pairs of observations for which dit = dis = 1 and for which (wi t − wis)′â
is close to zero. This last requirement is operationalized by weighting each
pair of observations with a weight that depends inversely on the magnitude
of (wi t − wis)′â, so that pairs with larger differences in the selection effects
receive less weight in the estimation. The Kyriazidou (1997) estimator takes
the form

�̂K =
{

N∑
i=1

1

Ti − 1

∑
1≤s<t≤Ti

(xi t − xis)(xi t − xis)′K
[

(wi t − wis)′â
hN

]
dit dis

}−1

×
{

N∑
i=1

1

Ti − 1

∑
1≤s<t<Ti

(xi t − xis)(yi t − yis)′K
[

(wi t − wis)′â
hN

]
dit dis

}
,

(8.4.33)
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where Ti denotes the number of positively observed yit for the i th individual,
K is a kernel density function which tends to zero as the magnitude of its
argument increases, and hN is a positive constant or bandwidth that decreases
to zero as N → ∞. The effect of multiplying the kernel function K (·) is to give
more weight to observations with (1/hN )(wi t − wis)′â � 0 and less weight
to those with wi t â different from wis â, so that in the limit only observations
with wi t a = w′

isa are used in (8.4.33). Under appropriate regularity conditions
(8.4.33) is consistent, but the rate of convergence is proportional to

√
NhN ,

much slower than the standard square root of the sample size.
When T = 2, the asymptotic covariance matrix of the Kyriazidou (1997)

estimator (8.4.33) may be approximate by the Eicker (1963) and White’s (1980)
formulae for the asymptotic covariance matrix of the least-squares estimator of
the linear regression model with heteroscedasticity,(

N∑
i=1

x̂i x̂′
i

)−1 N∑
i=1

x̂i x̂i 	ê2
i

(
N∑

i=1

x̂i x̂i

)−1

, (8.4.34)

where x̂i = K (	w′
i â/hN )1/2 	xi (di2 di1) and 	êi is the estimated residual of

(8.4.32).
In the case that only a truncated sample is observed, the first-stage estimation

of â cannot be implemented. However, a sufficient condition to ensure that
only observations with 	w′

i ts a = 0 are used is to replace K [	wi ts â/hN ] by a
multivariate kernel function K ((wi t − wis)/hN ) in (8.4.33). However, the speed
of convergence of (8.4.33) to the true � will be

√
Nhk

N , where k denotes the
dimension of wi t . This is much slower than

√
NhN , since hN converges to zero

as N → ∞.

8.5 AN EXAMPLE: HOUSING EXPENDITURE

Charlier, Melenberg, and van Soest (2001) use Dutch Socio-Economic Panel
(SEP) 1987–89 waves to estimate the following endogenous switching regres-
sion model for the share of housing expenditure in total expenditure:

dit = 1(w′
i t a + ηi + νi t > 0), (8.5.1)

y1i t = �′
1xi t + α1i + u1i t if dit = 1, (8.5.2)

y2i t = �′
2xi t + α2i + u2i t if dit = 0, (8.5.3)

where dit denotes the tenure choice between owning and renting, with 1 for
owners and 0 for renters; y1i t and y2i t are the budget shares spent on housing
for owners and renters, respectively; wi t and xi t are vectors of explanatory vari-
ables; ηi , α1i , α2i are unobserved household-specific effects; and νi t , u1i t , u2i t

are the error terms. The budget share spent on housing is defined as the fraction
of total expenditure spent on housing. Housing expenditure for renters is just
the rent paid by a family. The owners’ expenditure on housing consists of net in-
terest costs on mortgages, net rent paid if the land is not owned, taxes on owned
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housing, costs of insuring the house, opportunity cost of housing equity (which
is set at 4 percent of the value of house minus the mortgage value), and mainte-
nance cost, minus the increase of the value of the house. The explanatory vari-
ables considered are the education level of the head of household (DOP), age of
the head of the household (AGE), age squared (AGE2), marital status (DMAR),
logarithm of monthly family income (LINC), its square (L2INC), monthly
total family expenditure (EXP), logarithm of monthly total family expenditure
(LEXP), its square (L2EXP), number of children (NCH), logarithm of constant-
quality price of rental housing (LRP), logarithm of constant-quality price of
owner-occupied housing after tax (LOP), and LRP − LOP. The variables that
are excluded from the tenure choice equation (8.5.1) are DOP, LEXP, L2EXP,
LRP, and LOP. The variables excluded from the budget share equations ((8.5.2)
and (8.5.3)) are DOP, LINC, L2INC, EXP, NCH, and LRP − LOP.

The random-effects and fixed-effects models with and without selection
are estimated. However, since x includes LEXP and L2EXP and they could
be endogenous, Charlier, Melenberg, and van Soest (2001) also estimate this
model by the instrumental-variable (IV) method. For instance, the Kyriazidou
(1997) weighted least-squares estimator is modified as

�̂K N =
{

N∑
i=1

∑
1≤s<t≤Ti

(xi t − xis)(zi t − zis)′K
[

(wi t − wis)′â
hN

]
dit dis

}−1

×
{

N∑
i=1

∑
1≤s<t≤Ti

(zi t − zis)(yit − yis)K

[
(wi t − wis)′â

hN

]
dit dis

}
,

(8.5.4)

to take account of the potential endogeneity of LEXP and L2EXP, where zi t is
a vector of instruments.

Tables 8.2 and 8.3 present the fixed-effects and random-effects estimation
results for the budget share equations without and with correction for selection,
respectively. The Kyriazidou (1997) estimator is based on the first-stage logit
estimation of the tenure choice equation (8.5.1). The random-effects estimator
is based on Newey’s (1989) series expansion method (Charlier, Melenberg,
and van Soest (2000)). The differences among these formulations are quite
substantial. For instance, the parameters related to AGE, AGE2, LEXP, L2EXP,
and the prices are substantially different from their random-effects counterparts
based on IV. They also lead to very different conclusions on the elasticities of
interest. The price elasticities for the average renters and owners are about −0.5
in the random-effects model, but are close to −1 for owners and −0.8 for renters
in the fixed-effects models.

The Hausman specification tests for endogeneity of LEXP and L2EXP are
inconclusive. But a test for the presence of selectivity bias based on the dif-
ference between the Kyriazidou IV and linear panel data estimates have test
statistics of 88.2 for owners and 23.7 for renters, which are significant at the
5 percent level for the chi-square distribution with seven degrees of freedom.
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This indicates that the model that does not allow for correlation between the
error terms in the share equations ((8.5.2) and (8.5.3)) and the error term or
fixed effect in the selection equation (8.5.1) is probably misspecified.

The Hausman (1978) specification test of no correlation between the
household-specific effects and the xs based on the difference between the
Newey IV and the Kyriazidou IV estimates have test statistics of 232.1 for
owners and 37.8 for renters. These are significant at the 5 percent level for the
chi-square distribution with five degrees of freedom, thus rejecting the random-
effects model that does not allow for correlation between the household-
specific effects and the explanatory variables. These results indicate that the
linear panel data models or random-effects linear panel models, which only
allow for very specific selection mechanisms (both of which can be estimated
with just the cross-sectional data), are probably too restrictive.

8.6 DYNAMIC TOBIT MODELS

8.6.1 Dynamic Censored Models

In this section we consider censored dynamic panel data models of the form9

y∗
i t = γ y∗

i,t−1 + �′xi t + αi + uit , (8.6.1)

yit =
{

y∗
i t if y∗

i t > 0,

0 if y∗
i t ≤ 0.

(8.6.2)

where the error uit is assumed to be i.i.d. across i and over t . If there are no
individual specific effects αi (or αi = 0 for all i), panel data actually allow the
possibility of ignoring the censoring effects in the lagged dependent variables
by concentrating on the subsample where yi,t−1 > 0. Since if yi,t−1 > 0 then
yi,t−1 = y∗

i,t−1, (8.6.1) and (8.6.2) with αi = 0 become

y∗
i t = γ y∗

i,t−1 + �′xi t + uit

= γ yi,t−1 + �′xi t + uit . (8.6.3)

Thus, by treating yi,t−1 and xi t as predetermined variables that are independent
of the error uit , the censored estimation techniques for the cross-sectional static
model discussed in Section 8.1 can be applied to the subsample where (8.6.3)
hold.

When random individual-specific effects αi are present in (8.6.1), y∗
is and

αi are correlated for all s even if αi can be assumed to be uncorrelated with
xi . To implement the MLE approach, not only does one have to make as-
sumptions on the distribution of individual effects and initial observations, but
computation may become unwieldy. To reduce the computational complex-
ity, Arellano, Bover, and Labeaga (1999) suggest a two-step approach. The
first step estimates the reduced form of y∗

i t by projecting y∗
i t on all previous

y∗
i0, y∗

i1, . . . , y∗
i,t−1 and xi1, . . . , xi t . The second step estimates (γ, �′) from the

reduced-form parameters of the y∗
i t equation, �t , by a minimum-distance esti-

mator of the form (3.8.14). To avoid the censoring problem in the first step, they
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suggest that for the i th individual, only the string (yis, yi,s−1, . . . , yi0), where
yi0 > 0, . . . , yi,s−1 > 0 be used. However, in order to derive the estimates of
�t , the conditional distribution of y∗

i t given y∗
i0, . . . , y∗

i,t−1 will have to be as-
sumed. Moreover, the reduced-form parameters �t are related to (γ, �′) in a
highly nonlinear way. Thus, the second-stage estimator is not easily derivable.
Therefore, in this section we shall bypass the issue of fixed or random αi and
only discuss the trimmed estimator due to Honoré (1993) and Hu (1999).

Consider the case where T = 2 and yi0 are available. In Figures 8.8 and 8.9,
let the vertical axis measure the value of y∗

i2 − γ y∗
i1 = ỹ∗

i (γ ) and horizontal
axis measure y∗

i1. If ui1 and ui2 are i.i.d. conditional on (y∗
i0, xi1, xi2, αi ), then

y∗
i1 and y∗

i2 − γ y∗
i1 = ỹ∗

i2(γ ) are symmetrically distributed around the line (1),
ỹ∗

i2(γ ) = y∗
i1 − γ y∗

i0 + �′	xi2 (which is the 45-degree line through (γ y∗
i0 +

�′xi1 + αi , �′xi2 + αi ) and (γ y∗
i0 − �′	xi2, 0)). However, censoring destroys

this symmetry. We only observe

yi1 = max(0, y∗
i1)

= max(0, γ y∗
i0 + �′xi1 + αi + ui1)

and yi2 = max(0, γ y∗
i1 + �′xi2 + αi + ui2) or ỹi2(γ ) = max(−γ y∗

i1, y∗
i2 −

γ y∗
i1). That is, observations are censored from the left at the vertical axis, and for

any yi1 = y∗
i1 > 0, yi2 = y∗

i2 > 0 implies y∗
i2 − γ y∗

i1 > −γ y∗
i1. In other words,

observations are also censored from below by ỹi2(γ ) = −γ yi1, which is line
(2) in Figures 8.8 and 8.9. As shown in Figure 8.8, the observable range of
y∗

i1 and y∗
i2 − γ y∗

i1 conditional on (xi1, xi2, y∗
i0) are not symmetric around line

(1), which we have drawn with γ ≥ 0, γ y∗
i0 − �′	xi2 > 0. To restore symme-

try, we have to find the mirror images of these two borderlines – the vertical
axis and line (2) – around the centerline (1), and then symmetrically truncate
observations that fall outside these two new lines.

The mirror image of the vertical axis around line (1) is the horizontal line
ỹ∗

i2(γ ) = −γ y∗
i0 + �′	xi2, line (3) in Figure 8.8. The mirror image of line (2)

around line (1) has slope equal to the reciprocal of that of line (2), − 1
γ

.
Therefore, the mirror image of line (2) is the line ỹ∗

i2(γ ) = − 1
γ

y∗
i1 + c that

passes through the intersection of line (1) and line (2). The intersection of line
(1) and line (2) is given by ¯̃y∗

i2(γ ) = ȳ∗
i1 − (γ y∗

i0 − �′	xi2) = −γ ȳ∗
i1. Solving

for (ȳ∗
i1,

¯̃y∗
i2(γ )), we have ȳ∗

i1 = 1
1+γ

(γ y∗
i0 − �′	xi2), ¯̃y∗

i2(γ ) = − γ

1+γ
(γ y∗

i0 −
�′	xi2). Substituting ỹ∗

i2(γ ) = ¯̃y∗
i2(γ ) and y∗

i1 = ȳ∗
i1 into the equation ỹ∗

i2(γ ) =
− 1

γ
y∗

i1 + c, we have c = 1−γ

γ
(γ y∗

i0 − �′	xi2). Thus the mirror image of
line (2) is ỹ∗

i2(γ ) = − 1
γ

(y∗
i1 − γ y∗

i0 + �′	xi2) − (γ y∗
i0 − �′	xi2), line (4) in

Figure 8.8.
In Figure 8.9 we show the construction of the symmetrical truncation region

for the case when γ y∗
i0 − �′	xi2 < 0. Since observations are truncated at the

vertical axis from the left and at line (2) from below, the mirror image of
the vertical axis around line (1) is given by line (3). Therefore, if we truncate
observations at line (3) from below, then the remaining observations will be
symmetrically distributed around line (1).
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The observations of (yi1, ỹi2(γ )) falling to the northeast direction of the
region bordered by the lines (2), (3), and (4) in Figure 8.8 or by the vertical
axis and line (3) in Figure 8.9 are symmetrically distributed around line (1)
(the 45-degree line through (γ y∗

i0 − �′	xi2, 0)). Denote the region above the
45-degree line by A and the region below it by B. Then

A ∪ B ≡ {(yi1, ỹi2(γ )) : yi1 > 0, ỹi2(γ ) > −γ yi1,

yi1 > γ y∗
i0 − �′	xi2 − γ (ỹi2(γ ) + γ y∗

i0 − �	xi2),

ỹi2(γ ) > −γ y∗
i0 + �′	xi2}

= {(yi1, ỹi2(γ )) : yi1 > 0, yi2 > 0,

yi1 > γ y∗
i0 − �′	xi2 − γ (ỹi2(γ ) + γ y∗

i0 − �′	xi2),

ỹi2(γ ) > −γ y∗
i0 + �′	xi2}. (8.6.4)

Symmetry implies that conditional on yi0 > 0, yi1 > 0, yi2 > 0, and xi1,

xi2, the probability of an observation falling in region A equals the probability
of it falling in region B. That is,

E{(yi1, ỹi2(γ )) ∈ A ∪ B} · [1{yi1 − ỹi2(γ ) − γ yi0 + �′	xi2 > 0}
−1{yi1 − ỹi2(γ ) − γ yi0 + �′	xi2 < 0}] = 0. (8.6.5)

Another implication of symmetry is that conditional on yi0 > 0, yi1 >

0, yi2 > 0, and xi1, xi2, the expected vertical distance from a point in region A
to the line (1), ỹi2(γ ) − yi1 + γ yi0 − �′	xi2, equals the expected horizontal
distance from a point in region B to that line, yi1 − ỹi2(γ ) − γ yi0 + �′	xi2 =
−(ỹi2(γ ) − yi1 + γ yi0 − �′	xi2). Therefore,

E[1{(yi1, ỹi2(γ )) ∈ A ∪ B}(yi1 − ỹi2(γ ) − γ yi0 + �′	xi2)] = 0.

(8.6.6)

More generally, for any function ξ (·, ·) satisfying ξ (e1, e2) = −ξ (e2, e1) for
all (e1, e2), we have the orthogonality condition

E[1{(yi1, ỹi2(γ )) ∈ A ∪ B} · ξ (yi1 − γ yi0 + �′	xi2, ỹi2(γ ))

× h(yi0, xi1, xi2)] = 0, (8.6.7)

for any function h(·), where

1{(yi1, ỹi2(γ )) ∈ A ∪ B} ≡ 1{yi0 > 0, yi1 > 0, yi2 > 0}
× [1{γ yi0 − �′	xi2 > 0} · 1{yi1 > γ yi0 − �′	xi2 − γ (ỹi2(γ )

+ γ yi0 − �′	xi2)} · 1{ỹi2(γ ) > −γ yi0 + �′	xi2}
+ 1{γ yi0 − �′	xi2 < 0} · 1{ỹi2(γ ) > −γ yi0 + �′	xi2}].

(8.6.8)
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If one chooses h(·) to be a constant, the case ξ (e1, e2) = sgn(e1 − e2) corre-
sponds to (8.6.5), and ξ (e1, e2) = e1 − e2 corresponds to (8.6.6).

If T ≥ 4, one can also consider any pair of observations yit , yis with
yi,t−1 > 0, yit > 0, yi,s−1 > 0, and yis > 0. Note that conditional on xi t , xis,

the variables (αi + uit ) and (αi + uis) are identically distributed. Thus, let

Wits(�′, γ ) = max{0, (xi t − xis)′�, yit − γ yi,t−1} − x′
i t �

= max{−x′
i t �, −x′

is�, αi + uit }, (8.6.9)

and

Wist (�
′, γ ) = max{0, (xis − xi t )

′�, yis − γ yi,s−1} − x′
is�

= max{−x′
is�, −x′

i t �, αi + uis}. (8.6.10)

Then Wits(�, γ ) and Wist (�, γ ) are distributed symmetrically around the
45-degree line conditional on (xi t , xis). This suggests the orthogonality con-
dition

E[1{yit−1 > 0, yit > 0, yi,s−1 > 0, yis > 0}
× ξ (Wits(�′, γ ), Wist (�

′, γ )) · h(xi t , xis)] = 0 (8.6.11)

for any function h(·). When T ≥ 3, the symmetric trimming procedure (8.6.11)
requires weaker assumptions than the one based on three consecutive uncen-
sored observations, since the conditioning variables do not involve the initial
value yi0. However, this approach also leads to more severe trimming.

Based on the orthogonality conditions (8.6.7) or (8.6.11), Hu (1999) suggests
finding a GMM estimator of � = (�′, γ )′ by minimizing mN (�)′ AN mN (�),
where mN (�) is the sample analogue of (8.6.7) or (8.6.11), and AN is a positive
definite matrix that converges to a constant matrix A as N → ∞. The GMM
estimator will have a limiting distribution of the form

√
N (�̂GMM − �) → N (�, (�′ A�)−1[�′ AV A�](�′ A�)−1),

(8.6.12)

where � = ∂
∂�

E[m(�)], V = E[m(�)m(�)′]. When the optimal weighting ma-
trix A = V −1 is used, the asymptotic covariance matrix of

√
N (�̂GMM − �)

becomes (�′V −1�)−1.
However, the orthogonality conditions (8.6.5)–(8.6.7) or (8.6.11) can be triv-

ially satisfied when the parameter values are arbitrarily large. To see this, note
that for a given value of γ , when the value of δi t = x′

i t � goes to infinity, the
number of observations falling in the (nontruncated) region A ∪ B in Figures
8.7 and 8.8 approaches zero. Thus, the moment conditions can be trivially satis-
fied. To overcome this possible lack of identification of GMM estimates based
on the minimization of the criterion function, Hu (1999) suggests using a subset
of the moments that exactly identify � for given γ to provide the estimates of
�, then test whether the rest of the moment conditions are satisfied by these
estimates for a sequence of γ values ranging from 0 to 0.9 with an increment
of 0.01. Among the values of γ at which the test statistics are not rejected,
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Table 8.4. Estimates of AR(1) coefficients of log real
annual earnings (in thousands)a

Linear GMM Nonlinear GMM with
(assuming no censoring) correction for censoring

Black White Black White

0.379 0.399 0.210 0.380
(0.030) (0.018) (0.129) (0.051)

aStandard errors in parenthesis.
Source: Hu (1999).

the one which yields the smallest test statistic is chosen as the estimate of γ .
Hu (1999) uses this estimation method to study earnings dynamics, using
matched data from the Current Population Survey and Social Security Ad-
ministration (CPS–SSA) Earnings Record for a sample of men who were born
in 1930–1939 and living in the South during the period of 1957–1973. The SSA
earnings are top-coded at the maximum social security taxable level, namely,
yit = min(y∗

i t , ct ), where ct is the social security maximum taxable earnings
level in period t . This censoring at the top can be easily translated into censor-
ing at zero by considering ỹi t = ct − yit , then ỹi t = max(0, ct − y∗

i t ).
Table 8.4 presents the estimates of the coefficient of the lagged log real annual

earnings coefficient of an AR(1) model based on a sample of 226 black and
1883 white men with and without correction for censoring. When censoring is
ignored, the model is estimated by the linear GMM method. When censoring is
taken into account, Hu uses an unbalanced panel of observations with positive
SSA earnings in three consecutive time periods. The estimated γ are very
similar for black and white men when censoring is ignored. However, when
censoring is taken into account, the estimated autoregressive parameter γ is
much higher for white men than for black men. The higher persistence of the
earnings process for white men is consistent with the notion that white men had
jobs that had better security and were less vulnerable to economic fluctuation
than black men in the period 1957–1973.

8.6.2 Dynamic Sample Selection Models

When the selection rule is endogenously determined as given by (8.2.4) and y∗
i t

is given by (8.6.1), with wi t and xi t being nonoverlapping vectors of strictly
exogenous explanatory variables (with possibly common elements), the model
under consideration has the form10

yit = dit y∗
i t , (8.6.13)

dit = 1{w′
i t a + ηi + νi t }, i = 1, . . . , N ,

(8.6.14)
t = 1, . . . , T,
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where (dit , wi t ) is always observed, and (y∗
i t , xi t ) is observed only if dit = 1.

For notational ease, we assume that di0 and yi0 are also observed.
In the static case of γ = 0, Kyriazidou (1997) achieves the identification

of � by relying on the conditional pairwise exchangeability of the error vec-
tor (uit , νi t ), given the entire path of the exogenous variables (xi , wi ) and the
individual effects (αi , ηi ). However, the consistency of Kyriazidou estimator
(8.4.33) breaks down in the presence of the lagged dependent variable in (8.6.1).
The reason is the same as in linear dynamic panel data models where first-
differencing generates nonzero correlation between y∗

i,t−1 and the transformed
error term (see Chapter 4). However, just as in the linear case, estimators based
on linear and nonlinear moment conditions on the correlation structure of the
unobservables with the observed variables can be used to obtain consistent
estimators of γ and �.

Under the assumption that {uit , νi t } is independently, identically dis-
tributed over time for all i conditional on �i ≡ (w′

i , αi , ηi , y∗
i0, di0), where

wi = (w′
i1, . . . , wiT )′, Kyriazidou (2001) notes that by conditioning on the event

that 	w′
i t a = 0, the following moment conditions hold:11

E(dit di,t−1 di,t−2 di,t− j 	uit | 	w′
i t a = 0) = 0, j = 2, . . . , t,

(8.6.15)

and

E(disdit di,t−1di,t−2 xis 	uit | 	w′
i t a = 0) = 0

for t = 2, . . . , T , s = 1, . . . , T . (8.6.16)

This is because, for an individual i , with the selection index w′
i t a = w′

i,t−1a, the
magnitude of the sample selection effects in the two periods, λ(ηi + w′

i t a) and
λ(ηi + w′

i,t−1a), will also be the same. Thus by conditioning on 	w′
i t a = 0,

the sample selection effects and the individual effects are eliminated by first-
differencing.

Let � = (γ, �′)′, z′
i t = (yi,t−1, x′

i t ), and

m1i t (�) = dit di,t−1di,t−2di,t− j yi,t− j (	yit − 	z′
i t �),

t = 2, . . . , T , j = 2, . . . , t, (8.6.17)

m2i t,k(�) = disdit di,t−1di,t−2xis,k(	yit − 	z′
i t �),

t = 2, . . . , T , s = 1, . . . , T , k = 1, . . . , K . (8.6.18)

Kyriazidou (2001) suggests a kernel-weighted generalized method-of-moments
estimator (KGMM) that minimizes the following quadratic form:

Ĝ N (�)′ AN Ĝ N (�), (8.6.19)

where AN is a stochastic matrix that converges in probability to a finite non-
stochastic limit A, and Ĝ N (�) is the vector of stacked sample moments with
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rows of the form

1

N

N∑
i=1

1

hN
K

(
	w′

i t â
hN

)
m�i t (�), (8.6.20)

where K (·) is a kernel density function, â is some consistent estimator of a,
and hN is a bandwidth that shrinks to zero as N → ∞. Under appropriate
conditions, Kyriazidou (2001) proves that the KGMM estimator is consistent
and asymptotically normal. The rate of convergence is the same as in univariate
nonparametric density- and regression-function estimation, i.e., at speed√

NhN .



CHAPTER 9

Incomplete Panel Data

Thus far our discussions have been concentrated on situations in which the
sample of N cross-sectional units over T time periods is sufficient to identify
a behavioral model. In this chapter we turn to the issues of incomplete panel
data. We first examine the problems of estimating dynamic models when the
length of time series is shorter than the maximum order of the lagged variables
included in the equation. We then discuss the issues when some individuals
are dropped from the experiment or survey. We note that when individuals are
followed over time, there is a high probability that this will occur. Since the
situations where individuals are missing for a variety of behavioral reasons
have been discussed in Chapter 8 in this chapter we only distinguish three
situations: (1) individuals are missing randomly or are being rotated; (2) a series
of independent cross sections are observed over time; (3) only a single set
of cross-sectional data is available in conjunction with the aggregate time-
series observations. We briefly sketch how statistical methods developed for
analyzing complete panel data can be generalized to analyze incomplete panel
data.

9.1 ESTIMATING DISTRIBUTED LAGS
IN SHORT PANELS1

9.1.1 Introduction

Because of technical, institutional, and psychological rigidities, often behavior
is not adapted immediately to changes in the variables that condition it. In most
cases this adaptation is progressive. The progressive nature of adaptations in
behavior can be expressed in various ways. Depending on the rationale behind
it, we can set up an autoregressive model, with the current value of y being
a function of lagged dependent variables and exogenous variables, or we can
set up a distributed-lag model, with the current value of y being a function
of current and previous values of exogenous variables. Although usually a
linear distributed-lag model can be expressed in an autoregressive form, and
similarly, as a rule, any stable linear autoregressive model can be transformed
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into a distributed-lag model,2 the empirical determination of time lags is very
important in applied economics. The roles of many economic measures can
be correctly understood only if we know when they will begin to take effect
and when their effects will be fully worked out. Therefore, we would like to
distinguish these two types of dynamic models when a precise specification
(or reasoning) is possible. In Chapter 4, we discussed the issues of estimating
autoregressive models with panel data. In this section we discuss estimation of
distributed-lag models (Pakes and Griliches (1984)).

A general distributed-lag model for a single time series of observations is
usually written as

yt = µ +
∞∑

τ=0

βτ xt−τ + ut , t = 1, . . . , T, (9.1.1)

where, for simplicity, we assume that there is only one exogenous variable,
x , and, conditional on {xt}, the ut are independent draws from a common
distribution function. When no restrictions are imposed on the lag coefficients,
one cannot obtain consistent estimates of βτ even when T → ∞, because the
number of unknown parameters increases with the number of observations.
Moreover, the available samples often consist of fairly short time series on
variables that are highly correlated over time. There is not sufficient information
to obtain precise estimates of any of the lag coefficients without specifying, a
priori, that all of them are functions of only a very small number of parameters
(Koyck lag, Almon lag, etc.) (Dhrymes (1971); Malinvaud (1970)).

On the other hand, when there are N time series, we can use cross-sectional
information to identify and estimate (at least some of the) lag coefficients with-
out having to specify a priori that the sequence of lag coefficients progresses
in a particular way. For instance, consider the problem of using panel data to
estimate the model (9.1.1), which for a given t we rewrite as

yit = µ +
t−1∑
τ=0

βτ xi,t−τ + bit + uit , i = 1, . . . , N , (9.1.2)

where

bit =
∞∑

τ=0

βt+τ xi,−τ (9.1.3)

is the contribution of the unobserved presample x values to the current values
of y, to which we shall refer as the truncation remainder. Under certain assump-
tions about the relationships between the unobserved bit and the observed xit ,
it is possible to obtain consistent estimates of βτ , τ = 0, . . . , t − 1, by regress-
ing (9.1.2) cross-sectionally. Furthermore, the problem of collinearity among
xt , xt−1, . . . , in a single time series can be reduced or avoided by use of the
cross-sectional differences in individual characteristics.
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9.1.2 Common Assumptions

To see under what conditions the addition of a cross-sectional dimension can
provide information that cannot be obtained in a single time series, first we con-
sider the case that the lag coefficients vary across individuals ({βiτ }∞τ=0 for i =
1, . . . , N ). If there is no restriction on the distribution of these sequences over
members of the population, then each time series contains information on only a
single sequence of coefficients. The problem of lack of information remains for
panel data. Second, even if the lag coefficients do not vary across individuals
(βiτ = βτ for i = 1, . . . , N and τ = 0, 1, 2, . . .), the (often very significant)
increase in sample size that accompanies the availability of panel data is entirely
an increase in cross-sectional dimension. Panel data sets, in fact, usually track
their observations over only a relatively short time interval. As a result, the
contributions of the unobserved presample x values to the current values of y
(the truncation remainders bit ) are likely to be particularly important if we do
not wish to impose the same type of restrictions on the lag coefficients as we
often do when a single time-series data set is used to estimate a distributed-
lag model. Regression analysis, ignoring the unobserved truncation-remainder
term, will suffer from the usual omitted-variable bias.

Thus, in order to combine N time series to estimate a distributed-lag model,
we have to impose restrictions on the distribution of lag coefficients across
cross-sectional units and/or on the way the unobserved presample terms affect
current behavior. Pakes and Griliches (1984) considered a distributed-lag model
of the form

yit = α∗
i +

∞∑
τ=0

βiτ xi,t−τ + uit , i = 1, . . . , N ,

(9.1.4)
t = 1, . . . , T,

where uit is independent of xis and is independently, identically distributed,
with mean zero and variance σ 2

u . The coefficients of α∗
i and βiτ are assumed to

satisfy the following assumptions.

Assumption 9.1.1. E(βiτ ) = βτ .

Assumption 9.1.2. Let β̃ iτ = βiτ − βτ , ξi t = ∑∞
τ=0 β̃ iτ xi,t−τ , and �′

i =
(ξi1, . . . , ξiT ); then E∗[�i | xi ] = 0.

Assumption 9.1.3. E∗(α∗
i | xi ) = µ + a′xi .

Here E∗(Z1 | Z2) refers to the minimum-mean-squared-error linear predictor
(or the projection) of Z1 onto Z2; xi denotes the vector of all observed xit . We
assume that there are � + 1 observations on x before the first observation on
y, and the 1 × (� + 1 + T ) vector x′

i = [xi,−�, . . . , xiT ] is an independent draw
from a common distribution with E(xi x′

i ) = �xx positive definite.3

A sufficient condition for Assumption 9.1.2 to hold is that differences in lag
coefficients across individuals are uncorrelated with the xi [i.e., βiτ is a random
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variable defined in the sense of Swamy (1970), or see Chapter 6]. However,
Assumption 9.1.3 does allow for individual-specific constant terms (the α∗

i ) to
be correlated with xi . The combination of Assumptions 9.1.1–9.1.3 is sufficient
to allow us to identify the expected value of the lag-coefficient sequence {βτ }
if both N and T tend to infinity.

If T is fixed, substituting Assumptions 9.1.1 and 9.1.2 into equation (9.1.4),
we rewrite the distributed-lag model as

yit = α∗
i +

t+�∑
τ=0

βτ xi,t−τ + bit + ũi t , i = 1, . . . , N ,
(9.1.5)

t = 1, . . . , T,

where bit = ∑∞
τ=�+1 βt+τ xi,−τ is the truncation remainder for individual i

in period t , and ũi t = ξi t + uit is the amalgamated error term satisfying
E∗[ũi | xi ] = 0. The unobserved truncation remainders are usually correlated
with the included explanatory variables. Therefore, without additional restric-
tions, we still cannot get consistent estimates of any of the lag coefficients βτ

by regressing yit on xi,t−τ , even when N → ∞.
Because the values of the truncation remainders (bit ) are determined by the

lag coefficients and the presample x values, identification requires constraints
either on the lag coefficients or on the stochastic process generating these x
values. Because there usually are many more degrees of freedom available in
panel data, this allows us to use prior restrictions of different kind than in the
usual approach of constraining lag coefficients to identify truncation remainders
(e.g., Dhrymes (1971)). In the next two subsections we illustrate how various
restrictions can be used to identify the lag coefficients.

9.1.3 Identification Using Prior Structure of the Process
of the Exogenous Variable

In this subsection we consider the identification of a distributed-lag model using
a kind of restriction different from that in the usual approach of constraining lag
coefficients. Our interest is focused on estimating at least some of the population
parameters βτ = E(βiτ ) for τ = 0, 1, . . . , without restricting βτ to be a function
of a small number of parameters. We consider a lag coefficient identified if it
can be calculated from the matrix of coefficients obtained from the projection of
yi onto xi , a T × (T + � + 1) matrix called �, where E∗(yi | xi ) = �∗ + �xi ,
�∗ = (µ∗

1, . . . , µ
∗
T )′, and y′

i = (yi1, . . . , yiT ) is a 1 × T vector.
Equation (9.1.5) makes it clear that each row of � will contain a combination

of the lag coefficients of interest and the coefficients from the projections of
the two unobserved components, α∗

i and bit , on xi . Therefore, the problem
is to separate out the lag coefficients from the coefficients defining these two
projections.

Using equation (9.1.5), the projection of yi onto xi and α∗
i is given by4

E∗(yi | xi , α
∗
i ) = [B + W ]xi + [e + c]α∗

i , (9.1.6)
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where B is the T × (T + � + 1) matrix of the lag coefficients

B =



β�+1 β� · · · β1 β0 0 0 · · · 0 0

β�+2 β�+1 · · · β2 β1 β0 0 · · · 0 0
...

...
...

...
...

...
...

...

βT +�−1 βt+�−2 · · · βT +1 βT βT −1 βT −2 · · · β0 0

βT +� βT +�−1 · · · βT βT −1 βT −2 βT −3 · · · β1 β0


.

W and c are defined by the unconstrained projection of bi = (bi1, . . . , biT )′

onto xi and α∗
i ,

E∗[bi | xi , α
∗
i ] = W xi + cα∗

i . (9.1.7)

Equation (9.1.6) and the fact that E∗{E∗(yi | xi , α
∗
i ) | xi } = E∗[yi | xi ] =

(e + c)µ + �xi imply that

� = B + [W + (e + c)a′], (9.1.8)

where a is defined by the unconstrained projection of α∗
i onto xi , [E∗(α∗

i | xi ) =
µ + a′xi ].

Clearly, if the T × (T + � + 1) matrix W is unrestricted, we cannot separate
out the lag coefficients B and the effect of the truncation-remainder term from
the matrix �. But given that ca′ is a matrix of rank 1, we may be able to identify
some elements of B if there are restrictions on W. Thus, in order to identify
some of the lag coefficients from �, we shall have to restrict W. W will be
restricted if it is reasonable to assume that the stochastic process generating
{xit }T

t=−∞ restricts the coefficients of xi in the projection of the presample xi,− j

values onto the in-sample xi and α∗
i . The particular case analyzed by Pakes and

Griliches (1984) is given by the following assumption.5

Assumption 9.1.4. For q ≥ 1, E∗[xi,−�−q | xi , α
∗
i ] = cqα

∗
i + ∑p

j=1 ρ
(q)
j ×

xi,−�+ j−1. That is, in the projection of the unseen presample x values onto xi

and α∗
i , only [xi,−�, xi,−�+1, . . . , xi,−�+p−1] have nonzero coefficients.

If cq = 0, a sufficient condition for Assumption 9.1.4 to hold is that x is
generated by a pth-order autoregressive process.6

Because each element of bi is just a different linear combination of the same
presample x values, the addition of Assumption 9.1.4 implies that

E∗[bit | xi , α
∗
i ] = ctα

∗
i +

p∑
j=1

wt, j−�−1xi, j−�−1, i = 1, . . . , N ,

t = 1, . . . , T,

(9.1.9)

where wt, j−�−1 = ∑∞
q=1 βt+�+qρ

(q)
j , j = 1, . . . , p, and ct = ∑∞

q=1 βt+l+qcq .
This determines the vector c and the matrix W in (9.1.7). In particular, it implies
that W can be partitioned into a T × (T + � − p + 1) matrix of zeros and a
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T × p matrix of free coefficients,

W =
[

...W̃
T ×p

0
T ×(T +�−p+1)...

]
. (9.1.10)

Substituting (9.1.10) into (9.1.8) and taking partial derivatives of � with
respect to the leading (T + � − p + 1) lag coefficients, we can show that
the resulting Jacobian matrix satisfies the rank condition for identification of
these coefficients (e.g., Hsiao (1983, Theorem 5.1.2)). A simple way to check
that the leading (T + � − p + 1) lag coefficients are indeed identified is to
show that consistent estimators for them exist. We note that by construction,
cross-sectional regression of yi on xi yields consistent estimates of �. For the
special case in which α∗

i = 0, the projections of each period’s value of y on all
in-sample values of x are7

E∗(yi1 | xi ) = µ +
p∑

j=1

φ1, j−�−1xi, j−�−1,

E∗(yi2 | xi ) = µ + β0x2 +
p∑

j=1

φ2, j−�−1xi, j−�−1,

E∗(yi3 | xi ) = µ + β0x3 + β1x2 +
p∑

j=1

φ3, j−�−1xi, j−�−1,

...

E∗(yiT | xi ) = µ + β0xT + · · · + βT +�−px p−�

+
p∑

j=1

φT, j−�−1xi, j−�−1,

(9.1.11)

where φt, j−�−1 = βt+�+1− j + wt, j−�−1 for t = 1, . . . , T and j = 1, . . . , p, and
for simplicity we have let p = � + 2. The first p values of xi in each projec-
tion have nonzero partial correlations with the truncation remainders (the bit ).
Hence, their coefficients do not identify the parameters of the lag distribution.
Only when (t + � − p + 1) > 0 are the leading coefficients in each equation
in fact estimates of the leading lag coefficients. As t increases, we gradually
uncover the lag structure.

When cq �= 0, the finding of consistent estimators (hence identification)
for the leading T + � − p + 1 lag coefficients is slightly more complicated.
Substituting (9.1.9) into (9.1.7), we have

E∗(yit | xi , α
∗
i ) = (1 + ct )α

∗
i +

t+�−p∑
τ=0

βτ xi,t−τ

+
p∑

j=1

φt, j−�−1xi, j−�−1, t = 1, . . . , T,

(9.1.12)
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where again (for simplicity) we have assumed p = � + 2. Conditioning this
equation on xi , and passing through the projection operator once more, we
obtain

E∗(yi1 | xi ) = µ(1 + c1) + (1 + c1)
T∑

t=p−�

at xit

+
p∑

j=1

[(1 + c1)a j−�−1 + φ1, j−�−1]xi, j−�−1,

E∗(yi2 | xi ) = µ(1 + c2) + β0x2 + (1 + c2)
T∑

t=p−�

at xit

+
p∑

j=1

[(1 + c2)a j−�−1 + φ2, j−�−1]xi, j−�−1, (9.1.13)

...

E∗(yiT | xi ) = µ(1 + cT ) +
T +�−p∑

τ=0

βτ xi,t−τ + (1 + cT )
T∑

t=p−�

at xit

+
p∑

j=1

[(1 + cT )a j−�−1 + φT, j−�−1]xi, j−�−1.

Multiplying yi1 by c̃t and subtracting it from yit , we produce the system of
equations

yit = c̃t yi1 +
t+�−p∑
τ=0

βτ xi,t−τ +
p∑

j=1

φ̃t, j−�−1xi, j−�−1 + νi t (9.1.14)

for t = 2, . . . , T , where

c̃t = 1 + ct

1 + c1
, φ̃t, j−�−1 = φt, j−�−1 − c̃tφ1, j−�−1,

and

νi t = yit − c̃t yi1 − E∗(yit − c̃t yi1| xi ).

By construction, E∗(νi t | xi ) = 0.
For given t , the only variable on the right-hand side of (9.1.14) that is corre-

lated with νi t is yi1. If we know the values of {c̃t }T
t=2, the system (9.1.14) will

allow us to estimate the leading (T + � − p + 1) lag coefficients consistently
by first forming ỹi t = yit − c̃t yi1 (for t = 2, . . . , T ) and then regressing this
sequence on in-sample xit values cross-sectionally. In the case in which all
ct values are identical, we know that the sequence {c̃t }T

t=2 is just a sequence
of ones. In the case in which α∗

i have a free coefficient in each period of the
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sample, we have unknown (1 + ct ). However, we can consistently estimate c̃t ,
βτ , and φ̃t, j by the instrumental-variable method, provided there is at least one
xis that is excluded from the determinants of yit − c̃t yi1 and that is correlated
with yi1. If T ≥ 3, then xi3, . . . , xiT are excluded from the equation determin-
ing (yi2 − c̃2 yi1), and provided that not all of a3 to aT are zero, at least one of
them will have the required correlation with yi1.

We have shown that under Assumptions 9.1.1–9.1.4, the use of panel data
allows us to identify the leading T + � − p + 1 lag coefficients without im-
posing any restrictions on the sequence {βτ }∞τ=0. Of course, if T + � is small
relative to p, we shall not be able to build up much information on the tail of the
lag distribution. This simply reflects the fact that short panels, by their very
nature, do not contain unconstrained information on that tail. However, the
early coefficients are often of significant interest in themselves. Moreover, they
may provide a basis for restricting the lag structure (to be a function of a small
number of parameters) in further work.

9.1.4 Identification Using Prior Structure of the Lag Coefficients

In many situations we may know that all βτ are positive. We may also know
that the first few coefficients β0, β1, and β2 are the largest and that βτ decreases
with increasing τ , at least after a certain value of τ . In this subsection we
show how the conventional approach of constraining the lag coefficients to be
a function of a finite number of parameters can be used and generalized for
identification of a distributed-lag model in the panel data context. Therefore,
we drop Assumption 9.1.4. Instead, we assume that we have prior knowledge of
the structure of lag coefficients. The particular example we use here is the one
assumed by Pakes and Griliches (1984), where the sequence of lag coefficients,
after the first few free lags, has an autoregressive structure. This restriction is
formalized as follows:

Assumption 9.1.5.

βτ =


βτ for τ ≤ k1,

J∑
j=1

δ jβτ− j otherwise,

where the roots of the characteristic equation 1 − ∑J
j=1 δ j L j = 0, say

λ−1
1 , . . . , λ−1

J , lie outside the unit circle.8 For simplicity, we assume that
k1 = � + 1, and that λ1, . . . , λJ are real and distinct.

Assumption 9.1.5 implies that βτ declines geometrically after the first k1

lags. Solving the J th-order difference equation

βτ − δ1βτ−1 − · · · − δJ βτ−J = 0, (9.1.15)
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we obtain the general solution (e.g., Box and Jenkins (1970, Chapter 3))

βτ =
J∑

j=1

A jλ
τ
j , (9.1.16)

where A j are constants to be determined by the initial conditions of the differ-
ence equation.

Substituting (9.1.16) into (9.1.5), we write the truncation-remainder term
bit as

bit =
∞∑

τ=�+1

(
J∑

j=1

A jλ
t+τ
j

)
xi,−τ

=
J∑

j=1

λt
j

(
A j

∞∑
τ=�+1

λτ
j xi,−τ

)

=
J∑

j=1

λt
j bi j , (9.1.17)

where bi j = A j
∑∞

τ=�+1 λτ
j xi,−τ . That is, we can represent the truncation re-

mainder bit in terms of J unobserved initial conditions (bi1, . . . , bi J ). Thus,
under Assumptions 9.1.1–9.1.3 and 9.1.5, the distributed-lag model becomes
a system of T regressions with J + 1 freely correlated unobserved factors
(α∗

i , bi1, . . . , bi J ) where the impact of last J of them decay geometrically over
time.

Because the conditions for identification of a model in which there are J + 1
unobserved factors is a straightforward generalization from a model with two
unobserved factors, we deal first with the case J = 1 and then point out the
extensions required for J > 1.

When J = 1, it is the familiar case of a modified Koyck (or geometric) lag
model. The truncation remainder becomes an unobserved factor that follows an
exact first-order autoregression (i.e., bit = δbi,t−1). Substituting this result into
(9.1.5), we have

yit = α∗
i +

�+1∑
τ=0

βτ xi,t−τ + β�+1

t+�∑
τ=�+2

δτ−(�+1)xi,t−τ + δt−1bi + ũi t ,

(9.1.18)

where bi = β�+1
∑∞

τ=1 δτ xi,−τ−�.
Recall from the discussion in Section 9.1.3 that to identify the lag param-

eters we require a set of restrictions on the projection matrix E∗(bi | xi ) =
[W + ca′]xi [equation (9.1.7)]. The Koyck lag model implies that bit = δbi,t−1,
which implies that E∗(bit | xi ) = δE∗(bi,t−1 | xi ); that is, wtr = δwt−1,r for
r = 1, . . . , T + � + 1 and t = 2, . . . , T . It follows that the matrix � has the
form

� = B∗ + �∗w∗′ + ea′, (9.1.19)
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where �∗′ = [1, δ, . . . , δT −1], w∗ is the vector of coefficients from the projec-
tion of bi on xi [i.e., E∗(bi | xi ) = ∑T

t=−� w∗
t xi t ], and

B∗ =


β�+1 . . . β1 β0 0 . . . 0 0 . . . 0 0
δβ�+1 . . . β2 β1 β0 . . . 0 0 . . . 0 0

...
...

...
...

...
...

...
...

δT −1β�+1 . . . δT −�β�+1 δT −�−1β�+1 δT −�−2β�+1 . . . δβ�+1 β�+1 . . . β1 β0

.

Taking partial derivatives of (9.1.19) with respect to unknown parameters, it
can be shown that the resulting Jacobian matrix satisfies the rank condition
for identification of the lag coefficients, provided T ≥ 3 (e.g., Hsiao (1983,
Theorem 5.1.2)). In fact, an easy way to see that the lag coefficients are identified
is to note that (9.1.18) implies that

(yit − yi,t−1) − δ(yi,t−1 − yi,t−2)

= β0xit + [β1 − β0(1 + δ)]xi,t−1

+
�∑

τ=2

[βτ − (1 + δ)βτ−1 + δβτ−2]xi,t−τ + νi t , i = 1, . . . , N ,

t = 1, . . . , T,

(9.1.20)

where νi t = ũi t − (1 + δ)ũi,t−1 + δũi,t−2, and E∗[	 i | xi ] = 0. Provided T ≥
3, xi3, . . . , xiT can serve as instruments for cross-sectional regression of the
equation determining yi2 − yi1.

In the more general case, with J > 1, �∗w∗′ in (9.1.19) will be replaced
by

∑J
j=1�∗

j w
∗
j
′, where �∗

j
′ = [1, λ j , . . . , λ

T −1
j ], and w∗

j is the vector of coef-
ficients from the projection of bi j on xi . Using a similar procedure, we can show
that the matrix � will identify the lag coefficients if T ≥ J + 2.

Of course, if in addition to Assumption 9.1.5 we also have information on
the structure of process x , there will be more restrictions on the � matrices than
in the models in this subsection. Identification conditions can consequently be
relaxed.

9.1.5 Estimation and Testing

We can estimate the unknown parameters of a distributed-lag model using short
panels by first stacking all T period equations as a system of reduced-form
equations:

yi
T ×1

= �∗ + [IT ⊗ x′
i ]� + 	 i , i = 1, . . . , N , (9.1.21)

where 	 i = yi − E∗[yi | xi ] and �′ = [�′
1, . . . , �′

T ], where �′
j is the j th row of

the matrix �. By construction, E(	 i ⊗ xi ) = 0. Under the assumption that the
N vectors (y′

i , x′
i ) are independent draws from a common distribution, with finite

fourth-order moments and with Exi x′
i = �xx positive definite, the least-squares
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estimator �̂ of � is consistent, and
√

N (�̂ − �) is asymptotically normally
distributed, with mean zero and variance–covariance matrix �, which is given
by (3.9.11).

The models of Sections 9.1.3 and 9.1.4 imply that � = f(�), where � is
a vector of the model’s parameters of dimensions m ≤ (T + � + 1). We can
impose these restrictions by a minimum-distance estimator that chooses �̂ to
minimize

[�̂ − f(�)]′�̂−1[�̂ − f(�)], (9.1.22)

where �̂ is a consistent estimator of (3.9.11). Under fairly general conditions,
the estimator �̂ is consistent, and

√
N (�̂ − �) is asymptotically normally dis-

tributed, with asymptotic variance–covariance matrix

(F ′�−1 F)−1, (9.1.23)

where F = ∂f(�)/∂�′. The identification condition ensures that F has rank m.
The quadratic form

N [�̂ − f(�̂)]′�−1[�̂ − f(�̂)] (9.1.24)

is asymptotically chi-square-distributed with T (T + � + 1) − m degrees of
freedom.

Equation (9.1.24) provides us with a test of the T (T + � + 1) − m con-
straints f placed on �. To test nested restrictions, consider the null hypothesis
� = g(�), where � is a k-dimensional vector (k ≤ m) of the parameters of the
restricted model. Let h(�) = f[g(�)]; that is, h embodies the restrictions of the
constrained model. Then, under the null hypothesis,

N [�̂ − h(�̂)]′�−1[�̂ − h(�̂)] (9.1.25)

is asymptotically chi-square-distributed with T (T + � + 1) − k degrees of free-
dom, where �̂ minimizes (9.1.25). Hence, to test the null hypothesis, we can
use the statistic9

N [�̂ − h(�̂)]′�̂−1[�̂ − h(�̂)] − N [�̂ − f(�̂)]′�̂−1[�̂ − f(�̂)],

(9.1.26)

which is asymptotically chi-square-distributed, with m − k degrees of freedom.
To illustrate the method of estimating unconstrained distributed-lag models

using panel data, Pakes and Griliches (1984) investigated empirically the issues
of how to construct the “stock of capital (G)” for analysis of rates of return.
The basic assumption of their model is that there exists a stable relationship
between earnings (gross or net profits) (y) and past investments (x), and firms
or industries differ only in the level of the yield on their past investments, with
the time shapes of these yields being the same across firms and implicit in the
assumed depreciation formula. Namely,

E∗[yit | Git , α
∗
i ] = α∗

i + γ Git , (9.1.27)
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and

Git =
∞∑

τ=1

βiτ xit−τ . (9.1.28)

Substituting (9.1.28) into (9.1.27), we have a model that consists in regress-
ing the operating profits of firms on a distributed lag of their past investment
expenditures.

Using a sample of 258 manufacturing firms’ annual profit data for the years
1964–1972 and investment data for the years 1961–71, and assuming that p in
Assumption 9.1.4 equals three,10 they found that the estimated lag coefficients
rose over the first three periods and remained fairly constant over the next four
or five. This pattern implies that the contribution of past investment to the capital
stock first “appreciates” in the early years as investments are completed, shaken
down, or adjusted to. This is distinctly different from the pattern implied by
the commonly used straight-line or declining-balance depreciation formula to
construct the “stock of capital.” Both formulae imply that the lag coefficients
decline monotonically in τ , with the decline being the greatest in earlier periods
for the second case.

9.2 ROTATING OR RANDOMLY MISSING DATA

In many situations we do not have complete time-series observations on cross-
sectional units. Instead, individuals are selected according to a rotating scheme
that can be briefly stated as follows: Let all individuals in the population be
numbered consecutively. Suppose the sample in period 1 consists of individuals
1, 2, . . . , N . In period 2, individuals 1, . . . , m1 (0 ≤ m1 ≤ N ) are replaced by
individuals N + 1, . . . , N + m1. In period 3, individuals m1 + 1, . . . , m1 + m2

(0 ≤ m2 ≤ N ) are replaced by individuals N + m1 + 1, . . . , N + m1 + m2,
and so on. This procedure of dropping the first mt−1 individuals from the sample
selected in the previous period and augmenting the sample by drawing mt−1

individuals from the population so that the sample size remains the same con-
tinues through all periods. Hence, for T periods, although the total number of
observations remains at N T , we have observed N + ∑T −1

t=1 mt individuals.
Rotation of a sample of micro units over time is quite common. It can be

caused by deliberate policy of the data-collecting agency (e.g., the Bureau of the
Census) because of the worry that if the number of times respondents have been
exposed to a survey gets large, the data may be affected and behavioral changes
may even be induced. Or it can arise because of the consideration of optimal
sample design so as to gain as much information as possible from a given budget
(e.g., Aigner and Balestra (1988); Nijman, Verbeek, and van Soest (1991)). It
can also arise because the data-collecting agency can neither force nor persuade
randomly selected individuals to report more than once or twice, particularly if
detailed and time-consuming reporting is required. For example, the Survey of
Income and Program Participation, which began field work in October 1983,



280 Incomplete Panel Data

has been designed as an ongoing series of national panels, each consisting of
about 20,000 interviewed households and having a duration of 2.5 years. Every
four months the Census Bureau will interview each individual of age 15 years
or older in the panel. Information will be collected on a monthly basis for most
sources of money and nonmoney income, participation in various governmental
transfer programs, labor-force status, and household composition.

Statistical methods developed for analyzing complete panel data can be
extended in a straightforward manner to analyze rotating samples if rotation is by
design (i.e., random dropping and addition of individuals) and if a model is static
and the error terms are assumed to be independently distributed across cross-
sectional units. The likelihood function for the observed samples in this case
is simply the product of the N + ∑T −1

t=1 mt joint densities of (yit i , yi,ti +1, . . . ,

yiTi ),

L =
N+∑T −1

t=1 mt∏
i=1

f
(
yiti , . . . , yiTi

)
, (9.2.1)

where ti and Ti denote first and last periods during which the i th individual was
observed. Apart from the minor modifications of ti for 1 and Ti for T , (9.2.1)
is basically of the same form as the likelihood functions for the complete panel
data.

As an illustration, we consider a single-equation error-components model
(Biørn (1981)). Let

yit = �′xi t + vit , (9.2.2)

where � and xi t are k × 1 vectors of parameters and explanatory variables,
respectively, and

vit = αi + uit . (9.2.3)

The error terms αi and uit are independent of each other and are independently
distributed, with zero means and constant variances σ 2

α and σ 2
u , respectively.

For ease of exposition, we assume that αi and uit are uncorrelated with xi t .11

We also assume that in each period a fixed number of individuals are dropped
from the sample and the same number of individuals from the population are
added back to the sample (namely, mt = m for all t). Thus, the total number of
individuals observed is

H = (T − 1)m + N . (9.2.4)

Denote the number of times the i th individual is observed by qi ; then qi =
Ti − ti + 1. Stacking the time-series observations for the i th individual in vector
form, we have

yi = Xi � + vi , (9.2.5)
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where

yi
qi ×1

= (
yiti , . . . , yiTi

)′
, Xi

qi ×k
= (x′

i t ),

vi = (
αi + uiti , . . . , αi + uiTi

)′
.

The variance–covariance matrix of vi is

Vi = σ 2
u + σ 2

α if qi = 1 (9.2.6a)

and is

Vi = Evi v′
i = σ 2

u Iqi + σ 2
α Ji if qi > 1, (9.2.6b)

where Ji is a qi × qi matrix with all elements equal to 1. Then, for qi = 1,

V −1
i = (

σ 2
u + σ 2

α

)−1
, (9.2.7a)

and for qi > 1,

V −1
i = 1

σ 2
u

[
Iqi − σ 2

α

σ 2
u + qiσ 2

α

Ji

]
. (9.2.7b)

Because yi and y j are uncorrelated, the variance–covariance matrix of the
stacked equations (y′

1, . . . , y′
N+(T −1)m)′ is block-diagonal. Therefore, the GLS

estimator of � is

�̂GLS =
[

N+(T −1)m∑
i=1

X ′
i V

−1
i Xi

]−1[N+(T −1)m∑
i=1

X ′
i V

−1
i yi

]
. (9.2.8)

The GLS estimation of � is equivalent to first premultiplying the observation
matrix [yi , Xi ] by Pi , where P ′

i Pi = V −1
i , and then regressing Pi yi on Pi Xi

(Theil (1971, Chapter 6)). In other words, the least-squares method is applied
to the data transformed by the following procedure: For individuals who are
observed only once, multiply the corresponding ys and xs by (σ 2

u + σ 2
α )−1/2.

For individuals who are observed qi times, subtract from the corresponding
ys and xs a fraction 1 − [σu/(σ 2

u + qiσ
2
α )1/2] of their group means, ȳi and x̄i ,

where ȳi = (1/qi )
∑

t yi t and x̄i = (1/qi )
∑

t xi t , and then divide them by σu .
To obtain separate estimates σ 2

u and σ 2
α we need at least one group for which

qi > 1. Let � denote the set of those individuals with qi > 1, � = {i | qi > 1},
and let H∗ = ∑

i∈� qi . Then σ 2
u and σ 2

α can be consistently estimated by

σ̂ 2
u = 1

H∗
∑
i∈�

T i∑
t=ti

[(yit − ȳi ) − �̂
′
(xi t − x̄i )]

2, (9.2.9)

and

σ̂ 2
α = 1

N + (T − 1)m

N+(T −1)m∑
i=1

[
(ȳi − �̂

′
x̄i )

2 − 1

qi
σ̂ 2

u

]
. (9.2.10)
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Similarly, we can apply the MLE by maximizing the logarithm of the likelihood
function (9.2.1):

log L = − N T

2
log 2π − 1

2

N+(T −1)m∑
i=1

log |Vi |

− 1

2

N+(T −1)m∑
i=1

(yi − Xi �)′V −1
i (yi − Xi �)

= − N T

2
log 2π − 1

2

[
N+(T −1)m∑

i=1

(qi − 1)

]
log σ 2

u

− 1

2

N+(T −1)m∑
i=1

log
(
σ 2

u + qiσ
2
α

)
− 1

2

N+(T −1)m∑
i=1

(yi − Xi �)′V −1
i (yi − Xi �). (9.2.11)

Conditioning on σ 2
u and σ 2

α , the MLE is the GLS (9.2.8). Conditioning on �, the
MLEs of σ 2

u and σ 2
α are the simultaneous solutions of the following equations:

∂ log L

∂σ 2
u

= − 1

2σ 2
u

[
N+(T −1)m∑

i=1

(qi − 1)

]

− 1

2

[
N+(T −1)m∑

i=1

1

σ 2
u + qiσ 2

α

]

+ 1

2σ 4
u

N+(T −1)m∑
i=1

(yi − Xi �)′ Qi (yi − Xi �)

+ 1

2

N+(T −1)m∑
i=1

qi(
σ 2

u + qiσ 2
α

)2 (ȳi − x̄′
i �) = 0, (9.2.12)

and

∂ log L

∂σ 2
α

= −1

2

N+(T −1)m∑
i=1

[
qi

σ 2
u + qiσ 2

α

− q2
i(

σ 2
u + qiσ 2

α

)2 (ȳi − x̄′
i �)2

]
,

= 0, (9.2.13)

where Qi = Iqi − (1/qi )eqi e′
qi , and eqi is a qi × 1 vector of ones. Unfortunately,

because qi are different for different i , (9.2.12) and (9.2.13) cannot be put in the
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simple form of (3.3.25) and (3.3.26). Numerical methods will have to be used
to obtain a solution. However, computation of the MLEs of �, σ 2

u , and σ 2
α can

be simplified by switching iteratively between (9.2.8) and (9.2.12)–(9.2.13).
This principle of modifying complete-panel-data estimation methods for

the incomplete-panel-data case can be extended straightforwardly to dynamic
models and multiple-equation models. However, with dynamic models there
is a problem of initial conditions.12 Different assumptions about initial con-
ditions will suggest different ways of incorporating new observations with
those already in the sample. It would appear a reasonable approximation in
this case is to modify the methods based on the assumption that initial ob-
servations are correlated with individual effects and have stationary variances
(Chapter 4, case IVc or IVc′). Alternatively, instrumental variable methods pro-
posed for the analysis of dynamic models from repeated cross-section data (e.g.,
Collado (1997); Moffit (1993)) can be implemented with proper modification.
However, the assumption imposed on the model will have to be even more
restrictive.

When data are randomly missing, a common procedure is to focus on the
subset of individuals for which complete time-series observations are available.
However, the subset of incompletely observed individuals also contains some
information about unknown parameters. A more efficient and computationally
somewhat more complicated way is to treat randomly missing samples in the
same way as rotating samples. For instance, the likelihood function (9.2.1), with
the modification that ti = 1 for all i , can also be viewed as the likelihood function
for this situation: In time period 1 there are N + ∑T −1

t=1 mt individuals; in period
2, m1 of them randomly drop out, and so on, so that at the end of T periods
there are only N individuals remaining in the sample. Thus, the procedure for
obtaining the GLS or MLE for unknown parameters with all the observations
utilized is similar to the situation of rotating samples.

9.3 PSEUDOPANELS (OR REPEATED
CROSS-SECTIONAL DATA)

When repeated observations on the same individuals are not available, it is not
possible to control the effect of unobserved individual characteristics in a linear
model of the form

yit = �′xi t + αi + uit (9.3.1)

if αi and xi t are correlated by the fixed-effects estimator discussed in Chapter 3.
However, several authors have argued that with some additional assumptions
� may be identified from a single cross section or a series of independent
cross sections (e.g., Blundell, Browning, and Meghir (1994); Deaton (1985);
Heckman and Robb (1985); Moffit (1993)).

Deaton (1985) suggests using a cohort approach to obtain consistent esti-
mators of � of (9.3.1) if repeated cross-sections data are available. Cohorts
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are defined as groups of individuals sharing common observed characteristics,
such as age, sex, education or socioeconomic background. Suppose that one
can divide the sample into C cohorts where all individuals within the cohort
have identical αc, c = 1, . . . , C . Then aggregation of all observations to cohort
level results in

ȳct = x̄′
ct � + αc + ūct , c = 1, . . . , C,

(9.3.2)
t = 1, . . . , T,

where ȳct and x̄ct are the averages of all observed y′
i ts and x′

i ts in cohort c at
time period t . The resulting data set is a pseudopanel with repeated observations
on C cohorts over T time periods. If x̄ct are uncorrelated with ūct , the within
estimator (3.2.8) can be applied to the pseudopanel

�̂w =
(

C∑
c=1

T∑
t=1

(x̄ct − x̄c)(x̄ct − x̄c)′
)−1( C∑

c=1

T∑
t=1

(x̄ct − x̄c)(ȳct − ȳc)

)
,

(9.3.3)

where x̄c = 1
T

∑T
t=1 x̄ct , and ȳc = 1

T

∑T
t=1 ȳct .

In the case that xi t contains the lagged dependent variables, then x̄ct will
introduce the well-known measurement error problem because yit is supposed
to depend on one’s own past value yi,t−1, not some averaged value. In the case
that the observed cohort means ȳct and x̄ct are error-ridden, Deaton (1985)
suggests estimating � by13

�D =
(

1

CT

C∑
c=1

T∑
t=1

(x̄ct − x̄c)(x̄ct − x̄c)′ − �x

)−1

×
(

1

CT

C∑
c=1

T∑
t=1

(x̄ct − x̄c)(ȳct − ȳ) − �

)
, (9.3.4)

where �x denotes the variance–covariance matrix of the measurement er-
rors in x̄ct , and � denotes the covariance of the measurement errors of ȳct

and x̄ct .

Although the cohort approach offers a useful framework to make use of
independent cross-sectional information, there are problems with some of its
features. First, the assertion of intracohort homogeneity appears very strong,
particularly in view of the fact that the cohort classification is often arbitrary.
Second, grouping or aggregating individuals may result in the loss of infor-
mation or the heteroscedasticity of the errors of the cohort equation (9.3.2).
Third, the practice of establishing the large-sample properties of econometric
estimators and test statistics by assuming that the number of cohorts, C , tends
to infinity is not satisfactory. There is often a physical limit beyond which one



9.4 Pooling of Cross-Sectional and Time-Series Data 285

cannot increase the number of cohorts. The off-cited example of date-of-birth
cohorts is a case in point.

9.4 POOLING OF A SINGLE CROSS-SECTIONAL
AND A SINGLE TIME-SERIES DATA SET

9.4.1 Introduction

In this section we consider the problem of pooling when we have a single cross-
sectional and a single time-series data set. Empirical studies based solely on
time-series data often result in very inaccurate parameter estimates because of
the high collinearity among the explanatory variables. For instance, income and
price time series can be highly correlated. On the other hand, a cross-sectional
data set may contain good information on household income, but not on price,
because the same price is likely to be faced by all households. Thus, each data
set contains useful information on some of the variables, but not on all the
variables so as to allow accurate estimates of all the parameters of interest.
A classic example of this is provided in a study (Stone (1954)) of aggregate-
demand systems in which there was no cross-sectional variation in commodity
prices and inadequate time-series variation in real incomes.

To overcome the problem of lack of information on interesting parame-
ters from time-series or cross-sectional data alone, one frequently estimates
some parameters from cross-sectional data, then introduces these estimates
into time-series regression to estimate other parameters of the model. For in-
stance, Tobin (1950) calculated income elasticity from cross-sectional data,
then multiplied it by the time-series income variable and subtracted the prod-
uct from the annual time series of quantity demand to form a new dependent
variable. This new dependent-variable series was then regressed against the
time series of the price variable to obtain an estimate of the price elasticity of
demand.

The purpose of pooling here, as in the cases analyzed earlier, is to get more
efficient estimates for the parameters that are of interest. In a time series, the
number of observations is usually limited, and variables are highly correlated.
Moreover, an aggregate data set or a single individual time-series data set does
not contain information on microsociodemographic variables that affect eco-
nomic behavior. Neither are cross-sectional data more structurally complete.
Observations on individuals at one point in time are likely to be affected by
prior observations. These raise two fundamental problems: One is that the
source of estimation bias in cross-sectional estimates may be different from
that in time-series estimates. In fact, many people have questioned the suit-
ability and comparability of estimates from different kinds of data (micro or
aggregate, cross section or time series), e.g., Kuh (1959) and Kuh and Meyer
(1957). The second is, if pooling is desirable, what is the optimal way to do it? It
turns out that both problems can be approached simultaneously in the framework
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of an analysis of the likelihood functions (Maddala (1971b))14 or with a Bayesian
approach (Hsiao, Mountain, and Ho-Illman (1995)).

The likelihood function provides a useful way to extract the information
contained in the sample provided that the model is correctly specified. Yet a
model is a simplification of complex real-world phenomena. To be most useful,
a model must strike a reasonable balance between realism and manageability. It
should be realistic in incorporating the main elements of the phenomena being
represented and at the same time be manageable in eliminating extraneous in-
fluences. Thus, when specifying a regression equation, it is common to assume
that the numerous factors that affect the outcome of the dependent variable, but
are individually unimportant or unobservable, can be appropriately summarized
by a random-disturbance term. However, the covariations of these omitted vari-
ables and the included explanatory variables in a cross-sectional regression may
be different from those in a time-series regression. For example if high income
is associated with high consumption and is also correlated with age, the cross-
sectional regression of consumption on income will yield an income coefficient
that measures the joint effects of age and income on consumption, unless age
is introduced as another explanatory variable. But the age composition of the
population could either be constant or be subject only to gradual, slow change in
aggregate time series. Hence, the time-series estimate of the income elasticity,
ignoring the age variable, could be smaller than the cross-sectional estimates
because of the negligible age–income correlation.

Another reason that cross-sectional and time-series estimates in demand
analysis may differ is that cross-sectional estimates tend to measure long-run
behavior and time-series estimates tend to measure short-run adjustment (Kuh
(1959); Kuh and Meyer (1957)). The assumption is that the majority of the ob-
served families have enjoyed their present positions for some time, and the dise-
quilibrium among households tends to be synchronized in response to common
market forces and business cycles. Hence, many disequilibrium effects wash
out (or appear in the regression intercept), so that the higher cross-sectional
slope estimates may be interpreted as long-run coefficients. However, this will
not be true for time-series observations. Specifically, changes over time usually
represent temporary shifts. Recipients or losers from this change probably will
not adjust immediately to their new levels. A incompletely adjusted response
will typically have a lower coefficient than the fully adjusted response.

These observations on differential cross-sectional and time-series behav-
ior suggest that the effects of omitted variables can be strikingly different in
time series and cross sections. Unless the assumption that the random term
(representing the omitted-variables effect) is uncorrelated with the included ex-
planatory variables holds, the time-series and cross-sectional estimates of the
common coefficients can diverge. In fact, if the time-series and cross-sectional
estimates differ, this is an indication that either or both models are misspecified.
In Chapter 3, we discussed specification tests without using extraneous infor-
mation. We now discuss a likelihood approach when extraneous information in
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the form of cross-sectional data for the time-series model, or time-series data
for the cross-sectional model, is available.

9.4.2 The Likelihood Approach to Pooling Cross-Sectional
and Time-Series Data

Assume that we have a single cross-section consisting of N units and a time
series extending over T time periods. Suppose that the cross-sectional model is

yc = Z1�1 + Z2�2 + uc, (9.4.1)

where yc is an N × 1 vector of observations on the dependent variable, Z1

and Z2 are N × K and N × L matrices of independent variables, and �1 and
�2 are K × 1 and L × 1 vectors of parameters, respectively. The N × 1 error
term uc is independently distributed, with variance–covariance matrix σ 2

u IN .
The time-series model is

yT = X1�1 + X2�2 + vT , (9.4.2)

where yT is a T × 1 vector of observations on the dependent variable, X1 and X2

are T × K and T × M matrices of observations on the independent variables,
�1 and �2 are K × 1 and M × 1 vectors of parameters, and vT is a T × 1 vector
of disturbances.15 For simplicity, we assume that vT is uncorrelated with uc and
is serially uncorrelated, with variance–covariance matrix EvT v′

T = σ 2
v IT .

The null hypothesis here is that �1 = �1. So with regard to the question
whether or not to pool, we can use a likelihood-ratio test. Let L∗

1 and L∗
2 de-

note the maxima of the log joint likelihood functions for (9.4.1) and (9.4.2)
with and without the restriction that �1 = �1. Then, under the null hypothesis,
2(L∗

2 − L∗
1) is asymptotically chi-square-distributed, with K degrees of free-

dom. The only question is: What is the appropriate level of significance? If the
costs of mistakenly accepting the pooling hypothesis and rejecting the pooling
hypothesis are the same, Maddala (1971b) suggested using something like a 25
to 30 percent level of significance, rather than the conventional 5 percent, in
our preliminary test of significance.

The specifications of the maximum likelihood estimates and their variance–
covariances merely summarize the likelihood function in terms of the location
of its maximum and its curvature around the maximum. It is possible that
the information that the likelihood function contains is not fully expressed by
these. When the compatibility of cross-sectional and time-series estimates is
investigated, it is useful to plot the likelihood function extensively. For this
purpose, Maddala (1971b) suggested that one should also tabulate and plot the
relative maximum likelihoods of each data set,

RM (δ1) =
max

�
L(�1, �)

max
�1,�

L(�1, �)
, (9.4.3)
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where � represents the set of nuisance parameters, max� L(�1, �) denotes the
maximum of L with respect to � given �1, and max�1,� L(�1, �) denotes the
maximum of L with respect to both �1 and �. The plot of (9.4.3) summarizes
almost all the information contained in the data on �1. Hence, the shapes and
locations of the relative maximum likelihoods will reveal more information
about the compatibility of the different bodies of data than a single test statistic
can.

If the hypothesis �1 = �1 is acceptable, then, as Chetty (1968), Durbin
(1953), and Maddala (1971b) have suggested, we can stack (9.4.1) and (9.4.2)
together as[

yc

yt

]
=

[
Z1

X1

]
�1 +

[
Z2

0

]
�2 +

[
0

X2

]
�2 +

[
uc

v T

]
. (9.4.4)

It is clear that an efficient method of estimating of �1, �2, and �2 is to apply the
maximum likelihood method to (9.4.4). An asymptotically equivalent procedure
is to first apply least squares separately to (9.4.1) and (9.4.2) to obtain consistent
estimates of σ 2

u and σ 2
v , then substitute the estimated σ 2

u and σ 2
v into the equation

1

σ u
yc

1

σ v
yT

 =


1

σ u
Z1

1

σ v
X1

 �1 +
 1

σ u
Z2

0

 �2 +

 0

1

σ v
X2

 �2 +


1

σ u
uc

1

σ v
vT


(9.4.5)

and apply the least-squares method to (9.4.5).
The conventional procedure of substituting the cross-sectional estimates �̂1c

of �1 into the time-series model

yT − X1�̂1c = X2�2 + vT + X1(�1 − �̂1c), (9.4.6)

then regressing (yT − X1�̂1c) on X2, yields only conditional estimates of the
parameters �2 – conditional on the estimates obtained from the cross-sectional
data.16 However, there is also some information about �1 in the time-series
sample, and this should be utilized. Moreover, one should be careful in the use of
two-step procedures. Proper evaluation of the asymptotic variance–covariance
matrix of �2 should take account of the uncertainty (variance) in substituting
�̂1c for �1. [For details, see Chetty (1968); Hsiao, Mountain, and Ho-Illman
(1995); Jeong (1978); and Maddala (1971b).]

9.4.3 An Example

To illustrate application of the likelihood approach to pooling, Maddala (1971b)
analyzed a simple econometric model relating to the demand for food in the
United States. The model and the data were taken from Tobin (1950).

The cross-sectional demand equation is

y1i = δ0 + δ1z1i + δ2z2i + ui , i = 1, . . . , N , (9.4.7)
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where y1i is the logarithm of the average food consumption of the group of
families at a point in time, and z1i and z2i are the logarithms of the average
income of the i th family and the average family size, respectively. The time-
series demand function is

y2t = β0 + β1(x1t − β2x2t ) + β3(x2t − x2,t−1) + vt ,

t = 1, . . . , T, (9.4.8)

where y2t , x1t , and x2t are the logarithms of the food price index, per capita
food supply for domestic consumption, and per capita disposable income, re-
spectively. The income elasticity of demand, δ1, was assumed common to both
regressions, namely, δ1 = β2. The error terms ui and vt were independent of
each other and were assumed independently normally distributed, with zero
means and constant variances σ 2

u and σ 2
v , respectively.

The results of the cross-sectional estimates are

ŷ1i = 0.569 + 0.5611z1i
(0.0297)

+ 0.2540z2i
(0.0367)

, (9.4.9)

where standard errors are in parentheses. The results of the time-series regres-
sion are

ŷ2t = 7.231 + 1.144x2t
(0.0612)

− 0.1519
(0.0906)

(x2t − x2,t−1) − 3.644x1t
(0.4010)

. (9.4.10)

The implied income elasticity, δ1, is 0.314.
When the cross-sectional estimate of δ1, 0.56, is introduced into the time-

series regression, the estimated β1 is reduced to −1.863, with a standard error
of 0.1358. When δ1 and β1 are estimated simultaneously by the maximum like-
lihood method, the estimated δ1 and β1 are 0.5355 and −1.64, with a covariance[

0.00206 0.00827
0.04245

]
.

Although there is substantial improvement in the accuracy of the estimated
coefficient using the combined data, the likelihood-ratio statistic turns out to
be 17.2, which is significant at the 0.001 level with one degree of freedom.
It strongly suggests that in this case we should not pool the time-series and
cross-sectional data.

Figure 9.1 reproduces Maddala’s plot of the relative maximum likelihood
RM (δ1) for the parameter δ1 (the income elasticity of demand) in the Tobin
model from cross-sectional data alone, from time-series data alone, and from
the pooled sample. The figure reveals that the information on δ1 provided by
the time-series data is almost as precise as that provided by the cross-sectional
data (otherwise the likelihood function would be relatively flat). Furthermore,
there is very little overlap between the likelihood functions from time-series and
cross-sectional data. Again, this unambiguously suggests that the data should
not be pooled.17
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Fig. 9.1 Relative likelihoods for the parameter δ1.
Source: Maddala (1971b, Figure 1).

Given that the time-series data arise by aggregating some microeconomic
process, there cannot possibly be a conflict between the time-series and cross-
sectional inferences if individual differences conditional on explanatory vari-
ables are viewed as chance outcomes. Thus, whenever the empirical results
differ systematically between the two, as in the foregoing example, this is an
indication that either or both models may be misspecified. The existence of
supporting extraneous information in the form of cross-sectional or time-series
data provides an additional check on the appropriateness of a model specifica-
tion that cannot be provided by a single cross-section or time-series data set,
because there may be no internal evidence of this omitted-variable bias. How-
ever, until a great deal is learned about the relation between cross-sectional
and time-series estimates, there appears to be no substitute for completeness of
information. Sequential observations on a number of individuals or panel data
are essential for a full understanding of the systematic interrelations at different
periods of time.



CHAPTER 10

Miscellaneous Topics

In this chapter we briefly consider some miscellaneous topics. We shall first
consider statistical inference using simulation methods (Section 10.1). We shall
then consider panels with both large N and large T (Section 10.2), leading to the
discussion of the specific issue of unit-root tests (Section 10.3). Section 10.4 will
discuss panels with more than two dimensions. Section 10.5 considers issues
of measurement errors and indicates how one can take advantage of the panel
structure to identify and estimate an otherwise unidentified model. Finally, we
discuss proposals for relaxing the cross-section independence assumption apart
from the specification of the individual-invariant time-varying factors.

10.1 SIMULATION METHODS

Panel data contain two dimensions – a cross-sectional dimension and a time di-
mension. Models using panel data also often contain unobserved heterogeneity
factors. To transform a latent variable model involving missing data, random
coefficients, heterogeneity, etc., into an observable model often requires the
integration of latent variables over multiple dimensions (e.g., Hsiao (1989,
1991b, 1992c)). The resulting panel data model estimators can be quite dif-
ficult to compute. Simulation methods have been suggested to get around the
complex computational issues involving multiple integrations (e.g., Gourieroux
and Monfort (1996); Hsiao and Wang (2000); Keane (1994); McFadden (1989);
Pakes and Pollard (1989)).

The basic idea of the simulation approach is to rely on the law of large num-
bers to obtain the approximation of the integrals through taking the averages of
random drawings from a known probability distribution function. For instance,
consider the problem of computing the conditional density function f (yi | xi ; �)
of yi given xi , or some conditional moments m(yi , xi ; �), say E(yi | xi ; �) or
E(yi y′

i | xi ; �), where � is the vector of parameters characterizing these func-
tions. In many cases, it is difficult to compute these functions because they do
not have closed forms. However, if the conditional density or moments con-
ditional on x and another vector �, namely f ∗(yi | xi , �; �) or m(y, x | �; �),
have closed forms and the probability distribution P(�) of � is known, then
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from

f (yi | xi ; �) =
∫

f ∗(yi | xi , �; �) dP(�), (10.1.1)

and

m(yi , xi ; �) =
∫

m∗(yi , xi | �; �) dP(�), (10.1.2)

we may approximate (10.1.1) and (10.1.2) by

f̃ H (yi | xi ; �) = 1

H

H∑
h=1

f ∗(yi | xi , �ih ; �), (10.1.3)

and

m̃H (yi , xi ; �) = 1

H

H∑
h=1

m∗(yi , xi | �ih ; �), (10.1.4)

where (�i1, . . . , �i H ) are H random draws from P(�).
For example, consider the random-effects panel probit and Tobit models

defined by the latent response function

y∗
i t = �′xi t + αi + uit , (10.1.5)

where αi and uit are assumed to be independently normally distributed with
mean 0 and variance σ 2

α and 1, respectively, and are mutually independent. The
probit model assumes that the observed yit takes the form

yit =
{

1 if y∗
i t > 0,

0 if y∗
i t ≤ 0.

(10.1.6)

The Tobit model assumes that

yit =
{

y∗
i t if y∗

i t > 0,

0 if y∗
i t ≤ 0.

(10.1.7)

We note that the density function of αi and uit can be expressed as transforma-
tions of some standard distributions (here, standard normal), so that the density
function of y′

i = (yi1, . . . , yiT ) becomes an integral of a conditional function
over the range of these standard distributions:

f (yi | xi ; �) =
∫

f ∗(yi | xi , η; �) dP(η) (10.1.8)

with p(η) ∼ N (0, 1). For instance, in the case of the probit model,

f ∗(yi | xi , η; �) =
T∑

t=1

�(x′
i t � + σαηi )

yit [1 − �(x′
i t � + σαηi )]

1−yit ,

(10.1.9)
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and in the case of the Tobit model,

f ∗(yi | xi , η; �) =
∏
t∈�1

φ(yit − x′
i t � − σαηi )

×
∏
t∈�0

�(−x′
i t � − σαηi ), (10.1.10)

where φ(·) and �(·) denote the standard normal density and integrated normal,
respectively, and �1 = {t | yit > 0} and �0 = {t | yit = 0}. Because conditional
on xi t and each of the H random draws ηih, h = 1, . . . , H , of η from a standard
normal distribution, the conditional density function (10.1.9) or (10.1.10) is
well defined in terms of � and σ 2

α , the approximation of f (yi | xi ; �, σ 2
α ) can

be obtained by taking their averages as in (10.1.3).
More complicated forms of f (yi | xi ; �) can also be approximated by a rela-

tively simple simulator. For instance, if ui = (ui1, . . . , uiT )′ has a multivariate
normal distribution with mean 0 and covariance matrix �, we can let ui = ��∗

i ,
where �∗

i is from a standard multivariate normal with mean 0 and covariance
matrix IT , and � is a lower triangular matrix such that � = ��′. Thus, if uit

in the above example follows a first-order autoregressive process

uit = ρui,t−1 + εi t , |ρ| < 1, (10.1.11)

then we can rewrite (10.1.5) as

y∗
i t = �′xi t + σαηi +

t∑
τ=1

atτ η
∗
iτ , (10.1.12)

where η∗
iτ , τ = 1, . . . , T are random draws from independent N (0, 1), and atτ

are the entries of the lower triangular matrix �. It turns out that here atτ =
(1 − ρ2)−

1
2 ρ t−τ if t ≥ τ , and atτ = 0 if t < τ .

Using the approach described above, we can obtain an unbiased, differen-
tiable and positive simulator of f (yi | xi ; �), � = (�′, σα, ρ)′, in the probit case
by considering the following drawings:

ηih is drawn from N (0,1);
η∗

i1h is drawn from N (0, 1) restricted to

[−(�′xi1 + σαηih)/a11, ∞] if yi1 = 1

or

[−∞, −(�′xi1 + σαηih)/a11] if yi1 = 0;

η∗
i2h is drawn from N (0, 1) restricted to

[−(�′xi2 + σαηih + a21η
∗
i1h)/a22, ∞] if yi2 = 1

and

[−∞, −(�′xi2 + σαηih + a21η
∗
i1h)/a22] if yi2 = 0;
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and so on. The simulator of f (yi | xi ; �) is

f̃ H (yi | xi ; �) = 1

H

H∑
h=1

T∏
t=1

�

[
(−1)1−yit

(
�′xi t + σαηih +

t−1∑
τ=1

atτ η
∗
iτh

)/
att

]
,

(10.1.13)

where for t = 1, the sum over τ disappears.
In the Tobit case, the same kind of method can be used. The only difference

is that the simulator of f (yi | xi ; �) becomes

f̃ H (yi |xi ; �) = 1

H

H∑
h=1

[∏
t∈�1

1

att
φ

([
yit −

(
�′xi t + σαηih +

t−1∑
τ=1

atτ η
∗
iτh

)]/
att

)

×
∏
t∈�0

�

[
−
(

�′xi t + σαηih +
t−1∑
τ=1

atτ η
∗
iτh

)/
att

]]
. (10.1.14)

The simulated maximum likelihood estimator (SMLE) is obtained from
maximizing the simulated log likelihood function. The simulated general-
ized method-of-moments (SGMM) estimator is obtained from the simulated
(4.3.37). The simulated least-squares (SLS) estimator is obtained if we let
m(yi , xi ; �) = E(yi | xi ; �) and minimize

∑N
i=1[yi − E(yi | xi ; �)]2.

Although we need H → ∞ to obtain consistent simulators of f (yi | xi ; �)
and m(yi , xi ; �), it is shown by McFadden (1989) that when a finite number H
of vectors (�i1, . . . , �i H ) are drawn by simple random sampling and indepen-
dently for different i from the marginal density P(�), the simulation errors are
independent across observations; hence the variance introduced by simulation
will be controlled by the law of large numbers operating across observations,
making it unnecessary to consistently estimate each theoretical m(yi , xi ; �) for
the consistency of the SGMM �̂SGMM as N → ∞.

The asymptotic covariance matrix of
√

N (�̂SGMM − �) obtained by simulat-
ing the moments in (4.3.37) that can be approximated by

(R′ AR)−1 R′ AG N H AR(R′ AR)−1, (10.1.15)

where

R = 1

N

N∑
i=1

W ′
i

∂m̃H (yi , xi ; �)

∂�′ ,

G N H = 1

N

N∑
i=1

Wi

(
� + 1

H
	H

)
W ′

i , (10.1.16)

� = Cov(mi (yi , xi ; �)),

	H = Cov[m̃H (yi , xi ; �) − m(yi , xi ; �)].

It is clear that as H → ∞, the SGMM has the same asymptotic efficiency as
the GMM. However, even with finite H , the relative efficiency of the SGMM
is quite high. For instance, for the simple frequency simulator, 	H = �, one
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draw per observation gives 50 percent of the asymptotic efficiency of the cor-
responding GMM estimator, and nine draws per observation gives 90 percent
relative efficiency.

However, for the consistency of SMLE or SLS we shall need H → ∞ as
N → ∞. With a finite H , the approximation error of the conditional density
or moments is of order H−1. This will lead to the asymptotic bias of O(1/H )
(e.g., Gourieoux and Monfort (1996); Hsiao, Wang, and Wang (1997)). Never-
theless, with a finite H it is still possible to propose an SLS estimator which is
consistent and asymptotically normally distributed as N → ∞ by noting that
for the sequence of 2H random draws (�i1, . . . , �i H , �i,H+1, . . . , �i,2H ) for
each i , we have

E

[
1

H

H∑
h=1

m∗(yi , xi | �ih ; �)

]
= E

[
1

H

H∑
h=1

m∗(yi , xi | �i,H+h ; �)

]
,

= m(yi , xi ; �), (10.1.17)

and

E

[
yi − 1

H

H∑
h=1

m∗(yi , xi | �ih ; �)

]′ [
yi − 1

H

H∑
h=1

m∗(yi , xi | �i,H+h ; �)

]
= E [yi − m(yi , xi ; �)]′ [yi − m(yi , xi ; �)] , (10.1.18)

because of the independence between (�i1, . . . , �i H ) and (�i,H+1, . . . , �i,2H ).
Then the SLS estimator that minimizes

N∑
i=1

[
yi − 1

H

H∑
h=1

m∗(yi , xi | �ih ; �)

]′ [
yi − 1

H

H∑
h=1

m∗(yi , xi | �i,H+h ; �)

]
(10.1.19)

is consistent as N → ∞ even H is fixed (e.g., Gourieoux and Monfort (1996);
Hsiao and Wang (2000)).

10.2 PANELS WITH LARGE N AND T

Most of this monograph has been concerned with panels with large N and small
T . However, some of the panel data sets, like the Penn–World tables, cover
different individuals, industries, and countries over long time periods. In some
cases, the orders of magnitude of the cross section and time series are similar.
These large-N , large-T panels call for the use of large-N and -T asymptotics
rather than just large-N asymptotics. Moreover, when T is large, there is a need
to consider serial correlations more generally, including both short-memory
and persistent components. In some panel data sets like the Penn–World Table,
the time-series components also have strongly evident nonstationarity. It turns
out that panel data in this case can sometimes offer additional insights into the
data-generating process than a single time series or a cross-section data set.
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In regressions with large-N, large-T panels most of the interesting test statis-
tics and estimators inevitably depend on the treatment of the two indexes, N
and T, which tend to infinity together. Several approaches are possible. These
are:

a. Sequential limits. A sequential approach is to fix one index, say N,
and allow the other, say T, to pass to infinity, giving an intermediate
limit. Then, by letting N pass to infinity subsequently, a sequential
limit theory is obtained.

b. Diagonal-path limits. This approach is to allow the two indexes, N
and T, to pass to infinity along a specific diagonal path in the two-
dimensional array, say T = T (N ) as the index N → ∞.

c. Joint limits. A joint limit theory allows both indexes, N and T , to
pass to infinity simultaneously without placing specific diagonal path
restrictions on the divergence, although it may still be necessary to
exercise some control over the rate of expansion of the two indexes in
order to get definitive results.

In many applications, sequential limits are easy to derive and helpful in
extracting quick asymptotics. However, sometimes sequential limits can give
misleading asymptotic results.1 A joint limit will give a more robust result than
either a sequential limit or a diagonal-path limit, but will also be substantially
more difficult to derive and will usually apply only under stronger conditions,
such as the existence of higher moments, that will allow for uniformity in the
convergence arguments. Phillips and Moon (1999) have given a set of sufficient
conditions that ensures that sequential limits are equivalent to joint limits.

In general, if an estimator is consistent in the fixed-T , large-N case, it will
remain consistent if both N and T tend to infinity, irrespective of how they
do so. Moreover, even in the case that an estimator is inconsistent for fixed T
and large N , (say, the least-squares estimator for a dynamic random-coefficient
model discussed in Chapter 6), it can become consistent if T also tends to
infinity. The probability limit of an estimator, in general, is identical no matter
which limits one takes. However, the properly scaled limiting distribution may
depend on how the two indexes, N and T , tend to infinity (e.g., Levin and Lin
(1993); Hahn and Kuersteiner (2000)).

For instance, consider the linear regression model

y = E(y | x) + v = βx + v . (10.2.1)

The least-squares estimator β̂ of β gives the same interpretation irrespective of
whether y and x are stationary or integrated of order 1 (i.e., the first difference
is stationary). In the case that y and x are bivariate normally distributed as
N (0, �) with

� =
(

�yy �yx

�xy �xx

)
, (10.2.2)
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then plim β̂ = �yx�
−1
xx . In a unit-root framework of the form(

yt

xt

)
=

(
yt−1

xt−1

)
+

(
uyt

uxt

)
, (10.2.3)

where the errors ut = (uyt , uxt )′ are stationary, then

plim β̂ = �yx�
−1
xx , (10.2.4)

where �yx , �xx denote the long-run covariance between uyt and uxt and the
long-run variance of xt , defined by

� = lim
T →∞

E

[(
1√
T

T∑
t=1

ut

)(
1√
T

T∑
t=1

u′
t

)]

=
∞∑

�=−∞
E(u0u′

�) =
(

�yy �yx

�xy �xx

)
. (10.2.5)

When cross-sectional units have heterogeneous long-run covariance matri-
ces �i for (yit , xit ), i = 1, . . . , N , with E�i = �, Phillips and Moon (1999)
extend this concept of a long-run average relation among cross-sectional units
further:

β = E(�yx,i )(E�xx,i )
−1 = �yx�

−1
xx . (10.2.6)

They show that the resulting least-squares estimator converges to (10.2.6) as
N , T → ∞.

This generalized concept of average relation between cross-sectional units
covers both the cointegrated case (Engle and Granger (1987)) in which β is
a cointegrating coefficient in the sense that the particular linear combination
yt − βxt is stationary, and the correlated but noncointegrated case, which is not
available for a single time-series. To see this point more clearly, suppose that
the two nonstationary time-series variables have the following relation:

yt = ft + wt ,

xt = ft , (10.2.7)

with (
wt

ft

)
=

(
wt−1

ft−1

)
+

(
uwt

u f t

)
, (10.2.8)

where uws is independent of u f t for all t and s and has nonzero long-run
variance. Then ft is a nonstationary common factor variable for y and x , and
uw is a nonstationary idiosyncratic factor variable. Since wt is nonstationary
over time, it is apparent that there is no cointegrating relation between yt and
xt . However, since the two nonstationary variables yt and xt share a common
contributory nonstationary source in u f t , we may still expect to find evidence
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of long-run correlation between yt and xt , and this is what is measured by the
regression coefficient β in (10.2.6).

Phillips and Moon (1999, 2000) show that for large-N and -T panels, the
regression coefficient β converges to the long-run average relation so defined.
However, if N is fixed, then as T → ∞, the least-squares estimator of β is a
nondegenerate random variable that is a functional of Brownian motion that
does not converge to β (Phillips and Durlauf (1986)). In other words, with a
single time series or a fixed number of time series, the regression coefficient β

will not converge to the long-run average relation defined by (10.2.6) if only
T → ∞.

Therefore, if we define a spurious regression as one yielding nonzero β

for the two independent variables, then, contrary to the case of time-series
regression of involving two linearly independent I (1) variables (Phillips and
Durlauf (1986)), the issue of spurious regression will not arise for the panel
estimates of N → ∞ (e.g., Kao (1999)).

10.3 UNIT-ROOT TESTS

Panels with large cross-sectional dimension and long time periods have also
been used by applied economists to examine the income-convergence hypoth-
esis in growth theory (e.g. Bernard and Jones (1996)) and the purchasing-
power parity hypothesis in exchange-rate determination (e.g., Frankel and Rose
(1996)). While the time-series property of a variable is of significant interest
to economists, the statistical properties of time-series estimators actually de-
pend on whether the data are stationary or nonstationary.2 If the variables are
stationary, the limiting distributions of most estimators will be approximately
normal when T → ∞. Standard normal and chi-square tables can be used to
construct confidence intervals or test hypotheses. If the data are nonstationary,
or contain unit roots, standard estimators will have nonstandard distributions
as T → ∞. The conventional Wald test statistics cannot be approximated well
by t or chi-square distributions (e.g., Dickey and Fuller (1979, 1981); Phillips
and Durlauf (1986)). Computer simulations will have to be used to find the crit-
ical values under the null. However, with panel data one can exploit informa-
tion from cross-sectional dimensions to infer stationarity versus nonstationarity
using normal or t-distribution approximations by invoking central limit theo-
rems across cross-sectional dimensions.

Since Quah (1994), many people have suggested panel unit-root test statistics
when N and T are large (e.g., Binder, Hsiao, and Pesaran (2000); Choi (2002);
Harris and Tzaralis (1999); Im, Pesaran, and Shin (1997); Levin and Lin (1993);
Levin, Lin, and Chu (2002); Maddala and Wu (1999)). Here we shall only
discuss the tests of Levin and Lin (LL) (1993), Im, Pesaran, and Shin (IPS)
(1997), and Maddala and Wu (MW) (1999).

Following Dickey and Fuller (1979, 1981), Levin and Lin (1993), and Levin,
Lin and Chu (2002), consider a panel extension of the null hypothesis that each
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individual time series in the panel contains a unit root against the alternative
hypothesis that all individual series are stationary by considering the model

	yit = αi + δi t + γi yi,t−1 +
pi∑

�=1

φi�	yi,t−� + εi t , i = 1, . . . , N ,

t = 1, . . . , T,

(10.3.1)

where εi t is assumed to be independently distributed across i and 	 denotes the
first-difference operator, 1 − L , with L being the lag operator that shifts the ob-
servation by one period, Lyit = yi,t−1. If γi = 0, then yit contains a unit root. If
γi < 0, then yit is stationary. Levin and Lin (1993) specify the null hypothesis as

H0 : γ1 = γ2 = · · · = γN = 0, (10.3.2)

and the alternative hypothesis as

H1 : γ1 = γ2 = · · · = γN = γ < 0. (10.3.3)

To test H0 against H1, Levin and Lin (1993) suggest first regressing 	yit and
yi,t−1 on the remaining variables in (10.3.1) for each i , providing the residuals
êi t and v̂i,t−1, respectively. Then one estimates γ by running the regression of
the following model:

êi t = γ v̂i,t−1 + εi t . (10.3.4)

To adjust for heteroscedasticity across i in (10.3.4), they suggest first using the
least-squares estimate γ̂ of γ to compute the variance of êi t ,

σ̂ 2
ei = (T − pi − 1)−1

T∑
t=pi +2

(êi t − γ̂ v̂i,t−1)2, (10.3.5)

and then dividing (10.3.4) by σ̂ei for each i , to obtain the heteroscedasticity-
adjusted model

ẽi t = γ ṽi,t−1 + ε̃i t , (10.3.6)

where ẽi t = êi t/σ̂ei , ṽi,t−1 = v̂i,t−1/σ̂ei . The t statistic for testing γ = 0 is

tγ̃ = γ̃

sdγ̃

, (10.3.7)
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where γ̃ is the least-squares estimates of (10.3.6),

sdγ̃ = σ̂ε

[
N∑

i=1

T∑
t=pi +2

ṽ2
i,t−1

]−1/2

σ̂ 2
ε = (N T̃ )−1

N∑
i=1

T∑
t=pi +2

(ẽi t − γ̃ ṽi,t−1)2,

p̄ = 1

N

N∑
i=1

pi , T̃ = (T − p̄ − 1).

Levin and Lin (1993) suggest adjusting (10.3.7) by

t∗ = tγ̃ − N T̃ SN T σ̂−2
ε · sdγ̃ · µT̃

σT̃
, (10.3.8)

where

SN T = N−1
N∑

i=1

ω̂yi

σ̂ei
, (10.3.9)

and ω̂2
yi is an estimate of the long-run variance of yi , say,

ω̂2
yi = (T − 1)−1

T∑
t=2

	y2
i t + 2

K̄∑
j=1

WK̄ ( j)

×
(

(T − 1)−1
T∑

t= j+2

	yit 	yi,t− j

)
, (10.3.10)

where WK̄ ( j) is the lag kernel to ensure the positivity of ω̂2
yi ; for instance,

Newey and West (1987) suggest that

WK̄ ( j) =
1 − j

T
if j < K̄ ,

0 if j ≥ K̄ .

(10.3.11)

The µT̃ and σT̃ are mean and standard-deviation adjustment terms, which are
computed by Monte Carlo simulation and tabulated in their paper. Levin and
Lin (1993) show that provided the augmented Dickey–Fuller (1981) lag order p
increases at some rate T p where 0 ≤ p ≤ 1/4, and the lag truncation parameter
K̄ increases at rate T q where 0 < q < 1, the panel test statistic tγ̃ under the
null of γ = 0 converges to a standard normal distribution as T, N → ∞.

In the special case that αi = δi = φi� = 0, and εi t is i.i.d. with mean 0
and variance σ 2

ε , Levin and Lin (1993) and Levin, Lin, and Chu (2002) show
that under the null of γ = 0, T

√
N γ̂ of the pooled least-squares estimator γ̂

converges to a normal distribution with mean 0 and variance 2, and the t statistic
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of γ̂ converges to a standard normal, as
√

N/T → 0 while N , T → ∞ (i.e.,
the time dimension can expand more slowly than the cross section).

Im, Pesaran, and Shin (1997) relax Levin and Lins’ strong assumption
of homogeneity for (10.3.1) under the alternative (i.e., allowing γi �= γ j ) by
postulating the alternative hypothesis as

H∗
A : γi < 0 for at least one i. (10.3.12)

Thus, instead of pooling the data, Im, Pesaran, and Shin (1997) suggest taking
the average, τ̄ , of separate unit-root tests for N individual cross-section units of
the argument Dickey–Fuller (ADF) (Dickey and Fuller (1981)) t-ratios τi . They
show that τ̄ converges to a normal distribution under the null with mean E(τ̄ )
and variance Var( ¯τN ) as T → ∞ and N → ∞. Since E(τi ) and Var(τi ) will
vary as the lag length in the ADF regression varies, Im, Pesaran, and Shin (1997)
tabulate E(τi ) and Var(τi ) for different lag lengths. They show in their Monte
Carlos studies that their test is more powerful than Levin, Lin, and Chu’s (2001)
test in certain cases.

Implicit in Im, Pesaran, and Shin’s (1997) test is the assumption that T is the
same for all cross-sectional units and that the same lag length is used for all the
ADF regressions for individual series. To relax these restrictions, Maddala and
Wu (1996) suggest using the Fisher (1932) Pλ test to combine the evidence from
several independent tests. The idea is as follows: Suppose there are N unit-root
tests as in Im, Pesaran, and Shin (1997). Let Pi be the observed significance level
(P value) for the i th test. Then (−2

∑N
i=1 log Pi ) has a chi-square distribution

with 2N degrees of freedom as Ti → ∞ (Rao (1952, p. 44)).
The LL test is based on homogeneity of the autoregressive parameter (al-

though it allows heterogeneity in the error variances and the serial correlation
structure of the errors). Thus the test is based on pooled regressions. On the
other hand, both the MW test and the IPS test are based on the heterogeneity of
the autoregressive parameter under the alternative. The tests amount to a com-
bination of different independent tests. The advantage of the MW test is that
it does not require a balanced panel, nor identical lag length in the individual
ADF regressions. In fact, it can be carried out for any unit-root test derived. It
is nonparametric. Whatever test statistic we use for testing for a unit root for
each individual unit, we can get the P-values, Pi . The disadvantage is that the
P-values have to be derived by Monte Carlo simulation. On the other hand,
the LL and the IPS tests are parametric. Although the use of the tγ̃ and the τ̄

statistic involves the adjustment of the mean and variance, they are easy to use
because ready tables are available from their papers. However, these tables are
valid only for the ADF test.

The panel unit-root tests have also been generalized to test for cointegration
(Engle and Granger (1987)) by testing if the regression residual is stationary
or integrated of order 1 (e.g., Breitung and Mayer (1994); Kao and Chiang
(2000); McCoskey and Kao (1998)). For a survey of panel unit-root tests and
cointegration, see Banerjee (1999).
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10.4 DATA WITH MULTILEVEL STRUCTURES

We have illustrated panel data methodology by assuming the presence of indi-
vidual and/or time effects only. However, panel data need not be restricted to
two dimensions. We can have a more complicated clustering or hierarchical
structure. For example, Antweiler (2001), Baltagi, Song, and Jung (2001), and
Davis (1999), following the methodology developed by Wansbeek and Kapteyn
(1978, 1982), consider the multiway error-components model of the form

yi j�t = x′
i j�t � + ui j�t , (10.4.1)

for i = 1, . . . , N , j = 1, . . . , Mi , � = 1, . . . , Li j , and t = 1, . . . , Ti j�. For ex-
ample, the dependent variable yi j�t could denote the air pollution measured at
station � in city j of country i in time period t . This means that there are N
countries, and each country i has Mi cities in which Li j observation stations
are located. At each station, air pollution is observed for Ti j� periods. Then xi j�t

denotes a vector of K explanatory variables, and the disturbance is assumed to
have a multiway error-components structure,

ui j�t = αi + λi j + νi j� + εi j�t , (10.4.2)

whereαi , λi j , νi j�, and εi j�t are assumed to be i.i.d. and are mutually independent
with mean zero and variances σ 2

α , σ 2
λ , σ 2

ν , and σ 2
ε , respectively.

In the case that the data are balanced, the variance–covariance matrix of u
has the form

� = σ 2
α (IN ⊗ JM LT ) + σ 2

λ (IN M ⊗ JLT )

+ σ 2
ν (IN M L ⊗ JT ) + σ 2

ε IL M N T , (10.4.3)

where Js is a square matrix of dimension s with all elements equal to 1. Rewriting
(10.4.3) in the form representing the spectral decomposition � (e.g., as in
Appendix 3B), we have

� = M LT σ 2
α (IN ⊗ PM LT ) + LT σ 2

λ (IN M ⊗ PLT )

+ T σ 2
ν (IN M L ⊗ PT ) + σ 2

ε IL M N T

= σ 2
ε (IN M L ⊗ QT ) + σ 2

1 (IN M ⊗ QL ⊗ PT )

+ σ 2
2 (IN ⊗ QM ⊗ PLT ) + σ 2

3 (IN ⊗ PM LT ), (10.4.4)

where Ps ≡ 1
s Js, Qs = Is − Ps , and

σ 2
1 = T σ 2

ν + σ 2
ε , (10.4.5)

σ 2
2 = LT σ 2

λ + T σ 2
ν + σ 2

ε , (10.4.6)

σ 2
3 = M LT σ 2

α + LT σ 2
λ + T σ 2

ν + σ 2
ε , (10.4.7)

σ 2
ε being the characteristic roots of �. As each of the terms of (10.4.4) is
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orthogonal to the others and they sum to IN M LT , it follows that

�−1/2 = σ−1
ε (IN M L ⊗ QT ) + σ−1

1 (IN M ⊗ QL ⊗ PT )

+ σ−1
2 (IN ⊗ QM ⊗ PLT ) + σ−1

3 (IN ⊗ PM LT ). (10.4.8)

Expanding all the Q-matrices as the difference of I s and Ps, multiplying both
sides of the equation by σε , and collecting terms yield

σε�
−1/2 = IN M LT −

(
1 − σε

σ1

)
(IN M L ⊗ PT )

−
(

σε

σ1
− σε

σ2

)
(IN M ⊗ PLT )

−
(

σε

σ2
− σε

σ3

)
(IN ⊗ PM LT ). (10.4.9)

The generalized least-squares (GLS) estimator of (10.4.1) is equivalent to the
least-squares estimator of

y∗
i j�t = yi j�t −

(
1 − σε

σ1

)
ȳi j�. −

(
σε

σ1
− σε

σ2

)
ȳi j .. −

(
σε

σ2
− σε

σ3

)
ȳi...,

(10.4.10)

on

x∗
i j�t = xi j�t −

(
1 − σε

σ1

)
x̄i j�. −

(
σε

σ1
− σε

σ2

)
x̄i j .. −

(
σε

σ2
− σε

σ3

)
x̄i...,

(10.4.11)

where ȳi j�.(x̄i j�.), ȳi j..(x̄i j..), and ȳi...(x̄i...) indicate group averages. The applica-
tion of feasible GLS can be carried out by replacing the variances in (10.4.10)
and (10.4.11) by their estimates obtained from the three groupwise between
estimates and the within estimate of the innermost group.

The pattern exhibited in (10.4.10) and (10.4.11) is suggestive of solutions for
a higher-order hierarchy with a balanced structure. If the hierarchical structure
is unbalanced, the Kronecker-product operation can no longer be applied. This
introduces quite a bit of notational inconvenience into the algebra (e.g., Baltagi
(1995, Chapter 9); Wansbeek and Kapteyn (1982)). Neither can the GLS es-
timator be molded into a simple transformation to a least-squares estimator.
However, an unbalanced panel is made up of N top-level groups, each contain-
ing Mi second-level groups, the second-level groups containing the innermost
Li j subgroups, which in turn contain Ti j� observations. The numbers of obser-
vations in the higher-level groups are thus Ti j = ∑Li j

�=1 Ti j� and Ti = ∑Mi
j=1 Ti j ,

and the total number of observations is H = ∑N
i=1 Ti . The number of top-

level groups is N , the number of second-level groups is F = ∑N
i=1 Mi , and the
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number of bottom-level groups is G = ∑N
i=1

∑Mi
j=1 Li j . We can redefine the

J -matrices to be block-diagonal of size H × H , corresponding in structure to
the groups or subgroups they represent. They can be constructed explicitly by
using group membership matrices consisting of ones and zeros that uniquely
assign each of the H observations to one of the G (or F or N ) groups. Antweiler
(2001) has derived the maximum likelihood estimator for panels with unbal-
anced hierarchy.

When data constitute a multilevel hierarchical structure, the application of
a simple error-component estimation, although inefficient, remains consistent
under the assumption that the error component is independent of the regressors.
However, the estimated standard errors of the slope coefficients are usually
biased downward.

10.5 ERRORS OF MEASUREMENT

Thus far we have assumed that variables are observed without errors. Eco-
nomic quantities, however, are frequently measured with errors, particularly if
longitudinal information is collected through one-time retrospective surveys,
which are notoriously susceptible to recall errors. If variables are indeed sub-
ject to measurement errors, exploiting panel data to control for the effects of
unobserved individual characteristics using standard differenced estimators (de-
viations from means, etc.) may result in even more biased estimates than simple
least-squares estimators using cross-sectional data alone.

Consider, for example, the following single-equation model (Solon (1985)):

yit = α∗
i + βxit + uit , i = 1, . . . , N ,

(10.5.1)
t = 1, . . . , T,

where uit is independently identically distributed, with mean zero and variance
σ 2

u , and Cov(xit , uis) = Cov(α∗
i , uit ) = 0 for any t and s, but Cov(xit , α

∗
i ) �= 0.

Suppose further that we observe not xit itself, but rather the error-ridden measure

x∗
i t = xit + τi t , (10.5.2)

where Cov(xis, τi t ) = Cov(α∗
i , τi t ) = Cov(uit , τis) = 0, and Var(τi t ) = σ 2

τ ,
Cov(τi t , τi,t−1) = γτσ

2
τ .

If we estimate (10.5.1) by OLS with cross-sectional data for period t , the
estimator converges (as N → ∞) to

plim
N→∞

β̂LS = β + Cov(xit , α
∗
i )

σ 2
x + σ 2

τ

− βσ 2
τ

σ 2
x + σ 2

τ

, (10.5.3)

where σ 2
x = Var(xit ). The inconsistency of the least-squares estimator involves

two terms: the first due to the failure to control for the individual effects α∗
i ,

and the second due to measurement error.
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If we have panel data, say T = 2, we can alternatively first-difference the
data to eliminate the individual effects α∗

i ,

yit − yi,t−1 = β(x∗
i t − x∗

i,t−1) + [(uit − βτi t ) − (ui,t−1 − βτi,t−1)],
(10.5.4)

and then apply least squares. The probability limit of the differenced estimator
as N → ∞ becomes

plim
N→∞

β̂d = β

[
1 − 2(1 − γτ )σ 2

τ

Var(x∗
i t − x∗

i,t−1)

]

= β − βσ 2
τ

[(1 − γx )/(1 − γτ )]σ 2
x + σ 2

τ

, (10.5.5)

where γx is the first-order serial-correlation coefficient of xit . The estimator β̂d

eliminates the first source of inconsistency, but may aggravate the second. If
γx > γτ , the inconsistency due to measurement error is larger for β̂d than for
β̂LS. This occurs because if the serial correlation of the measurement error is less
than that of the true x (as seems often likely to be the case), first-differencing
increases the noise-to-signal ratio for the measured explanatory variable.

The standard treatment for the errors-in-variables models requires extrane-
ous information in the form of either additional data (replication and/or in-
strumental variables) or additional assumptions to identify the parameters of
interest (e.g., Aigner et al. (1984)). With panel data, we can use a different trans-
formation of the data to induce different and deducible changes in the biases
in the estimated parameters that can then be used to identify the importance
of measurement errors and recover the “true” parameters (Ashenfelter, Deaton,
and Solon (1984); Griliches and Hausman (1986)). For instance, if the mea-
surement error τi t is i.i.d. across i and t , and x is serially correlated,3 then in
the foregoing example we can use x∗

i,t−2 or (x∗
i,t−2 − x∗

i,t−3) as instruments for
(x∗

i t − x∗
i,t−1) as long as T > 3. Thus, even though T may be finite, the resulting

IV estimator is consistent when N tends to infinity.
Alternatively, we can obtain consistent estimates through a comparison of

magnitudes of the bias arrived at by subjecting a model to different transfor-
mations (Griliches and Hausman (1986)). For instance, if we use a covariance
transformation to eliminate the contributions of unobserved individual compo-
nents, we have

(yit − ȳi ) = β(x∗
i t − x̄∗

i ) + [(uit − ūi ) − β(τi t − τ̄i )], (10.5.6)

where ȳi , x̄∗
i , ūi , and τ̄i are individual time means of respective variables. The

LS regression of (10.5.6) converges to

plim
N→∞

βw = β

[
1 − T − 1

T

σ 2
τ

Var(x∗
i t − x̄∗

i )

]
. (10.5.7)
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Then consistent estimators of β and σ 2
τ can be found from (10.5.5) and (10.5.7),

β̂ =
[

2β̂w

Var(x∗
i t − x∗

i,t−1)
− (T − 1)β̂d

T Var(x∗
i t − x̄∗

i )

]

×
[

2

Var(x∗
i t − x∗

i,t−1)
− T − 1

T Var(x∗
i t − x̄∗

i )

]−1

, (10.5.8)

σ̂ 2
τ = β̂ − β̂d

β̂
· Var(x∗

i t − x∗
i,t−1)

2
. (10.5.9)

In general, if the measurement errors are known to possess certain structures,
consistent estimators may be available from a method-of-moments and/or from
an IV approach by utilizing the panel structure of the data. Moreover, the first-
difference and the within estimators are not the only ones that will give us an
implicit estimate of the bias. In fact, there are T/2 such independent estimates.
For a six-period cross section with τi t independently identically distributed, we
can compute estimates of β and σ 2

τ from y6 − y1, y5 − y2, and y4 − y3 using
the relationships

plim
N→∞

β̂61 = β − 2βσ 2
τ /Var(x∗

i6 − x∗
i1),

plim
N→∞

β̂52 = β − 2βσ 2
τ /Var(x∗

i5 − x∗
i2), (10.5.10)

plim
N→∞

β̂43 = β − 2βσ 2
τ /Var(x∗

i4 − x∗
i3).

Thus, there are alternative consistent estimators. This fact can be exploited
to test the assumptions with regard to measurement errors, which provide the
rationale for the validity of the instruments, by investigating whether or not the
alternative estimates of β are mutually coherent (e.g., Griliches and Hausman
(1986)). The moment conditions (10.5.5), (10.5.7), and (10.5.10) can also be
combined to obtain efficient estimates of β and σ 2

τ by the use of Chamberlain’s
π method (Section 3.9) or a generalized method-of-moments estimator.

For instance, transforming y and x by the transformation matrix Ps such that
PseT = 0 eliminates the individual effects from the model (10.5.1). Regressing
the transformed y on transformed x yields an estimator that is a function of
β, σ 2

x , στ , and the serial correlations of x and τ . Wansbeek and Koning (1989)
have provided a general formula for the estimators that are based on various
transformation of the data. Letting

Y ∗ = eN T µ + X∗� + v∗, (10.5.11)

where Y ∗ = (y∗′
1 , . . . , y∗′

T )′, y∗
t = (y1t , . . . , yNt )′, X∗ = (x∗′

1 , . . . , x∗′
T )′, x∗

t =
(x1t , . . . , xNt )′, v∗ = (v∗′

1 , . . . , v∗′
T )′, v∗

t = (v1t , . . . , vNt )′ and vit = (α∗
i − µ) +

uit . Then

b̂s = [X∗′(Qs ⊗ IN )X∗]−1[X∗′(Qs ⊗ IN )Y ∗]

= � + [X∗′(Qs ⊗ IN )X∗]−1[X∗′(Qs ⊗ IN )(u∗ − 
 ∗�)],
(10.5.12)
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where Qs = P ′
s Ps, u∗ = (u∗′

1 , . . . , u∗′
T )′, u∗

t = (u1t , . . . , uNt )′, 
 ∗ = (
 ∗
1, . . . ,


 ∗
T )′, and 
 ∗

t = (
 1t , . . . , 
 Nt )′. In the case of K = 1 and measurement errors
serially uncorrelated, Wansbeek and Koning (1989) show that the m different
transformed estimators b = (b1, . . . , bm)′ converge to

√
N
(
b − β

(
em − σ 2

τ �
)] ∼ N (0, V ), (10.5.13)

where � = (φ1, . . . , φm)′, φs = (tr Qs/tr Qs�x∗ ),

�x∗ = Cov(x∗
i ), x∗

i = (x∗
i1, . . . , x∗

iT )′, (10.5.14)

V = F ′{σ 2
u �x∗ ⊗ IT + β2σ 2

τ

(
�x∗ + σ 2

τ IT
) ⊗ IT

}
F, (10.5.15)

and F is the T 2 × m matrix with the sth column fs = vec(Qs)/(tr Qs�x∗ ),
where vec(A) denotes the operation of transforming an m × n matrix A into an
mn × 1 vector by stacking the columns of A one underneath the other (Magnus
and Neudecker (1999, p. 30)). Then one can obtain an efficient estimator by
minimizing[

b − β(em − σ 2
τ �

)]′
V −1

[
b − β

(
em − σ 2

τ �
)]

(10.5.16)

with respect to β and σ 2
τ , which yields

β̂ =
{

�′V −1b
�′V −1�

− e′
m V −1b

e′
m V −1�

}/{
�′V −1e
�′V −1�

− e′
m V −1em

e′
m V −1�

}
,

(10.5.17)

and

σ̂ 2
τ =

{
�′V −1em

�′V −1b
− e′

m V −1em

e′
m V −1b

}/{
�′V −1�

�′V −1b
− e′

m V −1�

e′
m V −1b

}
.

(10.5.18)

Extensions of this simple model to serially correlated measurement errors
are given by Biørn (1992) and by Hsiao and Taylor (1991). In the case of only
one regressor measured with error for a linear panel data model, Wansbeek
(2001) has provided a neat framework to derive the moment conditions under a
variety of measurement-error assumptions by stacking the matrix of covariances
between the vector of dependent variables and the regressors, then projecting
out nuisance parameters. To illustrate the basic idea, consider a linear model,

yit = α∗
i + βxit + �′wi t + ui t , i = 1, . . . , N ,

(10.5.19)
t = 1, . . . , T,

where xit is not observed. Instead one observes x∗
i t , which is related to xi t by

(10.5.2). Suppose that the T × 1 measurement-error vector 
 i = (τi1, . . . , τiT )′

is i.i.d. with mean zero and covariance matrix � = E(
 i 

′
i ).

Suppose � has a structure of the form

vec � = R0�, (10.5.20)
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where vec denotes the operation that stacks the rows of a matrix one after
another in column-vector form, R is a matrix of order T 2 × m with known
elements, and � is an m × 1 vector of unknown constants. Using the covariance
transformation matrix Q = IT − 1

T eT e′
T to eliminate the individual effects α∗

i
yields

Qyi = Qxiβ + QWi � + Qui , (10.5.21)

Qx∗
i = Qxi + Q
 i , (10.5.22)

where xi = (xi1, . . . , xiT )′, Wi = (w′
i t ). Let

R ≡ (IT ⊗ Q)R0. (10.5.23)

From (10.5.2), we have

E(
 i ⊗ Q
 i ) = (IT ⊗ Q)E(
 i ⊗ 
 i )

= (IT ⊗ Q)R0�

= R�. (10.5.24)

It follows that

E(x∗
i ⊗ Qxi ) = E(x∗

i ⊗ Qx∗
i ) − E[(xi + 
 i ) ⊗ Q
 i ]

= E(x∗
i ⊗ Qx∗

i ) − R�. (10.5.25)

Therefore,

E(x∗
i ⊗ Qyi ) = E(x∗

i ⊗ Qx∗
i )β + E(x∗

i ⊗ QWi )� − R�β.

(10.5.26)

Equation (10.5.26) contains the nuisance parameter �. To eliminate it, mul-
tiplying by MR = IT 2 − R(R′ R)−1 R′ on both sides of (10.5.26), we have the
orthogonality conditions

MR E{x∗
i ⊗ Q(yi − x∗

i β − Wi �)} = 0. (10.5.27)

Combining (10.5.27) with the moment conditions E(W ′
i Qui ) = 0, we have the

moment conditions for the measurement error model (10.5.19):

E M(di − Ci �) = 0, (10.5.28)

where

M =
[

Mr 0
0 IK

]
, di =

[
x∗

i ⊗ IT

W ′
i

]
,

Ci =
[

x∗
i ⊗ IT

W ′
i

]
Q(x∗

i , Wi ), �′ = (β, �′).

A GMM estimator is obtained by minimizing

1

N

[
N∑

i=1

M(di − Ci �)

]′
AN

[
N∑

i=1

M(di − Ci �)

]
. (10.5.29)
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An optimal GMM estimator is to let

A−1
N = 1

N

N∑
i=1

(di − Ci �̂)(di − Ci �̂)′, (10.5.30)

where �̂ is some consistent estimator of � such as

�̂ =
[(

N∑
i=1

C ′
i

)
M

(
N∑

i=1

Ci

)]−1 [(
N∑

i=1

Ci

)′
M

(
N∑

i=1

di

)]
.

(10.5.31)

In the case when τi t is i.i.d. across i and over t , � is diagonal with equal di-
agonal elements. Then m = 1 and R0= vec IT , R = (IT ⊗ Q) vec IT = vec Q,
R′ R = tr Q = T − 1, and MR = IT 2 − 1

T −1 (vec Q) (vec Q)′. When � is diag-
onal with distinct diagonal elements, m = T and R0 = it i′t ⊗ it , where it is the
t th unit vector of order T . When τi t is a first-order moving average process and
T = 4,

� =


a c 0 0
c b c 0
0 c b c
0 0 c a

;

then

R0 =
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0

,

and � = (a, b, c)′.
Further variations on the covariance structure of the regressor x or the dis-

turbance term uit in a linear framework can also be put in this framework. For
detail, see Wansbeek (2001).

The measurement errors for nonlinear models are much more difficult to
handle (e.g., Hsiao (1992c)). For dynamic models with measurement errors, see
Wansbeek and Kapteyn (1982). For binary-choice models with measurement
errors, see Kao and Schnell (1987a, 1987b) and Hsiao (1991b).

10.6 MODELING CROSS-SECTIONAL
DEPENDENCE

Most panel studies assume that apart from the possible presence of individual-
invariant but period-varying time-specific effects, the effects of omitted vari-
ables are independently distributed across cross-sectional units. However, often
economic theory predicts that agents take actions that lead to interdependence
among themselves. For example, the prediction that risk-averse agents will make
insurance contracts allowing them to smooth idiosyncratic shocks implies de-
pendence in consumption across individuals. Kelejian and Prucha (2001) and
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Pinkse (2000) have suggested tests of cross-sectional dependence based on
the spatial correlation analogue of the Durbin–Watson and Box–Pierce tests
for time-series correlations; but unfortunately, contrary to the time-series data
in which the time label gives a natural ordering and structure, general forms
of dependence for cross-sectional dimension are difficult to formulate. There-
fore, econometricians have relied on strong parametric assumptions to model
cross-sectional dependence.

Often, cross-sectional dependence is modeled in terms of some distance
measure between cross-section units, and a spatial analogue of an autoregres-
sive moving-average model is used (e.g., Anselin and Griffith (1988); Case
(1991)). For example, Conley (1999) suggests using the notion of economic
distance to model proximity between two economic agents. The joint distri-
bution of random variables at a set of points is assumed to be a function of
the “economic distances” between them. In particular, the population of indi-
viduals may be assumed to reside in a low-dimensional Euclidean space, say
R2, with each individual i located at a point si . The sample then consists of
realizations of agents’ random variables at a collection of locations {si } inside
a sample region. If two agents’ locations si and s j are close, then yit and y js

may be highly correlated. As the distance between si and s j grows large, yit

and y js approach independence. The joint distribution of random variables at a
set of points is assumed to be invariant to a shift in location and is a function of
the economic distances between them. Under this assumption, the dependence
among cross-sectional data can be estimated using methods analogous to time-
series procedures either parametrically or nonparametrically (e.g., Hall, Fisher,
and Hoffman (1992); Priestley (1982); Newey and West (1987)).

While the approach of defining cross-sectional dependence in terms of eco-
nomic distance allows for more complicated dependences than models with
time-specific (or group-specific) effects, it also requires that the econometri-
cians have information regarding this distance. In certain urban, environmental,
development, growth, and other areas of economics, this information may be
available. For instance, in the investigation of people’s willingness to pay for
local public goods, the relevant economic distance may be the time and mon-
etary cost of traveling between points to use these goods. Alternatively if the
amenity is air quality, then local weather conditions might constitute the major
unobservable. Other examples include studies of risk sharing in rural develop-
ing economies where the primary shocks to individuals may be weather-related.
If so, measures of weather correlation on farms of two individuals could be the
proxy for the economic distance between them.



CHAPTER 11

A Summary View

11.1 INTRODUCTION

The preceding chapters have presented a wide variety of analytical tools devel-
oped by econometricians for estimating behavioral equations using panel data.
In choosing the proper method for exploiting the richness and unique properties
of panel data it is helpful to keep several factors in mind. First, what advantages
do panel data offer us in investigating economic issues over data sets consisting
of a single cross section or time series? Second, what are the limitations of panel
data and the econometric methods that have been proposed for analyzing such
data? Third, when using panel data, how can we increase the efficiency of pa-
rameter estimates? Fourth, the usefulness of panel data in providing particular
answers to certain issues depends on the compatibility between the assumptions
underlying the statistical inference procedures and the data-generating process.

11.2 BENEFITS AND LIMITATIONS
OF PANEL DATA

The use of panel data provides major benefits for econometric estimation in at
least four areas: (1) increasing degrees of freedom and reducing problems of data
multicollinearity, (2) identifying economic models and discriminating between
competing economic hypotheses, (3) eliminating or reducing estimation bias,
and (4) providing micro foundations for aggregate data analysis. However, the
special features of panel data can often create new and difficult econometric
problems, particularly in nonlinear models.

11.2.1 Increasing Degrees of Freedom and Lessening the Problem
of Multicollinearity

The shortage of degrees of freedom and severe multicollinearity in time-series
data often frustrate economists who wish to determine the individual influence
of each explanatory variable. This problem arises because the information pro-
vided by the sample is not rich enough to meet the information requirements
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of the model as specified. Given this situation, one must either augment the
sample information or reduce the information requirements of the model (as by
imposing prior restrictions on the parameters). Panel data, because they offer
many more degrees of freedom and information on individual attributes, can
reduce the gap between the information requirements of a model and the in-
formation provided by the data (Section 1.1 or Fujiki, Hsiao, and Shen (2002);
Hsiao, Mountain, and Ho-Illman (1995)).

11.2.2 Identification and Discrimination between
Competing Hypotheses

In economics, as in other branches of the social and behavioral sciences, often
there are competing theories. Examples of these include the effect of collective
bargaining on wages, the appropriate short-term policy to alleviate unemploy-
ment (Chapters 1, 7 and 8), the effects of schooling on earnings (Chapter 5), and
the question of causal ordering. Economists on opposite sides of these issues
generally have very different views on the operation of the economy and the
influence of institutions on economic performance. Some economists believe
unions indeed raise wages or that advertising truly generates greater sales. Ad-
herents of the opposite view tend to regard the effects more as epiphenomena
than as substantive forces and believe that observed differences are mainly due
to sorting of workers or firms by characteristics (e.g., Allison (2000)).

Aggregate time-series data are not particularly useful for discriminating be-
tween hypotheses that depend on microeconomic attributes. Nor will a single
individual time-series data set provide information on the effects of different
sociodemographic factors. Cross-sectional data, while containing variations in
microeconomic and demographic variables, cannot be used to model dynamics
or causal ordering. The estimated coefficients from a single cross section are
more likely to reflect interindividual or interfirm differences than intraindividual
or intrafirm dynamics, unless data on variables controlling for these differences
are available and are explicitly included in the chosen specification. For ex-
ample, if information on worker quality is not available, a cross-sectionally
estimated coefficient for union status in a wage equation may reflect either the
effect of trade unions or differences in worker quality. Similarly, the finding
that there exists a negative relationship between measures of self-esteem and
delinquent behavior in a cross-sectional data set (Jang and Thornberry (1998))
cannot answer the question: Does delinquency lead to low self-esteem, or does
low self-esteem lead to delinquency?

Panel data, by providing sequential observations for a number of individuals,
often allow us to distinguish interindividual differences from intraindividual
differences and to construct a proper recursive structure for studying the issue
in question through a before-and-after effect (e.g., Hsiao (1979a, 1979b, 1982)).
For instance, in the foregoing example, even if information on worker quality is
not available, if a worker’s ability stays constant or changes only slowly, the
within correlation between the union-status dummy and the worker-quality
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variable is likely to be negligible. Thus, worker quality can be controlled through
the use of within estimates. The resulting coefficient for the union-status dummy
then will provide a measure of the effect of unionism (Chapters 3 and 4).

Moreover, proper recognition of the additional sources of variation can also
provide very useful information for discriminating individual behavior from
average behavior or for identifying an otherwise unidentified model. For ex-
ample, in the income–schooling model, the availability of family groupings
can provide an additional set of cross-sibling covariances via a set of common
omitted variables. These additional restrictions can be combined with the con-
ventional slope restrictions to identify what would otherwise be unidentified
structure parameters (Section 5.4).

Furthermore, addition of the cross-sectional dimension to the time-series
dimension provides a distinct possibility of identifying the pattern of serial cor-
relations in the residuals and of identifying the lag adjustment patterns when the
conditioning variables are changed, without having to impose prior parametric
specifications (Sections 3.9 and 9.1) or identifying a model subject to measure-
ment errors (Section 10.5).

11.2.3 Reducing Estimation Bias

A fundamental statistical problem facing every econometrician is the specifi-
cation problem. By that we mean the selection of variables to be included in
a behavioral relationship as well as the manner in which these variables are
related to the variables that affect the outcome but appear in the equation only
through the error term. If the effects of the omitted variables are correlated with
the included explanatory variables, and if these correlations are not explicitly
allowed for, the resulting estimates will be biased. In order to minimize the
bias, it is helpful to distinguish four types of correlations between the included
variables and the error term. The first type is due to the correlation between
the included exogenous variables and those variables that should be included
in the equation but are not, either because of a specification error or because
of unavailability of data. The second type is due to the dynamic structure of
the model and the persistence of the shocks that give rise to the correlation
between lagged dependent variables and the error term. The third type is due to
the simultaneity of the model, which gives rise to the correlation between the
jointly dependent variables and the error terms. The fourth type is due to mea-
surement errors in the explanatory variables. Knowing the different sources of
correlations provides important information for devising consistent estimators.
It also helps one avoid the possibility of eliminating one source of bias while
aggravating another (e.g., Section 5.1).

11.2.3.a Omitted-Variable Bias

Empirical results are often criticized on the grounds that the researcher has not
explicitly recognized the effects of omitted variables that are correlated with
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the included explanatory variables (in the union example, the omitted variable,
worker quality, can be correlated with the included variable, union status). If the
effects of these omitted variables stay constant for a given individual through
time or are the same for all individuals in a given time period, the omitted-
variable bias can be eliminated by one of the following three methods when
panel data are available: (1) differencing the sample observations to eliminate
the individual-specific and/or time-specific effects; (2) using dummy variables
to capture the effects of individual-invariant and/or time-invariant variables; or
(3) postulating a conditional distribution of unobserved effects, given observed
exogenous variables.

For linear-regression models, any of these three methods can be used to
eliminate the bias created by the omitted invariant variables (Chapter 3). Fur-
thermore, both the dummy-variable (fixed-effects) approach and the random-
effects approach of specifying a conditional distribution of the effects, given
the observed exogenous variables, lead to the same covariance estimator of the
slope coefficient if the component of the error term that varies across individu-
als and over time is i.i.d. (Section 3.4). Under other assumptions, although the
covariance estimator for the slope coefficient may not be efficient, it remains
unbiased and consistent. As a result, the fixed-effects approach has assumed
paramount importance in empirical studies.

Unfortunately, the results for the linear model are really very special and gen-
erally are not applicable for nonlinear models. In nonlinear models, the fixed-
effect and the random-effects approaches yield different estimators. Moreover,
contrary to the linear case, in general, the Neyman–Scott principle of separating
the estimation of the common coefficients from the estimation of the specific
effects is not applicable. If the number of unknown specific effects increases at
the same rate as the sample size, attempts to estimate the specific effects will
create the incidental-parameter problem. Hence, the fixed-effects approach may
not yield consistent estimates of the common coefficients (Chapters 7 and 8).
For general nonlinear model with fixed effects there does not appear to exist
a generally applicable analytical framework to obtain consistent estimators of
the parameters that are common across individuals and over time (structural pa-
rameters). To devise consistent estimators of the structural parameters one has
to exploit the specific structure of a nonlinear model. The three most commonly
used approaches are: (i) the conditional approach, which conditions on the mini-
mum sufficient statistics of the effects, (ii) the semiparametric approach, which
exploits the latent linear structure of a model, and (iii) reparameterization of the
model so that the information matrix of the reparametrized individual effects are
uncorrelated with the reparameterized structural parameters (Lancaster (2001)).
But none of these approaches is generally applicable for general nonlinear mod-
els. Whether they will yield consistent estimators has to be considered case by
case.

On the other hand, the random-effects approach replaces the probability
distribution of the dependent variables conditional on the specific effects and
the exogenous variables by a probability distribution function that is conditional
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on the explanatory variables only. Because the probability function of the effects
in general depends only on a finite number of parameters, there is no longer
an incidental-parameter problem. However, between the linear and nonlinear
models there is a very important difference. In linear models, we do not have
to make specific assumptions. We need only to decompose the specific effects
into two components: their projections on observed exogenous variables and
orthogonal residuals (Section 3.9). In nonlinear models, we often have to assume
that the conditional mean of the specific effects on observed exogenous variables
is actually linear and that the distribution of the effects, given explanatory
variables, can be specified parametrically (e.g., Chapters 7 and 8). These are
restrictive assumptions, and there would be a payoff to relaxing them.

11.2.3.b Bias Induced by the Dynamic Structure of a Model

It is useful to distinguish between two sources of bias: One is ignoring the
time-persistent errors that are correlated with the lagged dependent variables;
the other is the incorrect modeling of initial observations (Chapter 4 and
Section 7.5). The issue of correlation between the residuals and lagged de-
pendent variables is not affected by the size of the time-series observations, T ,
whereas the initial-value problem arises only when there is no specific informa-
tion to model the initial observation and T is small. When T is large, the weight
of the initial observation in the likelihood function becomes negligible, and it is
appropriate to ignore this issue. When T is small and the model and the data are
such that it is appropriate to treat the initial observation as random, the correct
procedure for eliminating the bias induced by the correlation between the initial
observation and the residual depends on the pattern of serial dependence of the
error term.

If the model is linear and the time-persistent error is the sum of two compo-
nents, one being individually time-invariant and the other being independently
distributed, then the individual time-invariant effects can be eliminated by dif-
ferencing successive observations of an individual. We can then use lagged
dependent variables (of sufficiently high order) as instruments for the trans-
formed model to circumvent the issues of both the initial observation and the
serial dependence of the residual (Sections 4.3 and 4.5).

If the error terms have arbitrary patterns of serial correlations, as long as the
assumption of independence across individual attributes holds, we can stack
all T period observations for a given individual’s behavioral equation as T
equations in a given model and condition the initial observation on all the
observed exogenous variables. Consistent estimates of the coefficients and the
serial covariance matrix can then be obtained by using simultaneous-equations
estimation methods in the same way that one would if there were only cross-
sectional data for a simultaneous-equations model (Sections 4.3 and 4.6).

For the nonlinear case, specific distributional assumptions about the initial
value and the error process must be made (Sections 7.5 and 8.3). Often, given
the nature of the model, estimation of the coefficients of a model and estimation
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of the parameters characterizing the error process cannot be separated. To obtain
consistent estimates, the error process must be correctly specified or specified in
a general form that encompasses the underlying process, and computationally
complicated maximum likelihood estimators may have to be used. However,
identification of the error process is a nontrivial job. A sequence of likelihood-
ratio tests to narrow down the possible specifications cannot be performed
without first obtaining maximum likelihood estimates of unknown parameters
under various assumptions about the error process (e.g., Section 7.5).

11.2.3.c Simultaneity Bias

The standard approach to eliminate simultaneity bias is to use instrumental
variables to purge the correlations between the joint dependent variables and
the error terms. If the cross-equation correlations in the errors are unrestricted,
then, just as in the case of conventional cross-sectional or time-series data, we
use exogenous variables that are excluded from the equation as instruments for
the jointly dependent variables that appear in the equation. If the cross-equation
correlations are due to common omitted invariant variables, then, in addition to
the excluded exogenous variables, we can also use included variables purged
of these invariant effects as instruments (Sections 5.3 and 5.4).

11.2.3.d Bias Induced by Measurement Errors

Measurement errors in the explanatory variables create correlations between
the regressors and the errors of the equation. If variables are subject to mea-
surement errors, the common practice of differencing out individual effects
eliminates one source of bias but creates another source, which may result in
even more biased estimates than simple least-squares estimators. However, dif-
ferent transformation of the data can induce different and deducible changes in
the parameters, which can be used to determine the importance of measurement
errors and obtain consistent estimators of parameters of interest (Section 10.5).

11.2.4 Providing Micro Foundations for Aggregate Data Analysis

Aggregate data analysis often invokes the “representative agent” assumption.
However, if micro units are heterogeneous, not only the time series properties
of aggregate data can be very different from those of disaggregate data (e.g.,
Granger (1980); Lewbel (1992, 1994); Pesaran (1999)), policy evaluation based
on aggregate data can be grossly misleading. Furthermore, the prediction of
aggregate outcomes using aggregate data can be less accurate than the prediction
based on micro-equations (e.g., Hsiao, Shen, and Fujiki (2002)). The variable
coefficient models discussed in Chapter 6 is an attempt to make inference about
the population taking account of the heterogeneity among micro units.
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11.3 EFFICIENCY OF THE ESTIMATES

Because panel data usually contain a large number of observations, it might
appear that the problem of efficiency is not as important a consideration as is
consistency, but that is not necessarily the case. Assuming that the model is
correctly specified, our example in Section 6.2 demonstrates that although the
least-squares estimates ignoring the random-coefficient assumptions should be
consistent, in practice they yield implausible results, as opposed to the efficient
GLS estimates, which take account of the random nature of the cross-sectional
units.

Intimately related to the problem of efficient use of the data is the issue
of fixed-effects or random-effects inference. If the unobserved heterogeneity
can be viewed as random draws from a common population, then it is more
appropriate to postulate a random-effects model. If the unobserved heterogene-
ity is correlated with explanatory variables or comes from a heterogeneous
population, then it is more appropriate to postulate a fixed-effects model. The
fixed-effects formulation makes inference conditional on the specific effects;
hence it has the advantage of not requiring one to postulate the distribution of
the effects or (in particular, if it is complicated) the correlation pattern between
the effects and included explanatory variables. However, there is also a loss of
efficiency in conditional inference because of the loss of degrees of freedom in
estimating the specific effects (Section 3.4; Chapters 7 and 8). Furthermore, as
discussed earlier, if the model is not linear and the specific effects vary with the
dimension in which the number of observations is increased, the fixed-effects
inferences can create incidental-parameter problems that are likely to bias the
estimates of the parameters that are common across individuals and through
time (Chapters 4 and 7).

The random-effects inference, on the other hand, requires a distributional
assumption with regard to the effects. If the model is nonlinear, the assump-
tion needs to be very specific, and often the complicated maximum-likelihood
method has to be used to obtain consistent estimates (Chapter 7). If the model
is linear and (conditional on the explanatory variables) individual observations
can be viewed as random draws from a common population, then the assumption
can be in the general form of independently distributed effects, with common
mean and finite variance–covariance matrix. The generalized-least-squares es-
timator is fairly simple to implement, provided we know the correlation pattern
of the remaining residuals, and is asymptotically efficient. In the case in which
T is fixed and the number of cross-sectional units, N , tends to infinity and the
individual characteristics are independently distributed across cross-sectional
units, we can also use the general approach of stacking an individual’s behav-
ioral equation over time periods as T equations in a given model and applying
a minimum-distance procedure over cross-sectional observations to estimate
common parameters. This procedure allows arbitrary serial correlation and cer-
tain forms of heteroscedasticity and yields consistent and efficient estimates
when the error structure is unknown. Moreover, because the T-equation (serial)
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variance–covariance matrix can be consistently estimated without imposing a
specific serial-dependence pattern, it also allows us to test the specific assump-
tions on the distribution of the error term (e.g., error-components formulation)
(Chapters 3–6).

Although a panel contains both cross-sectional and time-series dimensions,
most often it contains only a few observations in one dimension (usually the
time dimension) and a great many observations in another dimension (usually
the cross-sectional dimension). In order to obtain consistent estimates of the
unknown parameters, we need the sample to increase in the dimension that
yields information on the relevant parameters (Chapters 4, 7, 8; Sections
9.2–9.4). Thus, it is important to distinguish whether the panel tends to infinity
in N or in T or in both N and T . On the basis of this information, one can then
determine which parameters can, and which parameters cannot, be consistently
estimated from a given panel data. The majority of this monograph focuses
on the panels with large N and small T . Recently; panels with large N and T
have gained more attentions (Sections 10.2 and 10.3). However, assumptions
such as the individual specific effects stay constant over time may no longer
appear as reasonable approximations to the reality when T becomes large. More
realistic assumptions consistent with the data generating process will have to
be postulated.

Finally, it should be noted that although panel data offer many advantages,
they are not panacea. The power of panel data analysis depends critically on
the compatibility of the assumptions of statistical tools with the data generating
process. Otherwise, misleading inference will follow.



Notes

Chapter 1

1 For examples of marketing data, see Beckwith (1972); for biomedical data, see
Sheiner, Rosenberg, and Melmon (1972); for a financial-market data base, see
Dielman, Nantell, and Wright (1980).

2 Potential users interested in the ECHP can access and download the detailed doc-
umentation of the ECHP users’ database (ECHP UDP) from the ECHP website:
http://forum.europa.eu.int/irc/dsis/echpane/info/data/information.html.

3 This assumes that there are no other variables, such as consumption, that can act
as a proxy for zi . Most North American data sets do not contain information on
consumption.

4 For a formal treatment of this, see Chapter 8.
5 Many issues discussed in Chapters 7 and 8 apply to general nonlinear models as

well.

Chapter 2

1 This chapter is largely based on the work of Kuh (1963).
2 Note that even if the homogeneity hypothesis is rejected, some useful information

can be found in pooling the data, as long as the source of sample variability can be
identified. For details, see later chapters.

3 We assume that T > K + 1. For details of this, see Section 3.2.
4 See Johnston (1972, Chapter 6) for an illustration of the computation of analysis of

covariance.
5 If the firm differences stay constant over time, heterogeneity among firms can be ab-

sorbed into the intercept term. Because intercepts are eliminated by first-differencing,
the first-difference model (such as (2.3.1) or (2.3.3)) will be more likely to display
homogeneous responses.

6 For further discussion of this issue, see Section 9.4 and Mairesse (1990).
7 For further discussion of investment expenditure behavior, see Chapter 6 or Hsiao

and Tahmiscioglu (1997).
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Chapter 3

1 These three different sorts of variations apply, of course, to both included and ex-
cluded variables. Throughout this monograph we shall mostly concentrate on rela-
tions between excluded individual time-invariant variables and included variables.

2 Although the notations are different, (3.2.5) is identical with (2.2.10).
3 Equation (3.2.7) can be viewed as a linear-regression model with singular-

disturbance covariance matrix σ 2
u Q. A generalization of Aitken’s theorem leads

to the generalized least-squares estimator

�̂CV =
[

N∑
i=1

X ′
i Q ′ Q− Q Xi

]−1 [
N∑

i=1

X ′
i Q ′ Q− Qyi

]

=
[

N∑
i=1

X ′
i Q Xi

]−1 [
N∑

i=1

X ′
t Qyi

]
,

where Q− is the generalized inverse of Q satisfying the conditions Q Q− Q = Q
(Theil (1971, Sections 6.6, 6.7)).

4 Because the slope coefficients are assumed the same for all i and t , for simplicity we
shall not distinguish the individual mean corrected estimator and the within-group
estimator as we did in Chapter 2. We shall simply refer to (3.2.8) or its equivalent
as the within-group estimator.

5 Note that we follow the formulation of (3.2.10) in treating αi and λt as deviations
from the population mean. For ease of exposition we also restrict our attention to
the homoscedastic variances of αi and λt . For the heteroscedasticity generalization
of the error-component model, see Section 3.7 or Mazodier and Trognon (1978) and
Wansbeek and Kapteyn (1982). For a test of individual heteroscedasticity, see Holly
and Gardiol (2000).

6 For details, see Section 3.3.2.
7 Equation (3.3.16) may yield a negative estimate of σ 2

α . For additional discussion on
this issue, see Section 3.3.3.

8 The negative variance-components problem also arises in the two-step GLS method.
As one can see from (3.3.15) and (3.3.16), there is no guarantee that (3.3.16) nec-
essarily yields a positive estimate of σ 2

α . A practical guide in this situation is to
replace a negative estimated variance component by its boundary value, zero. See
Baltagi (1981b) and Maddala and Mount (1973) for Monte Carlo studies of the
desirable results of using this procedure in terms of the mean squared error of the es-
timate. For additional discussion of the MLE of random-effects model, see Breusch
(1987).

9 We note that the fixed-effects estimator, although not efficient, is consistent under
the random-effects formulation (Section 3.3.1).

10 In this respect, if N becomes large, one would not be interested in the specific effect
of each individual but rather in the characteristics of the population. A random-effects
framework would be more appropriate.

11 If (Y (1)′, Y (2)′)′ is normally distributed with mean (�(1)′, �(2)′)′ and variance–
covariance matrix[

�11 �12

�21 �22

]
,
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the conditional distribution of Y (1) given Y (2) = y(2) is normal, with mean �(1) +
�12�

−1
22 (y(2) − �(2)) and covariance matrix�11 − �12�

−1
22 �21 (e.g., Anderson (1958,

Section 2.5)).
12 When ψ∗ is unknown, we replace it with an estimated value and treat (3.5.1) as

having an approximate F distribution.
13 For proof, see Hausman (1978) or Rao (1973, p. 317).
14 Strictly speaking, Hausman’s test is a test of

∑
t x′

i t at = 0 versus
∑

t x′
i t at �= 0. It is

obvious that at = 0 implies that
∑

t x′
i t at = 0, but not necessarily the reverse. For a

discussion of the general relationship between Hausman’s specification testing and
conventional testing procedures, see Holly (1982).

15 We use ⊗ to denote the Kronecker product of two matrices (Theil (1971, Chapter 7)).
Suppose that A = (ai j ) is an m × n matrix and B is a p × q matrix; A ⊗ B is defined
as an mp × nq matrix

a11 B a12 B . . . a1n B
...

...
...

am1 B am2 B . . . amn B

.

16 This is because Q sweeps out αi from (3.6.1).
17 See Li and Hsiao (1998) for a test of whether the serial correlation in the error is

caused by an individual-specific, time-invariant component or by the inertia in the
shock, and Hong and Kao (2000) for testing for serial correlation of unknown form.

18 If E(α∗
i | xi ) is linear, E∗(yi | xi ) = E(yi | xi ).

19 Of course, we can obtain the least-squares estimate of � by imposing the restriction
that all T equations have identical intercepts µ. But this only complicates the alge-
braic equation of the least-squares estimate without a corresponding gain in insight.

20 For details, see White (1980) or Chamberlain (1982).
21 For proof, see Appendix 3A, Chamberlain (1982), Chiang (1956), or Malinvaud

(1970).
22 If E(α∗

i | xi ) �= E∗(α∗
i | xi ), then there will be heteroscedasticity, because the residual

will contain E(α∗
i | xi ) − E∗(α∗

i | xi ).
23 For fitting model (3.9.20) to panel data, see Chapter 5.
24 This follows from examining the partitioned inverse of (3.9.25).
25 If �̂∗ is another estimator of � with asymptotic variance–covariance matrix �∗, then

the minimum-distance estimator of � obtained by choosing �̂
∗

to minimize [�̂∗ −
f(�)]′�∗−1[�̂∗ − f(�)] has asymptotic variance–covariance matrix (F ′�∗−1 F)−1.
Suppose � − �∗ is positive semidefinite; then F ′�∗−1 F − F ′�−1 F = F ′(�∗−1 −
�−1)F is positive semidefinite. Thus, the efficiency of the minimum-distance esti-
mator depends crucially on the efficiency of the (unconstrained) estimator of �.

26 For a comprehensive discussion of the Chamberlain π approach and the generalized
method of moments (GMM) method, see Crépon and Mairesse (1996).

27 In fact, a stronger result can be established for the proposition that �̂ converges to
� almost surely. In this monograph we do not attempt to distinguish the concept of
convergence in probability and convergence almost surely (Rao (1973, Section 2.c)),
because the stronger result requires a lot more rigor in assumptions and derivations
without much gain in intuition.
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Chapter 4

1 We defer the discussion of estimating distributed-lag models to Chapter 9.
2 The assumption that |γ | < 1 is made to establish the (weak) stationarity of an au-

toregressive process (Anderson (1971, Chapters 5, 7)). A stochastic process {ξt } is
stationary if its probability structure does not change with time. A stochastic process
is weakly stationary if its mean Eξt = m is a constant, independent of its time, and
if the covariance of any two variables, E(ξt − Eξt )(ξs − Eξs) = σξ (t − s), depends
only on their distance apart in time. The statistical properties of a least-squares es-
timator for the dynamic model depend on whether or not |γ | < 1 when T → ∞
(Anderson (1959)). When T is fixed and N → ∞, it is not necessary to assume that
|γ | < 1 to establish the asymptotic normality of the least-squares estimator (Anderson
(1978), Goodrich and Caines (1979)). We keep this conventional assumption for
simplicity of exposition and also because it allows us to provide a unified approach
toward various assumptions about the initial conditions discussed in Section 4.3.

3 This does not mean that we have resolved the issue of whether or not the effects are
correlated with the exogenous variables. It only means that for estimation purposes
we can let αi stand for ωi and treat (4.3.1) as a special case of (4.3.2).

4 For details, see Section 4.3.2 or Sevestre and Trognon (1982).
5 The presence of the term �′xi t shows that the process {yit } is not generally stationary.

But the statistical properties of the process {yit } vary fundamentally when T → ∞
according to whether or not {yit } converges to a stationary process when the sequence
of xi t is identically zero. As stated in footnote 2, we shall always adopt the first
position by letting |γ | < 1.

6 V is the same as (3.3.4).
7 Bhargava and Sargan (1983) get around the issue of incidental parameters associated

with the initial value yi0 by projecting yi0 on xi under the assumption that αi and xi are
uncorrelated. Chamberlain (1984) and Mundlak (1978a) assume that the effects αi

are correlated with xi and get around the issue of incidental parameters by projecting
αi on xi . In either case if N is not much larger than K T , the resulting estimator will
have better finite sample properties if yi0 or αi is projected on x̄i rather than xi .

8 Strictly speaking, from (4.3.21), the nonstationary analogue of case IVd would imply
that

Var(vi0) = σ 2
ω0 + σ 2

α

(1 − γ )2
,

and

Cov(vi0, vit ) = σ 2
α

1 − γ
, t = 1, . . . , T .

However, given the existence of the prediction-error term εi0, it is not possible to
distinguish this case from case IVc′ based on the information of yi0 alone. So we
shall follow Bhargava and Sargan (1983) in treating case IVd′ as the nonstationary
analogue of case IVd.

9 Previously we combined the intercept term and the time-varying exogenous variables
into the vector xi t because the property of the MLE for the constant is the same as
that of the MLE for the coefficients of time-varying exogenous variables. Now we
have incorporated the constant term as an element in the time-invariant variable zi

to avoid having the constant term appearing more than once in (4.3.21).
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10 For the formula of the constrained estimator, see Theil (1971, p. 285, equation (8.5)).
11 See Chapter 5.
12 See Section 3.5 for another approach.
13 Note that we let zi = 0 for ease of exposition. When zi is present, the first-differencing

step of (4.3.38) eliminates zi from the specification; hence the moment conditions
(4.3.39) remain valid. However, for Ev̄i = 0 to hold requires the assumption of
stationarity in the mean (Blundell and Bond (1998)).

14 For ease of notation, we again assume that zi = 0.
15 Bhargava and Sargan (1983) did not report the significance level of their tests. Pre-

sumably they used the conventional 5 percent significance level.
16 We do not know the value of the GLS estimates when the initial observations are

treated as endogenous. My conjecture is that it is likely to be close to the two-step
GLS estimates with fixed initial observations. As mentioned in Section 4.3, Sevestre
and Trognon (1982) have shown that even the initial values are correlated with the
effects; the asymptotic bias of the two-step GLS estimator under the assumption
of fixed initial observations is still smaller than the OLS or the within estimator.
Moreover, if Bhargava and Sargan’s simulation result is any indication, the order of
bias due to the wrong assumption about initial observations when T is greater than 10
is about one standard error or less. Here, the standard error of the lagged dependent
variable for the two-step GLS estimates with fixed initial values is only 0.037.

17 For additional discussions on the contribution of initial observations, see Blundell
and Bond (1998) and Hahn (1999).

18 We say that yt is stationary if Eyt = �, E[(yt − �)(yt−s − �)′] = E[(yt+q −
�)(yt+q−s − �)′]. We say that yt is integrated of order d, I (d), if (1 − L)d yt is
stationary, I (0). If yt ∼ I (d) but �′yt ∼ I (d − c), say d = 1, c = 1, then yt is coin-
tegrated of order c. The maximum number of linearly independent vectors � is called
the rank of cointegration. For any m × 1 I (d) process, the cointegration rank can
vary between 0 and m − 1 (e.g., Engle and Granger (1987), Intriligator, Bodkin, and
Hsiao (1996)).

19 Vec(ABC) = (C ′ ⊗ A) vec(B); see Magnus and Neudecker (1999).

Chapter 5

1 Namely, the family effect Ai has the same meaning as αi in Chapters 3–4.
2 The asymptotic property of a fixed-effects linear simultaneous-equations model is

the same as the single-equation fixed-effects linear static model (see Chapter 3). The
MLE of � i is consistent only when T tends to infinity. The MLE of � t is consistent
only when N tends to infinity. However, just as in the linear static model, the MLEs
of Γ and B do not depend on the MLEs of � i and � t . They are consistent when
either N or T or both tend to infinity (Schmidt (1984)).

3 Note that the meaning of these asterisks has been changed from what it was in
previous chapters.

4 By allowing X to be different, the discussion of estimation of reduced-form equations
can proceed in the more general format of seemingly unrelated regression models
(Avery (1977); Baltagi (1980)).

5 One can check that (5.2.7) is indeed the inverse of (5.2.6) by repeatedly using the for-
mulas for the Kronecker products: (B + C) ⊗ A = B ⊗ A + C ⊗ A, (A ⊗ B)(C ⊗
D) = AC ⊗ B D, provided the products exist (Theil (1971, Section 7.2)).
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6 If only the first M out of G equations have nonzero intercepts, we estimate the first
M intercepts by {[IM , (V M M

4 )−1V M(G−M)
4 ] ⊗ (1/N T )e′

N T }(y − X�) and estimate �
by [X ′V ∗−1 X ]−1[X ′V ∗−1y], where IM is the M-rowed identity matrix, V M M

4 and
V M(G−M)

4 are the corresponding M × M and M × (G − M) partitioned matrices of

V −1
4 =

[
V M M

4 V M(G−M)
4

V (G−M)M
4 V (G−M)(G−M)

4

]
,

and

V ∗−1 = Ṽ −1

+
[

0 0

0 V (G−M)(G−M)
4 − V (G−M)M

4

(
V M M

4

)−1
V M(G−M)

4

]
⊗ 1

N T
J.

For details, see Prucha (1983).
7 See Chapter 3, footnote 22.
8 As indicated earlier, we have assumed here that all variables are measured as de-

viations from their respective overall means. There is no loss of generality in this
formulation, because the interceptµg is estimated by µ̂g = (1/N T )e′

N T (yg − Wg�̂g).
Because C ′

heN T = 0 for h = 1, 2, 3, the only terms pertinent to our discussion are
Ch for h = 1, 2, 3.

9 Again, we ignore C4 = eN T /
√

N T because we have assumed that there is an inter-
cept for each equation and because C ′

heN T = 0 for h = 1, 2, 3.
10 For the derivations of (5.4.36) and (5.4.37), see Appendix 5A.
11 From V · V −1 = IGT we have −�cc′ − T aa′cc′ + aa′�−1 = 0. Premultiplying this

equation by c′, we obtain (b1 + T b2
2)c′ = b2a′�−1, where b1 = c′�c and b2 = c′a.

In Appendix 5A we give the values of b1 and b2 explicitly in terms of the eigenvalue
of |aa′ − λ�| = 0.

12 We make use of the formula ∂ log |�|/∂�−1 = −�′ and ∂(c′�c)/∂�−1 = −�cc′�
(Theil (1971, pp. 32–33)).

13 See Appendix 5A, equation (5A.7), in which ψ1 is positive.
14 Finding the largest root of (5.4.43) is equivalent to maximizing (5.4.49). If we nor-

malize c′ Rc = 1, then to find the maximum of (5.4.49) we can use Lagrangian
multipliers and maximize c′ R̄c + λ(1 − c′ Rc). Taking partial derivatives with re-
spect to c gives (R̄ − λR)c = 0. Premultiplying by c′, we have c′ R̄c = λ. Thus, the
maximum of (5.4.49) is the largest root of |R̄ − λR| = 0, and c is the characteristic
vector corresponding to the largest root.

Chapter 6

1 See Mehta, Narasimhan, and Swamy (1978) for another example to show that us-
ing error-components formulation to allow for heterogeneity does not always yield
economically meaningful results.

2 Alternatively, we can postulate a separate regression for each time period, so yit =
�′

t xi t + uit .
3 See Chamberlain (1992) for an extension of the Mundlak–Chamberlain approach

of conditioning the individual effects on the conditioning variables to models with
individual-specific slopes that may be correlated with conditioning variables. An
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instrumental-variable estimator is proposed within a finite-dimensional method-of-
moments framework.

4 Repeatedly using the formula (A + B DB ′)−1 = A−1 − A−1 B(B ′ A−1 B + D−1)−1

B ′ A−1 (Rao (1973, Chapter 1)), we have

X ′
i�

−1
i Xi = X ′

i

[
σ 2

i I + Xi	X ′
i

]−1
Xi

= X ′
i

{
1

σ 2
i

IT − 1

σ 2
i

Xi

[
X ′

i Xi + σ 2
i 	−1

]−1
X ′

i

}
Xi

= 1

σ 2
i

[
X ′

i Xi − X ′
i Xi

{
(X ′

i Xi )
−1 − (X ′

i Xi )
−1

×
[

(X ′
i Xi )

−1 + 1

σ 2
i

	

]−1

(X ′
i Xi )

−1

}
X ′

i Xi

]
= [

	 + σ 2
i (X ′

i Xi )
−1

]−1
.

5 Equation (6.2.9) follows from the relation that �̂i = �i + (X ′
i Xi )−1 X ′

i ui and
E(�̂i − �̄)(�̂i − �̄)′ = 	 + σ 2

i (X ′
i Xi )−1.

6 We use the notation O(N ) to denote that the sequence N−1aN is bounded (Theil
(1971, p. 358)).

7 We call this a transformed Lagrange-multiplier test because it is derived by maxi-
mizing the log likelihood function of ȳi/σi rather than maximizing the log likelihood
function of yit/σi t .

8 Let

(
T ω̂2

i − 1
) = 1

σ 2
i

[
K∑

i=1

K∑
i ′=1

x̄ki x̄k′i σ̂
2
αkk′

]

be the least-squares predicted value of (T ω̂2
i − 1); then the predicted sum of squares is

N∑
i=1

(
T ω̂2

i − 1
)2

.

9 We did not impose similar restrictions in Section 6.2.1 because we did not separate
� from � i .

10 It has been shown (Hsiao (1975)) that the Hildreth–Houck estimator is the minimum-
norm quadratic unbiased estimator of Rao (1970).

11 Let (yit − ȳ) be the deviation of the sample mean, and let ( ̂yit − ȳ) be its least-squares
prediction. Then the explained sum of squares is

∑
( ̂yit − ȳ)2.

12 Note here that the first term ẋ1i t = 1. So the null hypothesis is (σ 2
λ2, . . . , σ

2
λK ) =

(0, . . . , 0).
13 This section is largely drawn from the work of Chow (1983, Chapter 10).
14 Note that under the alternative, u∗

t is serially correlated. Hence, the Breusch–Pagan
test may not be powerful against the alternative.

15 According to Bayes’ theorem, the probability of B given A, written as P(B | A),
equals P(B | A) = P(A | B)P(B)/P(A), which is proportional to P(A | B)P(B).

16 When uit is serially correlated, see Baltagi and Li (1992). For the asymptotic mean
squared error when the coefficients and error-component parameters are estimated,
see Baille and Baltagi (1999).
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17 We are only concerned with the estimation of the short-run adjustment coefficient γ̄ .
For discussion of estimating the long-run coefficient, see Pesaran and Smith (1995),
Pesaran and Zhao (1999), Pesaran, Shin, and Smith (1999), and Phillips and Moon
(1999, 2000).

18 The strict exogeneity condition (6.7.4) on xi t is crucial in the identification of a
dynamic random-coefficients model. Chamberlain (1993) has given an example of
the lack of identification of γ in a model of the form

yit = γ yi,t−1 + βi xit + αi + uit ,

where xit takes either 0 or 1. Since E(αi | xi , yi,−1) is unrestricted, the only moments
that are relevant for the identification of γ are

E
(
	yit − γ	yi,t−1

∣∣ xt−1
i , yt−2

i

)= E
(
βi	xit

∣∣ xt−1
i , yt−2

i

)
, t = 2, . . . , T,

where xt
i = (xi1, . . . , xi t ), yt

i = (yi0, . . . , yit ). Let wt
i = (xt

i , yt
i ), the above expression

is equivalent to the following two conditions:

E
(
	yit − γ	yi,t−1

∣∣ wt−2
i , xi,t−1 = 0

)
= E

(
βi

∣∣ wt−2
i , xi,t−1 = 0

)
P
(
xit = 1

∣∣ xt−2
i , xi,t−1 = 0

)
,

and

E
(
	yit − γ	yi,t−1

∣∣ xt−2
i , xi,t−1 = 1

)
= −E

(
βi

∣∣ wt−2
i , xi,t−1 = 1

)
P
(
xit = 0

∣∣ wt−2
i , xi,t−1 = 1

)
If E(βi | wt−2

i , xi,t−1 = 0) and E(βi | wt−2
i , xi,t−1 = 1) are unrestricted and T is fixed,

the autoregressive parameter γ cannot be identified from the above two equations.
19 We assume that T (>3) is large enough to identify γ and β. For an example of lack

of identification when T = 3 and yit is binary, see Chamberlain (1993) or Arellano
and Honoré (2001); see also Chapter 7.

20 The values �−1 = 0, ρ = 2, and R equal to the Swamy estimate of 	 are used to
implement the hierarchical Bayes estimator.

Chapter 7

1 For a survey of the minimum-chi-square method, see Hsiao (1985b).
2 The variable yi0 is sometimes omitted from the specification because it is deter-

mined by yi0 = 1 − ∑m
j=1 yi j . For instance, a dichotomous model is often simply

characterized by a single binary variable yi , i = 1, . . . , N .
3 It should be noted that in generalizing the results of the binary case to the multire-

sponse case, we should allow for the fact that although yi j and yi ′ j are independent
for i �= i ′, yi j and yi j ′ are not, because Cov(yi j , yi j ′ ) = −Fi j Fi j ′ .

4 For a random-coefficient formulation of probit models, see Hausman and Wise
(1978).

5 Note that, in general, because F(�′x + α) is nonlinear,
∫

F(�′x + α) d H (α | x) �=
F[�′x + E(α | x)].

6 Note that for notational ease, we now use only αi instead of both αi and α∗
i . Readers

should bear in mind that whenever αi are treated as fixed, they are not viewed as the
deviation from the common mean µ; rather, they are viewed as the sum of µ and the
individual deviation. On the other hand, when αi are treated as random, we assume
that Eαi = 0.
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7 The number of individuals with yi1 + yi2 = 0 is N − n1 + n2.
8 We call � the structural parameter because the value of � characterizes the structure

of the complete sequence of random variables. It is the same for all i and t . We call
αi an incidental parameter to emphasize that the value of αi may change when i
changes.

9 Suppose that the observed random variables y have a certain joint distribution func-
tion that belongs to a specific family J of distribution functions. The statistic S(y)
(a function of the observed sample values y) is called a sufficient statistic if the
conditional expectation of any other statistic H (y), given S(y), is independent of
J . A statistic S∗(y) is called a minimum sufficient statistic if it is function of
every sufficient statistic S(y) for J . For additional discussion, see Zacks (1971,
Chapter 2).

10 When uit are independently normally distributed, the LSDV estimator of � for the
linear static model is the conditional MLE (Cornwell and Schmidt (1984)).

11 Similar results also hold for the MLE of the fixed-effects logit model. Wright and
Douglas (1976), who used Monte Carlo methods to investigate the performance of the
MLE, found that when T = 20, the MLE is virtually unbiased, and its distribution
is well described by a limiting normal distribution, with the variance–covariance
matrix based on the inverse of the estimated-information matrix.

12 In the case in which αi are uncorrelated with xi , we have a = 0 and σ 2
η = σ 2

α .
13 � is the asymptotic variance–covariance matrix of �̂ when no restrictions are im-

posed on the variance–covariance matrix of the T × 1 normal random variable
ui + eηi . We can relax the serial-independence assumption on uit and allow Eui u′

i

to be arbitrary except for scale normalization. In this circumstance, � = diag{(σ 2
u1 +

σ 2
η )−1/2, . . . , (σ 2

uT + σ 2
η )−1/2}[IT ⊗ �′ + ea′].

14 The transition-probability matrix of our homogeneous two-state Markov chain is

P =
[

1 − �(β0 + αi ) �(β0 + αi )

1 − �(β0 + γ + ai ) �(β0 + γ + αi )

]
.

By mathematical induction, the n-step transition matrix is

Pn = 1

1 − �(β0 + γ + αi ) + �(β0 + αi )

×


[
1 − �(β0 + γ + αi ) �(β0 + αi )
1 − �(β0 + γ + αi ) �(β0 + αi )

]
+ [�(β0 + γ + αi ) − �(β0 + αi )]

n

×
[

�(β0 + αi ) −�(β0 + αi )
−[1 − �(β0 + γ + αi )] 1 − �(β0 + γ + αi )

].

15 This can be easily seen by noting that the expectation of the first-derivative vector
of (7.5.5) or (7.5.8) with respect to the structural parameters does not vanish at the
true parameter value when the expectations are evaluated under (7.5.10) or (7.5.11).

16 See Arellano and Carrasco (2000) for a GMM approach to estimate the dynamic
random-effects probit model.

17 Let Pit = Prob(yit | xi t , αi ) and P∗
i t = Prob(yit | yi,t−�, xi t , αi ). Let P̂ i t and P̂∗

i t

be the MLEs obtained by maximizing L = ∏
i

∏
t P yit

i t (1 − Pit )1−yit and L∗ =∏
i

∏
t P∗yit

i t (1 − P∗
i t )

1−yit with respect to unknown parameters, respectively. A
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likelihood-ratio test statistic for the null hypothesis (7.5.34) is −2 log[L(P̂ i t )/
L(P̂∗

i t )]. When conditional on xi t and � i , there are repeated observations; we can
also use the Pesaran chi-square goodness-of-fit statistic to test (7.5.34). For details,
see Bishop, Fienberg, and Holland (1975, Chapter 7). However, in the finite-T case,
the testing procedure cannot be implemented, since the αi s are unknown and cannot
be consistently estimated.

18 A nonstationary model was also estimated by Heckman (1981c). But because the data
did not reject stationarity, we shall treat the model as having stationary covariance.

19 One can modify the estimator (7.5.33) by replacing T with Ti .

Chapter 8
1 See Amemiya (1985) and Maddala (1983) for extensive discussions of various types

of Tobit models.
2 For instance, a spline of degree m in (w′â) with L evenly spaced knots on [−1, 1]

can be based on

PkK = (w′a)k−1 (1 ≤ k ≤ m + 1)

=
{[

w′a + 1 − 2
(k − m − 1)

L + 1

]
+

}m

, m + 2 ≤ k ≤ m + 1 + L ≡ K ,

where b+ ≡ 1(b > 0) · b.
3 Another example is the analysis of event histories in which responses are at unequally

spaced points in time (e.g., Heckman and Singer (1984); Lancaster (1990)). Some
people choose to model event histories in discrete time using sequences of binary
indicators. Then the subject becomes very much like the discrete panel data analysis
discussed in Chapter 7.

4 See Quandt (1982) for a survey of switching regression models.
5 In this chapter we only consider the case involving the presence of individual-specific

effects. For some generalization to the estimation of a random-coefficient sample
selection model, see Chen (1999).

6 A potentially computationally attractive alternative is to simulate the integrals; see
Gourieroux and Monfort (1996), Keane (1994), Richard (1996), or Section 10.3.

7 I owe this exposition to the suggestion of J.L. Powell.
8 Linear panel data with randomly missing data will be discussed in Section 9.2.
9 See Honoré (1993) for a discussion of the model y∗

i t = γ yi,t−1 + �′xi t + αi + uit .
10 The assumption that xi t and wi t do not coincide rules out the censored regression

model as a special case of (8.6.13) and (8.6.14).
11 Kyriazidou (2001) shows that these moment conditions also hold if d∗

i t = φdi,t−1 +
w′

i t a + ηi + νi t .

Chapter 9
1 The material in this section is adapted from Pakes and Griliches (1984) with permis-

sion.
2 We must point out that the errors are also transformed when we go from one form

to the other (e.g., Malinvaud (1970, Chapter 15)).
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3 Note that assuming that there exist � + 1 observations on x before the first observation
on y is not restrictive. If xit does not exist before time period 0, we can always let
� = −1. If � has to be fixed, we can throw away the first � + 1 observations of y.

4 Note that we allow the projection of presample xi,−τ on in-sample xi and α∗
i to

depend freely on the α∗
i by permitting each element of the vector c to be different.

5 One can use various model-selection criteria to determine p (e.g., Amemiya 1980a).
6 We note that cq = 0 implies that α∗

i is uncorrelated with presample xi .
7 The coefficient of (9.1.11) is another way of writing � (9.1.8).
8 The condition for the roots of the characteristics equation to lie outside the unit

circle is to ensure that �τ declines geometrically as τ → ∞ (e.g., Anderson (1971,
Chapter 5)), so that the truncation remainder term will stay finite for any reasonable
assumption on the x sequence.

9 See Neyman (1949) or Hsiao (1985b).
10 Thus, they assume that this year’s investment does not affect this year’s profits and

that there are two presample observations (� = 1) on investment.
11 If αi are correlated with xi t , we can eliminate the linear dependence between αi and

xi t by assuming αi = ∑
t a′

t xi t + εi . For details, see Chapter 3 or Mundlak (1978a).
12 For details, see Chapters 4 and 6.
13 See Verbeek (1992) for the discussion of the case when (1/Nc)

∑
i∈c αi = αct de-

pends on t , and Collado (1997), Girma (2000), and Moffit (1993) for the analysis
of a dynamic cohort model by treating sample averages as error-ridden observations
on typical individuals, with a GMM method, and with a two-stage least-squares
approach, respectively.

14 See Chetty (1968) for a Bayesian approach.
15 If the cross-sectional data consist of all individuals in the population, then in the

year in which cross-sectional observations are collected, the sum across individual
observations of a variable should be equal to the corresponding aggregate time-series
variable. Because in most cases cross-sectional samples consist of a small portion
of the population, we shall ignore this relation and assume that the variables are
unrelated.

16 In the Bayesian framework this is analogous to making inferences based on the con-
ditional distribution of �2, f (�2 | �1 = �1c), whereas it is the marginal distribution
of �2 that should be used whenever �1 is not known with certainty. For details see
Chetty (1968).

17 It should be noted that the foregoing results are based on the assumption that both ui

and vt are independently normally distributed. In practice, careful diagnostic checks
should be performed before exploring the pooling issue, using the likelihood-ratio
test or relative maximum likelihoods. In fact, Izan (1980) redid the analysis by
allowing vt to follow a first-order autoregressive process. The likelihood-ratio test
after allowing for autocorrelation resulted in accepting the pooling hypothesis.

Chapter 10

1 See Phillips and Moon (2000) for an example.
2 For an introductory discussion, see Intriligator, Bodkin, and Hsiao (1996).
3 The following results remain fundamentally unchanged when τi t contains an indi-

vidual time-invariant component and an independently identically distributed com-
ponent.
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Scheffé, H., 15
Schmidt, P., 86, 89, 323, 327
Schnell, J. F., 309
Schwarz, G., 174
Scott, E. L., 48, 56, 95, 194, 195, 314

Searle, S. R., 15
Secrest, D., 201
Sevestre, P., 85, 322, 323
Sheiner, L., 319
Shen, Y., 312, 316
Shin, Y., 7, 105, 107, 298, 301, 326
Sims, C., 105
Singer, B., 13, 188, 207, 328
Singh, B., 163
Small, K., 192
Smith, A. F. M., 146, 147, 177
Smith, R. J., 7, 84, 105, 107, 176, 185, 326
Solon, G., 1, 304, 305
Song, S., 302
Spady, R., 192, 232
Spilerman, S., 188, 207
Stegun, J., 201
Stephan, S. W., 55, 155
Stiglitz, J. E., 180
Stock, J. H., 105, 192
Stoker, T., 192
Stokes, T. M., 13
Stone, R., 285
Stroud, A. H., 201
Summers, L. H., 181
Sun, B. H., 44, 174, 175
Swamy, P. A. V. B., 141, 143, 144, 145, 147,

149, 151, 156, 168, 271, 324

Tahmiscioglu, A. K., 8, 81, 85, 96, 98, 99, 100,
101, 102, 103, 111, 143, 146, 156, 177, 178,
179, 181, 182, 183, 184, 185, 319

Tarling, R., 216
Taub, A. J., 170
Taylor, G., 5, 307
Taylor, H., 208
Taylor, W. E., 38, 53, 123
Temple, J., 6
Theil, H., 37, 38, 45, 64, 104, 142, 151, 281,

320, 321, 323, 324, 325
Thornberry, T. P., 312
Tiao, G. C., 47, 143
Tinsley, P. A., 163
Tobin, J., 181, 225, 285, 288
Todd, P., 13
Trevedi, P. K., 13
Trognon, A., 56, 74, 81, 85, 320, 322, 323
Tsui, K. Y., 8, 172, 173
Tzaralis, E., 298

Ullah, A., 143

van Soest, A., 255, 256, 257, 258, 279
Vella, F., 241



Author Index 357

Verbeek, M., 239, 241, 279, 329
Vytlacil, E. J., 13

Wachter, M. L., 163
Wallace, T. D., 35, 55, 167
Wang, K. Q., 291, 295
Wang, L. Q., 295
Wansbeek, T. J., 5, 90, 170, 302, 303, 305,

306, 307, 309, 320
Watson, M. W., 105, 310
Weil, D., 6
Weiss, A., 180
Weiss, Y., 57
Welch, F., 1

West, K., 300, 310
White, H., 148, 149, 255, 321
Willis, R., 57, 206, 219
Wise, D., 9, 234, 237, 239, 242, 326
Wooldridge, J. M., 13, 241
Wright, B. D., 327
Wright, R., 319
Wu, S., 298, 301

Zacks, S., 327
Zellner, A., 64, 127, 142, 144, 147, 151, 156,

166, 174
Zhao, Z., 326
Ziliak, J. P., 90





Subject Index

acceleration sales model, 22
adaptations in behavior, 268–269
advantages of panel data

competing hypotheses, 312–313
degrees of freedom and multicollinearity,

311–312
distributed-lag model estimation, 5
dynamics of change, 3–4
estimation bias reduction, 313–316
measurement errors, 5–6
micro foundations for aggregate data

analysis, 316
two-dimensional nature of data, 7–8

Aitken estimator, 123, 150, 155, 165, 320
analysis of covariance, 14–26

descriptive model, 14–15
example from Kuh, 21–26
main steps in, 15
one-way, 150
problems in tracing heterogeneity, 20–21
regression over individuals, 15–18, 23,

30–33
regression over time, 18–20, 24–25
summary of tests for homogeneity, 19

analysis of variance, 14
argument Dickey-Fuller (ADF) t-ratios, 301
attrition probability, 234–238
autoregressive models in short panels, 268,

275. See also vector autoregressive
models

autoregressive moving-average (ARMA),
157

bandwidth parameter, 231, 249
Bayes estimators, 146, 170, 177–180
Bayes solutions, 168–170, 174–175
Bayes updating formula, 175
Bernoulli models, 207

best linear unbiased estimator (BLUE)
in variable-coefficient models, 154–155, 164
in variable-intercept models, 31, 33, 35, 45,

53, 55
best linear unbiased predictor (BLUP), 170
between-group estimators, 37
bias

attrition, 239
Bayes estimator, 178–180
covariance estimator, 72
from dynamic structure, 315–316
fixed-effects probit models, 198–199
generalized least-squares estimator, 85
generalized method of moments, 90,

101–102
heterogeneous intercepts, 9–10
income-schooling model, 113–114, 127
IV estimator, 101–102
maximum likelihood estimation, 91–93,

101–102, 211
measurement errors, 5, 304–309, 316
minimum-distance estimator, 101–102
OLS estimator, 73–74
omitted-variable, 313–315
selectivity, 9–11, 254
simultaneity, 316

Box-Jenkins method, 163

capital intensity, 183
cash-flow effect, 26, 180–181
categorical models. See discrete data
cell-mean corrected regression models, 16–17,

23
censored model, definition, 225. See also

truncated and censored models
Chamberlain minimum-distance estimator, 83
Chamberlain π approach, 60–65
clustering structure, 302–304



360 Subject Index

Cobb-Douglas production functions, 28–29
cohorts, 283–285, 329
cointegration rank, 323
competing hypotheses, 312–313
COMPUSTAT data, 181
conditional vs. marginal likelihood functions,

43–49. See also likelihood functions
correlations, arbitrary, 103–104
covariance (CV) estimator

dynamic panel data models, 71–72
random- vs. fixed-effects models, 69–70
simple regression with variable intercept

models, 35, 53, 55
covariance transformation, measurement error

and, 305–306
Cramer-Rao bounds, 50
cross-sectional data

consisting of entire population, 329
difficulties of describing dynamics of

change from, 4
pooled with time-series data, 285–290, 329
repeated, 283–285

cross-sectional dependence, 309–310
cumulative normal distribution, 190

degrees of freedom, 311–312
depreciation rate, 95
diagonal-path limits approach, 296
discrete data. See also dynamic discrete data

models
definition, 188
dependent variable assuming only two

values, 188–189
discrete-response models, 188–193
dynamic models, 206–224
existence of a consistent estimator, 195–198
female employment example, 193, 218–222
fixed-effects models, 194–199
household brand choices example, 221–224
maximum likelihood estimator, 194–195
Monte Carlo evidence, 198–199
parametric approach to static models with

heterogeneity, 193–202
random-effects models, 199–202
semiparametric approach to static models,

202–206
state dependence vs. heterogeneity,

216–218, 222
unemployment theory, 216

distributed lag estimation in short panels,
268–279

common assumptions, 270–271
estimation and testing, 277–279

general distributed-lag model, 269, 270, 271
identification using lag coefficients,

275–277
identification using the exogenous variable,

271–275
progressive nature of adaptations, 268–269
rates of return example, 278–279

distributed-lag models, 5, 269, 270, 271
distributions, combination of normal, 185–187
dummy variables, least-squares. See

least-squares dummy-variables
dynamic censored Tobit models, 259–265
dynamic discrete data models, 206–224

conditional probability approach, 211–216
general model, 106–108
household brand choices example, 221–224
initial conditions, 208–211
state dependence vs. heterogeneity,

216–218, 222
unemployment theory, 216

dynamic models, bias induced by, 315–316
dynamic models with variable intercepts,

69–112. See also fixed-effects models;
random-effects models

arbitrary correlations in the residuals,
103–104

asymptotic covariance matrix derivation,
111–112

covariance estimator, 69–70, 71–72
fixed-effects models, 72, 95–103
fixed-effects vector autoregressive models,

105–111
initial conditions, 70, 85–86, 90–92
maximum likelihood estimator, 78–83
random-effects models, 73–92

dynamic random-coefficient models, 175–180
dynamic sample selection Tobit models,

265–267

earnings dynamics example, 265
economic distance, 310
efficiency of estimates, 317–318
elasticity estimates, 28–29
electricity demand example, 172–173
employment examples

female, 193, 218–222
income-schooling model, 113–114,

127–128, 136–138, 313
truncated or censored data, 229–230
unemployment theory, 216
wage equations, 41–42

endogenously determined sample selection
model, 253–255



Subject Index 361

error-component three-stage least squares
(EC2SLS) estimator, 126, 280

error-component two-stage least squares
(EC2SLS) estimator, 123, 126

errors of measurement, 5, 304–309, 316
error terms

Chamberlain π approach, 60–65
discrete-response models, 192–193,

206–207, 220
quadratic loss functions, 169
serially correlated, 57–59
simultaneous-equations models, 122–123,

126, 138
truncated and censored models, 226, 228
variable-coefficient models, 146, 153–155,

160, 167–170
estimation bias, 313–316
Europe, panel data sets from, 1–3
European Community Household Panel

(ECHP), 3, 319
event histories, 328
exogeneity, strict, 43–44, 49, 69, 70, 95, 104,

203, 265
exogeneity, weak, 95

female employment examples, 193, 218–222
filtering, 158
fixed-effects models, 95–103

discrete data, 194–199
efficiency of the estimates, 317
likelihood-based estimator and GMM

relations, 99–101
logit models, 327
minimum-distance estimator, 98–99
omitted variable bias, 314
probit models, 198–199
random- vs. fixed-effects specification,

101–103
semiparametric two-step estimator, 253–255
transformed likelihood approach, 96–98,

101–103
truncated regression, 243–249
vector autoregressive models, 105–111

food demand example, 288–290

Gary income-maintenance project, attrition in,
238–240, 242

Gaussian quadrature formula, 201
generalized-least-squares (GLS) estimator

dynamic random-effects models, 84–85,
323

multilevel structures, 303
rotating data, 281–282

simple regression with variable intercepts,
35–38, 45, 53, 55, 58–59, 320

simultaneous-equations models, 117–118,
125–126

variable-coefficients models, 145–146, 154,
164, 170

generalized method of moments (GMM)
estimator

kernel-weighted, 266–267
likelihood-based estimators and, 99–101
measurement errors, 306–309
random-effects models, 86–90, 95–96
simple regression with variable intercepts,

60
simulated, 294–295
truncated or censored models, 264–265
vector autoregressive models, 107–108

Gibbs sampler, 177–178
group membership matrices, 304
growth-rate regression model, 6–7
Grunfeld investment function, 147

Hausman test of misspecification, 50–51, 102,
321

Hausman wage equations, 42
Hausman-Wise model of attrition, 237–240,

242
Heckman sample selection correction, 254
Heckman two-step estimator, 227, 230, 236,

241
Heckman-Willis model, 219, 221
Hermite integration formula, 201
heterogeneity

bias, 8–10
female employment example, 218–222
problems in tracing, 20–21
state dependence and, 216–218, 222

heteroscedasticity
individual, 320
Lagrange-multiplier test, 148, 156, 162,

325
in random-effects models, 89
in simple regression with variable intercepts

models, 55–57
in simultaneous-equations models, 124
in single-equation structural models, 120,

122
in truncated or censored models, 255
unit-root tests, 299
in variable-coefficient models, 148, 156,

162
hierarchical structure, 302–304
Hildreth-Houck estimator, 325



362 Subject Index
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