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Foreword

I was once asked to write an article about the most profound discovery ever
made. I unhesitatingly chose Kurt Gödel’s incompleteness theorem. In the
normal use of the term, the word “discovery” implies that we learn something
that was not known before. Gödel’s theorem, by contrast, tells us what we
don’t know and can’t know. It sets a fundamental and inescapable limit on
knowledge of what is. It pinpoints the boundaries of ignorance — not just
human ignorance, but that of any sentient being.

This remarkable book addresses the question of what can and cannot be
known. It is about the nature of existence and reality and truth. Before
Gödel, it was widely supposed that mathematics offered the most secure
form of knowledge. Mathematics is a vast labyrinth of definitions and rela-
tionships open to independent scrutiny and supported by the iron scaffolding
of unassailable logic. Human beings may legitimately quarrel about the facts
of history or religion or politics, or even about the content of scientific theo-
ries, but properly-formulated mathematics leaves no scope for disagreement.
The statement “eleven is a prime number” is not a matter of learned opinion,
it is simply true, as may be demonstrated by systematic proof. That is to
say, the statement is true because it can be proved to be true, step by step,
starting with the assumed axioms of arithmetic and applying the standard
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vi Thinking about Gödel & Turing

rules of logic at each point in the argument. The end result is thus beyond
any doubt. The utterly shocking import of Gödel’s theorem, and the work
of Emil Post and Alan Turing that flowed from it, is that the mighty edi-
fice of mathematics is ultimately built on sand, because the nexus between
proof and truth is demonstrably shaky. The problem that Gödel uncovered
is that in mathematics, and in fact in almost all formal systems of reasoning,
statements can be true yet unprovable — not just unproved, but unprovable,
even in principle. Mathematical propositions can no longer be envisaged as a
colossal list of statements to which yes-no answers may always be appended
by exhaustive systematic investigation; rather, some of the propositions may
be intrinsically undecidable, thus demolishing the concept of a closed, consis-
tent and complete body of rules and objects. Incompleteness is unavoidable.
The concept of absolute truth, even in the orderly world of mathematics, and
even when that world is apprehended by a godlike intelligence, was dealt a
shattering blow by Gödel’s work.

When Gödel dropped his bombshell, the world of logic and rational argu-
ment were turned upside down, and it may have seemed to some, fleetingly,
that science and mathematics would never be the same again. In the event,
science, mathematics and daily life proceeded more or less normally in spite
of it. To many scientists, Gödel’s theorem was regarded as little more than
an obscure curiosity, one that could be shrugged aside as largely irrelevant to
the real world. Now, following the work of Gregory Chaitin, that is no longer
a tenable response. Chaitin greatly extended the sweep of Gödel’s basic in-
sight, and re-cast the notion of incompleteness in a way that brings it much
closer to the real world of computers and physical processes. A key step in his
work is the recognition of a basic link between mathematical undecidability
and randomness. Something is random if it has no pattern, no abbreviated
description, in which case there is no algorithm shorter than the thing itself
that captures its content. And a random fact is true for no reason at all; it is
true “by accident,” so to speak. With this conceptual tool-kit, Chaitin was
able to demonstrate that mathematics is shot-through with randomness. It’s
there even in ordinary arithmetic! Mathematics, supposedly the epitome of
logical orderliness, is exposed as harboring irreducible arbitrariness.

The implications for the physical world stem from the fact that the laws
of physics are mathematical relationships: “The great book of Nature,” pro-
claimed Galileo, “can be read only by those who know the language in which
it was written. And this language is mathematics.” The intimate relationship
between mathematics and physics remains utterly mysterious, and touches
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on one of the deepest questions of physics and metaphysics, namely, where
do the laws of physics come from? And why do they have the form that they
do? In the orthodox view, which can be traced back at least to Newton,
a fundamental dualism is posited to lie at the heart of nature. On the one
hand there are immutable timeless universal and perfect mathematical laws,
and on the other hand there are time-dependent contingent local states. A
fundamental asymmetry connects them: the states evolve in a way that de-
pends crucially on the laws of physics, but the laws of physics depend not
one jot on the states.

Today, the prevailing view is that many of the laws of physics we find in
the textbooks are actually only effective low-energy laws that emerged with
the cooling of the universe from a hot big bang 13.7 billion years ago. Never-
theless, it is supposed that there must exist an underlying set of fundamental
laws from which the low-energy laws derive, possibly with some random ele-
ment brought about by symmetry breaking. A fashionable view is that string
theory (or M theory) will provide these “ultimate” laws of physics. Whatever
is the case, the conventional wisdom is that the fundamental laws are fixed
and get imprinted on the universe from without — somehow! — at the mo-
ment of its birth (or, in more elaborate models such as eternal inflation, which
have no ultimate origin, the laws are timelessly fixed). So physicists generally
assume the laws of physics are transcendent. Furthermore, as I have stated,
the laws are conventionally regarded as perfect, idealized mathematical rela-
tionships. Indeed, they explicitly incorporate idealized concepts such as real
numbers and differentiability that require infinite and infinitesimal quanti-
ties. Thus theoretical physics today has a strongly Platonic flavor: the laws
really exist as perfect, idealized, infinitely precise, timeless, immutable math-
ematical truths in some transcendent Platonic heaven. Furthermore, given
that the laws of physics are a subset of all possible mathematical relation-
ships, we have the image of Mother Nature plundering a vast warehouse of
mathematics, plucking out a few choice items to employ as physical laws. So
mathematics occupies a deeper, prior position in the Great Chain of Being.
The physical universe is run by laws that could have been otherwise (that is,
they are not required to have the form they have by dint of logical necessity),
and so they belong to a contingent subset of mathematics. The mystery of
how the choice is made — or what it is that “breaths fire into the equa-
tions and makes a universe for them to govern,” to use Stephen Hawking’s
evocative phrase — remains unsolvable in this scheme.
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Chaitin’s work, however, calls into question the entire orthodox paradigm
concerning the nature of physical law. “The basic insight,” he writes, “is a
software view of science: a scientific theory is like a computer program that
predicts our observations, the experimental data.” In other words, we may
regard nature as an information processing system, and a law of physics as
an algorithm that maps input data (initial conditions) into output data (final
state). Thus in some sense the universe is a gigantic computer, with the laws
playing the role of universal software. This shift in view is no mere semantic
quibble. As Chaitin points out in what follows, mathematics contains ran-
domness — or accidental, reasonless truths — because a computer, in the
guise of a universal Turing machine, may or may not halt in executing its
program, and there is no systematic way to know in advance if a function
is computable (i.e. the Turing machine will halt) or not. But this raises an
intriguing question. If the laws of physics are computer algorithms, will there
also be randomness in physics stemming from Turing uncomputability? (I
am not referring here to the well-known randomness inherent in quantum me-
chanics. The laws of quantum physics are not themselves random. Rather,
they describe the precise evolution of states to which probability amplitudes
are attached by hypothesis.) Well, I want to argue that not only is the answer
yes, but that the randomness in the laws of physics is even more pronounced
than that which flows from Turing uncomputability.

Let me give the gist of my argument. If the universe is a type of computer,
then, like all man-made computers, it will be limited in its computational
power. First, it has a finite information processing speed due to the fact
that quantum mechanics imposes a lower limit to the transition time for
flipping each bit of information. Second, the universe has a finite age, so
a given finite volume of space will have processed only a finite amount of
information since the big bang. Thirdly, the finite speed of light implies
that the volume of space to which we have causal access at this time is
finite, so there is a finite amount of information storage available. (The
same conclusion may be arrived at, incidentally, by invoking the so-called
holographic principle, a derivative of the well-known Bekenstein-Hawking
result that the information content of a black hole is proportional to its
surface area.) The real universe therefore differs in a crucial respect from
the concept of a Turing machine. The latter is supposed to have infinite
time at its disposal: there is no upper bound on the number of steps it
may perform to execute its program. The only relevant issue is whether
the program eventually halts or not, however long it takes. The machine
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is also permitted unlimited memory, in the form of an unbounded paper
tape. If these limitless resources are replaced by finite resources, however,
an additional, fundamental, source of unknowability emerges. So if, following
Chaitin, we treat the laws of physics as software running on the resource-
limited hardware known as the observable universe, then these laws will
embed a form of randomness, or uncertainty, or ambiguity, or fuzziness — call
it what you will — arising from the finite informational processing capacity
of the cosmos. Thus there will be a cosmological bound on the fidelity of all
mathematical laws.

To accept my argument you have to make a choice concerning the nature
of mathematical laws. A dedicated Platonist can dismiss the finite resource
issue by claiming that Mother Nature cares nothing for the computational
limitations of the real universe because she computes happily in the infinitely-
resourced, infinitely precise, timeless Platonic heaven, and merely delivers the
output to the physical universe in its exact and completed form. But an al-
ternative view, first entertained thirty years ago by John Wheeler and Rolf
Landauer, is that the laws of physics are not transcendent of the physical
universe, but inherent in it, and emergent with it at the big bang. Landauer
and Wheeler were motivated by their belief that information, as opposed to
matter, is the fundamental currency of nature, a viewpoint summed up in
Wheeler’s well-known aphorism “It from bit!”. Landauer went on to postu-
late a new physical principle, namely: A physical theory should not invoke
calculative routines that in fact cannot be carried out. The finiteness of the
real universe has a clear implication for Landauer’s principle, as he himself
explicated: “The calculative process, just like the measurement process, is
subject to some limitations. A sensible theory of physics must respect these
limitations.”

For Landauer and Wheeler, mathematics and physics stand in a sym-
metric relationship, forming a self-consistent loop: the laws of the universe
are mathematical computations, but mathematics (at least as manifested in
physical law) is what the universe computes. Thus mathematical law and
physics co-emerge. The link between mathematics and physics, which in the
orthodox view is asymmetric and unexplained, is given the basis of an expla-
nation. Let me repeat that the randomness or fuzziness of the laws of physics
to which I refer is not quantum uncertainty, but an irreducible unknowability
in the laws themselves. The scale of the imprecision is given not by Planck’s
constant, but by a cosmological parameter related to the size of the universe.
For this reason, the bound was lower, and hence more stringent, in the past.
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Today, the information bound is approximately 10122 bits, but at the time
of cosmological inflation it may have been as small as 1020. We can imagine
the laws as emerging in a fuzzy and ill-defined manner at the birth of the
cosmos, and then focusing down on the observed set as the universe expands,
ages, and envelops greater and greater computational resources. During the
very early universe, the information bound may have been severe enough to
affect the formation of the large-scale structure of the universe, and to leave
an observational signature in the cosmic microwave background.

Chaitin’s work has exposed the essential unknowability of idealized math-
ematical objects, for example, (almost all) real numbers. But in a finitely-
resourced universe, the situation is far worse. Consider, for example, a generic
entangled state of 500 quantum particles. To specify this state, one requires
a list of 2500 ∼ 3×10150 amplitudes, one for each branch of the wavefunction.
It is physically impossible, even in principle, to give these numbers, because
they far exceed the theoretical maximum information capacity of the entire
observable universe. So the quantum state cannot be specified, let alone its
unitary evolution predicted. What justification is there, then, for the claim
that the laws of quantum mechanics will unfailingly describe this unknowable
state and its equally unknowable evolution? It is worth noting that although
practical quantum entanglement is so far limited to a dozen or so particles,
the target for a forthcoming quantum computer is in the region of 10,000 en-
tangled particles. This does not necessarily mean that a quantum computer
will not work for calculations of interest (e.g. prime factoring), because many
problems in mathematics may be solvable using highly algorithmically com-
pressed specifications of the initial state, and the state vector might evolve
within only a tiny subspace of the entire 210,000-dimensional Hilbert space,
although to my knowledge there is no general proof of this.

How do these deliberations relate to the problem of the meaning of exis-
tence and computability? It is possible to maintain that “large” computable
functions still exist, in some abstract sense, even though they may not be
computable in the real physical universe. In other words, mathematical ex-
istence can be tied to idealized Turing computability as opposed to cosmic
computability. But what is clear is that if one accepts Landauer’s princi-
ple that only cosmic-computable functions should be invoked to describe the
real physical cosmos, then the distinction between Turing and cosmic com-
putability could lead to definite and potentially observable consequences. So
my conclusions are very much in accordance with Chaitin’s bold claim that
“perhaps mathematics and physics are not as different as most people think.”
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All historical eras have their metaphors for the universe. In ancient
Greece, musical instruments and surveying equipment represented the
pinnacle of technology, and the Greek philosophers built a cosmology based
on harmony and geometrical perfection. In Newton’s day, the clockwork
was the technological marvel of the age, and Newton gave us the clockwork
universe. Two centuries later the thermodynamic universe followed from
the development of the steam engine. Today, the digital computer is the
technology we find most dazzling, and we now recognize that the cosmos is a
vast information processing system. Each new era brings fresh insights into
the nature of the physical world. This book describes the most ambitious
attempt yet in the history of human thought to grapple with the deep
nature of reality. Among the many big questions of existence so far posed
by mankind, they don’t come much bigger than this.

Paul Davies

Beyond: Center for Fundamental Concepts in Science
Arizona State University, Tempe, Arizona
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Preface

This year will be my 60th birthday, which naturally makes one look back
to see what one has accomplished and failed to accomplish. This is also an
age at which the technical details begin to seem less important and the big,
philosophical ideas stand out.

For four decades I have been using the idea of complexity to try to un-
derstand the significance of Gödel’s famous incompleteness theorem. Most
logicians and mathematicians think that this theorem can be dismissed. I,
on the contrary, believe that mathematics must be conceived of and carried
out differently because of Gödel.

The fundamental question: What is a proof? Why is it convincing? What
is mathematics? In fact, Gödel’s proof is a reductio ad absurdum of the idea
of a formal axiomatic math theory. Gödel, Turing and myself, what we do
each in our own unique way, is to assert increasingly emphatically that math
is not a formal theory, it is not mechanical. What then is math? Where do
new truths come from?

Instead of saying what math isn’t, how about a new, optimistic meta-
mathematics that says what math is, and how creativity, imagination and in-
spiration make it progress? For like any living organism, math must progress
or it withers and dies. It cannot be static, it must be dynamic, it must

xiii
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constantly evolve. And there are other pressing questions, particularly for
those of us who feel so attracted, so obsessed by mathematics. We sometimes
wonder: Why is it so beautiful? What precisely attracts us? Why do we feel
so attracted? Is there no end to such beauty?

This collection contains twenty-three papers that I still feel to be stim-
ulating and which discuss these issues at a philosophical rather than at a
technical level. They are presented in chronological order, in order of publi-
cation, and taken together I hope they begin to make a case for a new way
of looking at mathematics, for a new idea of what math is all about, more
in line with how physicists work, perhaps.

This is, I hope, a case in which the whole is greater than the sum of
its parts. Many interesting topics are discussed, including Cantor’s diagonal
method, Gödel’s 1931 proof, Turing’s halting problem, program-size complex-
ity, algorithmic irreducibility and randomness, as well as important ideas on
complexity and the limits of mathematics of Leibniz and Emile Borel that I
feel are insufficiently appreciated.

By going through this collection in chronological order one can also ap-
preciate how difficult it is for new ideas to emerge, as one slowly gropes in
the dark for understanding. One keeps turning things over and over in one’s
mind. Each tiny step forward takes years. One only perseveres because one
must and because one believes that things ultimately make sense, even if one
will never fully understand why.

I also hope that this collection, showing as it does how a few simple ideas,
mere seedlings at first, gradually developed into a large tree, will encourage
others to believe in the power of ideas, in math as an art, and in the search
for deep understanding and fundamental ideas.

Just look at those magic creative moments in human history, like an-
cient Greece, the Italian renaissance, France before the revolution, Vienna
between the wars, when there is enough anarchy for new ideas to flourish,
and individuals can affect events. Can we understand the sociodynamics of
this magic? Can we encourage and promote such moments?

The basic lesson that I have learned from Gödel is that mathematics is
not a machine. Creativity is essential. And it is also mysterious. Just look
at the ease with which rivers of beautiful mathematics flowed from Euler’s
pen. Look at Ramanujan’s remark that a goddess brought him ideas while
he slept, and that no equation is worthwhile unless it expresses one of God’s
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thoughts.1 Or, for that matter, look at Gödel’s faith that mathematicians
can overcome the incompleteness theorem by intuiting new concepts and
principles whenever this is needed for mathematics to advance. So it is high
time for us to give up on static, formal mathematics and instead begin to
study creativity and how ideas evolve.

Finally, I want to say that I am very grateful to my friends in
Chile, Eric Goles, Oscar Orellana, and Ricardo Espinoza, for encouraging
me to put together this collection and helping me to find an appropriate title.

Gregory Chaitin, Viña del Mar, January 2007

1In this connection, see Ira Hauptman’s play Partition about Hardy, Ramanujan, and
Ramanujan’s goddess Namagiri. Available from http://www.playscripts.com.
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Introductory note

How should this book be read? Well, the articles in it are independent, self-
contained pieces, and I prefer to let readers wander through, having their own
thoughts, exploring on their own, rather than offer a guided tour. In other
words, I will let the individual essays stand on their own, unintroduced. And
there is no need to read this book from cover to cover. Just read whatever
strikes your fancy, enjoy whatever catches your eye.

However, if you do read this book from cover to cover in chronological
order, you will see that the papers in it all deal with the same problem,
they attempt to answer the same question: “What is the meaning of Gödel’s
incompleteness theorem?” Of course, my point of view changes and develops
over time. Themes enter and disappear, but there is a central spine that never
varies, a single thread that ties it all together. It’s one train of thought, on
different aspects of the same topic.

For those of you who would like a historical perspective, I have in fact put
together a timeline explaining the evolution of my ideas. It’s called “Algorith-
mic information theory: Some recollections.” This, however, is a technical
paper, not a popular account intended for the general reader. This timeline
can be found in the festschrift volume assembled by Cristian Calude, Ran-
domness and Complexity, from Leibniz to Chaitin (World Scientific, 2007).

The original sources of the papers in this collection are given in the table
of contents, but more detailed information, including copyrights, appears in
the Acknowledgements at the end of the book. And for those of you who
would like to know where to go for more information on particular topics, I
have included a List of publications with most of my technical and non-
technical papers and books and some interviews.

1
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On the difficulty of
computations

Two practical considerations concerning the use of computing machinery are
the amount of information that must be given to the machine for it to per-
form a given task and the time it takes the machine to perform it. The size
of programs and their running time are studied for mathematical models of
computing machines. The study of the amount of information (i.e., number
of bits) in a computer program needed for it to put out a given finite binary
sequence leads to a definition of a random sequence; the random sequences of
a given length are those that require the longest programs. The study of the
running time of programs for computing infinite sets of natural numbers leads
to an arithmetic of computers, which is a distributive lattice. [This paper was
presented at the Pan-American Symposium of Applied Mathematics, Buenos
Aires, Argentina, August 1968.]

Section I

The modern computing machine sprang into existence at the end of World
War II. But already in 1936 Turing and Post had proposed a mathematical
model of computing machines (figure 1).1 The mathematical model of the
computing machine that Turing and Post proposed, commonly referred to as
the Turing machine, is a black box with a finite number of internal states.
The box can read and write on an infinite paper tape, which is divided into
squares. A digit or letter may be written on each square of the tape, or the
square may be blank. Each second the machine performs one of the following

1Their papers appear in Davis [1]. As general references on computability theory we
may also cite Davis [2]–[4], Minsky [5], Rogers [6], and Arbib [7].

3
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Black Box

Tape

0 1 A
6

Figure 1. A Turing-Post machine

actions. It may stop, it may shift the tape one square to the right or one
square to the left, it may erase the square on which the read-write head
is positioned, or it may write a digit or letter on the square on which the
read-write head is positioned. The action it performs is determined solely
by the internal state of the black box at the moment, and the current state
of the black box is determined solely by its previous internal state and the
character read on the square of the tape on which its read-write head was
positioned.

Incredible as it may seem at first, a machine of such primitive design can
multiply numbers written on its tape, and can write on its tape the successive
digits of π. Indeed, it is now generally accepted that any calculation that a
modern electronic digital computer or a human computer can do, can also
be done by such a machine.

Section II

How much information must be provided to a computer in order for it to
perform a given task? The point of view we will present here is somewhat
different from the usual one. In a typical scientific application, the computer
may be used to analyze statistically huge amounts of data and produce a
brief report in which a great many observations are reduced to a handful of
statistical parameters. We would view this in the following manner. The
same final result could have been achieved if we had provided the computer
with a table of the results, together with instructions for printing them in
a neat report. This observation is, of course, ridiculous for all practical
purposes. For, had we known the results, it would not have been necessary
to use a computer. This example, then, does not exemplify those aspects of
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computation that we will emphasize.
Rather, we are thinking of such scientific applications as solving the

Schrödinger wave equation for the helium atom. Here we have no data, only
a program; and the program will produce after much calculation a great deal
of printout. Or consider calculating the apparent positions of the planets as
observed from the earth over a period of years. A small program incorporat-
ing the very simple Newtonian theory for this situation will predict a great
many astronomical observations. In this problem there are no data—only a
program that contains, of course, a table of the masses of the planets and
their initial positions and velocities.

Section III

Let us now consider the problem of the amount of information that it is
necessary to provide to a computer in order for it to calculate a given finite
binary sequence. A computing machine is defined for these purposes to be a
device that accepts as input a program, performs the calculations indicated to
it in the program, and finally puts out the binary sequence it has calculated.
In line with the mathematical theory of information, it is natural for the
program to be viewed as a sequence of bits or 0’s and 1’s. Furthermore, in
computer engineering all programs and data are represented in the machine’s
circuits in binary form. Thus, we may consider a computer to be a device
that accepts one binary sequence (the program) and emits another (the result
of the calculation).

011001001→Computer→1111110010001100110100

As an example of a computer we would then have an electronic digital com-
puter that accepts programs consisting of magnetized spots on magnetic tape
and puts out its results in the same form. Another example is a Turing ma-
chine. The program is a series of 0’s and 1’s written on the machine’s tape at
the start of the calculation, and the result is a sequence of 0’s and 1’s written
on its tape when it stops. As was mentioned, the second of these examples
can do anything that the first can.
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Section IV

We are interested in the amount of information that must be supplied to a
computer M in order for it to calculate a given finite binary sequence S. We
may now define this as the size or length of the smallest binary sequence that
causes the machine M to calculate S. We denote the length of the shortest
program for M to calculate S by L(M, S). It has been shown that there is a
computing machine M that has the following three properties.2

1) L(M, S) ≤ k + 1 for all binary sequences S of length k.

In other words, any binary sequence of length k can be calculated by
this computer M if it is given an appropriate program at most k + 1 bits
in length. The proof is as follows. If no better way to calculate a binary
sequence occurs to us, we can always include the binary sequence as a table
in the program. This computer is so designed that we need add only a single
bit to the sequence to obtain a program for computing it. The computer M
emits the sequence S when it is given the program S0.

2) Those binary sequences S for which L(M, S) < j are fewer than 2j in
number.

Thus, most binary sequences of length k require programs of about the
same length k, and the number of sequences that can be computed by smaller
programs decreases exponentially as the size of the program decreases. The
proof is as follows. There are only 2j − 2 binary sequences less than j in
length. Thus, there are fewer than 2j programs less than j in length, for each
program is a binary sequence. At best, a program will cause the computer
to calculate a single binary sequence. At worst, an error in the program
will trap the computer in an endless loop, and no binary sequence will be
calculated. As each program causes the computer to calculate at most one
binary sequence, the number of sequences calculated must be smaller than the
number of programs. Thus, fewer than 2j binary sequences can be calculated
by means of programs less than j in length.

3) For any other computer M ′ there exists a constant c(M ′) such that for
all binary sequences S, L(M, S) ≤ L(M ′, S) + c(M ′).

2Solomonoff [8] was the first to employ computers of this kind.
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In other words, this computer requires shorter programs than any other
computer, or more exactly it does not require programs much longer than
those required by any other computer. The proof is as follows. The computer
M is designed to interpret the circuit diagrams of any other computer M ′.
Given a program for M ′ and the circuit diagrams of M ′, the computer M
proceeds to calculate how M ′ would behave, i.e., it proceeds to simulate M ′.
Thus, we need only add a fixed number of bits to any program for M ′ in
order to obtain a program that enables M to calculate the same result. This
program for M is of the form PC1.

The 1 at the right end of the program indicates to the computer M that
this is a simulation, C is a fixed binary sequence of length c(M ′) − 1 giving
the circuit diagrams of the computer M ′, which is to be imitated, and P is
the program for M ′.3

Section V

Kolmogorov [9] and the author [11], [12] have independently suggested that
computers such as those previously described be applied to the problem of
defining what is meant by a random or patternless finite binary sequence
of 0’s and 1’s. In the traditional foundations of the mathematical theory of
probability, as expounded by Kolmogorov in his classic [10], there is no place
for the concept of an individual random sequence of 0’s and 1’s. Yet it is not
altogether meaningless to say that the sequence

110010111110011001011110000010

is more random or patternless than the sequences

111111111111111111111111111111
010101010101010101010101010101,

for we may describe these last two sequences as thirty 1’s or fifteen 01’s, but
there is no shorter way to specify the first sequence than by just writing it
all out.

We believe that the random or patternless sequences of a given length
are those that require the longest programs. We have seen that most of the

3How can the computer M separate PC into P and C? C has each of its bits dou-
bled, except the pair of bits at its left end. These are unequal and serve as punctuation
separating C from P .
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binary sequences of length k require programs of about length k. These,
then, are the random or patternless sequences. Those sequences that can be
obtained by putting into a computer a program much shorter than k are the
nonrandom sequences, those that possess a pattern or follow a law. The more
possible it is to compress a binary sequence into a short program calculation,
the less random is the sequence.

As an example of this, let us consider those sequences of 0’s and 1’s in
which 0’s and 1’s do not occur with equal frequency. Let p be the relative
frequency of 1’s, and let q = 1 − p be the relative frequency of 0’s. A long
binary sequence that has the property that 1’s are more frequent than 0’s can
be obtained from a computer program whose length is only that of the desired
sequence reduced by a factor H(p, q) = −p log2 p − q log2 q. For example, if
1’s occur approximately 3

4
of the time and 0’s occur 1

4
of the time in a long

binary sequence of length k, there is a program for computing that sequence
with length only about H( 3

4
, 1

4
)k = 0.80k. That is, the program need be

only approximately 80 percent the length of the sequence it computes. In
summary, if 0’s and 1’s occur with unequal frequencies, we can compress
such sequences into programs only a certain percentage (depending on the
frequencies) of the size of the sequence. Thus, random or incompressible
sequences will have about as many 0’s as 1’s, which agrees with our intuitive
expectations.

In a similar manner it can be shown that all groups of 0’s and 1’s will
occur with approximately the expected frequency in a long binary sequence
that we call random; 01100 will appear 2−5k times in long sequences of length
k, etc.4

Section VI

The definition of random or patternless finite binary sequences just presented
is related to certain considerations in information theory and in the method-
ology of science.

The two problems considered in Shannon’s classical exposition [15] are
to transmit information as efficiently and as reliably as possible. Here we
are interested in examining the viewpoint of information theory concerning
the efficient transmission of information. An information source may be re-
dundant, and information theory teaches us to code or compress messages

4Martin-Löf [14] also discusses the statistical properties of random sequences.
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so that what is redundant is eliminated and communications equipment is
optimally employed. For example, let us consider an information source that
emits one symbol (either an A or a B) each second. Successive symbols are
independent, and A’s are three times more frequent than B’s. Suppose it
is desired to transmit the messages over a channel that is capable of trans-
mitting either an A or a B each second. Then the channel has a capacity
of 1 bit per second, while the information source has entropy 0.80 bits per
symbol; and thus it is possible to code the messages in such a way that on the
average 1/0.80 = 1.25 symbols of message are transmitted over the channel
each second. The receiver must decode the messages; that is, expand them
into their original form.

In summary, information theory teaches us that messages from an in-
formation source that is not completely random (that is, which does not
have maximum entropy) can be compressed. The definition of randomness
is merely the converse of this fundamental theorem of information theory;
if lack of randomness in a message allows it to be coded into a shorter se-
quence, then the random messages must be those that cannot be coded into
shorter messages. A computing machine is clearly the most general possible
decoder for compressed messages. We thus consider that this definition of
randomness is in perfect agreement and indeed strongly suggested by the
coding theorem for a noiseless channel of information theory.

Section VII

This definition is also closely related to classical problems of the methodology
of science.5

Consider a scientist who has been observing a closed system that once
every second either emits a ray of light or does not. He summarizes his
observations in a sequence of 0’s and 1’s in which a 0 represents “ray not
emitted” and a 1 represents “ray emitted.” The sequence may start

0110101110. . .

and continue for a few million more bits. The scientist then examines the
sequence in the hope of observing some kind of pattern or law. What does he
mean by this? It seems plausible that a sequence of 0’s and 1’s is patternless

5Solomonoff [8] also discusses the relation between program lengths and the problem
of induction.
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if there is no better way to calculate it than just by writing it all out at once
from a table giving the whole sequence. The scientist might state:

My Scientific Theory: 0110101110. . .

This would not be considered an acceptable theory. On the other hand, if the
scientist should hit upon a method by which the whole sequence could be cal-
culated by a computer whose program is short compared with the sequence,
he would certainly not consider the sequence to be entirely patternless or
random. The shorter the program, the greater the pattern he may ascribe
the sequence.

There are many parallels between the foregoing and the way scientists
actually think. For example, a simple theory that accounts for a set of facts
is generally considered better or more likely to be true than one that needs
a large number of assumptions. By “simplicity” is not meant “ease of use
in making predictions.” For although general relativity is considered to be
the simple theory par excellence, very extended calculations are necessary
to make predictions from it. Instead, one refers to the number of arbitrary
choices that have been made in specifying the theoretical structure. One is
naturally suspicious of a theory whose number of arbitrary elements is of an
order of magnitude comparable to the amount of information about reality
that it accounts for.

Section VIII

Let us now turn to the problem of the amount of time necessary for comp-
utations.6 We will develop the following thesis. Call an infinite set of natural
numbers perfect if there is no essentially quicker way to compute infinitely
many of its members than computing the whole set. Perfect sets exist. This
thesis was suggested by the following vague and imprecise considerations.7

One of the most profound problems of the theory of numbers is that of
calculating large primes. While the sieve of Eratosthenes appears to be as
quick an algorithm for calculating all the primes as is possible, in recent
times hope has centered on calculating large primes by calculating a subset

6As general references we may cite Blum [16] and Arbib and Blum [17]. Our exposition
is a summary of that of [13].

7See Hardy and Wright [18], Sections 1.4 and 2.5 for the number-theoretic background
of the following remarks.
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of the primes, those that are Mersenne numbers. Lucas’s test can decide the
primality of a Mersenne number with rapidity far greater than is furnished
by the sieve method. If there are an infinity of Mersenne primes, then it
appears that Lucas has achieved a decisive advance in this classical problem
of the theory of numbers.

An opposing point of view is that there is no essentially better way to
calculate large primes than by calculating them all. If this is the case, it
apparently follows that there must be only finitely many Mersenne primes.

These considerations, then, suggested that there are infinite sets of nat-
ural numbers that are arbitrarily difficult to compute, and that do not have
any infinite subsets essentially easier to compute than the whole set. Here
difficulty of computation refers to speed. Our development will be as follows.
First, we define computers for calculating infinite sets of natural numbers.
Then we introduce a way of comparing the rapidity of computers, a tran-
sitive binary relation, i.e., almost a partial ordering. Next we focus our
attention on those computers that are greater than or equal to all others un-
der this ordering, i.e., the fastest computers. Our results are conditioned on
the computers having this property. The meaning of “arbitrarily difficult to
compute” is then clarified. Last, we exhibit sets that are arbitrarily difficult
to compute and do not have any subset essentially easier to compute than
the whole set.

Section IX

We are interested in the speed of programs for generating the elements of
an infinite set of natural numbers. For these purposes we may consider a
computer to be a device that once a second emits a (possibly empty) finite
set of natural numbers and that once started never stops. That is to say, a
computer is now viewed as a function whose arguments are the program and
the time and whose value is a finite set of natural numbers. If a program
causes the computer to emit infinitely many natural numbers in size order
and without any repetitions, we say that the computing machine calculates
the infinite set of natural numbers that it emits.

A Turing machine can be used to compute infinite sets of natural num-
bers; it is only necessary to establish a convention as to when natural num-
bers are emitted. For example, we may divide the machine’s tape into two
halves, and stipulate that what is written on the right half cannot be erased.
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The computational scratchwork is done on the left half of the tape, and the
successive members of the infinite set of natural numbers are written on the
nonerasable squares in decimal notation, separated by commas, with no blank
spaces permitted between characters. The moment a comma has been writ-
ten, it is considered that the digits between it and the previous comma form
the numeral representing the next natural number emitted by the machine.
We suppose that the Turing machine performs a single cycle of activity (read
tape; shift, write, or erase tape; change internal state) each second. Last, we
stipulate that the machine be started scanning the first nonerasable square
of the tape, that initially the nonerasable squares be all blank, and that the
program for the computer be written on the first erasable squares, with a
blank serving as punctuation to indicate the end of the program and the
beginning of an infinite blank region of tape.

Section X

We now order the computers according to their speeds. C ≥ C ′ is defined as
meaning that C is not much slower than C ′.

What do we mean by saying that computer C is not much slower than
computer C ′ for the purpose of computing infinite sets of natural numbers?
There is a computable change of C’s time scale that makes C as fast as C ′ or
faster. More exactly, there is a computable function f(n) (for example n! or
nnn

...

with n exponents) with the following property. Let P ′ be any program
that makes C ′ calculate an infinite set of natural numbers. Then there exists
a program P that makes C calculate the same set of natural numbers and has
the additional property that every natural number emitted by C ′ during the
first t seconds of calculation is emitted by C during the first f(t) second of
calculation, for all but a finite number of values of t. We may symbolize this
relation between the computers C and C ′ as C ≥ C ′, for it has the property
that C ≥ C ′ and C ′ ≥ C ′′ only if C ≥ C ′′.

In this way, we have introduced an ordering of the computers for comput-
ing infinite sets of natural numbers, and it can be shown that a distributive
lattice results. The most important property of this ordering for our present
purposes is that there is a set of computers ≥ all other computers. In what
follows we assume that the computer that is used is a member of this set of
fastest computers.
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Section XI

We now clarify what we mean by “arbitrarily difficult to compute.”
Let f(n) be any computable function that carries natural numbers into

natural numbers. Such functions can get big very quickly indeed. For exam-
ple consider the function nnn

...

in which there are nn exponents. There are
infinite sets of natural numbers such that, no matter how the computer is
programmed, at least f(n) seconds will pass before the computer emits all
those elements of the set that are less than or equal to n. Of course, a finite
number of exceptions are possible, for any finite part of an infinite set can be
computed very quickly by including in the computer’s program a table of the
first few elements of the set. Note that the difficulty in computing such sets
of natural numbers does not lie in the fact that their elements get very big
very quickly, for even small elements of such sets require more than astro-
nomical amounts of time to be computed. What is more, there are infinite
sets of natural numbers that are arbitrarily difficult to compute and include
90 percent of the natural numbers.

We finally exhibit infinite sets of natural numbers that are arbitrarily
difficult to compute, and do not have any infinite subsets essentially easier to
compute than the whole set. Consider the following tree of natural numbers
(figure 2).8 The infinite sets of natural numbers that we promised to exhibit
are obtained by starting at the root of the tree (that is, at 0) and walking
forward, including in the set every natural number that is stepped on.

It is easy to see that no infinite subset of such a set can be computed
much more quickly than the whole set. For suppose we are told that n is
in such a set. Then we know at once that the greatest integer less than
n/2 is the previous element of the set. Thus, knowing that 1 000 000 is
in the set, we immediately produce all smaller elements in it, by walking
backwards through the tree. They are 499 999, 249 999, 124 999, etc. It
follows that there is no appreciable difference between generating an infinite
subset of such a set, and generating the whole set, for gaps in an incomplete
generation can be filled in very quickly.

It is also easy to see that there are sets that can be obtained by walking
through this tree and are arbitrarily difficult to compute. These, then, are
the sets that we wished to exhibit.

8This tree is used in Rogers [6], p. 158, in connection with retraceable sets. Retraceable
sets are in some ways analogous to those sets that concern us here.
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Figure 2. A tree of natural numbers
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Information-theoretic
computational complexity

This paper attempts to describe, in nontechnical language, some of the con-
cepts and methods of one school of thought regarding computational complex-
ity. It applies the viewpoint of information theory to computers. This will
first lead us to a definition of the degree of randomness of individual binary
strings, and then to an information-theoretic version of Gödel’s theorem on
the limitations of the axiomatic method. Finally, we will examine in the light
of these ideas the scientific method and von Neumann’s views on the basic
conceptual problems of biology. [This paper was presented at the IEEE In-
ternational Congress of Information Theory, Ashkelon, Israel, June 1973.]

This field’s fundamental concept is the complexity of a binary string, that
is, a string of bits, of zeros and ones. The complexity of a binary string
is the minimum quantity of information needed to define the string. For
example, the string of length n consisting entirely of ones is of complexity
approximately log2 n, because only log2 n bits of information are required to
specify n in binary notation.

However, this is rather vague. Exactly what is meant by the definition
of a string? To make this idea precise a computer is used. One says that a
string defines another when the first string gives instructions for constructing
the second string. In other words, one string defines another when it is a
program for a computer to calculate the second string. The fact that a string
of n ones is of complexity approximately log2 n can now be translated more
correctly into the following. There is a program log2 n + c bits long that
calculates the string of n ones. The program performs a loop for printing

17



18 Thinking about Gödel & Turing

ones n times. A fixed number c of bits are needed to program the loop, and
log2 n bits more for specifying n in binary notation.

Exactly how are the computer and the concept of information combined
to define the complexity of a binary string? A computer is considered to take
one binary string and perhaps eventually produce another. The first string
is the program that has been given to the machine. The second string is the
output of this program; it is what this program calculates. Now consider a
given string that is to be calculated. How much information must be given
to the machine to do this? That is to say, what is the length in bits of the
shortest program for calculating the string? This is its complexity.

It can be objected that this is not a precise definition of the complexity of
a string, inasmuch as it depends on the computer that one is using. Moreover,
a definition should not be based on a machine, but rather on a model that
does not have the physical limitations of real computers.

Here we will not define the computer used in the definition of complexity.
However, this can indeed be done with all the precision of which mathematics
is capable. Since 1936 it has been known how to define an idealized computer
with unlimited memory. This was done in a very intuitive way by Turing
and also by Post, and there are elegant definitions based on other principles
[2]. The theory of recursive functions (or computability theory) has grown
up around the questions of what is computable and what is not.

Thus it is not difficult to define a computer mathematically. What re-
mains to be analyzed is which definition should be adopted, inasmuch as
some computers are easier to program than others. A decade ago Solomonoff
solved this problem [7]. He constructed a definition of a computer whose pro-
grams are not much longer than those of any other computer. More exactly,
Solomonoff’s machine simulates running a program on another computer,
when it is given a description of that computer together with its program.

Thus it is clear that the complexity of a string is a mathematical concept,
even though here we have not given a precise definition. Furthermore, it is
a very natural concept, easy to understand for those who have worked with
computers. Recapitulating, the complexity of a binary string is the informa-
tion needed to define it, that is to say, the number of bits of information that
must be given to a computer in order to calculate it, or in other words, the
size in bits of the shortest program for calculating it. It is understood that a
certain mathematical definition of an idealized computer is being used, but
it is not given here, because as a first approximation it is sufficient to think
of the length in bits of a program for a typical computer in use today.
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Now we would like to consider the most important properties of the com-
plexity of a string. First of all, the complexity of a string of length n is less
than n + c, because any string of length n can be calculated by putting it
directly into a program as a table. This requires n bits, to which must be
added c bits of instructions for printing the table. In other words, if nothing
betters occurs to us, the string itself can be used as its definition, and this
requires only a few more bits than its length.

Thus the complexity of each string of length n is less than n+c. Moreover,
the complexity of the great majority of strings of length n is approximately
n, and very few strings of length n are of complexity much less than n. The
reason is simply that there are much fewer programs of length appreciably
less than n than strings of length n. More exactly, there are 2n strings
of length n, and less than 2n−k programs of length less than n − k. Thus
the number of strings of length n and complexity less than n − k decreases
exponentially as k increases.

These considerations have revealed the basic fact that the great majority
of strings of length n are of complexity very close to n. Therefore, if one
generates a binary string of length n by tossing a fair coin n times and noting
whether each toss gives head or tail, it is highly probable that the complexity
of this string will be very close to n. In 1965 Kolmogorov proposed calling
random those strings of length n whose complexity is approximately n [8].
We made the same proposal independently [9]. It can be shown that a string
that is random in this sense has the statistical properties that one would
expect. For example, zeros and ones appear in such strings with relative
frequencies that tend to one-half as the length of the strings increases.

Consequently, the great majority of strings of length n are random, that
is, need programs of approximately length n, that is to say, are of complexity
approximately n. What happens if one wishes to show that a particular
string is random? What if one wishes to prove that the complexity of a
certain string is almost equal to its length? What if one wishes to exhibit a
specific example of a string of length n and complexity close to n, and assure
oneself by means of a proof that there is no shorter program for calculating
this string?

It should be pointed out that this question can occur quite naturally to a
programmer with a competitive spirit and a mathematical way of thinking.
At the beginning of the sixties we attended a course at Columbia University
in New York. Each time the professor gave an exercise to be programmed,
the students tried to see who could write the shortest program. Even though
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several times it seemed very difficult to improve upon the best program that
had been discovered, we did not fool ourselves. We realized that in order to
be sure, for example, that the shortest program for the IBM 650 that prints
the prime numbers has, say, 28 instructions, it would be necessary to prove
it, not merely to continue for a long time unsuccessfully trying to discover a
program with less than 28 instructions. We could never even sketch a first
approach to a proof.

It turns out that it was not our fault that we did not find a proof, because
we faced a fundamental limitation. One confronts a very basic difficulty when
one tries to prove that a string is random, when one attempts to establish
a lower bound on its complexity. We will try to suggest why this problem
arises by means of a famous paradox, that of Berry [1, p. 153].

Consider the smallest positive integer that cannot be defined by an En-
glish phrase with less than 1 000 000 000 characters. Supposedly the shortest
definition of this number has 1 000 000 000 or more characters. However, we
defined this number by a phrase much less than 1 000 000 000 characters in
length when we described it as “the smallest positive integer that cannot be
defined by an English phrase with less than 1 000 000 000 characters!”

What relationship is there between this and proving that a string is com-
plex, that its shortest program needs more than n bits? Consider the first
string that can be proven to be of complexity greater than 1 000 000 000.
Here once more we face a paradox similar to that of Berry, because this
description leads to a program with much less than 1 000 000 000 bits that
calculates a string supposedly of complexity greater than 1 000 000 000. Why
is there a short program for calculating “the first string that can be proven
to be of complexity greater than 1 000 000 000?”

The answer depends on the concept of a formal axiom system, whose im-
portance was emphasized by Hilbert [1]. Hilbert proposed that mathematics
be made as exact and precise as possible. In order to avoid arguments be-
tween mathematicians about the validity of proofs, he set down explicitly the
methods of reasoning used in mathematics. In fact, he invented an artificial
language with rules of grammar and spelling that have no exceptions. He
proposed that this language be used to eliminate the ambiguities and uncer-
tainties inherent in any natural language. The specifications are so precise
and exact that checking if a proof written in this artificial language is correct
is completely mechanical. We would say today that it is so clear whether a
proof is valid or not that this can be checked by a computer.

Hilbert hoped that this way mathematics would attain the greatest pos-
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sible objectivity and exactness. Hilbert said that there can no longer be any
doubt about proofs. The deductive method should be completely clear.

Suppose that proofs are written in the language that Hilbert constructed,
and in accordance with his rules concerning the accepted methods of reason-
ing. We claim that a computer can be programmed to print all the theorems
that can be proven. It is an endless program that every now and then writes
on the printer a theorem. Furthermore, no theorem is omitted. Each will
eventually be printed, if one is very patient and waits long enough.

How is this possible? The program works in the following manner. The
language invented by Hilbert has an alphabet with finitely many signs or
characters. First the program generates the strings of characters in this
alphabet that are one character in length. It checks if one of these strings
satisfies the completely mechanical rules for a correct proof and prints all
the theorems whose proofs it has found. Then the program generates all the
possible proofs that are two characters in length, and examines each of them
to determine if it is valid. The program then examines all possible proofs
of length three, of length four, and so on. If a theorem can be proven, the
program will eventually find a proof for it in this way, and then print it.

Consider again “the first string that can be proven to be of complexity
greater than 1 000 000 000.” To find this string one generates all theorems
until one finds the first theorem that states that a particular string is of
complexity greater than 1 000 000 000. Moreover, the program for finding
this string is short, because it need only have the number 1 000 000 000
written in binary notation, log2 1 000 000 000 bits, and a routine of fixed
length c that examines all possible proofs until it finds one that a specific
string is of complexity greater than 1 000 000 000.

In fact, we see that there is a program log2 n + c bits long that calculates
the first string that can be proven to be of complexity greater than n. Here
we have Berry’s paradox again, because this program of length log2 n + c
calculates something that supposedly cannot be calculated by a program of
length less than or equal to n. Also, log2 n + c is much less than n for all
sufficiently great values of n, because the logarithm increases very slowly.

What can the meaning of this paradox be? In the case of Berry’s original
paradox, one cannot arrive at a meaningful conclusion, inasmuch as one is
dealing with vague concepts such as an English phrase’s defining a positive
integer. However our version of the paradox deals with exact concepts that
have been defined mathematically. Therefore, it cannot really be a contra-
diction. It would be absurd for a string not to have a program of length
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less than or equal to n for calculating it, and at the same time to have such
a program. Thus we arrive at the interesting conclusion that such a string
cannot exist. For all sufficiently great values of n, one cannot talk about “the
first string that can be proven to be of complexity greater than n,” because
this string cannot exist. In other words, for all sufficiently great values of n,
it cannot be proven that a particular string is of complexity greater than n.
If one uses the methods of reasoning accepted by Hilbert, there is an upper
bound to the complexity that it is possible to prove that a particular string
has.

This is the surprising result that we wished to obtain. Most strings of
length n are of complexity approximately n, and a string generated by toss-
ing a coin will almost certainly have this property. Nevertheless, one cannot
exhibit individual examples of arbitrarily complex strings using methods of
reasoning accepted by Hilbert. The lower bounds on the complexity of spe-
cific strings that can be established are limited, and we will never be mathe-
matically certain that a particular string is very complex, even though most
strings are random.1

In 1931 Gödel questioned Hilbert’s ideas in a similar way [1], [2]. Hilbert
had proposed specifying once and for all exactly what is accepted as a proof,
but Gödel explained that no matter what Hilbert specified so precisely, there
would always be true statements about the integers that the methods of
reasoning accepted by Hilbert would be incapable of proving. This mathe-
matical result has been considered to be of great philosophical importance.
Von Neumann commented that the intellectual shock provoked by the crisis
in the foundations of mathematics was equaled only by two other scientific
events in this century: the theory of relativity and quantum theory [4].

We have combined ideas from information theory and computability the-
ory in order to define the complexity of a binary string, and have then used
this concept to give a definition of a random string and to show that a formal
axiom system enables one to prove that a random string is indeed random
in only finitely many cases.

Now we would like to examine some other possible applications of this

1This is a particularly perverse example of Kac’s comment [13, p. 16] that “as is often
the case, it is much easier to prove that an overwhelming majority of objects possess a
certain property than to exhibit even one such object.” The most familiar example of this
is Shannon’s proof of the coding theorem for a noisy channel; while it is shown that most
coding schemes achieve close to the channel capacity, in practice it is difficult to implement
a good coding scheme.
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viewpoint. In particular, we would like to suggest that the concept of the
complexity of a string and the fundamental methodological problems of sci-
ence are intimately related. We will also suggest that this concept may be of
theoretical value in biology.

Solomonoff [7] and the author [9] proposed that the concept of complexity
might make it possible to precisely formulate the situation that a scientist
faces when he has made observations and wishes to understand them and
make predictions. In order to do this the scientist searches for a theory that
is in agreement with all his observations. We consider his observations to be
represented by a binary string, and a theory to be a program that calculates
this string. Scientists consider the simplest theory to be the best one, and
that if a theory is too “ad hoc,” it is useless. How can we formulate these
intuitions about the scientific method in a precise fashion? The simplicity
of a theory is inversely proportional to the length of the program that con-
stitutes it. That is to say, the best program for understanding or predicting
observations is the shortest one that reproduces what the scientist has ob-
served up to that moment. Also, if the program has the same number of bits
as the observations, then it is useless, because it is too “ad hoc.” If a string
of observations only has theories that are programs with the same length as
the string of observations, then the observations are random, and can neither
be comprehended nor predicted. They are what they are, and that is all; the
scientist cannot have a theory in the proper sense of the concept; he can only
show someone else what he observed and say “it was this.”

In summary, the value of a scientific theory is that it enables one to
compress many observations into a few theoretical hypotheses. There is a
theory only when the string of observations is not random, that is to say,
when its complexity is appreciably less than its length in bits. In this case
the scientist can communicate his observations to a colleague much more
economically than by just transmitting the string of observations. He does
this by sending his colleague the program that is his theory, and this program
must have much fewer bits than the original string of observations.

It is also possible to make a similar analysis of the deductive method,
that is to say, of formal axiom systems. This is accomplished by analyzing
more carefully the new version of Berry’s paradox that was presented. Here
we only sketch the three basic results that are obtained in this manner.2

1. In a formal system with n bits of axioms it is impossible to prove that

2See the Appendix.
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a particular binary string is of complexity greater than n + c.

2. Contrariwise, there are formal systems with n + c bits of axioms in
which it is possible to determine each string of complexity less than
n and the complexity of each of these strings, and it is also possible
to exhibit each string of complexity greater than or equal to n, but
without being able to know by how much the complexity of each of
these strings exceeds n.

3. Unfortunately, any formal system in which it is possible to determine
each string of complexity less than n has either one grave problem or
another. Either it has few bits of axioms and needs incredibly long
proofs, or it has short proofs but an incredibly great number of bits
of axioms. We say “incredibly” because these quantities increase more
quickly than any computable function of n.

It is necessary to clarify the relationship between this and the preceding
analysis of the scientific method. There are less than 2n strings of complexity
less than n, but some of them are incredibly long. If one wishes to commu-
nicate all of them to someone else, there are two alternatives. The first is
to directly show all of them to him. In this case one will have to send him
an incredibly long message because some of these strings are incredibly long.
The other alternative is to send him a very short message consisting of n
bits of axioms from which he can deduce which strings are of complexity
less than n. Although the message is very short in this case, he will have
to spend an incredibly long time to deduce from these axioms the strings
of complexity less than n. This is analogous to the dilemma of a scientist
who must choose between directly publishing his observations, or publishing
a theory that explains them, but requires very extended calculations in order
to do this.

Finally, we would like to suggest that the concept of complexity may
possibly be of theoretical value in biology.

At the end of his life von Neumann tried to lay the foundation for a
mathematics of biological phenomena. His first effort in this direction was
his work Theory of Games and Economic Behavior, in which he analyzes
what is a rational way to behave in situations in which there are conflicting
interests [3]. The Computer and the Brain, his notes for a lecture series, was
published shortly after his death [5]. This book discusses the differences and
similarities between the computer and the brain, as a first step to a theory of
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how the brain functions. A decade later his work Theory of Self-Reproducing
Automata appeared, in which von Neumann constructs an artificial universe
and within it a computer that is capable of reproducing itself [6]. But von
Neumann points out that the problem of formulating a mathematical theory
of the evolution of life in this abstract setting remains to be solved; and to
express mathematically the evolution of the complexity of organisms, one
must first define complexity precisely.3 We submit that “organism” must
also be defined, and have tried elsewhere to suggest how this might perhaps
be done [10].

We believe that the concept of complexity that has been presented here
may be the tool that von Neumann felt is needed. It is by no means accidental
that biological phenomena are considered to be extremely complex. Consider
how a human being analyzes what he sees, or uses natural languages to
communicate. We cannot carry out these tasks by computer because they
are as yet too complex for us—the programs would be too long.4

Appendix

In this Appendix we try to give a more detailed idea of how the results
concerning formal axiom systems that were stated are established.5

Two basic mathematical concepts that are employed are the concepts of
a recursive function and a partial recursive function. A function is recursive
if there is an algorithm for calculating its value when one is given the value
of its arguments, in other words, if there is a Turing machine for doing this.
If it is possible that this algorithm never terminates and the function is thus
undefined for some values of its arguments, then the function is called partial
recursive.6

In what follows we are concerned with computations involving binary
strings. The binary strings are considered to be ordered in the following
manner: Λ, 0, 1, 00, 01, 10, 11, 000, 001, 010, . . . The natural number n is
represented by the nth binary string (n = 0, 1, 2, . . .). The length of a binary

3In an important paper [14], Eigen studies these questions from the point of view of
thermodynamics and biochemistry.

4Chandrasekaran and Reeker [15] discuss the relevance of complexity to artificial intel-
ligence.

5See [11], [12] for different approaches.
6Full treatments of these concepts can be found in standard texts, e.g., Rogers [16].
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string s is denoted lg(s). Thus if s is considered to be a natural number,
then lg(s) = [log2(s + 1)]. Here [x] is the greatest integer ≤ x.

Definition 1. A computer is a partial recursive function C(p). Its argu-
ment p is a binary string. The value of C(p) is the binary string output by
the computer C when it is given the program p. If C(p) is undefined, this
means that running the program p on C produces an unending computation.

Definition 2. The complexity IC(s) of a binary string s is defined to be
the length of the shortest program p that makes the computer C output s,
i.e.,

IC(s) = min
C(p)=s

lg(p).

If no program makes C output s, then IC(s) is defined to be infinite.
Definition 3. A computer U is universal if for any computer C and any

binary string s, IU(s) ≤ IC(s) + c, where the constant c depends only on C.
It is easy to see that there are universal computers. For example, consider

the computer U such that U(0i1p) = Ci(p), where Ci is the ith computer,
i.e., a program for U consists of two parts: the left-hand part indicates which
computer is to be simulated, and the right-hand part gives the program to
be simulated. We now suppose that some particular universal computer U
has been chosen as the standard one for measuring complexities, and shall
henceforth write I(s) instead of IU(s).

Definition 4. The rules of inference of a class of formal axiom systems
is a recursive function F (a, h) (a a binary string, h a natural number) with
the property that F (a, h) ⊂ F (a, h + 1). The value of F (a, h) is the finite
(possibly empty) set of theorems that can be proven from the axioms a by
means of proofs ≤ h characters in length. F (a) =

⋃

h F (a, h) is the set of
theorems that are consequences of the axioms a. The ordered pair 〈F, a〉,
which implies both the choice of rules of inference and axioms, is a particular
formal axiom system.

This is a fairly abstract definition, but it retains all those features of
formal axiom systems that we need. Note that although one may not be
interested in some axioms (e.g., if they are false or incomprehensible), it is
stipulated that F (a, h) is always defined.

Theorem 1. a) There is a constant c such that I(s) ≤ lg(s) + c for all
binary strings s. b) There are less than 2n binary strings of complexity less
than n.

Proof of a). There is a computer C such that C(p) = p for all programs
p. Thus for all binary strings s, I(s) ≤ IC(s) + c = lg(s) + c.
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Proof of b). As there are less than 2n programs of length less than n,
there must be less than this number of binary strings of complexity less than
n. Q.E.D.

Thesis. A random binary string s is one having the property that I(s) ≈
lg(s).

Theorem 2. Consider the rules of inference F . Suppose that a proposi-
tion of the form “I(s) ≥ n” is in F (a) only if it is true, i.e., only if I(s) ≥ n.
Then a proposition of the form “I(s) ≥ n” is in F (a) only if n ≤ lg(a) + c,
where c is a constant that depends only on F .

Proof. Consider that binary string sk having the shortest proof from
the axioms a that it is of complexity > lg(a) + 2k. We claim that I(sk) ≤
lg(a) + k + c′, where c′ depends only on F . Taking k = c′, we conclude
that the binary string sc′ with the shortest proof from the axioms a that it
is of complexity > lg(a) + 2c′ is, in fact, of complexity ≤ lg(a) + 2c′, which
is impossible. It follows that sk doesn’t exist for k = c′, that is, no binary
string can be proven from the axioms a to be of complexity > lg(a) + 2c′.
Thus the theorem is proved with c = 2c′.

It remains to verify the claim that I(sk) ≤ lg(a) + k + c′. Consider the
computer C that does the following when it is given the program 0k1a. It
calculates F (a, h) for h = 0, 1, 2, . . . until it finds the first theorem in F (a, h)
of the form “I(s) ≥ n” with n > lg(a) + 2k. Finally C outputs the binary
string s in the theorem it has found. Thus C(0k1a) is equal to sk, if sk exists.
It follows that

I(sk) = I(C(0k1a))

≤ IC(C(0k1a)) + c′′

≤ lg(0k1a) + c′′ = lg(a) + k + (c′′ + 1) = lg(a) + k + c′.

Q.E.D.
Definition 5. An is defined to be the kth binary string of length n,

where k is the number of programs p of length < n for which U(p) is defined,
i.e., An has n and this number k coded into it.

Theorem 3. There are rules of inference F 1 such that for all n, F 1(An)
is the union of the set of all true propositions of the form “I(s) = k” with
k < n and the set of all true propositions of the form “I(s) ≥ n.”

Proof. From An one knows n and for how many programs p of length
< n U(p) is defined. One then simulates in parallel, running each program p
of length < n on U until one has determined the value of U(p) for each p of
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length < n for which U(p) is defined. Knowing the value of U(p) for each p
of length < n for which U(p) is defined, one easily determines each string of
complexity < n and its complexity. What’s more, all other strings must be
of complexity ≥ n. This completes our sketch of how all true propositions of
the form “I(s) = k” with k < n and of the form “I(s) ≥ n” can be derived
from the axiom An. Q.E.D.

Recall that we consider the nth binary string to be the natural number
n.

Definition 6. The partial function B(n) is defined to be the biggest
natural number of complexity ≤ n, i.e.,

B(n) = max
I(k)≤n

k = max
lg(p)≤n

U(p).

Theorem 4. Let f be a partial recursive function that carries natural
numbers into natural numbers. Then B(n) ≥ f(n) for all sufficiently great
values of n.

Proof. Consider the computer C such that C(p) = f(p) for all p.

I(f(n)) ≤ IC(f(n)) + c ≤ lg(n) + c = [log2(n + 1)] + c < n

for all sufficiently great values of n. Thus B(n) ≥ f(n) for all sufficiently
great values of n. Q.E.D.

Theorem 5. Consider the rules of inference F . Let

Fn =
⋃

a

F (a, B(n)),

where the union is taken over all binary strings a of length ≤ B(n), i.e., Fn

is the (finite) set of all theorems that can be deduced by means of proofs
with not more than B(n) characters from axioms with not more than B(n)
bits. Let sn be the first binary string s not in any proposition of the form
“I(s) = k” in Fn. Then I(sn) ≤ n+ c, where the constant c depends only on
F .

Proof. We claim that there is a computer C such that if U(p) = B(n),
then C(p) = sn. As, by the definition of B, there is a p0 of length ≤ n such
that U(p0) = B(n), it follows that

I(sn) ≤ IC(sn) + c = IC(C(p0)) + c ≤ lg(p0) + c ≤ n + c,

which was to be proved.
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It remains to verify the claim that there is a C such that if U(p) = B(n),
then C(p) = sn. C works as follows. Given the program p, C first simulates
running the program p on U . Once C has determined U(p), it calculates
F (a, U(p)) for all binary strings a such that lg(a) ≤ U(p), and forms the
union of these 2U(p)+1−1 different sets of propositions, which is Fn if U(p) =
B(n). Finally C outputs the first binary string s not in any proposition of the
form “I(s) = k” in this set of propositions; s is sn if U(p) = B(n). Q.E.D.

Theorem 6. Consider the rules of inference F . If F (a, h) includes all true
propositions of the form “I(s) = k” with k ≤ n+ c, then either lg(a) > B(n)
or h > B(n). Here c is a constant that depends only on F .

Proof. This is an immediate consequence of Theorem 5. Q.E.D.
The following theorem gives an upper bound on the size of the proofs in

the formal systems 〈F 1, An〉 that were studied in Theorem 3, and also shows
that the lower bound on the size of these proofs that is given by Theorem 6
cannot be essentially improved.

Theorem 7. There is a constant c such that for all n F 1(An, B(n + c))
includes all true propositions of the form “I(s) = k” with k < n.

Proof. We claim that there is a computer C such that for all n, C(An) =
the least natural number h such that F 1(An, h) includes all true propositions
of the form “I(s) = k” with k < n. Thus the complexity of this value of h
is ≤ lg(An) + c = n + c, and B(n + c) is ≥ this value of h, which was to be
proved.

It remains to verify the claim. C works as follows when it is given the
program An. First, it determines each binary string of complexity < n and
its complexity, in the manner described in the proof of Theorem 3. Then it
calculates F 1(An, h) for h = 0, 1, 2, . . . until all true propositions of the form
“I(s) = k” with k < n are included in F 1(An, h). The final value of h is then
output by C. Q.E.D.
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Randomness and mathematical
proof

Although randomness can be precisely defined and can even be measured, a
given number cannot be proved to be random. This enigma establishes a limit
to what is possible in mathematics.

Almost everyone has an intuitive notion of what a random number is. For
example, consider these two series of binary digits:

01010101010101010101

01101100110111100010

The first is obviously constructed according to a simple rule; it consists of
the number 01 repeated ten times. If one were asked to speculate on how
the series might continue, one could predict with considerable confidence
that the next two digits would be 0 and 1. Inspection of the second series
of digits yields no such comprehensive pattern. There is no obvious rule
governing the formation of the number, and there is no rational way to guess
the succeeding digits. The arrangement seems haphazard; in other words,
the sequence appears to be a random assortment of 0’s and 1’s.

The second series of binary digits was generated by flipping a coin 20 times
and writing a 1 if the outcome was heads and a 0 if it was tails. Tossing a
coin is a classical procedure for producing a random number, and one might
think at first that the provenance of the series alone would certify that it
is random. This is not so. Tossing a coin 20 times can produce any one
of 220 (or a little more than a million) binary series, and each of them has

31
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exactly the same probability. Thus it should be no more surprising to obtain
the series with an obvious pattern than to obtain the one that seems to be
random; each represents an event with a probability of 2−20. If origin in a
probabilistic event were made the sole criterion of randomness, then both
series would have to be considered random, and indeed so would all others,
since the same mechanism can generate all the possible series. The conclusion
is singularly unhelpful in distinguishing the random from the orderly.

Clearly a more sensible definition of randomness is required, one that
does not contradict the intuitive concept of a “patternless” number. Such a
definition has been devised only in the past 10 years. It does not consider
the origin of a number but depends entirely on the characteristics of the se-
quence of digits. The new definition enables us to describe the properties of a
random number more precisely than was formerly possible, and it establishes
a hierarchy of degrees of randomness. Of perhaps even greater interest than
the capabilities of the definition, however, are its limitations. In particular
the definition cannot help to determine, except in very special cases, whether
or not a given series of digits, such as the second one above, is in fact random
or only seems to be random. This limitation is not a flaw in the definition; it
is a consequence of a subtle but fundamental anomaly in the foundation of
mathematics. It is closely related to a famous theorem devised and proved
in 1931 by Kurt Gödel, which has come to be known as Gödel’s incomplete-
ness theorem. Both the theorem and the recent discoveries concerning the
nature of randomness help to define the boundaries that constrain certain
mathematical methods.

Algorithmic Definition

The new definition of randomness has its heritage in information theory, the
science, developed mainly since World War II, that studies the transmission
of messages. Suppose you have a friend who is visiting a planet in another
galaxy, and that sending him telegrams is very expensive. He forgot to take
along his tables of trigonometric functions, and he has asked you to supply
them. You could simply translate the numbers into an appropriate code
(such as the binary numbers) and transmit them directly, but even the most
modest tables of the six functions have a few thousand digits, so that the cost
would be high. A much cheaper way to convey the same information would
be to transmit instructions for calculating the tables from the underlying
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trigonometric formulas, such as Euler’s equation eix = cos x + i sin x. Such
a message could be relatively brief, yet inherent in it is all the information
contained in even the largest tables.

Suppose, on the other hand, your friend is interested not in trigonometry
but in baseball. He would like to know the scores of all the major-league
games played since he left the earth some thousands of years before. In this
case it is most unlikely that a formula could be found for compressing the
information into a short message; in such a series of numbers each digit is
essentially an independent item of information, and it cannot be predicted
from its neighbors or from some underlying rule. There is no alternative to
transmitting the entire list of scores.

In this pair of whimsical messages is the germ of a new definition of ran-
domness. It is based on the observation that the information embodied in
a random series of numbers cannot be “compressed,” or reduced to a more
compact form. In formulating the actual definition it is preferable to consider
communication not with a distant friend but with a digital computer. The
friend might have the wit to make inferences about numbers or to construct
a series from partial information or from vague instructions. The computer
does not have that capacity, and for our purposes that deficiency is an ad-
vantage. Instructions given the computer must be complete and explicit,
and they must enable it to proceed step by step without requiring that it
comprehend the result of any part of the operations it performs. Such a
program of instructions is an algorithm. It can demand any finite number of
mechanical manipulations of numbers, but it cannot ask for judgments about
their meaning.

The definition also requires that we be able to measure the information
content of a message in some more precise way than by the cost of sending it
as a telegram. The fundamental unit of information is the “bit,” defined as
the smallest item of information capable of indicating a choice between two
equally likely things. In binary notation one bit is equivalent to one digit,
either a 0 or a 1.

We are now able to describe more precisely the differences between the
two series of digits presented at the beginning of this article:

01010101010101010101

01101100110111100010

The first could be specified to a computer by a very simple algorithm, such
as “Print 01 ten times.” If the series were extended according to the same
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rule, the algorithm would have to be only slightly larger; it might be made
to read, for example, “Print 01 a million times.” The number of bits in such
an algorithm is a small fraction of the number of bits in the series it specifies,
and as the series grows larger the size of the program increases at a much
slower rate.

For the second series of digits there is no corresponding shortcut. The
most economical way to express the series is to write it out in full, and the
shortest algorithm for introducing the series into a computer would be “Print
01101100110111100010.” If the series were much larger (but still apparently
patternless), the algorithm would have to be expanded to the corresponding
size. This “incompressibility” is a property of all random numbers; indeed,
we can proceed directly to define randomness in terms of incompressibility:
A series of numbers is random if the smallest algorithm capable of specifying
it to a computer has about the same number of bits of information as the
series itself.

This definition was independently proposed about 1965 by A. N. Kol-
mogorov of the Academy of Science of the U.S.S.R. and by me, when I was
an undergraduate at the City College of the City University of New York.
Both Kolmogorov and I were then unaware of related proposals made in
1960 by Ray J. Solomonoff of the Zator Company in an endeavor to measure
the simplicity of scientific theories. During the past decade we and others
have continued to explore the meaning of randomness. The original formula-
tions have been improved and the feasibility of the approach has been amply
confirmed.

Model of Inductive Method

The algorithmic definition of randomness provides a new foundation for the
theory of probability. By no means does it supersede classical probability the-
ory, which is based on an ensemble of possibilities, each of which is assigned
a probability. Rather, the algorithmic approach complements the ensem-
ble method by giving precise meaning to concepts that had been intuitively
appealing but that could not be formally adopted.

The ensemble theory of probability, which originated in the 17th century,
remains today of great practical importance. It is the foundation of statis-
tics, and it is applied to a wide range of problems in science and engineering.
The algorithmic theory also has important implications, but they are primar-
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ily theoretical. The area of broadest interest is its amplification of Gödel’s
incompleteness theorem. Another application (which actually preceded the
formulation of the theory itself) is in Solomonoff’s model of scientific induc-
tion.

Solomonoff represented a scientist’s observations as a series of binary
digits. The scientist seeks to explain these observations through a theory,
which can be regarded as an algorithm capable of generating the series and
extending it, that is, predicting future observations. For any given series of
observations there are always several competing theories, and the scientist
must choose among them. The model demands that the smallest algorithm,
the one consisting of the fewest bits, be selected. Stated another way, this
rule is the familiar formulation of Occam’s razor: Given differing theories of
apparently equal merit, the simplest is to be preferred.

Thus in the Solomonoff model a theory that enables one to understand a
series of observations is seen as a small computer program that reproduces
the observations and makes predictions about possible future observations.
The smaller the program, the more comprehensive the theory and the greater
the degree of understanding. Observations that are random cannot be re-
produced by a small program and therefore cannot be explained by a theory.
In addition the future behavior of a random system cannot be predicted.
For random data the most compact way for the scientist to communicate his
observations is for him to publish them in their entirety.

Defining randomness or the simplicity of theories through the capabilities
of the digital computer would seem to introduce a spurious element into these
essentially abstract notions: the peculiarities of the particular computing
machine employed. Different machines communicate through different com-
puter languages, and a set of instructions expressed in one of those languages
might require more or fewer bits when the instructions are translated into
another language. Actually, however, the choice of computer matters very
little. The problem can be avoided entirely simply by insisting that the ran-
domness of all numbers be tested on the same machine. Even when different
machines are employed, the idiosyncrasies of various languages can readily
be compensated for. Suppose, for example, someone has a program written
in English and wishes to utilize it with a computer that reads only French.
Instead of translating the algorithm itself he could preface the program with
a complete English course written in French. Another mathematician with
a French program and an English machine would follow the opposite proce-
dure. In this way only a fixed number of bits need be added to the program,
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and that number grows less significant as the size of the series specified by
the program increases. In practice a device called a compiler often makes it
possible to ignore the differences between languages when one is addressing
a computer.

Since the choice of a particular machine is largely irrelevant, we can choose
for our calculations an ideal computer. It is assumed to have unlimited
storage capacity and unlimited time to complete its calculations. Input to
and output from the machine are both in the form of binary digits. The
machine begins to operate as soon as the program is given it, and it continues
until it has finished printing the binary series that is the result. The machine
then halts. Unless an error is made in the program, the computer will produce
exactly one output for any given program.

Minimal Programs and Complexity

Any specified series of numbers can be generated by an infinite number of
algorithms. Consider, for example, the three-digit decimal series 123. It
could be produced by an algorithm such as “Subtract 1 from 124 and print
the result,” or “Subtract 2 from 125 and print the result,” or an infinity of
other programs formed on the same model. The programs of greatest interest,
however, are the smallest ones that will yield a given numerical series. The
smallest programs are called minimal programs; for a given series there may
be only one minimal program or there may be many.

Any minimal program is necessarily random, whether or not the series it
generates is random. This conclusion is a direct result of the way we have
defined randomness. Consider the program P , which is a minimal program
for the series of digits S. If we assume that P is not random, then by
definition there must be another program, P ′, substantially smaller than P
that will generate it. We can then produce S by the following algorithm:
“From P ′ calculate P , then from P calculate S.” This program is only a few
bits longer than P ′, and thus it must be substantially shorter than P . P is
therefore not a minimal program.

The minimal program is closely related to another fundamental concept
in the algorithmic theory of randomness: the concept of complexity. The
complexity of a series of digits is the number of bits that must be put into
a computing machine in order to obtain the original series as output. The
complexity is therefore equal to the size in bits of the minimal programs of
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the series. Having introduced this concept, we can now restate our definition
of randomness in more rigorous terms: A random series of digits is one whose
complexity is approximately equal to its size in bits.

The notion of complexity serves not only to define randomness but also
to measure it. Given several series of numbers each having n digits, it is
theoretically possible to identify all those of complexity n−1, n−10, n−100
and so forth and thereby to rank the series in decreasing order of randomness.
The exact value of complexity below which a series is no longer considered
random remains somewhat arbitrary. The value ought to be set low enough
for numbers with obviously random properties not to be excluded and high
enough for numbers with a conspicuous pattern to be disqualified, but to set a
particular numerical value is to judge what degree of randomness constitutes
actual randomness. It is this uncertainty that is reflected in the qualified
statement that the complexity of a random series is approximately equal to
the size of the series.

Properties of Random Numbers

The methods of the algorithmic theory of probability can illuminate many
of the properties of both random and nonrandom numbers. The frequency
distribution of digits in a series, for example, can be shown to have an impor-
tant influence on the randomness of the series. Simple inspection suggests
that a series consisting entirely of either 0’s or 1’s is far from random, and
the algorithmic approach confirms that conclusion. If such a series is n digits
long, its complexity is approximately equal to the logarithm to the base 2 of
n. (The exact value depends on the machine language employed.) The series
can be produced by a simple algorithm such as “Print 0 n times,” in which
virtually all the information needed is contained in the binary numeral for
n. The size of this number is about log2 n bits. Since for even a moderately
long series the logarithm of n is much smaller than n itself, such numbers
are of low complexity; their intuitively perceived pattern is mathematically
confirmed.

Another binary series that can be profitably analyzed in this way is one
where 0’s and 1’s are present with relative frequencies of three-fourths and
one-fourth. If the series is of size n, it can be demonstrated that its complex-
ity is no greater than four-fifths n, that is, a program that will produce the
series can be written in 4n/5 bits. This maximum applies regardless of the
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sequence of the digits, so that no series with such a frequency distribution
can be considered very random. In fact, it can be proved that in any long
binary series that is random the relative frequencies of 0’s and 1’s must be
very close to one-half. (In a random decimal series the relative frequency of
each digit is, of course, one-tenth.)

Numbers having a nonrandom frequency distribution are exceptional. Of
all the possible n-digit binary numbers there is only one, for example, that
consists entirely of 0’s and only one that is all 1’s. All the rest are less
orderly, and the great majority must, by any reasonable standard, be called
random. To choose an arbitrary limit, we can calculate the fraction of all
n-digit binary numbers that have a complexity of less than n − 10. There
are 21 programs one digit long that might generate an n-digit series; there
are 22 programs two digits long that could yield such a series, 23 programs
three digits long and so forth, up to the longest programs permitted within
the allowed complexity; of these there are 2n−11. The sum of this series
(21 +22 + · · ·+2n−11) is equal to 2n−10 − 2. Hence there are fewer than 2n−10

programs of size less than n−10, and since each of these programs can specify
no more than one series of digits, fewer than 2n−10 of the 2n numbers have a
complexity less than n − 10. Since 2n−10/2n = 1/1,024, it follows that of all
the n-digit binary numbers only about one in 1,000 have a complexity less
than n−10. In other words, only about one series in 1,000 can be compressed
into a computer program more than 10 digits smaller than itself.

A necessary corollary of this calculation is that more than 999 of every
1,000 n-digit binary numbers have a complexity equal to or greater than
n − 10. If that degree of complexity can be taken as an appropriate test of
randomness, then almost all n-digit numbers are in fact random. If a fair
coin is tossed n times, the probability is greater than .999 that the result will
be random to this extent. It would therefore seem easy to exhibit a specimen
of a long series of random digits; actually it is impossible to do so.

Formal Systems

It can readily be shown that a specific series of digits is not random; it is suf-
ficient to find a program that will generate the series and that is substantially
smaller than the series itself. The program need not be a minimal program
for the series; it need only be a small one. To demonstrate that a particular
series of digits is random, on the other hand, one must prove that no small
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program for calculating it exists.
It is in the realm of mathematical proof that Gödel’s incompleteness

theorem is such a conspicuous landmark; my version of the theorem predicts
that the required proof of randomness cannot be found. The consequences of
this fact are just as interesting for what they reveal about Gödel’s theorem
as they are for what they indicate about the nature of random numbers.

Gödel’s theorem represents the resolution of a controversy that preoccu-
pied mathematicians during the early years of the 20th century. The ques-
tion at issue was: “What constitutes a valid proof in mathematics and how
is such a proof to be recognized?” David Hilbert had attempted to resolve
the controversy by devising an artificial language in which valid proofs could
be found mechanically, without any need for human insight or judgement.
Gödel showed that there is no such perfect language.

Hilbert established a finite alphabet of symbols, an unambiguous gram-
mar specifying how a meaningful statement could be formed, a finite list of
axioms, or initial assumptions, and a finite list of rules of inference for de-
ducing theorems from the axioms or from other theorems. Such a language,
with its rules, is called a formal system.

A formal system is defined so precisely that a proof can be evaluated by a
recursive procedure involving only simple logical and arithmetical manipula-
tions. In other words, in the formal system there is an algorithm for testing
the validity of proofs. Today, although not in Hilbert’s time, the algorithm
could be executed on a digital computer and the machine could be asked to
“judge” the merits of the proof.

Because of Hilbert’s requirement that a formal system have a proof-
checking algorithm, it is possible in theory to list one by one all the theorems
that can be proved in a particular system. One first lists in alphabetical or-
der all sequences of symbols one character long and applies the proof-testing
algorithm to each of them, thereby finding all theorems (if any) whose proofs
consist of a single character. One then tests all the two-character sequences
of symbols, and so on. In this way all potential proofs can be checked, and
eventually all theorems can be discovered in order of the size of their proofs.
(The method is, of course, only a theoretical one; the procedure is too lengthy
to be practical.)
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Unprovable Statements

Gödel showed in his 1931 proof that Hilbert’s plan for a completely sys-
tematic mathematics cannot be fulfilled. He did this by constructing an
assertion about the positive integers in the language of the formal system
that is true but that cannot be proved in the system. The formal system,
no matter how large or how carefully constructed it is, cannot encompass all
true theorems and is therefore incomplete. Gödel’s technique can be applied
to virtually any formal system, and it therefore demands the surprising and,
for many, discomforting conclusion that there can be no definitive answer to
the question “What is a valid proof?”

Gödel’s proof of the incompleteness theorem is based on the paradox of
Epimenides the Cretan, who is said to have averred, “All Cretans are liars”
[see “Paradox,” by W. V. Quine; Scientific American, April, 1962]. The
paradox can be rephrased in more general terms as “This statement is false,”
an assertion that is true if and only if it is false and that is therefore neither
true nor false. Gödel replaced the concept of truth with that of provability
and thereby constructed the sentence “This statement is unprovable,” an
assertion that, in a specific formal system, is provable if and only if it is
false. Thus either a falsehood is provable, which is forbidden, or a true
statement is unprovable, and hence the formal system is incomplete. Gödel
then applied a technique that uniquely numbers all statements and proofs
in the formal system and thereby converted the sentence “This statement is
unprovable” into an assertion about the properties of the positive integers.
Because this transformation is possible, the incompleteness theorem applies
with equal cogency to all formal systems in which it is possible to deal with
the positive integers [see “Gödel’s Proof,” by Ernest Nagel and James R.
Newman; Scientific American, June, 1956].

The intimate association between Gödel’s proof and the theory of random
numbers can be made plain through another paradox, similar in form to the
paradox of Epimenides. It is a variant of the Berry paradox, first published in
1908 by Bertrand Russell. It reads: “Find the smallest positive integer which
to be specified requires more characters than there are in this sentence.” The
sentence has 114 characters (counting spaces between words and the period
but not the quotation marks), yet it supposedly specifies an integer that, by
definition, requires more than 114 characters to be specified.

As before, in order to apply the paradox to the incompleteness theorem
it is necessary to remove it from the realm of truth to the realm of provabil-
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ity. The phrase “which requires” must be replaced by “which can be proved
to require,” it being understood that all statements will be expressed in a
particular formal system. In addition the vague notion of “the number of
characters required to specify” an integer can be replaced by the precisely
defined concept of complexity, which is measured in bits rather than charac-
ters.

The result of these transformations is the following computer program:
“Find a series of binary digits that can be proved to be of a complexity
greater than the number of bits in this program.” The program tests all
possible proofs in the formal system in order of their size until it encounters
the first one proving that a specific binary sequence is of a complexity greater
than the number of bits in the program. Then it prints the series it has found
and halts. Of course, the paradox in the statement from which the program
was derived has not been eliminated. The program supposedly calculates a
number that no program its size should be able to calculate. In fact, the
program finds the first number that it can be proved incapable of finding.

The absurdity of this conclusion merely demonstrates that the program
will never find the number it is designed to look for. In a formal system one
cannot prove that a particular series of digits is of a complexity greater than
the number of bits in the program employed to specify the series.

A further generalization can be made about this paradox. It is not the
number of bits in the program itself that is the limiting factor but the number
of bits in the formal system as a whole. Hidden in the program are the axioms
and rules of inference that determine the behavior of the system and provide
the algorithm for testing proofs. The information content of these axioms and
rules can be measured and can be designated the complexity of the formal
system. The size of the entire program therefore exceeds the complexity of
the formal system by a fixed number of bits c. (The actual value of c depends
on the machine language employed.) The theorem proved by the paradox
can therefore be stated as follows: In a formal system of complexity n it is
impossible to prove that a particular series of binary digits is of complexity
greater than n+c, where c is a constant that is independent of the particular
system employed.
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Limits of Formal Systems

Since complexity has been defined as a measure of randomness, this theorem
implies that in a formal system no number can be proved to be random unless
the complexity of the number is less than that of the system itself. Because
all minimal programs are random the theorem also implies that a system of
greater complexity is required in order to prove that a program is a minimal
one for a particular series of digits.

The complexity of the formal system has such an important bearing on the
proof of randomness because it is a measure of the amount of information the
system contains, and hence of the amount of information that can be derived
from it. The formal system rests on axioms: fundamental statements that are
irreducible in the same sense that a minimal program is. (If an axiom could
be expressed more compactly, then the briefer statement would become a new
axiom and the old one would become a derived theorem.) The information
embodied in the axioms is thus itself random, and it can be employed to
test the randomness of other data. The randomness of some numbers can
therefore be proved, but only if they are smaller than the formal system.
Moreover, any formal system is of necessity finite, whereas any series of
digits can be made arbitrarily large. Hence there will always be numbers
whose randomness cannot be proved.

The endeavor to define and measure randomness has greatly clarified the
significance and the implications of Gödel’s incompleteness theorem. That
theorem can now be seen not as an isolated paradox but as a natural conse-
quence of the constraints imposed by information theory. In 1946 Hermann
Weyl said that the doubt induced by such discoveries as Gödel’s theorem had
been “a constant drain on the enthusiasm and determination with which I
pursued my research work.” From the point of view of information theory,
however, Gödel’s theorem does not appear to give cause for depression. In-
stead it seems simply to suggest that in order to progress, mathematicians,
like investigators in other sciences, must search for new axioms.
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Illustrations

Algorithmic definition of randomness

(a) 10100→Computer→11111111111111111111

(b) 01101100110111100010→Computer→01101100110111100010

Algorithmic definition of randomness relies on the capabilities and
limitations of the digital computer. In order to produce a particular out-
put, such as a series of binary digits, the computer must be given a set of
explicit instructions that can be followed without making intellectual judg-
ments. Such a program of instructions is an algorithm. If the desired output
is highly ordered (a), a relatively small algorithm will suffice; a series of
twenty 1’s, for example, might be generated by some hypothetical computer
from the program 10100, which is the binary notation for the decimal num-
ber 20. For a random series of digits (b) the most concise program possible
consists of the series itself. The smallest programs capable of generating a
particular program are called the minimal programs of the series; the size of
these programs, measured in bits, or binary digits, is the complexity of the
series. A series of digits is defined as random if series’ complexity approaches
its size in bits.

Formal systems

Alphabet, Grammar, Axioms, Rules of Inference
↓

Computer

↓
Theorem 1, Theorem 2, Theorem 3, Theorem 4, Theorem 5, . . .

Formal systems devised by David Hilbert contain an algorithm that
mechanically checks the validity of all proofs that can be formulated in the
system. The formal system consists of an alphabet of symbols in which all
statements can be written; a grammar that specifies how the symbols are
to be combined; a set of axioms, or principles accepted without proof; and
rules of inference for deriving theorems from the axioms. Theorems are found
by writing all the possible grammatical statements in the system and testing
them to determine which ones are in accord with the rules of inference and are
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therefore valid proofs. Since this operation can be performed by an algorithm
it could be done by a digital computer. In 1931 Kurt Gödel demonstrated
that virtually all formal systems are incomplete: in each of them there is at
least one statement that is true but that cannot be proved.

Inductive reasoning

Observations: 0101010101

Predictions: 01010101010101010101
Theory: Ten repetitions of 01
Size of Theory: 21 characters

Predictions: 01010101010000000000
Theory: Five repetitions of 01 followed by ten 0’s

Size of Theory: 42 characters

Inductive reasoning as it is employed in science was analyzed math-
ematically by Ray J. Solomonoff. He represented a scientist’s observations
as a series of binary digits; the observations are to be explained and new
ones are to be predicted by theories, which are regarded as algorithms in-
structing a computer to reproduce the observations. (The programs would
not be English sentences but binary series, and their size would be measured
not in characters but in bits.) Here two competing theories explain the ex-
isting data; Occam’s razor demands that the simpler, or smaller, theory be
preferred. The task of the scientist is to search for minimal programs. If
the data are random, the minimal programs are no more concise than the
observations and no theory can be formulated.

Random sequences

Illustration is a graph of number of n-digit sequences
as a function of their complexity.

The curve grows exponentially
from approximately 0 to approximately 2n

as the complexity goes from 0 to n.

Random sequences of binary digits make up the majority of all such
sequences. Of the 2n series of n digits, most are of a complexity that is within
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a few bits of n. As complexity decreases, the number of series diminishes in
a roughly exponential manner. Orderly series are rare; there is only one, for
example, that consists of n 1’s.

Three paradoxes

Russell Paradox

Consider the set of all sets that are not members of themselves.
Is this set a member of itself?

Epimenides Paradox

Consider this statement: “This statement is false.”
Is this statement true?

Berry Paradox

Consider this sentence: “Find the smallest positive integer
which to be specified requires more characters

than there are in this sentence.”
Does this sentence specify a positive integer?

Three paradoxes delimit what can be proved. The first, devised by
Bertrand Russell, indicated that informal reasoning in mathematics can yield
contradictions, and it led to the creation of formal systems. The second,
attributed to Epimenides, was adapted by Gödel to show that even within
a formal system there are true statements that are unprovable. The third
leads to the demonstration that a specific number cannot be proved random.

Unprovable statements

(a) This statement is unprovable.

(b) The complexity of 01101100110111100010 is greater than 15 bits.

(c) The series of digits 01101100110111100010 is random.

(d) 10100 is a minimal program for the series 11111111111111111111.

Unprovable statements can be shown to be false, if they are false, but
they cannot be shown to be true. A proof that “This statement is unprov-
able” (a) reveals a self-contradiction in a formal system. The assignment of
a numerical value to the complexity of a particular number (b) requires a
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proof that no smaller algorithm for generating the number exists; the proof
could be supplied only if the formal system itself were more complex than
the number. Statements labeled c and d are subject to the same limitation,
since the identification of a random number or a minimal program requires
the determination of complexity.
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Gödel’s theorem and
information

Gödel’s theorem may be demonstrated using arguments having an
information-theoretic flavor. In such an approach it is possible to argue that
if a theorem contains more information than a given set of axioms, then it
is impossible for the theorem to be derived from the axioms. In contrast with
the traditional proof based on the paradox of the liar, this new viewpoint sug-
gests that the incompleteness phenomenon discovered by Gödel is natural and
widespread rather than pathological and unusual.

1. Introduction

To set the stage, let us listen to Hermann Weyl (1946), as quoted by Eric
Temple Bell (1951):

We are less certain than ever about the ultimate foundations
of (logic and) mathematics. Like everybody and everything in
the world today, we have our “crisis.” We have had it for nearly
fifty years. Outwardly it does not seem to hamper our daily work,
and yet I for one confess that it has had a considerable practi-
cal influence on my mathematical life: it directed my interests
to fields I considered relatively “safe,” and has been a constant
drain on the enthusiasm and determination with which I pursued
my research work. This experience is probably shared by other
mathematicians who are not indifferent to what their scientific
endeavors mean in the context of man’s whole caring and know-
ing, suffering and creative existence in the world.

And these are the words of John von Neumann (1963):

47
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. . . there have been within the experience of people now living
at least three serious crises. . . There have been two such crises in
physics—namely, the conceptual soul-searching connected with
the discovery of relativity and the conceptual difficulties con-
nected with discoveries in quantum theory. . . The third crisis was
in mathematics. It was a very serious conceptual crisis, dealing
with rigor and the proper way to carry out a correct mathemat-
ical proof. In view of the earlier notions of the absolute rigor of
mathematics, it is surprising that such a thing could have hap-
pened, and even more surprising that it could have happened in
these latter days when miracles are not supposed to take place.
Yet it did happen.

At the time of its discovery, Kurt Gödel’s incompleteness theorem was
a great shock and caused much uncertainty and depression among mathe-
maticians sensitive to foundational issues, since it seemed to pull the rug out
from under mathematical certainty, objectivity, and rigor. Also, its proof was
considered to be extremely difficult and recondite. With the passage of time
the situation has been reversed. A great many different proofs of Gödel’s
theorem are now known, and the result is now considered easy to prove and
almost obvious: It is equivalent to the unsolvability of the halting problem,
or alternatively to the assertion that there is an r.e. (recursively enumerable)
set that is not recursive. And it has had no lasting impact on the daily lives
of mathematicians or on their working habits; no one loses sleep over it any
more.

Gödel’s original proof constructed a paradoxical assertion that is true but
not provable within the usual formalizations of number theory. In contrast I
would like to measure the power of a set of axioms and rules of inference. I
would like to able to say that if one has ten pounds of axioms and a twenty-
pound theorem, then that theorem cannot be derived from those axioms.
And I will argue that this approach to Gödel’s theorem does suggest a change
in the daily habits of mathematicians, and that Gödel’s theorem cannot be
shrugged away.

To be more specific, I will apply the viewpoint of thermodynamics and
statistical mechanics to Gödel’s theorem, and will use such concepts as prob-
ability, randomness, entropy, and information to study the incompleteness
phenomenon and to attempt to evaluate how widespread it is. On the ba-
sis of this analysis, I will suggest that mathematics is perhaps more akin to
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physics than mathematicians have been willing to admit, and that perhaps
a more flexible attitude with respect to adopting new axioms and methods
of reasoning is the proper response to Gödel’s theorem. Probabilistic proofs
of primality via sampling (Chaitin and Schwartz, 1978) also suggest that
the sources of mathematical truth are wider than usually thought. Perhaps
number theory should be pursued more openly in the spirit of experimental
science (Pólya, 1959)!

I am indebted to John McCarthy and especially to Jacob Schwartz for
making me realize that Gödel’s theorem is not an obstacle to a practical
AI (artificial intelligence) system based on formal logic. Such an AI would
take the form of an intelligent proof checker. Gottfried Wilhelm Liebnitz
and David Hilbert’s dream that disputes could be settled with the words
“Gentlemen, let us compute!” and that mathematics could be formalized,
should still be a topic for active research. Even though mathematicians
and logicians have erroneously dropped this train of thought dissuaded by
Gödel’s theorem, great advances have in fact been made “covertly,” under
the banner of computer science, LISP, and AI (Cole et al., 1981; Dewar et
al., 1981; Levin, 1974; Wilf, 1982).

To speak in metaphors from Douglas Hofstadter (1979), we shall now
stroll through an art gallery of proofs of Gödel’s theorem, to the tune of
Moussorgsky’s pictures at an exhibition! Let us start with some traditional
proofs (Davis, 1978; Hofstadter, 1979; Levin, 1974; Post, 1965).

2. Traditional Proofs of Gödel’s Theorem

Gödel’s original proof of the incompleteness theorem is based on the paradox
of the liar: “This statement is false.” He obtains a theorem instead of a
paradox by changing this to: “This statement is unprovable.” If this assertion
is unprovable, then it is true, and the formalization of number theory in
question is incomplete. If this assertion is provable, then it is false, and
the formalization of number theory is inconsistent. The original proof was
quite intricate, much like a long program in machine language. The famous
technique of Gödel numbering statements was but one of the many ingenious
ideas brought to bear by Gödel to construct a number-theoretic assertion
which says of itself that it is unprovable.

Gödel’s original proof applies to a particular formalization of number the-
ory, and was to be followed by a paper showing that the same methods applied
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to a much broader class of formal axiomatic systems. The modern approach
in fact applies to all formal axiomatic systems, a concept which could not
even be defined when Gödel wrote his original paper, owing to the lack of a
mathematical definition of effective procedure or computer algorithm. After
Alan Turing succeeded in defining effective procedure by inventing a simple
idealized computer now called the Turing machine (also done independently
by Emil Post), it became possible to proceed in a more general fashion.

Hilbert’s key requirement for a formal mathematical system was that
there be an objective criterion for deciding if a proof written in the language
of the system is valid or not. In other words, there must be an algorithm, a
computer program, a Turing machine, for checking proofs. And the compact
modern definition of formal axiomatic system as a recursively enumerable set
of assertions is an immediate consequence if one uses the so-called British
Museum algorithm. One applies the proof checker in turn to all possible
proofs, and prints all the theorems, which of course would actually take
astronomical amounts of time. By the way, in practice LISP is a very conve-
nient programming language in which to write a simple proof checker (Levin,
1974).

Turing showed that the halting problem is unsolvable, that is, that there
is no effective procedure or algorithm for deciding whether or not a program
ever halts. Armed with the general definition of a formal axiomatic system
as an r.e. set of assertions in a formal language, one can immediately deduce
a version of Gödel’s incompleteness theorem from Turing’s theorem. I will
sketch three different proofs of the unsolvability of the halting problem in
a moment; first let me derive Gödel’s theorem from it. The reasoning is
simply that if it were always possible to prove whether or not particular
programs halt, since the set of theorems is r.e., one could use this to solve
the halting problem for any particular program by enumerating all theorems
until the matter is settled. But this contradicts the unsolvability of the
halting problem.

Here come three proofs that the halting problem is unsolvable. One proof
considers that function F (N) defined to be either one more than the value
of the Nth computable function applied to the natural number N , or zero if
this value is undefined because the Nth computer program does not halt on
input N . F cannot be a computable function, for if program N calculated
it, then one would have F (N) = F (N) + 1, which is impossible. But the
only way that F can fail to be computable is because one cannot decide if
the Nth program ever halts when given input N .
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The proof I have just given is of course a variant of the diagonal method
which Georg Cantor used to show that the real numbers are more numer-
ous than the natural numbers (Courant and Robbins, 1941). Something
much closer to Cantor’s original technique can also be used to prove Turing’s
theorem. The argument runs along the lines of Bertrand Russell’s paradox
(Russell, 1967) of the set of all things that are not members of themselves.
Consider programs for enumerating sets of natural numbers, and number
these computer programs. Define a set of natural numbers consisting of the
numbers of all programs which do not include their own number in their out-
put set. This set of natural numbers cannot be recursively enumerable, for if
it were listed by computer program N , one arrives at Russell’s paradox of the
barber in a small town who shaves all those and only those who do not shave
themselves, and can neither shave himself nor avoid doing so. But the only
way that this set can fail to be recursively enumerable is if it is impossible
to decide whether or not a program ever outputs a specific natural number,
and this is a variant of the halting problem.

For yet another proof of the unsolvability of the halting problem, consider
programs which take no input and which either produce a single natural
number as output or loop forever without ever producing an output. Think
of these programs as being written in binary notation, instead of as natural
numbers as before. I now define a so-called Busy Beaver function: BB of
N is the largest natural number output by any program less than N bits in
size. The original Busy Beaver function measured program size in terms of
the number of states in a Turing machine instead of using the more correct
information-theoretic measure, bits. It is easy to see that BB of N grows
more quickly than any computable function, and is therefore not computable,
which as before implies that the halting problem is unsolvable.

In a beautiful and easy to understand paper Post (1965) gave versions
of Gödel’s theorem based on his concepts of simple and creative r.e. sets.
And he formulated the modern abstract form of Gödel’s theorem, which is
like a Japanese haiku: there is an r.e. set of natural numbers that is not
recursive. This set has the property that there are programs for printing all
the members of the set in some order, but not in ascending order. One can
eventually realize that a natural number is a member of the set, but there is
no algorithm for deciding if a given number is in the set or not. The set is r.e.
but its complement is not. In fact, the set of (numbers of) halting programs
is such a set. Now consider a particular formal axiomatic system in which
one can talk about natural numbers and computer programs and such, and
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let X be any r.e. set whose complement is not r.e. It follows immediately that
not all true assertions of the form “the natural number N is not a member
of the set X” are theorems in the formal axiomatic system. In fact, if X is
what Post called a simple r.e. set, then only finitely many of these assertions
can be theorems.

These traditional proofs of Gödel’s incompleteness theorem show that
formal axiomatic systems are incomplete, but they do not suggest ways to
measure the power of formal axiomatic systems, to rank their degree of com-
pleteness or incompleteness. Actually, Post’s concept of a simple set contains
the germ of the information-theoretic versions of Gödel’s theorem that I will
give later, but this is only visible in retrospect. One could somehow choose
a particular simple r.e. set X and rank formal axiomatic systems according
to how many different theorems of the form “N is not in X” are provable.
Here are three other quantitative versions of Gödel’s incompleteness theorem
which do sort of fall within the scope of traditional methods.

Consider a particular formal axiomatic system in which it is possible
to talk about total recursive functions (computable functions which have a
natural number as value for each natural number input) and their running
time computational complexity. It is possible to construct a total recursive
function which grows more quickly than any function which is provably total
recursive in the formal axiomatic system. It is also possible to construct a
total recursive function which takes longer to compute than any provably
total recursive function. That is to say, a computer program which produces
a natural number output and then halts whenever it is given a natural number
input, but this cannot be proved in the formal axiomatic system, because the
program takes too long to produce its output.

It is also fun to use constructive transfinite ordinal numbers (Hofstadter,
1979) to measure the power of formal axiomatic systems. A constructive
ordinal is one which can be obtained as the limit from below of a computable
sequence of smaller constructive ordinals. One measures the power of a formal
axiomatic system by the first constructive ordinal which cannot be proved to
be a constructive ordinal within the system. This is like the paradox of the
first unmentionable or indefinable ordinal number (Russell, 1967)!

Before turning to information-theoretic incompleteness theorems, I must
first explain the basic concepts of algorithmic information theory (Chaitin,
1975b, 1977, 1982).
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3. Algorithmic Information Theory

Algorithmic information theory focuses on individual objects rather than on
the ensembles and probability distributions considered in Claude Shannon
and Norbert Wiener’s information theory. How many bits does it take to
describe how to compute an individual object? In other words, what is the
size in bits of the smallest program for calculating it? It is easy to see that
since general-purpose computers (universal Turing machines) can simulate
each other, the choice of computer as yardstick is not very important and
really only corresponds to the choice of origin in a coordinate system.

The fundamental concepts of this new information theory are: algorith-
mic information content, joint information, relative information, mutual in-
formation, algorithmic randomness, and algorithmic independence. These
are defined roughly as follows.

The algorithmic information content I(X) of an individual object X is
defined to be the size of the smallest program to calculate X. Programs
must be self-delimiting so that subroutines can be combined by concatenating
them. The joint information I(X, Y ) of two objects X and Y is defined to be
the size of the smallest program to calculate X and Y simultaneously. The
relative or conditional information content I(X|Y ) of X given Y is defined to
be the size of the smallest program to calculate X from a minimal program
for Y .

Note that the relative information content of an object is never greater
than its absolute information content, for being given additional informa-
tion can only help. Also, since subroutines can be concatenated, it follows
that joint information is subadditive. That is to say, the joint information
content is bounded from above by the sum of the individual information con-
tents of the objects in question. The extent to which the joint information
content is less than this sum leads to the next fundamental concept, mutual
information.

The mutual information content I(X : Y ) measures the commonality
of X and Y : it is defined as the extent to which knowing X helps one to
calculate Y , which is essentially the same as the extent to which knowing Y
helps one to calculate X, which is also the same as the extent to which it is
cheaper to calculate them together than separately. That is to say,

I(X : Y ) = I(X) − I(X|Y )

= I(Y ) − I(Y |X)



54 Thinking about Gödel & Turing

= I(X) + I(Y ) − I(X, Y ).

Note that this implies that

I(X, Y ) = I(X) + I(Y |X)

= I(Y ) + I(X|Y ).

I can now define two very fundamental and philosophically significant
notions: algorithmic randomness and algorithmic independence. These con-
cepts are, I believe, quite close to the intuitive notions that go by the same
name, namely, that an object is chaotic, typical, unnoteworthy, without
structure, pattern, or distinguishing features, and is irreducible information,
and that two objects have nothing in common and are unrelated.

Consider, for example, the set of all N -bit long strings. Most such strings
S have I(S) approximately equal to N plus I(N), which is N plus the algo-
rithmic information contained in the base-two numeral for N , which is equal
to N plus order of log N . No N -bit long S has information content greater
than this. A few have less information content; these are strings with a regu-
lar structure or pattern. Those S of a given size having greatest information
content are said to be random or patternless or algorithmically incompress-
ible. The cutoff between random and nonrandom is somewhere around I(S)
equal to N if the string S is N bits long.

Similarly, an infinite binary sequence such as the base-two expansion of π
is random if and only if all its initial segments are random, that is, if and only
if there is a constant C such that no initial segment has information content
less than C bits below its length. Of course, π is the extreme opposite of a
random string: it takes only I(N) which is order of log N bits to calculate
π’s first N bits. But the probability that an infinite sequence obtained by
independent tosses of a fair coin is algorithmically random is unity.

Two strings are algorithmically independent if their mutual information
is essentially zero, more precisely, if their mutual information is as small as
possible. Consider, for example, two arbitrary strings X and Y each N bits
in size. Usually, X and Y will be random to each other, excepting the fact
that they have the same length, so that I(X : Y ) is approximately equal
to I(N). In other words, knowing one of them is no help in calculating the
other, excepting that it tells one the other string’s size.

To illustrate these ideas, let me give an information-theoretic proof that
there are infinitely many prime numbers (Chaitin, 1979). Suppose on the
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contrary that there are only finitely many primes, in fact, K of them. Con-
sider an algorithmically random natural number N . On the one hand, we
know that I(N) is equal to log2 N+ order of log log N , since the base-two
numeral for N is an algorithmically random (log2 N)-bit string. On the other
hand, N can be calculated from the exponents in its prime factorization, and
vice versa. Thus I(N) is equal to the joint information of the K exponents in
its prime factorization. By subadditivity, this joint information is bounded
from above by the sum of the information contents of the K individual ex-
ponents. Each exponent is of order log N . The information content of each
exponent is thus of order log log N . Hence I(N) is simultaneously equal
to log2 N + O(log log N) and less than or equal to KO(log log N), which is
impossible.

The concepts of algorithmic information theory are made to order for
obtaining quantitative incompleteness theorems, and I will now give a number
of information-theoretic proofs of Gödel’s theorem (Chaitin, 1974a, 1974b,
1975a, 1977, 1982; Chaitin and Schwartz, 1978; Gardner, 1979).

4. Information-Theoretic Proofs of Gödel’s

Theorem

I propose that we consider a formal axiomatic system to be a computer pro-
gram for listing the set of theorems, and measure its size in bits. In other
words, the measure of the size of a formal axiomatic system that I will use
is quite crude. It is merely the amount of space it takes to specify a proof-
checking algorithm and how to apply it to all possible proofs, which is roughly
the amount of space it takes to be very precise about the alphabet, vocabu-
lary, grammar, axioms, and rules of inference. This is roughly proportional
to the number of pages it takes to present the formal axiomatic system in a
textbook.

Here is the first information-theoretic incompleteness theorem. Consider
an N -bit formal axiomatic system. There is a computer program of size N
which does not halt, but one cannot prove this within the formal axiomatic
system. On the other hand, N bits of axioms can permit one to deduce
precisely which programs of size less than N halt and which ones do not.
Here are two different N -bit axioms which do this. If God tells one how
many different programs of size less than N halt, this can be expressed as an
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N -bit base-two numeral, and from it one could eventually deduce which of
these programs halt and which do not. An alternative divine revelation would
be knowing that program of size less than N which takes longest to halt. (In
the current context, programs have all input contained within them.)

Another way to thwart an N -bit formal axiomatic system is to merely toss
an unbiased coin slightly more than N times. It is almost certain that the
resulting binary string will be algorithmically random, but it is not possible to
prove this within the formal axiomatic system. If one believes the postulate
of quantum mechanics that God plays dice with the universe (Albert Einstein
did not), then physics provides a means to expose the limitations of formal
axiomatic systems. In fact, within an N -bit formal axiomatic system it is not
even possible to prove that a particular object has algorithmic information
content greater than N , even though almost all (all but finitely many) objects
have this property.

The proof of this closely resembles G. G. Berry’s paradox of “the first
natural number which cannot be named in less than a billion words,” pub-
lished by Russell at the turn of the century (Russell, 1967). The version of
Berry’s paradox that will do the trick is “that object having the shortest
proof that its algorithmic information content is greater than a billion bits.”
More precisely, “that object having the shortest proof within the following
formal axiomatic system that its information content is greater than the in-
formation content of the formal axiomatic system: . . . ,” where the dots are
to be filled in with a complete description of the formal axiomatic system in
question.

By the way, the fact that in a given formal axiomatic system one can
only prove that finitely many specific strings are random, is closely related
to Post’s notion of a simple r.e. set. Indeed, the set of nonrandom or com-
pressible strings is a simple r.e. set. So Berry and Post had the germ of my
incompleteness theorem!

In order to proceed, I must define a fascinating algorithmically random
real number between zero and one, which I like to call Ω (Chaitin, 1975b;
Gardner, 1979). Ω is a suitable subject for worship by mystical cultists, for
as Charles Bennett (Gardner, 1979) has argued persuasively, in a sense Ω
contains all constructive mathematical truth, and expresses it as concisely
and compactly as possible. Knowing the numerical value of Ω with N bits of
precision, that is to say, knowing the first N bits of Ω’s base-two expansion,
is another N -bit axiom that permits one to deduce precisely which programs
of size less than N halt and which ones do not.
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Ω is defined as the halting probability of whichever standard general-
purpose computer has been chosen, if each bit of its program is produced
by an independent toss of a fair coin. To Turing’s theorem in recursive
function theory that the halting problem is unsolvable, there corresponds in
algorithmic information theory the theorem that the base-two expansion of Ω
is algorithmically random. Therefore it takes N bits of axioms to be able to
prove what the first N bits of Ω are, and these bits seem completely accidental
like the products of a random physical process. One can therefore measure
the power of a formal axiomatic system by how much of the numerical value
of Ω it is possible to deduce from its axioms. This is sort of like measuring
the power of a formal axiomatic system in terms of the size in bits of the
shortest program whose halting problem is undecidable within the formal
axiomatic system.

It is possible to dress this incompleteness theorem involving Ω so that
no direct mention is made of halting probabilities, in fact, in rather straight-
forward number-theoretic terms making no mention of computer programs at
all. Ω can be represented as the limit of a monotone increasing computable
sequence of rational numbers. Its Nth bit is therefore the limit as T tends
to infinity of a computable function of N and T . Thus the Nth bit of Ω
can be expressed in the form ∃X∀Y [computable predicate of X, Y , and N ].
Complete chaos is only two quantifiers away from computability! Ω can also
be expressed via a polynomial P in, say, one hundred variables, with integer
coefficients and exponents (Davis et al., 1976): the Nth bit of Ω is a 1 if and
only if there are infinitely many natural numbers K such that the equation
P (N, K, X1, . . . , X98) = 0 has a solution in natural numbers.

Of course, Ω has the very serious problem that it takes much too long
to deduce theorems from it, and this is also the case with the other two
axioms we considered. So the ideal, perfect mathematical axiom is in fact
useless! One does not really want the most compact axiom for deducing a
given set of assertions. Just as there is a trade-off between program size
and running time, there is a trade-off between the number of bits of axioms
one assumes and the size of proofs. Of course, random or irreducible truths
cannot be compressed into axioms shorter than themselves. If, however, a
set of assertions is not algorithmically independent, then it takes fewer bits
of axioms to deduce them all than the sum of the number of bits of axioms it
takes to deduce them separately, and this is desirable as long as the proofs do
not get too long. This suggests a pragmatic attitude toward mathematical
truth, somewhat more like that of physicists.
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Ours has indeed been a long stroll through a gallery of incompleteness
theorems. What is the conclusion or moral? It is time to make a final
statement about the meaning of Gödel’s theorem.

5. The Meaning of Gödel’s Theorem

Information theory suggests that the Gödel phenomenon is natural and
widespread, not pathological and unusual. Strangely enough, it does this
via counting arguments, and without exhibiting individual assertions which
are true but unprovable! Of course, it would help to have more proofs that
particular interesting and natural true assertions are not demonstrable within
fashionable formal axiomatic systems.

The real question is this: Is Gödel’s theorem a mandate for revolution,
anarchy, and license?! Can one give up after trying for two months to prove
a theorem, and add it as a new axiom? This sounds ridiculous, but it is sort
of what number theorists have done with Bernhard Riemann’s ζ conjecture
(Pólya, 1959). Of course, two months is not enough. New axioms should be
chosen with care, because of their usefulness and large amounts of evidence
suggesting that they are correct, in the same careful manner, say, in practice
in the physics community.

Gödel himself has espoused this view with remarkable vigor and clarity,
in his discussion of whether Cantor’s continuum hypothesis should be added
to set theory as a new axiom (Gödel, 1964):

. . . even disregarding the intrinsic necessity of some new ax-
iom, and even in case it has no intrinsic necessity at all, a probable
decision about its truth is possible also in another way, namely,
inductively by studying its “success.” Success here means fruitful-
ness in consequences, in particular in “verifiable” consequences,
i.e., consequences demonstrable without the new axiom, whose
proofs with the help of the new axiom, however, are considerably
simpler and easier to discover, and make it possible to contract
into one proof many different proofs. The axioms for the sys-
tem of real numbers, rejected by intuitionists, have in this sense
been verified to some extent, owing to the fact that analytical
number theory frequently allows one to prove number-theoretical
theorems which, in a more cumbersome way, can subsequently be
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verified by elementary methods. A much higher degree of ver-
ification than that, however, is conceivable. There might exist
axioms so abundant in their verifiable consequences, shedding so
much light upon a whole field, and yielding such powerful meth-
ods for solving problems (and even solving them constructively,
as far as that is possible) that, no matter whether or not they are
intrinsically necessary, they would have to be accepted at least in
the same sense as any well-established physical theory.

Later in the same discussion Gödel refers to these ideas again:

It was pointed out earlier. . . that, besides mathematical in-
tuition, there exists another (though only probable) criterion of
the truth of mathematical axioms, namely their fruitfulness in
mathematics and, one may add, possibly also in physics. . . The
simplest case of an application of the criterion under discussion
arises when some. . . axiom has number-theoretical consequences
verifiable by computation up to any given integer.

Gödel also expresses himself in no uncertain terms in a discussion of
Russell’s mathematical logic (Gödel, 1964):

The analogy between mathematics and a natural science is
enlarged upon by Russell also in another respect. . . axioms need
not be evident in themselves, but rather their justification lies
(exactly as in physics) in the fact that they make it possible for
these “sense perceptions” to be deduced. . . I think that. . . this
view has been largely justified by subsequent developments, and
it is to be expected that it will be still more so in the future. It
has turned out that the solution of certain arithmetical problems
requires the use of assumptions essentially transcending arith-
metic. . . Furthermore it seems likely that for deciding certain
questions of abstract set theory and even for certain related ques-
tions of the theory of real numbers new axioms based on some
hitherto unknown idea will be necessary. Perhaps also the appar-
ently insurmountable difficulties which some other mathematical
problems have been presenting for many years are due to the fact
that the necessary axioms have not yet been found. Of course,
under these circumstances mathematics may lose a good deal of



60 Thinking about Gödel & Turing

its “absolute certainty;” but, under the influence of the modern
criticism of the foundations, this has already happened to a large
extent. . .

I end as I began, with a quotation from Weyl (1949): “A truly realistic
mathematics should be conceived, in line with physics, as a branch of the
theoretical construction of the one real world, and should adopt the same
sober and cautious attitude toward hypothetic extensions of its foundations
as is exhibited by physics.”

6. Directions for Future Research

a. Prove that a famous mathematical conjecture is unsolvable in the usual
formalizations of number theory. Problem: if Pierre Fermat’s “last
theorem” is undecidable then it is true, so this is hard to do.

b. Formalize all of college mathematics in a practical way. One wants to
produce textbooks that can be run through a practical formal proof
checker and that are not too much larger than the usual ones. LISP
(Levin, 1974) and SETL (Dewar et al., 1981) might be good for this.

c. Is algorithmic information theory relevant to physics, in particular,
to thermodynamics and statistical mechanics? Explore the thermo-
dynamics of computation (Bennett, 1982) and determine the ultimate
physical limitations of computers.

d. Is there a physical phenomenon that computes something noncom-
putable? Contrariwise, does Turing’s thesis that anything computable
can be computed by a Turing machine constrain the physical universe
we are in?

e. Develop measures of self-organization and formal proofs that life must
evolve (Chaitin, 1979; Eigen and Winkler, 1981; von Neumann, 1966).

f. Develop formal definitions of intelligence and measures of its various
components; apply information theory and complexity theory to AI.
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Randomness in arithmetic

It is impossible to prove whether each member of a family of algebraic equa-
tions has a finite or an infinite number of solutions: the answers vary ran-
domly and therefore elude mathematical reasoning.

What could be more certain than the fact that 2 plus 2 equals 4? Since
the time of the ancient Greeks mathematicians have believed there is little—
if anything—as unequivocal as a proved theorem. In fact, mathematical
statements that can be proved true have often been regarded as a more solid
foundation for a system of thought than any maxim about morals or even
physical objects. The 17th-century German mathematician and philosopher
Gottfried Wilhelm Leibniz even envisioned a “calculus” of reasoning such
that all disputes could one day be settled with the words “Gentlemen, let us
compute!” By the beginning of this century symbolic logic had progressed to
such an extent that the German mathematician David Hilbert declared that
all mathematical questions are in principle decidable, and he confidently set
out to codify once and for all the methods of mathematical reasoning.

Such blissful optimism was shattered by the astonishing and profound
discoveries of Kurt Gödel and Alan M. Turing in the 1930’s. Gödel showed
that no finite set of axioms and methods of reasoning could encompass all
the mathematical properties of the positive integers. Turing later couched
Gödel’s ingenious and complicated proof in a more accessible form. He
showed that Gödel’s incompleteness theorem is equivalent to the assertion
that there can be no general method for systematically deciding whether a
computer program will ever halt, that is, whether it will ever cause the com-
puter to stop running. Of course, if a particular program does cause the
computer to halt, that fact can be easily proved by running the program.

65
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The difficulty lies in proving that an arbitrary program never halts.
I have recently been able to take a further step along the path laid out

by Gödel and Turing. By translating a particular computer program into an
algebraic equation of a type that was familiar even to the ancient Greeks,
I have shown that there is randomness in the branch of pure mathematics
known as number theory. My work indicates that—to borrow Einstein’s
metaphor—God sometimes plays dice with whole numbers!

This result, which is part of a body of work called algorithmic information
theory, is not a cause for pessimism; it does not portend anarchy or lawless-
ness in mathematics. (Indeed, most mathematicians continue working on
problems as before.) What it means is that mathematical laws of a different
kind might have to apply in certain situations: statistical laws. In the same
way that it is impossible to predict the exact moment at which an individual
atom undergoes radioactive decay, mathematics is sometimes powerless to
answer particular questions. Nevertheless, physicists can still make reliable
predictions about averages over large ensembles of atoms. Mathematicians
may in some cases be limited to a similar approach.

My work is a natural extension of Turing’s, but whereas Turing considered
whether or not an arbitrary program would ever halt, I consider the prob-
ability that any general-purpose computer will stop running if its program
is chosen completely at random. What do I mean when I say “chosen com-
pletely at random”? Since at the most fundamental level any program can
be reduced to a sequence of bits (each of which can take on the value 0 or 1)
that are “read” and “interpreted” by the computer hardware, I mean that
a completely random program consisting of n bits could just as well be the
result of flipping a coin n times (in which a “heads” represents a 0 and a
“tails” represents 1, or vice versa).

The probability that such a completely random program will halt, which
I have named omega (Ω), can be expressed in terms of a real number between
0 and 1. (The statement Ω = 0 would mean that no random program will
ever halt, and Ω = 1 would mean that every random program halts. For
a general-purpose computer neither of these extremes is actually possible.)
Because Ω is a real number, it can be fully expressed only as an unending
sequence of digits. In base 2 such a sequence would amount to an infinite
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string of 0’s and 1’s.
Perhaps the most interesting characteristic of Ω is that it is algorithmi-

cally random: it cannot be compressed into a program (considered as a string
of bits) shorter than itself. This definition of randomness, which has a cen-
tral role in algorithmic information theory, was independently formulated in
the mid-1960’s by the late A. N. Kolmogorov and me. (I have since had to
correct the definition.)

The basic idea behind the definition is a simple one. Some sequences of
bits can be compressed into programs much shorter than they are, because
they follow a pattern or rule. For example, a 200-bit sequence of the form
0101010101. . . can be greatly compressed by describing it as “100 repetitions
of 01.” Such sequences certainly are not random. A 200-bit sequence gen-
erated by tossing a coin, on the other hand, cannot be compressed, since in
general there is no pattern to the succession of 0’s and 1’s: it is a completely
random sequence.

Of all the possible sequences of bits, most are incompressible and there-
fore random. Since a sequence of bits can be considered to be a base-2 rep-
resentation of any real number (if one allows infinite sequences), it follows
that most real numbers are in fact random. It is not difficult to show that
an algorithmically random number, such as Ω, exhibits the usual statistical
properties one associates with randomness. One such property is normality:
every possible digit appears with equal frequency in the number. In a base-
2 representation this means that as the number of digits of Ω approaches
infinity, 0 and 1 respectively account for exactly 50 percent of Ω’s digits.

A key technical point that must be stipulated in order for Ω to make
sense is that an input program must be self-delimiting: its total length (in
bits) must be given within the program itself. (This seemingly minor point,
which paralyzed progress in the field for nearly a decade, is what entailed
the redefinition of algorithmic randomness.) Real programming languages
are self-delimiting, because they provide constructs for beginning and end-
ing a program. Such constructs allow a program to contain well-defined
subprograms, which may also have other subprograms nested in them. Be-
cause a self-delimiting program is built up by concatenating and nesting
self-delimiting subprograms, a program is syntactically complete only when
the last open subprogram is closed. In essence the beginning and ending
constructs for programs and subprograms function respectively like left and
right parentheses in mathematical expressions.

If programs were not self-delimiting, they could not be constructed from
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subprograms, and summing the halting probabilities for all programs would
yield an infinite number. If one considers only self-delimiting programs, not
only is Ω limited to the range between 0 to 1 but also it can be explicitly
calculated “in the limit from below.” That is to say, it is possible to calculate
an infinite sequence of rational numbers (which can be expressed in terms of
a finite sequence of bits) each of which is closer to the true value of Ω than
the preceding number.

One way to do this is to systematically calculate Ωn for increasing values
of n; Ωn is the probability that a completely random program up to n bits
in size will halt within n seconds if the program is run on a given computer.
Since there are 2k possible programs that are k bits long, Ωn can in principle
be calculated by determining for every value of k between 1 and n how many
of the possible programs actually halt within n seconds, multiplying that
number by 2−k and then summing all the products. In other words, each
k-bit program that halts contributes 2−k to Ωn; programs that do not halt
contribute 0.

If one were miraculously given the value of Ω with k bits of precision, one
could calculate a sequence of Ωn’s until one reached a value that equaled the
given value of Ω. At this point one would know all programs of a size less than
k bits that halt; in essence one would have solved Turing’s halting problem
for all programs of a size less than k bits. Of course, the time required for
the calculation would be enormous for reasonable values of k.

So far I have been referring exclusively to computers and their programs in
discussing the halting problem, but it took on a new dimension in light of
the work of J. P. Jones of the University of Calgary and Y. V. Matijasevič
of the V. A. Steklov Institute of Mathematics in Leningrad. Their work
provides a method for casting the problem as assertions about particular
diophantine equations. These algebraic equations, which involve only mul-
tiplication, addition and exponentiation of whole numbers, are named after
the third-century Greek mathematician Diophantos of Alexandria.

To be more specific, by applying the method of Jones and Matijasevič
one can equate the statement that a particular program does not halt with
the assertion that one of a particular family of diophantine equations has
no solution in whole numbers. As with the original version of the halting
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problem for computers, it is easy to prove a solution exists: all one has to do
is to plug in the correct numbers and verify that the resulting numbers on
the left and right sides of the equal sign are in fact equal. The much more
difficult problem is to prove that there are absolutely no solutions when this
is the case.

The family of equations is constructed from a basic equation that contains
a particular variable k, called the parameter, which takes on the values 1, 2,
3 and so on. Hence there is an infinitely large family of equations (one for
each value of k) that can be generated from one basic equation for each of
a “family” of programs. The mathematical assertion that the diophantine
equation with parameter k has no solution encodes the assertion that the
kth computer program never halts. On the other hand, if the kth program
does halt, then the equation has exactly one solution. In a sense the truth
or falsehood of assertions of this type is mathematically uncertain, since it
varies unpredictably as the parameter k takes on different values.

My approach to the question of unpredictability in mathematics is similar,
but it achieves a much greater degree of randomness. Instead of “arithmetiz-
ing” computer programs that may or may not halt as a family of diophantine
equations, I apply the method of Jones and Matijasevič to arithmetize a sin-
gle program to calculate the kth bit in Ωn.

The method is based on a curious property of the parity of binomial coeffi-
cients (whether they are even or odd numbers) that was noticed by Édouard
A. Lucas a century ago but was not properly appreciated until now. Bino-
mial coefficients are the multiplicands of the powers of x that arise when one
expands expressions of the type (x + 1)n. These coefficients can easily be
computed by constructing what is known as Pascal’s triangle.

Lucas’s theorem asserts that the coefficient of xk in the expansion of
(x + 1)n is odd only if each digit in the base-2 representation of the number
k is less than or equal to the corresponding digit in the base-2 representation
of n (starting from the right and reading left). To put it a little more simply,
the coefficient for xk in an expansion of (x + 1)n is odd if for every bit of k
that is a 1 the corresponding bit of n is also a 1, otherwise the coefficient is
even. For example, the coefficient of x2 in the binomial expansion of (x+1)4

is 6, which is even. Hence the 1 in the base-2 representation of 2 (10) is
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not matched with a 1 in the same position in the base-2 representation of 4
(100).

Although the arithmetization is conceptually simple and elegant, it is a
substantial programming task to carry through the construction. Neverthe-
less, I thought it would be fun to do it. I therefore developed a “compiler”
program for producing equations from programs for a register machine. A
register machine is a computer that consists of a small set of registers for
storing arbitrarily large numbers. It is an abstraction, of course, since any
real computer has registers with a limited capacity.

Feeding a register-machine program that executes instructions in the
LISP computer language, as input, into a real computer programmed with
the compiler yields within a few minutes, as output, an equation about 200
pages long containing about 17,000 nonnegative integer variables. I can thus
derive a diophantine equation having a parameter k that encodes the kth bit
of Ωn merely by plugging a LISP program (in binary form) for calculating
the kth bit of Ωn into the 200-page equation. For any given pair of values of
k and n, the diophantine equation has exactly one solution if the kth bit of
Ωn is a 1, and it has no solution if the kth bit of Ωn is a 0.

Because this applies for any pair of values for k and n, one can in prin-
ciple keep k fixed and systematically increase the value of n without limit,
calculating the kth bit of Ωn for each value of n. For small values of n the kth
bit of Ωn will fluctuate erratically between 0 and 1. Eventually, however, it
will settle on either a 0 or a 1, since for very large values of n it will be equal
to the kth bit of Ω, which is immutable. Hence the diophantine equation
actually has infinitely many solutions for a particular value of its parameter
k if the kth bit of Ω turns out to be a 1, and for similar reasons it has only
finitely many solutions if the kth bit of Ω turns out to be a 0. In this way,
instead of considering whether a diophantine equation has any solutions for
each value of its parameter k, I ask whether it has infinitely many solutions.

Although it might seem that there is little to be gained by asking whether
there are infinitely many solutions instead of whether there are any solutions,
there is in fact a critical distinction: the answers to my question are logi-
cally independent. Two mathematical assertions are logically independent if
it is impossible to derive one from the other, that is, if neither is a logical
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consequence of the other. This notion of independence can usually be distin-
guished from that applied in statistics. There two chance events are said to
be independent if the outcome of one has no bearing on the outcome of the
other. For example, the result of tossing a coin in no way affects the result
of the next toss: the results are statistically independent.

In my approach I bring both notions of independence to bear. The answer
to my question for one value of k is logically independent of the answer
for another value of k. The reason is that the individual bits of Ω, which
determine the answers, are statistically independent.

Although it is easy to show that for about half of the values of k the
number of solutions is finite and for the other half the number of solutions is
infinite, there is no possible way to compress the answers in a formula or set
of rules; they mimic the results of coin tosses. Because Ω is algorithmically
random, even knowing the answers for 1,000 values of k would not help one
to give the correct answer for another value of k. A mathematician could
do no better than a gambler tossing a coin in deciding whether a particular
equation had a finite or an infinite number of solutions. Whatever axioms
and proofs one could apply to find the answer for the diophantine equation
with one value of k, they would be inapplicable for the same equation with
another value of k.

Mathematical reasoning is therefore essentially helpless in such a case,
since there are no logical interconnections between the diophantine equa-
tions generated in this way. No matter how bright one is or how long the
proofs and how complicated the mathematical axioms are, the infinite series
of propositions stating whether the number of solutions of the diophantine
equations is finite or infinite will quickly defeat one as k increases. Random-
ness, uncertainty and unpredictability occur even in the elementary branches
of number theory that deal with diophantine equations.

How have the incompleteness theorem of Gödel, the halting problem of Tur-
ing and my own work affected mathematics? The fact is that most mathe-
maticians have shrugged off the results. Of course, they agree in principle
that any finite set of axioms is incomplete, but in practice they dismiss the
fact as not applying directly to their work. Unfortunately, however, it may
sometimes apply. Although Gödel’s original theorem seemed to apply only
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to unusual mathematical propositions that were not likely to be of interest in
practice, algorithmic information theory has shown that incompleteness and
randomness are natural and pervasive. This suggests to me that the pos-
sibility of searching for new axioms applying to the whole numbers should
perhaps be taken more seriously.

Indeed, the fact that many mathematical problems have remained un-
solved for hundreds and even thousands of years tends to support my con-
tention. Mathematicians steadfastly assume that the failure to solve these
problems lies strictly within themselves, but could the fault not lie in the
incompleteness of their axioms? For example, the question of whether there
are any perfect odd numbers has defied an answer since the time of the an-
cient Greeks. (A perfect number is a number that is exactly the sum of its
divisors, excluding itself. Hence 6 is a perfect number, since 6 equals 1 plus 2
plus 3.) Could it be that the statement “There are no odd perfect numbers”
is unprovable? If it is, perhaps mathematicians had better accept it as an
axiom.

This may seem like a ridiculous suggestion to most mathematicians, but
to a physicist or a biologist it may not seem so absurd. To those who work in
the empirical sciences the usefulness of a hypothesis, and not necessarily its
“self-evident truth,” is the key criterion by which to judge whether it should
be regarded as the basis for a theory. If there are many conjectures that can
be settled by invoking a hypothesis, empirical scientists take the hypothesis
seriously. (The nonexistence of odd perfect numbers does not appear to have
significant implications and would therefore not be a useful axiom by this
criterion.)

Actually in a few cases mathematicians have already taken unproved but
useful conjectures as a basis for their work. The so-called Riemann hypothe-
sis, for instance, is often accepted as being true, even though it has never been
proved, because many other important theorems are based on it. Moreover,
the hypothesis has been tested empirically by means of the most powerful
computers, and none has come up with a single counterexample. Indeed,
computer programs (which, as I have indicated, are equivalent to mathemat-
ical statements) are also tested in this way—by verifying a number of test
cases rather than by rigorous mathematical proof.
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Are there other problems in other fields of science that can benefit from
these insights into the foundations of mathematics? I believe algorithmic
information theory may have relevance to biology. The regulatory genes of
a developing embryo are in effect a computer program for constructing an
organism. The “complexity” of this biochemical computer program could
conceivably be measured in terms analogous to those I have developed in
quantifying the information content of Ω.

Although Ω is completely random (or infinitely complex) and cannot ever
be computed exactly, it can be approximated with arbitrary precision given
an infinite amount of time. The complexity of living organisms, it seems
to me, could be approximated in a similar way. A sequence of Ωn’s, which
approach Ω, can be regarded as a metaphor for evolution and perhaps could
contain the germ of a mathematical model for the evolution of biological
complexity.

At the end of his life John von Neumann challenged mathematicians to
find an abstract mathematical theory for the origin and evolution of life.
This fundamental problem, like most fundamental problems, is magnificently
difficult. Perhaps algorithmic information theory can help to suggest a way
to proceed.
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Randomness in arithmetic and
the decline & fall of
reductionism in pure
mathematics

Lecture given Thursday 22 October 1992 at a Mathematics – Computer Sci-
ence Colloquium at the University of New Mexico. The lecture was video-
taped; this is an edited transcript.

1. Hilbert on the axiomatic method

Last month I was a speaker at a symposium on reductionism at Cambridge
University where Turing did his work. I’d like to repeat the talk I gave there
and explain how my work continues and extends Turing’s. Two previous
speakers had said bad things about David Hilbert. So I started by saying
that in spite of what you might have heard in some of the previous lectures,
Hilbert was not a twit!

Hilbert’s idea is the culmination of two thousand years of mathemati-
cal tradition going back to Euclid’s axiomatic treatment of geometry, going
back to Leibniz’s dream of a symbolic logic and Russell and Whitehead’s
monumental Principia Mathematica. Hilbert’s dream was to once and for all
clarify the methods of mathematical reasoning. Hilbert wanted to formulate

75
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a formal axiomatic system which would encompass all of mathematics.

Formal Axiomatic System
−→
−→
−→

Hilbert emphasized a number of key properties that such a formal ax-
iomatic system should have. It’s like a computer programming language. It’s
a precise statement about the methods of reasoning, the postulates and the
methods of inference that we accept as mathematicians. Furthermore Hilbert
stipulated that the formal axiomatic system encompassing all of mathemat-
ics that he wanted to construct should be “consistent” and it should be
“complete.”

Formal Axiomatic System
−→ consistent
−→ complete
−→

Consistent means that you shouldn’t be able to prove an assertion and
the contrary of the assertion.

Formal Axiomatic System
−→ consistent A ¬A
−→ complete
−→

You shouldn’t be able to prove A and not A. That would be very embar-
rassing.

Complete means that if you make a meaningful assertion you should be
able to settle it one way or the other. It means that either A or not A should
be a theorem, should be provable from the axioms using the rules of inference
in the formal axiomatic system.

Formal Axiomatic System
−→ consistent A ¬A
−→ complete A ¬A
−→

Consider a meaningful assertion A and its contrary not A. Exactly one of
the two should be provable if the formal axiomatic system is consistent and
complete.
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A formal axiomatic system is like a programming language. There’s an
alphabet and rules of grammar, in other words, a formal syntax. It’s a kind of
thing that we are familiar with now. Look back at Russell and Whitehead’s
three enormous volumes full of symbols and you’ll feel you’re looking at a
large computer program in some incomprehensible programming language.

Now there’s a very surprising fact. Consistent and complete means only
truth and all the truth. They seem like reasonable requirements. There’s a
funny consequence, though, having to do with something called the decision
problem. In German it’s the Entscheidungsproblem.

Formal Axiomatic System
−→ consistent A ¬A
−→ complete A ¬A
−→ decision problem

Hilbert ascribed a great deal of importance to the decision problem.

HILBERT
Formal Axiomatic System
−→ consistent A ¬A
−→ complete A ¬A
−→ decision problem

Solving the decision problem for a formal axiomatic system is giving an
algorithm that enables you to decide whether any given meaningful assertion
is a theorem or not. A solution of the decision problem is called a decision
procedure.

HILBERT
Formal Axiomatic System
−→ consistent A ¬A
−→ complete A ¬A
−→ decision procedure

This sounds weird. The formal axiomatic system that Hilbert wanted to
construct would have included all of mathematics: elementary arithmetic,
calculus, algebra, everything. If there’s a decision procedure, then mathe-
maticians are out of work. This algorithm, this mechanical procedure, can
check whether something is a theorem or not, can check whether it’s true or
not. So to require that there be a decision procedure for this formal axiomatic
system sounds like you’re asking for a lot.
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However it’s very easy to see that if it’s consistent and it’s complete that
implies that there must be a decision procedure. Here’s how you do it. You
have a formal language with a finite alphabet and a grammar. And Hilbert
emphasized that the whole point of a formal axiomatic system is that there
must be a mechanical procedure for checking whether a purported proof is
correct or not, whether it obeys the rules or not. That’s the notion that
mathematical truth should be objective so that everyone can agree whether
a proof follows the rules or not.

So if that’s the case you run through all possible proofs in size order,
and look at all sequences of symbols from the alphabet one character long,
two, three, four, a thousand, a thousand and one. . . a hundred thousand
characters long. You apply the mechanical procedure which is the essence
of the formal axiomatic system, to check whether each proof is valid. Most
of the time, of course, it’ll be nonsense, it’ll be ungrammatical. But you’ll
eventually find every possible proof. It’s like a million monkeys typing away.
You’ll find every possible proof, though only in principle of course. The
number grows exponentially and this is something that you couldn’t do in
practice. You’d never get to proofs that are one page long.

But in principle you could run through all possible proofs, check which
ones are valid, see what they prove, and that way you can systematically find
all theorems. In other words, there is an algorithm, a mechanical procedure,
for generating one by one every theorem that can be demonstrated in a
formal axiomatic system. So if for every meaningful assertion within the
system, either the assertion is a theorem or its contrary is a theorem, only
one of them, then you get a decision procedure. To see whether an assertion
is a theorem or not you just run through all possible proofs until you find
the assertion coming out as a theorem or you prove the contrary assertion.

So it seems that Hilbert actually believed that he was going to solve once
and for all, all mathematical problems. It sounds amazing, but apparently
he did. He believed that he would be able to set down a consistent and
complete formal axiomatic system for all of mathematics and from it obtain
a decision procedure for all of mathematics. This is just following the formal,
axiomatic tradition in mathematics.

But I’m sure he didn’t think that it would be a practical decision proce-
dure. The one I’ve outlined would only work in principle. It’s exponentially
slow, it’s terribly slow! Totally impractical. But the idea was that if all
mathematicians could agree whether a proof is correct and be consistent and
complete, in principle that would give a decision procedure for automatically
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solving any mathematical problem. This was Hilbert’s magnificent dream,
and it was to be the culmination of Euclid and Leibniz, and Boole and Peano,
and Russell and Whitehead.

Of course the only problem with this inspiring project is that it turned
out to be impossible!

2. Gödel, Turing and Cantor’s diagonal argu-

ment

Hilbert is indeed inspiring. His famous lecture in the year 1900 is a call
to arms to mathematicians to solve a list of twenty-three difficult problems.
As a young kid becoming a mathematician you read that list of twenty-three
problems and Hilbert is saying that there is no limit to what mathematicians
can do. We can solve a problem if we are clever enough and work at it long
enough. He didn’t believe that in principle there was any limit to what
mathematics could achieve.

I think this is very inspiring. So did John von Neumann. When he was a
young man he tried to carry through Hilbert’s ambitious program. Because
Hilbert couldn’t quite get it all to work, in fact he started off just with
elementary number theory, 1, 2, 3, 4, 5, . . . , not even with real numbers at
first.

And then in 1931 to everyone’s great surprise (including von Neumann’s),
Gödel showed that it was impossible, that it couldn’t be done, as I’m sure
you all know.

Gödel 1931

This was the opposite of what everyone had expected. Von Neumann said
it never occurred to him that Hilbert’s program couldn’t be carried out. Von
Neumann admired Gödel enormously, and helped him to get a permanent
position at the Institute for Advanced Study.

What Gödel showed was the following. Suppose that you have a formal
axiomatic system dealing with elementary number theory, with 1, 2, 3, 4,
5 and addition and multiplication. And we’ll assume that it’s consistent,
which is a minimum requirement—if you can prove false results it’s really
pretty bad. What Gödel showed was that if you assume that it’s consistent,
then you can show that it’s incomplete. That was Gödel’s result, and the
proof is very clever and involves self-reference. Gödel was able to construct
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an assertion about the whole numbers that says of itself that it’s unprovable.
This was a tremendous shock. Gödel has to be admired for his intellectual
imagination; everyone else thought that Hilbert was right.

However I think that Turing’s 1936 approach is better.

Gödel 1931
Turing 1936

Gödel’s 1931 proof is very ingenious, it’s a real tour de force. I have to confess
that when I was a kid trying to understand it, I could read it and follow it
step by step but somehow I couldn’t ever really feel that I was grasping it.
Now Turing had a completely different approach.

Turing’s approach I think it’s fair to say is in some ways more fundamen-
tal. In fact, Turing did more than Gödel. Turing not only got as a corollary
Gödel’s result, he showed that there could be no decision procedure.

You see, if you assume that you have a formal axiomatic system for arith-
metic and it’s consistent, from Gödel you know that it can’t be complete,
but there still might be a decision procedure. There still might be a me-
chanical procedure which would enable you to decide if a given assertion is
true or not. That was left open by Gödel, but Turing settled it. The fact
that there cannot be a decision procedure is more fundamental and you get
incompleteness as a corollary.

How did Turing do it? I want to tell you how he did it because that’s
the springboard for my own work. The way he did it, and I’m sure all of you
have heard about it, has to do with something called the halting problem.
In fact if you go back to Turing’s 1936 paper you will not find the words
“halting problem.” But the idea is certainly there.

People also forget that Turing was talking about “computable numbers.”
The title of his paper is “On computable numbers, with an application to
the Entscheidungsproblem.” Everyone remembers that the halting problem
is unsolvable and that comes from that paper, but not as many people re-
member that Turing was talking about computable real numbers. My work
deals with computable and dramatically uncomputable real numbers. So I’d
like to refresh your memory how Turing’s argument goes.

Turing’s argument is really what destroys Hilbert’s dream, and it’s a sim-
ple argument. It’s just Cantor’s diagonal procedure (for those of you who
know what that is) applied to the computable real numbers. That’s it, that’s
the whole idea in a nutshell, and it’s enough to show that Hilbert’s dream, the
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culmination of two thousand years of what mathematicians thought mathe-
matics was about, is wrong. So Turing’s work is tremendously deep.

What is Turing’s argument? A real number, you know 3.1415926 · · ·,
is a length measured with arbitrary precision, with an infinite number of
digits. And a computable real number said Turing is one for which there is
a computer program or algorithm for calculating the digits one by one. For
example, there are programs for π, and there are algorithms for solutions of
algebraic equations with integer coefficients. In fact most of the numbers that
you actually find in analysis are computable. However they’re the exception,
if you know set theory, because the computable reals are denumerable and
the reals are nondenumerable (you don’t have to know what that means).
That’s the essence of Turing’s idea.

The idea is this. You list all possible computer programs. At that time
there were no computer programs, and Turing had to invent the Turing ma-
chine, which was a tremendous step forward. But now you just say, imagine
writing a list with every possible computer program.

p1

p2

p3

p4

p5

p6
...

Gödel 1931
Turing 1936

If you consider computer programs to be in binary, then it’s natural
to think of a computer program as a natural number. And next to each
computer program, the first one, the second one, the third one, write out
the real number that it computes if it computes a real (it may not). But
if it prints out an infinite number of digits, write them out. So maybe it’s
3.1415926 and here you have another and another and another:

p1 3.1415926 · · ·
p2 · · ·
p3 · · ·
p4 · · ·
p5 · · ·
p6 · · ·
...

Gödel 1931
Turing 1936
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So you make this list. Maybe some of these programs don’t print out an
infinite number of digits, because they’re programs that halt or that have an
error in them and explode. But then there’ll just be a blank line in the list.

p1 3.1415926 · · ·
p2 · · ·
p3 · · ·
p4 · · ·
p5

p6 · · ·
...

Gödel 1931
Turing 1936

It’s not really important—let’s forget about this possibility.
Following Cantor, Turing says go down the diagonal and look at the first

digit of the first number, the second digit of the second, the third. . .

p1 −.d11d12d13d14d15d16 · · ·
p2 −.d21d22d23d24d25d26 · · ·
p3 −.d31d32d33d34d35d36 · · ·
p4 −.d41d42d43d44d45d46 · · ·
p5

p6 −.d61d62d63d64d65d66 · · ·
...

Gödel 1931
Turing 1936

Well actually it’s the digits after the decimal point. So it’s the first digit
after the decimal point of the the first number, the second digit after the
decimal point of the second, the third digit of the third number, the fourth
digit of the fourth, the fifth digit of the fifth. And it doesn’t matter if the
fifth program doesn’t put out a fifth digit, it really doesn’t matter.

What you do is you change these digits. Make them different. Change
every digit on the diagonal. Put these changed digits together into a new
number with a decimal point in front, a new real number. That’s Cantor’s
diagonal procedure. So you have a digit which you choose to be different
from the first digit of the first number, the second digit of the second, the
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third of the third, and you put these together into one number.

p1 −.d11d12d13d14d15d16 · · ·
p2 −.d21d22d23d24d25d26 · · ·
p3 −.d31d32d33d34d35d36 · · ·
p4 −.d41d42d43d44d45d46 · · ·
p5

p6 −.d61d62d63d64d65d66 · · ·
...
. 6=d11 6=d22 6=d33 6=d44 6=d55 6=d66 · · ·

Gödel 1931
Turing 1936

This new number cannot be in the list because of the way it was con-
structed. Therefore it’s an uncomputable real number. How does Turing go
on from here to the halting problem? Well, just ask yourself why can’t you
compute it? I’ve explained how to get this number and it looks like you could
almost do it. To compute the Nth digit of this number, you get the Nth
computer program (you can certainly do that) and then you start it running
until it puts out an Nth digit, and at that point you change it. Well what’s
the problem? That sounds easy.

The problem is, what happens if the Nth computer program never
puts out an Nth digit, and you sit there waiting? And that’s the halting
problem—you cannot decide whether the Nth computer program will ever
put out an Nth digit! This is how Turing got the unsolvability of the halting
problem. Because if you could solve the halting problem, then you could
decide if the Nth computer program ever puts out an Nth digit. And if you
could do that then you could actually carry out Cantor’s diagonal procedure
and compute a real number which has to differ from any computable real.
That’s Turing’s original argument.

Why does this explode Hilbert’s dream? What has Turing proved? That
there is no algorithm, no mechanical procedure, which will decide if the Nth
computer program ever outputs an Nth digit. Thus there can be no algorithm
which will decide if a computer program ever halts (finding the Nth digit put
out by the Nth program is a special case). Well, what Hilbert wanted was
a formal axiomatic system from which all mathematical truth should follow,
only mathematical truth, and all mathematical truth. If Hilbert could do
that, it would give us a mechanical procedure to decide if a computer program
will ever halt. Why?

You just run through all possible proofs until you either find a proof that
the program halts or you find a proof that it never halts. So if Hilbert’s dream
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of a finite set of axioms from which all of mathematical truth should follow
were possible, then by running through all possible proofs checking which
ones are correct, you would be able to decide if any computer program halts.
In principle you could. But you can’t by Turing’s very simple argument
which is just Cantor’s diagonal argument applied to the computable reals.
That’s how simple it is!

Gödel’s proof is ingenious and difficult. Turing’s argument is so funda-
mental, so deep, that everything seems natural and inevitable. But of course
he’s building on Gödel’s work.

3. The halting probability and algorithmic

randomness

The reason I talked to you about Turing and computable reals is that I’m
going to use a different procedure to construct an uncomputable real, a much
more uncomputable real than Turing does.

p1 −.d11d12d13d14d15d16 · · ·
p2 −.d21d22d23d24d25d26 · · ·
p3 −.d31d32d33d34d35d36 · · ·
p4 −.d41d42d43d44d45d46 · · ·
p5

p6 −.d61d62d63d64d65d66 · · ·
...
. 6=d11 6=d22 6=d33 6=d44 6=d55 6=d66 · · ·

Gödel 1931
Turing 1936
uncomputable reals

And that’s how we’re going to get into much worse trouble.
How do I get a much more uncomputable real? (And I’ll have to tell you

how uncomputable it is.) Well, not with Cantor’s diagonal argument. I get
this number, which I like to call Ω, like this:

Ω =
∑

p halts
2−|p|

This is just the halting probability. It’s sort of a mathematical pun. Turing’s
fundamental result is that the halting problem is unsolvable—there is no al-
gorithm that’ll settle the halting problem. My fundamental result is that the
halting probability is algorithmically irreducible or algorithmically random.
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What exactly is the halting probability? I’ve written down an expression
for it:

Ω =
∑

p halts

2−|p|

Instead of looking at individual programs and asking whether they halt, you
put all computer programs together in a bag. If you generate a computer
program at random by tossing a coin for each bit of the program, what is
the chance that the program will halt? You’re thinking of programs as bit
strings, and you generate each bit by an independent toss of a fair coin, so if
a program is N bits long, then the probability that you get that particular
program is 2−N . Any program p that halts contributes 2−|p|, two to the minus
its size in bits, the number of bits in it, to this halting probability.

By the way there’s a technical detail which is very important and didn’t
work in the early version of algorithmic information theory. You couldn’t
write this:

Ω =
∑

p halts

2−|p|

It would give infinity. The technical detail is that no extension of a valid
program is a valid program. Then this sum

∑

p halts

2−|p|

turns out to be between zero and one. Otherwise it turns out to be infinity.
It only took ten years until I got it right. The original 1960s version of
algorithmic information theory is wrong. One of the reasons it’s wrong is
that you can’t even define this number

Ω =
∑

p halts

2−|p|

In 1974 I redid algorithmic information theory with “self-delimiting” pro-
grams and then I discovered the halting probability Ω.

Okay, so this is a probability between zero and one

0 < Ω =
∑

p halts

2−|p| < 1

like all probabilities. The idea is you generate each bit of a program by
tossing a coin and ask what is the probability that it halts. This number Ω,
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this halting probability, is not only an uncomputable real—Turing already
knew how to do that. It is uncomputable in the worst possible way. Let me
give you some clues how uncomputable it is.

Well, one thing is it’s algorithmically incompressible. If you want to
get the first N bits of Ω out of a computer program, if you want a computer
program that will print out the first N bits of Ω and then halt, that computer
program has to be N bits long. Essentially you’re only printing out constants
that are in the program. You cannot squeeze the first N bits of Ω. This

0 < Ω =
∑

p halts

2−|p| < 1

is a real number, you could write it in binary. And if you want to get out
the first N bits from a computer program, essentially you just have to put
them in. The program has to be N bits long. That’s irreducible algorithmic
information. There is no concise description.

Now that’s an abstract way of saying things. Let me give a more concrete
example of how random Ω is. Émile Borel at the turn of this century was
one of the founders of probability theory, and he talked about something he
called a normal number.

0 < Ω =
∑

p halts
2−|p| < 1

Émile Borel — normal reals

What is a normal real number? People have calculated π out to a billion
digits, maybe two billion. One of the reasons for doing this, besides that
it’s like climbing a mountain and having the world record, is the question of
whether each digit occurs the same number of times. It looks like the digits
0 through 9 each occur 10% of the time in the decimal expansion of π. It
looks that way, but nobody can prove it. I think the same is true for

√
2,

although that’s not as popular a number to ask this about.
Let me describe some work Borel did around the turn of the century

when he was pioneering modern probability theory. Pick a real number in
the unit interval, a real number with a decimal point in front, with no integer
part. If you pick a real number in the unit interval, Borel showed that with
probability one it’s going to be “normal.” Normal means that when you
write it in decimal each digit will occur in the limit exactly 10% of the time,
and this will also happen in any other base. For example in binary 0 and 1
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will each occur in the limit exactly 50% of the time. Similarly with blocks
of digits. This was called an absolutely normal real number by Borel, and
he showed that with probability one if you pick a real number at random
between zero and one it’s going to have this property. There’s only one
problem. He didn’t know whether π is normal, he didn’t know whether

√
2

is normal. In fact, he couldn’t exhibit a single individual example of a normal
real number.

The first example of a normal real number was discovered by a friend of
Alan Turing’s at Cambridge called David Champernowne, who is still alive
and who’s a well-known economist. Turing was impressed with him—I think
he called him “Champ”—because Champ had published this in a paper as
an undergraduate. This number is known as Champernowne’s number. Let
me show you Champernowne’s number.

0 < Ω =
∑

p halts
2−|p| < 1

Émile Borel — normal reals
Champernowne
.01234567891011121314 · · ·99100101 · · ·

It goes like this. You write down a decimal point, then you write 0, 1,
2, 3, 4, 5, 6, 7, 8, 9, then 10, 11, 12, 13, 14 until 99, then 100, 101. And
you keep going in this funny way. This is called Champernowne’s number
and Champernowne showed that it’s normal in base ten, only in base ten.
Nobody knows if it’s normal in other bases, I think it’s still open. In base ten
though, not only will the digits 0 through 9 occur exactly 10% of the time
in the limit, but each possible block of two digits will occur exactly 1% of
the time in the limit, each block of three digits will occur exactly .1% of the
time in the limit, etc. That’s called being normal in base ten. But nobody
knows what happens in other bases.

The reason I’m saying all this is because it follows from the fact that the
halting probability Ω is algorithmically irreducible information that this

0 < Ω =
∑

p halts

2−|p| < 1

is normal in any base. That’s easy to prove using ideas about coding and
compressing information that go back to Shannon. So here we finally have
an example of an absolutely normal number. I don’t know how natural you
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think it is, but it is a specific real number that comes up and is normal in the
most demanding sense that Borel could think of. Champernowne’s number
couldn’t quite do that.

This number Ω is in fact random in many more senses. I would say it
this way. It cannot be distinguished from the result of independent tosses of
a fair coin. In fact this number

0 < Ω =
∑

p halts
2−|p| < 1

shows that you have total randomness and chaos and unpredictability and
lack of structure in pure mathematics! The same way that all it took for
Turing to destroy Hilbert’s dream was the diagonal argument, you just write
down this expression

0 < Ω =
∑

p halts
2−|p| < 1

and this shows that there are regions of pure mathematics where reasoning
is totally useless, where you’re up against an impenetrable wall. This is all
it takes. It’s just this halting probability.

Why do I say this? Well, let’s say you want to use axioms to prove what
the bits of this number Ω are. I’ve already told you that it’s uncomputable—
right?—like the number that Turing constructs using Cantor’s diagonal ar-
gument. So we know there is no algorithm which will compute digit by digit
or bit by bit this number Ω. But let’s try to prove what individual bits are
using a formal axiomatic system. What happens?

The situation is very, very bad. It’s like this. Suppose you have a formal
axiomatic system which is N bits of formal axiomatic system (I’ll explain
what this means more precisely later). It turns out that with a formal ax-
iomatic system of complexity N , that is, N bits in size, you can prove what
the positions and values are of at most N + c bits of Ω.

Now what do I mean by formal axiomatic system N bits in size? Well,
remember that the essence of a formal axiomatic system is a mechanical
procedure for checking whether a formal proof follows the rules or not. It’s
a computer program. Of course in Hilbert’s days there were no computer
programs, but after Turing invented Turing machines you could finally specify
the notion of computer program exactly, and of course now we’re very familiar
with it.

So the proof-checking algorithm which is the essence of any formal ax-
iomatic system in Hilbert’s sense is a computer program, and just see how



Randomness in arithmetic and the decline & fall of reductionism 89

many bits long this computer program is.1 That’s essentially how many bits
it takes to specify the rules of the game, the axioms and postulates and the
rules of inference. If that’s N bits, then you may be able to prove say that
the first bit of Ω in binary is 0, that the second bit is 1, that the third bit
is 0, and then there might be a gap, and you might be able to prove that
the thousandth bit is 1. But you’re only going to be able to settle N cases if
your formal axiomatic system is an N -bit formal axiomatic system.

Let me try to explain better what this means. It means that you can only
get out as much as you put in. If you want to prove whether an individual
bit in a specific place in the binary expansion of the real number Ω is a 0 or
a 1, essentially the only way to prove that is to take it as a hypothesis, as
an axiom, as a postulate. It’s irreducible mathematical information. That’s
the key phrase that really gives the whole idea.

Irreducible Mathematical Information

0 < Ω =
∑

p halts
2−|p| < 1

Émile Borel — normal reals
Champernowne
.01234567891011121314 · · ·99100101 · · ·

Okay, so what have we got? We have a rather simple mathematical object
that completely escapes us. Ω’s bits have no structure. There is no pattern,
there is no structure that we as mathematicians can comprehend. If you’re
interested in proving what individual bits of this number at specific places are,
whether they’re 0 or 1, reasoning is completely useless. Here mathematical
reasoning is irrelevant and can get nowhere. As I said before, the only way
a formal axiomatic system can get out these results is essentially just to
put them in as assumptions, which means you’re not using reasoning. After
all, anything can be demonstrated by taking it as a postulate that you add
to your set of axioms. So this is a worst possible case—this is irreducible
mathematical information. Here is a case where there is no structure, there
are no correlations, there is no pattern that we can perceive.

1Technical Note: Actually, it’s best to think of the complexity of a formal axiomatic
system as the size in bits of the computer program that enumerates the set of all theorems.
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4. Randomness in arithmetic

Okay, what does this have to do with randomness in arithmetic? Now we’re
going back to Gödel—I skipped over him rather quickly, and now let’s go
back.

Turing says that you cannot use proofs to decide whether a program will
halt. You can’t always prove that a program will halt or not. That’s how
he destroys Hilbert’s dream of a universal mathematics. I get us into more
trouble by looking at a different kind of question, namely, can you prove that
the fifth bit of this particular real number

0 < Ω =
∑

p halts

2−|p| < 1

is a 0 or a 1, or that the eighth bit is a 0 or a 1. But these are strange-looking
questions. Who had ever heard of the halting problem in 1936? These are
not the kind of things that mathematicians normally worry about. We’re
getting into trouble, but with questions rather far removed from normal
mathematics.

Even though you can’t have a formal axiomatic system which can always
prove whether a program halts or not, it might be good for everything else
and then you could have an amended version of Hilbert’s dream. And the
same with the halting probability Ω. If the halting problem looks a little
bizarre, and it certainly did in 1936, well, Ω is brand new and certainly
looks bizarre. Who ever heard of a halting probability? It’s not the kind of
thing that mathematicians normally do. So what do I care about all these
incompleteness results!

Well, Gödel had already faced this problem with his assertion which is
true but unprovable. It’s an assertion which says of itself that it’s unprovable.
That kind of thing also never comes up in real mathematics. One of the key
elements in Gödel’s proof is that he managed to construct an arithmetical
assertion which says of itself that it’s unprovable. It was getting this self-
referential assertion to be in elementary number theory which took so much
cleverness.

There’s been a lot of work building on Gödel’s work, showing that prob-
lems involving computations are equivalent to arithmetical problems involv-
ing whole numbers. A number of names come to mind. Julia Robinson,
Hilary Putnam and Martin Davis did some of the important work, and then
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a key result was found in 1970 by Yuri Matijasevič. He constructed a dio-
phantine equation, which is an algebraic equation involving only whole num-
bers, with a lot of variables. One of the variables, K, is distinguished as
a parameter. It’s a polynomial equation with integer coefficients and all of
the unknowns have to be whole numbers—that’s a diophantine equation. As
I said, one of the unknowns is a parameter. Matijasevič’s equation has a
solution for a particular value of the parameter K if and only if the Kth
computer program halts.

In the year 1900 Hilbert had asked for an algorithm which will decide
whether a diophantine equation, an algebraic equation involving only whole
numbers, has a solution. This was Hilbert’s tenth problem. It was tenth in his
famous list of twenty-three problems. What Matijasevič showed in 1970 was
that this is equivalent to deciding whether an arbitrary computer program
halts. So Turing’s halting problem is exactly as hard as Hilbert’s tenth
problem. It’s exactly as hard to decide whether an arbitrary program will
halt as to decide whether an arbitrary algebraic equation in whole numbers
has a solution. Therefore there is no algorithm for doing that and Hilbert’s
tenth problem cannot be solved—that was Matijasevič’s 1970 result.

Matijasevič has gone on working in this area. In particular there is a
piece of work he did in collaboration with James Jones in 1984. I can use
it to follow in Gödel’s footsteps, to follow Gödel’s example. You see, I’ve
shown that there’s complete randomness, no pattern, lack of structure, and
that reasoning is completely useless, if you’re interested in the individual bits
of this number

0 < Ω =
∑

p halts

2−|p| < 1

Following Gödel, let’s convert this into something in elementary number
theory. Because if you can get into all this trouble in elementary number
theory, that’s the bedrock. Elementary number theory, 1, 2, 3, 4, 5, addition
and multiplication, that goes back to the ancient Greeks and it’s the most
solid part of all of mathematics. In set theory you’re dealing with strange
objects like large cardinals, but here you’re not even dealing with derivatives
or integrals or measure, only with whole numbers. And using the 1984 results
of Jones and Matijasevič I can indeed dress up Ω arithmetically and get
randomness in elementary number theory.

What I get is an exponential diophantine equation with a parameter.
“Exponential diophantine equation” just means that you allow variables in
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the exponents. In contrast, what Matijasevič used to show that Hilbert’s
tenth problem is unsolvable is just a polynomial diophantine equation, which
means that the exponents are always natural number constants. I have to
allow XY . It’s not known yet whether I actually need to do this. It might be
the case that I can manage with a polynomial diophantine equation. It’s an
open question, I believe that it’s not settled yet. But for now, what I have is
an exponential diophantine equation with seventeen thousand variables. This
equation is two-hundred pages long and again one variable is the parameter.

This is an equation where every constant is a whole number, a natural
number, and all the variables are also natural numbers, that is, positive inte-
gers. (Actually non-negative integers.) One of the variables is a parameter,
and you change the value of this parameter—take it to be 1, 2, 3, 4, 5. Then
you ask, does the equation have a finite or infinite number of solutions? My
equation is constructed so that it has a finite number of solutions if a par-
ticular individual bit of Ω is a 0, and it has an infinite number of solutions
if that bit is a 1. So deciding whether my exponential diophantine equation
in each individual case has a finite or infinite number of solutions is exactly
the same as determining what an individual bit of this

0 < Ω =
∑

p halts
2−|p| < 1

halting probability is. And this is completely intractable because Ω is irre-
ducible mathematical information.

Let me emphasize the difference between this and Matijasevič’s work
on Hilbert’s tenth problem. Matijasevič showed that there is a polynomial
diophantine equation with a parameter with the following property: You
vary the parameter and ask, does the equation have a solution? That turns
out to be equivalent to Turing’s halting problem, and therefore escapes the
power of mathematical reasoning, of formal axiomatic reasoning.

How does this differ from what I do? I use an exponential diophantine
equation, which means I allow variables in the exponent. Matijasevič only
allows constant exponents. The big difference is that Hilbert asked for an
algorithm to decide if a diophantine equation has a solution. The question I
have to ask to get randomness in elementary number theory, in the arithmetic
of the natural numbers, is slightly more sophisticated. Instead of asking
whether there is a solution, I ask whether there are a finite or infinite number
of solutions—a more abstract question. This difference is necessary.
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My two-hundred page equation is constructed so that it has a finite or
infinite number of solutions depending on whether a particular bit of the
halting probability is a 0 or a 1. As you vary the parameter, you get each
individual bit of Ω. Matijasevič’s equation is constructed so that it has a
solution if and only if a particular program ever halts. As you vary the
parameter, you get each individual computer program.

Thus even in arithmetic you can find Ω’s absolute lack of structure, Ω’s
randomness and irreducible mathematical information. Reasoning is com-
pletely powerless in those areas of arithmetic. My equation shows that this
is so. As I said before, to get this equation I use ideas that start in Gödel’s
original 1931 paper. But it was Jones and Matijasevič’s 1984 paper that
finally gave me the tool that I needed.

So that’s why I say that there is randomness in elementary number theory,
in the arithmetic of the natural numbers. This is an impenetrable stone
wall, it’s a worst case. From Gödel we knew that we couldn’t get a formal
axiomatic system to be complete. We knew we were in trouble, and Turing
showed us how basic it was, but Ω is an extreme case where reasoning fails
completely.

I won’t go into the details, but let me talk in vague information-theoretic
terms. Matijasevič’s equation gives you N arithmetical questions with yes/no
answers which turn out to be only log N bits of algorithmic information. My
equation gives you N arithmetical questions with yes/no answers which are
irreducible, incompressible mathematical information.

5. Experimental mathematics

Okay, let me say a little bit in the minutes I have left about what this all
means.

First of all, the connection with physics. There was a big controversy
when quantum mechanics was developed, because quantum theory is nonde-
terministic. Einstein didn’t like that. He said, “God doesn’t play dice!” But
as I’m sure you all know, with chaos and nonlinear dynamics we’ve now re-
alized that even in classical physics we get randomness and unpredictability.
My work is in the same spirit. It shows that pure mathematics, in fact even
elementary number theory, the arithmetic of the natural numbers, 1, 2, 3, 4,
5, is in the same boat. We get randomness there too. So, as a newspaper
headline would put it, God not only plays dice in quantum mechanics and in
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classical physics, but even in pure mathematics, even in elementary number
theory. So if a new paradigm is emerging, randomness is at the heart of
it. By the way, randomness is also at the heart of quantum field theory, as
virtual particles and Feynman path integrals (sums over all histories) show
very clearly. So my work fits in with a lot of work in physics, which is why I
often get invited to talk at physics meetings.

However the really important question isn’t physics, it’s mathematics.
I’ve heard that Gödel wrote a letter to his mother who stayed in Europe. You
know, Gödel and Einstein were friends at the Institute for Advanced Study.
You’d see them walking down the street together. Apparently Gödel wrote
a letter to his mother saying that even though Einstein’s work on physics
had really had a tremendous impact on how people did physics, he was
disappointed that his work had not had the same effect on mathematicians.
It hadn’t made a difference in how mathematicians actually carried on their
everyday work. So I think that’s the key question: How should you really do
mathematics?

I’m claiming I have a much stronger incompleteness result. If so maybe
it’ll be clearer whether mathematics should be done the ordinary way. What
is the ordinary way of doing mathematics? In spite of the fact that everyone
knows that any finite set of axioms is incomplete, how do mathematicians
actually work? Well suppose you have a conjecture that you’ve been thinking
about for a few weeks, and you believe it because you’ve tested a large number
of cases on a computer. Maybe it’s a conjecture about the primes and for two
weeks you’ve tried to prove it. At the end of two weeks you don’t say, well
obviously the reason I haven’t been able to show this is because of Gödel’s
incompleteness theorem! Let us therefore add it as a new axiom! But if you
took Gödel’s incompleteness theorem very seriously this might in fact be the
way to proceed. Mathematicians will laugh but physicists actually behave
this way.

Look at the history of physics. You start with Newtonian physics. You
cannot get Maxwell’s equations from Newtonian physics. It’s a new domain of
experience—you need new postulates to deal with it. As for special relativity,
well, special relativity is almost in Maxwell’s equations. But Schrödinger’s
equation does not come from Newtonian physics and Maxwell’s equations.
It’s a new domain of experience and again you need new axioms. So physicists
are used to the idea that when you start experimenting at a smaller scale,
or with new phenomena, you may need new principles to understand and
explain what’s going on.
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Now in spite of incompleteness mathematicians don’t behave at all like
physicists do. At a subconscious level they still assume that the small number
of principles, of postulates and methods of inference, that they learned early
as mathematics students, are enough. In their hearts they believe that if you
can’t prove a result it’s your own fault. That’s probably a good attitude to
take rather than to blame someone else, but let’s look at a question like the
Riemann hypothesis. A physicist would say that there is ample experimental
evidence for the Riemann hypothesis and would go ahead and take it as a
working assumption.

What is the Riemann hypothesis? There are many unsolved questions
involving the distribution of the prime numbers that can be settled if you
assume the Riemann hypothesis. Using computers people check these con-
jectures and they work beautifully. They’re neat formulas but nobody can
prove them. A lot of them follow from the Riemann hypothesis. To a physi-
cist this would be enough: It’s useful, it explains a lot of data. Of course
a physicist then has to be prepared to say “Oh oh, I goofed!” because an
experiment can subsequently contradict a theory. This happens very often.

In particle physics you throw up theories all the time and most of them
quickly die. But mathematicians don’t like to have to backpedal. But if you
play it safe, the problem is that you may be losing out, and I believe you are.

I think it should be obvious where I’m leading. I believe that elementary
number theory and the rest of mathematics should be pursued more in the
spirit of experimental science, and that you should be willing to adopt new
principles. I believe that Euclid’s statement that an axiom is a self-evident
truth is a big mistake. The Schrödinger equation certainly isn’t a self-evident
truth! And the Riemann hypothesis isn’t self-evident either, but it’s very
useful.

So I believe that we mathematicians shouldn’t ignore incompleteness. It’s
a safe thing to do but we’re losing out on results that we could get. It would
be as if physicists said, okay no Schrödinger equation, no Maxwell’s equations,
we stick with Newton, everything must be deduced from Newton’s laws.
(Maxwell even tried it. He had a mechanical model of an electromagnetic
field. Fortunately they don’t teach that in college!)

I proposed all this twenty years ago when I started getting these
information-theoretic incompleteness results. But independently a new
school on the philosophy of mathematics is emerging called the “quasi-
empirical” school of thought regarding the foundations of mathematics.
There’s a book of Tymoczko’s called New Directions in the Philosophy of
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Mathematics (Birkhäuser, Boston, 1986). It’s a good collection of articles.
Another place to look is Searching for Certainty by John Casti (Morrow,
New York, 1990) which has a good chapter on mathematics. The last half of
the chapter talks about this quasi-empirical view.

By the way, Lakatos, who was one of the people involved in this new
movement, happened to be at Cambridge at that time. He’d left Hungary.

The main schools of mathematical philosophy at the beginning of this
century were Russell and Whitehead’s view that logic was the basis for ev-
erything, the formalist school of Hilbert, and an “intuitionist” constructivist
school of Brouwer. Some people think that Hilbert believed that mathemat-
ics is a meaningless game played with marks of ink on paper. Not so! He just
said that to be absolutely clear and precise what mathematics is all about,
we have to specify the rules determining whether a proof is correct so pre-
cisely that they become mechanical. Nobody who thought that mathematics
is meaningless would have been so energetic and done such important work
and been such an inspiring leader.

Originally most mathematicians backed Hilbert. Even after Gödel and
even more emphatically Turing showed that Hilbert’s dream didn’t work, in
practice mathematicians carried on as before, in Hilbert’s spirit. Brouwer’s
constructivist attitude was mostly considered a nuisance. As for Russell and
Whitehead, they had a lot of problems getting all of mathematics from logic.
If you get all of mathematics from set theory you discover that it’s nice to
define the whole numbers in terms of sets (von Neumann worked on this).
But then it turns out that there’s all kinds of problems with sets. You’re not
making the natural numbers more solid by basing them on something which
is more problematical.

Now everything has gone topsy-turvy. It’s gone topsy-turvy, not because
of any philosophical argument, not because of Gödel’s results or Turing’s
results or my own incompleteness results. It’s gone topsy-turvy for a very
simple reason—the computer!

The computer as you all know has changed the way we do everything.
The computer has enormously and vastly increased mathematical experience.
It’s so easy to do calculations, to test many cases, to run experiments on the
computer. The computer has so vastly increased mathematical experience,
that in order to cope, people are forced to proceed in a more pragmatic
fashion. Mathematicians are proceeding more pragmatically, more like ex-
perimental scientists do. This new tendency is often called “experimental
mathematics.” This phrase comes up a lot in the field of chaos, fractals and
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nonlinear dynamics.
It’s often the case that when doing experiments on the computer, numer-

ical experiments with equations, you see that something happens, and you
conjecture a result. Of course it’s nice if you can prove it. Especially if the
proof is short. I’m not sure that a thousand page proof helps too much. But
if it’s a short proof it’s certainly better than not having a proof. And if you
have several proofs from different viewpoints, that’s very good.

But sometimes you can’t find a proof and you can’t wait for someone
else to find a proof, and you’ve got to carry on as best you can. So now
mathematicians sometimes go ahead with working hypotheses on the basis
of the results of computer experiments. Of course if it’s physicists doing
these computer experiments, then it’s certainly okay; they’ve always relied
heavily on experiments. But now even mathematicians sometimes operate
in this manner. I believe that there’s a new journal called the Journal of
Experimental Mathematics. They should’ve put me on their editorial board,
because I’ve been proposing this for twenty years based on my information-
theoretic ideas.

So in the end it wasn’t Gödel, it wasn’t Turing, and it wasn’t my results
that are making mathematics go in an experimental mathematics direction,
in a quasi-empirical direction. The reason that mathematicians are changing
their working habits is the computer. I think it’s an excellent joke! (It’s
also funny that of the three old schools of mathematical philosophy, logicist,
formalist, and intuitionist, the most neglected was Brouwer, who had a con-
structivist attitude years before the computer gave a tremendous impulse to
constructivism.)

Of course, the mere fact that everybody’s doing something doesn’t mean
that they ought to be. The change in how people are behaving isn’t because
of Gödel’s theorem or Turing’s theorems or my theorems, it’s because of the
computer. But I think that the sequence of work that I’ve outlined does
provide some theoretical justification for what everybody’s doing anyway
without worrying about the theoretical justification. And I think that the
question of how we should actually do mathematics requires at least another
generation of work. That’s basically what I wanted to say—thank you very
much!
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A century of controversy over
the foundations of mathematics

Lecture given Friday 30 April 1999 at UMass-Lowell. The lecture was video-
taped; this is an edited transcript.

I’d like to talk about some crazy stuff. The general idea is that sometimes
ideas are very powerful. I’d like to talk about theory, about the computer as
a concept, a philosophical concept.

We all know that the computer is a very practical thing out there in the
real world! It pays for a lot of our salaries, right? But what people don’t
remember as much is that really—I’m going to exaggerate, but I’ll say it—
the computer was invented in order to help to clarify a question about the
foundations of mathematics, a philosophical question about the foundations
of mathematics.

Now that sounds absurd, but there’s some truth in it. There are actually
lots of threads that led to the computer, to computer technology, which come
from mathematical logic and from philosophical questions about the limits
and the power of mathematics.

The computer pioneer Turing was inspired by these questions. Turing
was trying to settle a question of Hilbert’s having to do with the philosophy
of mathematics, when he invented a thing called the Turing machine, which
is a mathematical model of a toy computer. Turing did this before there
were any real computers, and then he went on to actually build computers.
The first computers in England were built by Turing.

And von Neumann, who was instrumental in encouraging the creation of
computers as a technology in the United States, (unfortunately as part of a
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war effort, as part of the effort to build the atom bomb), he knew Turing’s
work very well. I learned of Turing by reading von Neumann talking about
the importance of Turing’s work.

So what I said about the origin of the computer isn’t a complete lie, but
it is a forgotten piece of intellectual history. In fact, let me start off with
the final conclusion of this talk. . . In a way, a lot of this came from work of
Hilbert. Hilbert, who was a very well-known German mathematician around
the beginning of this century, had proposed formalizing completely all of
mathematics, all of mathematical reasoning—deduction. And this proposal
of his is a tremendous, glorious failure!

In a way, it’s a spectacular failure. Because it turned out that you couldn’t
formalize mathematical reasoning. That’s a famous result of Gödel’s that I’ll
tell you about, done in 1931.

But in another way, Hilbert was really right, because formalism has been
the biggest success of this century. Not for reasoning, not for deduction, but
for programming, for calculating, for computing, that’s where formalism has
been a tremendous success. If you look at work by logicians at the begin-
ning of this century, they were talking about formal languages for reasoning
and deduction, for doing mathematics and symbolic logic, but they also in-
vented some early versions of programming languages. And these are the
formalisms that we all live with and work with now all the time! They’re a
tremendously important technology.

So formalism for reasoning did not work. Mathematicians don’t reason
in formal languages. But formalism for computing, programming languages,
are, in a way, what was right in the formalistic vision that goes back to
Hilbert at the beginning of this century, which was intended to clarify epis-
temological, philosophical questions about mathematics.

So I’m going to tell you this story, which has a very surprising outcome.
I’m going to tell you this surprising piece of intellectual history.

The Crisis in Set Theory

So let me start roughly a hundred years ago, with Cantor. . .

Georg Cantor

The point is this. Normally you think that pure mathematics is static, un-
changing, perfect, absolutely correct, absolute truth. . . Right? Physics may
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be tentative, but math, things are certain there! Well, it turns out that’s not
exactly the case.

In this century, in this past century there was a lot of controversy over
the foundations of mathematics, and how you should do math, and what’s
right and what isn’t right, and what’s a valid proof. Blood was almost shed
over this. . . People had terrible fights and ended up in insane asylums over
this. It was a fairly serious controversy. This isn’t well known, but I think
it’s an interesting piece of intellectual history.

More people are aware of the controversy over relativity theory. Einstein
was very controversial at first. And then of the controversy over quantum
mechanics. . . These were the two revolutions in the physics of this century.
But what’s less well known is that there were tremendous revolutions and
controversies in pure mathematics too. I’d like to tell you about this. It
really all starts in a way from Cantor.

Georg Cantor

What Cantor did was to invent a theory of infinite sets.

Infinite Sets

He did it about a hundred years ago; it’s really a little more than a hundred
years ago. And it was a tremendously revolutionary theory, it was extremely
adventurous. Let me tell you why.

Cantor said, let’s take 1, 2, 3, . . .

1, 2, 3, . . .

We’ve all seen these numbers, right?! And he said, well, let’s add an infinite
number after this.

1, 2, 3, . . . ω

He called it ω, lowercase Greek omega. And then he said, well, why stop
here? Let’s go on and keep extending the number series.

1, 2, 3, . . . ω, ω + 1, ω + 2, . . .

Omega plus one, omega plus two, then you go on for an infinite amount of
time. And what do you put afterwards? Well, two omega? (Actually, it’s
omega times two for technical reasons.)

1, 2, 3, . . . ω . . . 2ω



102 Thinking about Gödel & Turing

Then two omega plus one, two omega plus two, two omega plus three, two
omega plus four. . .

1, 2, 3, . . . 2ω, 2ω + 1, 2ω + 2, 2ω + 3, 2ω + 4, . . .

Then you have what? Three omega, four omega, five omega, six omega, . . .

1, 2, 3, . . . 3ω . . . 4ω . . . 5ω . . . 6ω . . .

Well, what will come after all of these? Omega squared! Then you keep going,
omega squared plus one, omega squared plus six omega plus eight. . . Okay,
you keep going for a long time, and the next interesting thing after omega
squared will be? Omega cubed! And then you have omega to the fourth,
omega to the fifth, and much later?

1, 2, 3, . . . ω . . . ω2 . . . ω3 . . . ω4 . . . ω5

Omega to the omega!
1, 2, 3, . . . ω . . . ω2 . . . ωω

And then much later it’s omega to the omega to the omega an infinite number
of times!

1, 2, 3, . . . ω . . . ω2 . . . ωω . . . ωωω
ω

...

I think this is usually called epsilon nought.

ε0 = ωωω
ω

...

It’s a pretty mind-boggling number! After this point things get a little com-
plicated. . .

And this was just one little thing that Cantor did as a warm-up exercise
for his main stuff, which was measuring the size of infinite sets! It was
spectacularly imaginative, and the reactions were extreme. Some people
loved what Cantor was doing, and some people thought that he should be
put in an insane asylum! In fact he had a nervous breakdown as a result
of those criticisms. Cantor’s work was very influential, leading to point-
set topology and other abstract fields in the mathematics of the twentieth
century. But it was also very controversial. Some people said, it’s theology,
it’s not real, it’s a fantasy world, it has nothing to do with serious math! And
Cantor never got a good position and he spent his entire life at a second-rate
institution.
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Bertrand Russell’s Logical Paradoxes

Then things got even worse, due mainly, I think, to Bertrand Russell, one of
my childhood heroes.

Bertrand Russell

Bertrand Russell was a British philosopher who wrote beautiful essays, very
individualistic essays, and I think he got the Nobel prize in literature for his
wonderful essays. Bertrand Russell started off as a mathematician and then
degenerated into a philosopher and finally into a humanist; he went downhill
rapidly! Anyway, Bertrand Russell discovered a whole bunch of disturbing
paradoxes, first in Cantor’s theory, then in logic itself. He found cases where
reasoning that seemed to be okay led to contradictions.

And I think that Bertrand Russell was tremendously influential in spread-
ing the idea that there was a serious crisis and that these contradictions had
to be resolved somehow. The paradoxes that Russell discovered attracted
a great deal of attention, but strangely enough only one of them ended up
with Russell’s name on it! For example, one of these paradoxes is called the
Burali-Forti paradox, because when Russell published it he stated in a foot-
note that it had been suggested to him by reading a paper by Burali-Forti.
But if you look at the paper by Burali-Forti, you don’t see the paradox!

But I think that the realization that something was seriously wrong, that
something was rotten in the state of Denmark, that reasoning was bankrupt
and something had to be done about it pronto, is due principally to Russell.
Alejandro Garciadiego, a Mexican historian of math, has written a book
which suggests that Bertrand Russell really played a much bigger role in this
than is usually realized: Russell played a key role in formulating not only
the Russell paradox, which bears his name, but also the Burali-Forti paradox
and the Berry paradox, which don’t. Russell was instrumental in discovering
them and in realizing their significance. He told everyone that they were
important, that they were not just childish word-play.

Anyway, the best known of these paradoxes is called the Russell paradox
nowadays. You consider the set of all sets that are not members of themselves.
And then you ask, “Is this set a member of itself or not?” If it is a member
of itself, then it shouldn’t be, and vice versa! It’s like the barber in a small,
remote town who shaves all the men in the town who don’t shave themselves.
That seems pretty reasonable, until you ask “Does the barber shave himself?”
He shaves himself if and only if he doesn’t shave himself, so he can’t apply
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that rule to himself!
Now you may say, “Who cares about this barber!” It was a silly rule

anyway, and there are always exceptions to the rule! But when you’re dealing
with a set, with a mathematical concept, it’s not so easy to dismiss the
problem. Then it’s not so easy to shrug when reasoning that seems to be
okay gets you into trouble!

By the way, the Russell paradox is a set-theoretic echo of an earlier para-
dox, one that was known to the ancient Greeks and is called the Epimenides
paradox by some philosophers. That’s the paradox of the liar: “This state-
ment is false!” “What I’m now saying is false, it’s a lie.” Well, is it false?
If it’s false, if something is false, then it doesn’t correspond with reality. So
if I’m saying this statement is false, that means that it’s not false—which
means that it must be true. But if it’s true, and I’m saying it’s false, then it
must be false! So whatever you do you’re in trouble!

So you can’t get a definite logical truth value, everything flip flops, it’s
neither true nor false. And you might dismiss this and say that these are just
meaningless word games, that it’s not serious. But Kurt Gödel later built
his work on these paradoxes, and he had a very different opinion.

Kurt Gödel

He said that Bertrand Russell made the amazing discovery that our logical
intuitions, our mathematical intuitions, are self-contradictory, they’re incon-
sistent! So Gödel took Russell very seriously, he didn’t think that it was all
a big joke.

Now I’d like to move on and tell you about David Hilbert’s rescue plan
for dealing with the crisis provoked by Cantor’s set theory and by Russell’s
paradoxes.

David Hilbert

David Hilbert to the Rescue with Formal Ax-

iomatic Theories

One of the reactions to the crisis provoked by Cantor’s theory of infinite sets,
one of the reactions was, well, let’s escape into formalism. If we get into
trouble with reasoning that seems okay, then one solution is to use symbolic
logic, to create an artificial language where we’re going to be very careful
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and say what the rules of the game are, and make sure that we don’t get
the contradictions. Right? Because here’s a piece of reasoning that looks
okay but it leads to a contradiction. Well, we’d like to get rid of that. But
natural language is ambiguous—you never know what a pronoun refers to.
So let’s create an artificial language and make things very, very precise and
make sure that we get rid of all the contradictions! So this was the notion of
formalism.

Formalism

Now I don’t think that Hilbert actually intended that mathematicians
should work in such a perfect artificial language. It would sort of be like a
programming language, but for reasoning, for doing mathematics, for deduc-
tion, not for computing, that was Hilbert’s idea. But he never expressed it
that way, because there were no programming languages back then.

So what are the ideas here? First of all, Hilbert stressed the importance
of the axiomatic method.

Axiomatic Method

The notion of doing mathematics that way goes back to the ancient Greeks
and particularly to Euclidean geometry, which is a beautifully clear math-
ematical system. But that’s not enough; Hilbert was also saying that we
should use symbolic logic.

Symbolic Logic

And symbolic logic also has a long history: Leibniz, Boole, Frege,
Peano. . . These mathematicians wanted to make reasoning like algebra.
Here’s how Leibniz put it: He talked about avoiding disputes—and he was
probably thinking of political disputes and religious disputes—by calculating
who was right instead of arguing about it! Instead of fighting, you should be
able to sit down at a table and say, “Gentleman, let us compute!” What a
beautiful fantasy!. . .

So the idea was that mathematical logic should be like arithmetic and you
should be able to just grind out a conclusion, no uncertainty, no questions
of interpretation. By using an artificial math language with a symbolic logic
you should be able to achieve perfect rigor. You’ve heard the word “rigor”,
as in “rigor mortis”, used in mathematics? It’s not that rigor! But the idea is
that an argument is either completely correct or else it’s total nonsense, with
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nothing in between. And a proof that is formulated in a formal axiomatic
system should be absolutely clear, it should be completely sharp!

In other words, Hilbert’s idea was that we should be completely precise
about what the rules of the game are, and about the definitions, the ele-
mentary concepts, and the grammar and the language—all the rules of the
game—so that we can all agree on how mathematics should be done. In
practice it would be too much work to use such a formal axiomatic system,
but it would be philosophically significant because it would settle once and
for all the question of whether a piece of mathematical reasoning is correct
or incorrect.

Okay? So Hilbert’s idea seemed fairly straightforward. He was just fol-
lowing the axiomatic and the formal traditions in mathematics. Formal as
in formalism, as in using formulas, as in calculating! He wanted to go all
the way, to the very end, and formalize all of mathematics, but it seemed
like a fairly reasonable plan. Hilbert wasn’t a revolutionary, he was a con-
servative. . . The amazing thing, as I said before, was that it turned out that
Hilbert’s rescue plan could not work, that it couldn’t be done, that it was
impossible to make it work!

Hilbert was just following the whole mathematics tradition up to that
point: the axiomatic method, symbolic logic, formalism. . . He wanted to
avoid the paradoxes by being absolutely precise, by creating a completely
formal axiomatic system, an artificial language, that avoided the paradoxes,
that made them impossible, that outlawed them! And most mathemati-
cians probably thought that Hilbert was right, that of course you could do
this—it’s just the notion that in mathematics things are absolutely clear,
black or white, true or false.

So Hilbert’s idea was just an extreme, an exaggerated version of the
normal notion of what mathematics is all about: the idea that we can decide
and agree on the rules of the game, all of them, once and for all. The big
surprise is that it turned out that this could not be done. Hilbert turned out
to be wrong, but wrong in a tremendously fruitful way, because he had asked
a very good question. In fact, by asking this question he actually created an
entirely new field of mathematics called metamathematics.

Metamathematics

Metamathematics is mathematics turned inward, it’s an introspective field
of math in which you study what mathematics can achieve or can’t achieve.
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What is Metamathematics?

That’s my field—metamathematics! In it you look at mathematics from
above, and you use mathematical reasoning to discuss what mathematical
reasoning can or cannot achieve. The basic idea is this: Once you entomb
mathematics in an artificial language à la Hilbert, once you set up a com-
pletely formal axiomatic system, then you can forget that it has any meaning
and just look at it as a game that you play with marks on paper that enables
you to deduce theorems from axioms. You can forget about the meaning of
this game, the game of mathematical reasoning, it’s just combinatorial play
with symbols! There are certain rules, and you can study these rules and
forget that they have any meaning!

What things do you look at when you study a formal axiomatic system
from above, from the outside? What kind of questions do you ask?

Well, one question you can ask is if you can prove that “0 equals 1”?

0 = 1 ?

Hopefully you can’t, but how can you be sure? It’s hard to be sure!
And for any question A, for any affirmation A, you can ask if it’s possible

to settle the matter by either proving A or the opposite of A, not A.

A ? ¬A ?

That’s called completeness.

Completeness

A formal axiomatic system is complete if you can settle any question A, either
by proving it (A), or by proving that it’s false (¬A). That would be nice!
Another interesting question is if you can prove an assertion (A) and you can
also prove the contrary assertion (¬A). That’s called inconsistency, and if
that happens it’s very bad! Consistency is much better than inconsistency !

Consistency

So what Hilbert did was to have the remarkable idea of creating a new field
of mathematics whose subject would be mathematics itself. But you can’t do
this until you have a completely formal axiomatic system. Because as long as
any “meaning” is involved in mathematical reasoning, it’s all subjective. Of
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course, the reason we do mathematics is because it has meaning, right? But if
you want to be able to study mathematics, the power of mathematics, using
mathematical methods, you have to “desiccate” it to “crystallize out” the
meaning and just be left with an artificial language with completely precise
rules, in fact, with one that has a mechanical proof-checking algorithm.

Proof-Checking Algorithm

The key idea that Hilbert had was to envision this perfectly desiccated
or crystallized axiomatic system for all of mathematics, in which the rules
would be so precise that if someone had a proof there would be a referee,
there would be a mechanical procedure, which would either say “This proof
obeys the rules” or “This proof is wrong; it’s breaking the rules”. That’s
how you get the criterion for mathematical truth to be completely objective
and not to depend on meaning or subjective understanding: by reducing it
all to calculation. Somebody says “This is a proof”, and instead of having
to submit it to a human referee who takes two years to decide if the paper is
correct, instead you just give it to a machine. And the machine eventually
says “This obeys the rules” or “On line 4 there’s a misspelling” or “This
thing on line 4 that supposedly follows from line 3, actually doesn’t”. And
that would be the end, no appeal!

The idea was not that mathematics should actually be done this way.
I think that that’s calumny, that’s a false accusation. I don’t think that
Hilbert really wanted to turn mathematicians into machines. But the idea
was that if you could take mathematics and do it this way, then you could use
mathematics to study the power of mathematics. And that is the important
new thing that Hilbert came up with. Hilbert wanted to do this in order to
reaffirm the traditional view of mathematics, in order to justify himself. . .

He proposed having one set of axioms and this formal language, this
formal system, which would include all of mathematical reasoning, that we
could all agree on, and that would be perfect! We’d then know all the rules
of the game. And he just wanted to use metamathematics to show that this
formal axiomatic system was good—that it was consistent and that it was
complete—in order to convince people to accept it. This would have settled
once and for all the philosophical questions “When is a proof correct?” and
“What is mathematical truth?” Like this everyone could agree on whether a
mathematical proof is correct or not. And in fact we used to think that this
was an objective thing.
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In other words, Hilbert’s just saying, if it’s really objective, if there’s no
subjective element, and a mathematical proof is either true or false, well,
then there should be certain rules for deciding that and it shouldn’t depend,
if you fill in all the details, it shouldn’t depend on interpretation. It’s im-
portant to fill in all the details—that’s the idea of mathematical logic, to
“atomize” mathematical reasoning into such tiny steps that nothing is left
to the imagination, nothing is left out! And if nothing is left out, then a
proof can be checked automatically, that was Hilbert’s point, that’s really
what symbolic logic is all about.

And Hilbert thought that he was actually going to be able to do this.
He was going to formalize all of mathematics, and we were all going to
agree that these were in fact the rules of the game. Then there’d be just one
version of mathematical truth, not many variations. We don’t want to have a
German mathematics and a French mathematics and a Swedish mathematics
and an American mathematics, no, we want a universal mathematics, one
universal criterion for mathematical truth! Then a paper that is done by
a mathematician in one country can be understood by a mathematician in
another country. Doesn’t that sound reasonable?! So you can imagine just
how very, very shocking it was in 1931 when Kurt Gödel showed that it
wasn’t at all reasonable, that it could never be done!

1931 Kurt Gödel

Kurt Gödel Discovers Incompleteness

Gödel did this is Vienna, but he was from what I think is now called the
Czech republic, from the city of Brünn or Brno. It was part of the Austro-
Hungarian empire then, but now it’s a separate country. And later he was
at the Institute for Advanced Study in Princeton, where I visited his grave
a few weeks ago. And the current owner of Gödel’s house was nice enough
to invite me in when he saw me examining the house, instead of calling the
police! They know they’re in a house that some people are interested in for
historical reasons.

Okay, so what did Kurt Gödel do? Well, Gödel sort of exploded this
whole view of what mathematics is all about. He came up with a famous
incompleteness result, “Gödel’s incompleteness theorem”.

Incompleteness
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And there’s a lovely book explaining the way Gödel originally did it. It’s by
Nagel and Newman, and it’s called Gödel’s Proof. I read it when I was a
child, and forty years later it’s still in print!

What is this amazing result of Gödel’s? Gödel’s amazing discovery is that
Hilbert was wrong, that it cannot be done, that there’s no way to take all
of mathematical truth and to agree on a set of rules and to have a formal
axiomatic system for all of mathematics in which it is crystal clear whether
something is correct or not!

More precisely, what Gödel discovered was that if you just try to deal
with elementary arithmetic, with 0, 1, 2, 3, 4. . . and with addition and mul-
tiplication

+ × 0, 1, 2, 3, 4, . . .

—this is “elementary number theory” or “arithmetic”—and you just try to
have a set of axioms for this—the usual axioms are called Peano arithmetic—
even this can’t be done! Any set of axioms that tries to have the whole
truth and nothing but the truth about addition, multiplication, and 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10. . . will have to be incomplete. More precisely,
it’ll either be inconsistent or it’ll be incomplete. So if you assume that it
only tells the truth, then it won’t tell the whole truth. There’s no way to
capture all the truth about addition, multiplication, and 0, 1, 2, 3, 4. . . !
In particular, if you assume that the axioms don’t allow you to prove false
theorems, then it’ll be incomplete, there’ll be true theorems that you cannot
prove from these axioms!

This is an absolutely devastating result, and all of traditional mathemati-
cal philosophy ends up in a heap on the floor! At the time this was considered
to be absolutely devastating. However you may notice that in 1931 there were
also a few other problems to worry about. The situation in Europe was bad.
There was a major depression, and a war was brewing. I agree, not all prob-
lems are mathematical! There’s more to life than epistemology! But you
begin to wonder, well, if the traditional view of mathematics isn’t correct,
then what is correct? Gödel’s incompleteness theorem was very surprising
and a terrible shock.

How did Gödel do it? Well, Gödel’s proof is very clever. It almost looks
crazy, it’s very paradoxical. Gödel starts with the paradox of the liar, “I’m
false!”, which is neither true nor false.

“This statement is false!”
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And what Gödel does is to construct a statement that says of itself “I’m
unprovable!”

“This statement is unprovable!”

Now if you can construct such a statement in elementary number theory,
in arithmetic, a mathematical statement—I don’t know how you make a
mathematical statement say it’s unprovable, you’ve got to be very clever—
but if you can do it, it’s easy to see that you’re in trouble. Just think about
it a little bit. It’s easy to see that you’re in trouble. Because if it’s provable,
it’s false, right? So you’re in trouble, you’re proving false results. And if it’s
unprovable and it says that it’s unprovable, then it’s true, and mathematics
is incomplete. So either way, you’re in trouble! Big trouble!

And Gödel’s original proof is very, very clever and hard to understand.
There are a lot of complicated technical details. But if you look at his original
paper, it seems to me that there’s a lot of LISP programming in it, or at least
something that looks a lot like LISP programming. Anyway, now we’d call it
LISP programming. Gödel’s proof involves defining a great many functions
recursively, and these are functions dealing with lists, which is precisely what
LISP is all about. So even though there were no programming languages
in 1931, with the benefit of hindsight you can clearly see a programming
language in Gödel’s original paper. And the programming language I know
that’s closest to it is LISP, pure LISP, LISP without side-effects, interestingly
enough—that’s the heart of LISP.

So this was a very, very shocking result, and people didn’t really know
what to make of it.

Now the next major step forward comes only five years later, in 1936,
and it’s by Alan Turing.

1936 Alan Turing

Alan Turing Discovers Uncomputability

Turing’s approach to all these questions is completely different from Gödel’s,
and much deeper. Because Turing brings it out of the closet! What he brings
out of the closet is the computer! The computer was implicit in Gödel’s paper,
but this was really not visible to any ordinary mortal, not at that time, only
with hindsight. And Turing really brings it out in the open.

Hilbert had said that there should be a “mechanical procedure” to de-
cide if a proof obeys the rules or not. And Hilbert never clarified what he
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meant by a mechanical procedure, it was all words. But, Turing said, what
you really mean is a machine, and a machine of a kind that we now call a
Turing machine—but it wasn’t called that in Turing’s original paper. In fact,
Turing’s original paper contains a programming language, just like Gödel’s
paper does, what we would now call a programming language. But the two
programming languages are very different. Turing’s programming language
isn’t a high-level language like LISP, it’s more like a machine language. In
fact, it’s a horrible machine language, one that nobody would want to use
today, because it’s too simple.

But Turing makes the point that even though Turing machines are very
simple, even though their machine language is rather primitive, they’re very
flexible, very general-purpose machines. In fact, he claims, any computation
that a human being can perform, should be possible to do using such a
machine. Turing’s train of thought now takes a very dramatic turn. What,
he asks, is impossible for such a machine? What can’t it do? And he im-
mediately finds a question that no Turing machine can settle, a problem that
no Turing machine can solve. That’s the halting problem, the problem of de-
ciding in advance if a Turing machine or a computer program will eventually
halt.

The Halting Problem

So the shocking thing about this 1936 paper is that first of all he comes
up with the notion of a general-purpose or universal computer, with a ma-
chine that’s flexible, that can do what any machine can do. One calculating
machine that can do any calculation, which is, we now say, a general-purpose
computer. And then he immediately shows that there are limits to what such
a machine can do. And how does he find something that cannot be done by
any such machine? Well, it’s very simple! It’s the question of whether a
computer program will eventually halt, with no time limit.

If you put a time limit, it’s very easy. If you want to know if a program
halts in a year, you just run it for a year, and either it halted or doesn’t.
What Turing showed is that you get in terrible trouble if there’s no time
limit. Now you may say, “What good is a computer program that takes
more than a year, that takes more than a thousand years?! There’s always
a time limit!” I agree, this is pure math, this is not the real world. You only
get in trouble with infinity! But Turing shows that if you put no time limit,
then you’re in real difficulties.

So this is called the halting problem. And what Turing showed is that
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there’s no way to decide in advance if a program will eventually halt.

The Halting Problem

If it does halt, by running it you can eventually discover that, if you’re just
patient. The problem is you don’t know when to give up. And Turing was
able to show with a very simple argument which is just Cantor’s diagonal
argument—coming from Cantor’s theory of infinite sets, by the way—I don’t
have time to explain all this—with a very simple argument Turing was able
to show that this problem

The Halting Problem

cannot be solved.
No computer program can tell you in advance if another computer pro-

gram will eventually halt or not. And the problem is the ones that don’t
halt, that’s really the problem. The problem is knowing when to give up.

So now the interesting thing about this is that Turing immediately de-
duces as a corollary that if there’s no way to decide in advance by a calcu-
lation if a program will halt or not, well then there cannot be any way to
deduce it in advance using reasoning either. No formal axiomatic system
can enable you to deduce in advance whether a program will halt or not.

Because if you can use a formal axiomatic system to always deduce
whether a program will halt or not, well then, that will give you a way
to calculate in advance whether a program will halt or not. You simply run
through all possible deductions—you can’t do this in practice—but in princi-
ple you can run through all possible proofs in size order, checking which ones
are correct, until either you find a proof that the program will halt eventually
or you find a proof that it’s never going to halt.

This is using the idea of a completely formal axiomatic system where
you don’t need a mathematician—you just run through this calculation on
a computer—it’s mechanical to check if a proof is correct or not. So if there
were a formal axiomatic system which always would enable you to prove,
to deduce, whether a program will halt or not, that would give you a way
to calculate in advance whether a program will halt or not. And that’s
impossible, because you get into a paradox like “This statement is false!”
You get a program that halts if and only if it doesn’t halt, that’s basically
the problem. You use an argument having the same flavor as the Russell
paradox.
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So Turing went more deeply into these questions than Gödel. As a student
I read Gödel’s proof, and I could follow it step by step: I read it in Nagel
and Newman’s book, which is a lovely book. It’s a marvelous book, it’s
so understandable! It’s still in print, and it was published in 1958. . . But
I couldn’t really feel that I was coming to grips with Gödel’s proof, that I
could really understand it. The whole thing seemed too delicate, it seemed
too fragile, it seemed too superficial. . . And there’s this business in the closet
about computing, that’s there in Gödel, but it’s hidden, it’s not in the open,
we’re not really coming to terms with it.

Now Turing is really going, I think, much deeper into this whole matter.
And he’s showing, by the way, that it’s not just one particular axiomatic
system, the one that Gödel studied, that can’t work, but that no formal
axiomatic system can work. But it’s in a slightly different context. Gödel
was really looking at 0, 1, 2, 3, 4. . . and addition and multiplication, and
Turing is looking at a rather strange mathematical question, which is does a
program halt or not. It’s a mathematical question that did not exist at the
time of Gödel’s original paper. So you see, Turing worked with completely
new concepts. . .

But Gödel’s paper is not only tremendously clever, he had to have
the courage to imagine that Hilbert might be wrong. There’s another fa-
mous mathematician of that time, von Neumann—whose grave I found near
Gödel’s, by the way, at Princeton. Von Neumann was probably as clever
as Gödel or anyone else, but it never occurred to him that Hilbert could be
wrong. And the moment that he heard Gödel explain his result, von Neu-
mann immediately appreciated it and immediately started deducing conse-
quences. But von Neumann said, “I missed it, I missed the boat, I didn’t get
it right!” And Gödel did, so he was much more profound. . .

Now Turing’s paper is also full of technical details, like Gödel’s paper,
because there is a programming language in Turing’s paper, and Turing also
gives a rather large program, which of course has bugs, because he wasn’t
able to run it and debug it—it’s the program for a universal Turing machine.
But the basic thing is the ideas, and the new ideas in Turing’s work are just
breathtaking! So I think that Turing went beyond Gödel, but you have to
recognize that Gödel took the first step, and the first step is historically the
most difficult one and takes the most courage. To imagine that Hilbert could
be wrong, which never occurred to von Neumann, that was something!
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I Discover Randomness in Pure Mathematics

Okay, so then what happened? Then World War II begins. Turing starts
working on cryptography, von Neumann starts working on how to calculate
atom bomb detonations, and people forget about incompleteness for a while.

This is where I show up on the scene. The generation of mathematicians
who were concerned with these questions basically passes from the scene with
World War II. And I’m a kid in the 1950s in the United States reading the
original article by Nagel and Newman in Scientific American in 1956 that
became their book.

And I didn’t realize that mathematicians really preferred to forget about
Gödel and go on working on their favorite problems. I’m fascinated by in-
completeness and I want to understand it. Gödel’s incompleteness result
fascinates me, but I can’t really understand it, I think there’s something
fishy. . . As for Turing’s approach, I think it goes much deeper, but I’m still
not satisfied, I want to understand it better.

And I get a funny idea about randomness. . . I was reading a lot of discus-
sions of another famous intellectual issue when I was a kid—not the ques-
tion of the foundations of mathematics, the question of the foundations of
physics! These were discussions about relativity theory and cosmology and
even more often about quantum mechanics, about what happens in the atom.
It seems that when things are very small the physical world behaves in a
completely crazy way that is totally unlike how objects behave here in this
classroom. In fact things are random—intrinsically unpredictable—in the
atom.

Einstein hated this. Einstein said that “God doesn’t play dice!” By
the way, Einstein and Gödel were friends at Princeton, and they didn’t talk
very much with anybody else, and I heard someone say that Einstein had
brainwashed Gödel against quantum mechanics! It was the physicist John
Wheeler, who told me that he once asked Gödel if there could be any con-
nection between quantum uncertainty and Gödel’s incompleteness theorem,
but Gödel refused to discuss it. . .

Okay, so I was reading about all of this, and I began to wonder—in the
back of my head I began to ask myself—could it be that there was also
randomness in pure mathematics?

The idea in quantum mechanics is that randomness is fundamental, it’s
a basic part of the universe. In normal, everyday life we know that things
are unpredictable, but in theory, in Newtonian physics and even in Einstein’s
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relativity theory—that’s all called classical as opposed to quantum physics—
in theory in classical physics you can predict the future. The equations are
deterministic, not probabilistic. If you know the initial conditions exactly,
with infinite precision, you apply the equations and you can predict with
infinite precision any future time and even in the past, because the equations
work either way, in either direction. The equations don’t care about the
direction of time. . .

This is that wonderful thing sometimes referred to as Laplacian determin-
ism. I think that it’s called that because of Laplace’s Essai Philosophique
sur les Probabilités, a book that was published almost two centuries ago. At
the beginning of this book Laplace explains that by applying Newton’s laws,
in principle a demon could predict the future arbitrarily far, or the past ar-
bitrarily far, if it knew the exact conditions at the current moment. This is
not the type of world where you talk about free will and moral responsibility,
but if you’re doing physics calculations it’s a great world, because you can
calculate everything!

But in the 1920s with quantum mechanics it began to look like God plays
dice in the atom, because the basic equation of quantum mechanics is the
Schrödinger equation, and the Schrödinger equation is an equation that talks
about the probability that an electron will do something. The basic quan-
tity is a probability and it’s a wave equation saying how a probability wave
interferes with itself. So it’s a completely different kind of equation, because
in Newtonian physics you can calculate the precise trajectory of a particle
and know exactly how it’s going to behave. But in quantum mechanics the
fundamental equation is an equation dealing with probabilities! That’s it,
that’s all there is!

You can’t know exactly where an electron is and what its velocity vec-
tor is—exactly what direction and how fast it’s going. It doesn’t have a
specific state that’s known with infinite precision the way it is in classical
physics. If you know very accurately where an electron is, then its velocity—
its momentum—turns out to be wildly uncertain. And if you know exactly
in which direction and at what speed it’s going, then its position becomes
infinitely uncertain. That’s the infamous Heisenberg uncertainty principle,
there’s a trade-off, that seems to be the way the physical universe works. . .

It’s an interesting historical fact that before people used to hate this—
Einstein hated it—but now people think that they can use it! There’s a
crazy new field called quantum computing where the idea is to stop fighting
it. If you can’t lick them, join them! The idea is that maybe you can make
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a brand new technology using something called quantum parallelism. If a
quantum computer is uncertain, maybe you can have it uncertainly do many
computations at the same time! So instead of fighting it, the idea is to use
it, which is a great idea.

But when I was a kid people were still arguing over this. Even though he
had helped to create quantum mechanics, Einstein was still fighting it, and
people were saying, “Poor guy, he’s obviously past his prime!”

Okay, so I began to think that maybe there’s also randomness in pure
mathematics. I began to suspect that maybe that’s the real reason for
incompleteness. A case in point is elementary number theory, where there
are some very difficult questions. Take a look at the prime numbers. Individ-
ual prime numbers behave in a very unpredictable way, if you’re interested in
their detailed structure. It’s true that there are statistical patterns. There’s
a thing called the prime number theorem that predicts fairly accurately the
over-all average distribution of the primes. But as for the detailed distribu-
tion of individual prime numbers, that looks pretty random!

So I began to think about randomness. . . I began to think that maybe
that’s what’s really going on, maybe that’s a deeper reason for all this in-
completeness. So in the 1960s I, and independently some other people, came
up with some new ideas. And I like to call this new set of ideas algorithmic
information theory.

Algorithmic Information Theory

That name makes it sound very impressive, but the basic idea is just to look
at the size of computer programs. You see, it’s just a complexity measure,
it’s just a kind of computational complexity. . .

I think that one of the first places that I heard about the idea of compu-
tational complexity was from von Neumann. Turing came up with the idea
of a computer as a mathematical concept—it’s a perfect computer, one that
never makes mistakes, one that has as much time and space as it needs to
work—it’s always finite, but the calculation can go on as long as it has to. Af-
ter Turing comes up with this idea, the next logical step for a mathematician
is to study the time, the work needed to do a calculation—its complexity.
And in fact I think that around 1950 von Neumann suggested somewhere
that there should be a new field which looks at the time complexity of com-
putations, and that’s now a very well-developed field. So of course if most
people are doing that, then I’m going to try something else!
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My idea was not to look at the time, even though from a practical point
of view time is very important. My idea was to look at the size of computer
programs, at the amount of information that you have to give a computer to
get it to perform a given task. From a practical point of view, the amount
of information required isn’t as interesting as the running time, because of
course it’s very important for computers to do things as fast as possible. . . But
it turns out that from a conceptual point of view, it’s not that way at all. I be-
lieve that from a fundamental philosophical point of view, the right question
is to look at the size of computer programs, not at the time. Why?—Besides
the fact that it’s my idea so obviously I’m going to be prejudiced! The reason
is because program-size complexity connects with a lot of fundamental stuff
in physics.

You see, in physics there’s a notion called entropy, which is how disordered
a system is. Entropy played a particularly crucial role in the work of the
famous 19th century physicist Boltzmann,

Ludwig Boltzmann

and it comes up in the field of statistical mechanics and in thermodynamics.
Entropy measures how disordered, how chaotic, a physical system is. A
crystal has low entropy, and a gas at high temperature has high entropy.
It’s the amount of chaos or disorder, and it’s a notion of randomness that
physicists like.

And entropy is connected with some fundamental philosophical
questions—it’s connected with the question of the arrow of time, which
is another famous controversy. When Boltzmann invented this wonder-
ful thing called statistical mechanics—his theory is now considered to be one
of the masterpieces of 19th century physics, and all physics is now statistical
physics—he ended up by committing suicide, because people said that his
theory was obviously wrong! Why was it obviously wrong? Because in
Boltzmann’s theory entropy has got to increase and so there’s an arrow of
time. But if you look at the equations of Newtonian physics, they’re time
reversible. There’s no difference between predicting the future and predict-
ing the past. If you know at one instant exactly how everything is, you can
go in either direction, the equations don’t care, there’s no direction of time,
backward is the same as forward.

But in everyday life and in Boltzmann statistical mechanics, there is a
difference between going backward and forward. Glasses break, but they
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don’t reassemble spontaneously! And in Boltzmann’s theory entropy has got
to increase, the system has to get more and more disordered. But people said,
“You can’t deduce that from Newtonian physics!” Boltzmann was pretending
to. He was looking at a gas. The atoms of a gas bounce around like billiard
balls, it’s a billiard ball model of how a gas works. And each interaction is
reversible. If you run the movie backwards, it looks the same. If you look at
a small portion of a gas for a small amount of time, you can’t tell whether
you’re seeing the movie in the right direction or the wrong direction.

But Boltzmann gas theory says that there is an arrow of time—a system
will start off in an ordered state and will end up in a very mixed up disordered
state. There’s even a scary expression in German, heat death. People said
that according to Boltzmann’s theory the universe is going to end up in a
horrible ugly state of maximum entropy or heat death! This was the dire
prediction! So there was a lot of controversy about his theory, and maybe
that was one of the reasons that Boltzmann killed himself.

And there is a connection between my ideas and Boltzmann’s, because
looking at the size of computer programs is very similar to this notion of the
degree of disorder of a physical system. A gas takes a large program to say
where all its atoms are, but a crystal doesn’t take as big a program, because
of its regular structure. Entropy and program-size complexity are closely
related. . .

This idea of program-size complexity is also connected with the philos-
ophy of the scientific method. You’ve heard of Occam’s razor, of the idea
that the simplest theory is best? Well, what’s a theory? It’s a computer
program for predicting observations. And the idea that the simplest theory
is best translates into saying that a concise computer program is the best
theory. What if there is no concise theory, what if the most concise program
or the best theory for reproducing a given set of experimental data is the
same size as the data? Then the theory is no good, it’s cooked up, and the
data is incomprehensible, it’s random. In that case the theory isn’t doing a
useful job. A theory is good to the extent that it compresses the data into
a much smaller set of theoretical assumptions. The greater the compression,
the better!—That’s the idea. . .

So this idea of program size has a lot of philosophical resonances, and
you can define randomness or maximum entropy as something that cannot
be compressed at all. It’s an object with the property that basically the only
way you can describe it to someone is to say “this is it” and show it to them.
Because it has no structure or pattern, there is no concise description, and
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the thing has to be understood as “a thing in itself”, it’s irreducible.

Randomness = Incompressibility

The other extreme is an object that has a very regular pattern so you can
just say that it’s “a million 0s” or “half a million repetitions of 01”, pairs
01, 01, 01 repeated half a million times. These are very long objects with
a very concise description. Another long object with a concise description
is an ephemeris, I think it’s called that, it’s a table giving the positions of
the planets as seen in sky, daily, for a year. You can compress all this astro-
nomical information into a small FORTRAN program that uses Newtonian
physics to calculate where the planets will be seen in the sky every night.

But if you look at how a roulette wheel behaves, then there is no pattern,
the series of outcomes cannot be compressed. Because if there were a pattern,
then people could use it to win, and having a casino wouldn’t be such a good
business! The fact that casinos make lots of money shows that there is no
way to predict what a roulette wheel will do, there is no pattern—the casinos
make it their job to ensure that!

So I had this new idea, which was to use program-size complexity to define
randomness. And when you start looking at the size of computer programs—
when you begin to think about this notion of program-size or information
complexity instead of run-time complexity—then the interesting thing that
happens is that everywhere you turn you immediately find incompleteness!
You immediately find things that escape the power of mathematical reason-
ing, things that escape the power of any computer program. It turns out
that they’re everywhere!

It’s very dramatic! In only three steps we went from Gödel, where it’s
very surprising that there are limits to reasoning, to Turing, where it looks
much more natural, and then when you start looking at program size, well,
incompleteness, the limits of mathematics, it just hits you in the face! Why?!
Well, the very first question that you ask in my theory gets you into
trouble. What’s that? Well, in my theory I measure the complexity of
something by the size of the smallest computer program for calculating it.
But how can I be sure that I have the smallest computer program?

Let’s say that I have a particular calculation, a particular output, that
I’m interested in, and that I have this nice, small computer program that
calculates it, and I think that it’s the smallest possible program, the most
concise one that produces this output. Maybe a few friends of mine and I
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were trying to do it, and this was the best program that we came up with;
nobody did any better. But how can you be sure? Well, the answer is that
you can’t be sure. It turns out you can never be sure! You can never
be sure that a computer program is what I like to call elegant, namely that
it’s the most concise one that produces the output that it produces. Never
ever! This escapes the power of mathematical reasoning, amazingly enough.

But for any computational task, once you fix the computer programming
language, once you decide on the computer programming language, and if
you have in mind a particular output, there’s got to be at least one program
that is the smallest possible. There may be a tie, there may be several,
right?, but there’s got to be at least one that’s smaller than all the others.
But you can never be sure that you’ve found it!

And the precise result, which is one of my favorite incompleteness results,
is that if you have N bits of axioms, you can never prove that a program is
elegant—smallest possible—if the program is more than N bits long. That’s
basically how it works. So any given set of mathematical axioms, any for-
mal axiomatic system in Hilbert’s style, can only prove that finitely many
programs are elegant, are the most concise possible for their output.

To be more precise, you get into trouble with an elegant program if it’s
larger than a computerized version of the axioms—It’s really the size of the
proof-checking program for your axioms. In fact, it’s the size of the program
that runs through all possible proofs producing all possible theorems. If you
have in mind a particular programming language, and you need a program of
a certain size to implement a formal axiomatic system, that is to say, to write
the proof-checking algorithm and to write the program that runs through all
possible proofs filtering out all the theorems, if that program is a certain
size in a language, and if you look at programs in that same language that
are larger, then you can never be sure that such a program is elegant, you
can never prove that such a program is elegant using the axioms that are
implemented in the same language by a smaller program. That’s basically
how it works.

So there are an infinity of elegant programs out there. For any computa-
tional task there’s got to be at least one elegant program, and there may be
several, but you can never be sure except in a finite number of cases. That’s
my result, and I’m very proud of it!

So it turns out that you can’t calculate the program-size complexity, you
can never be sure what the program-size complexity of anything is. Because
to determine the program-size complexity of something is to know the size of
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the most concise program that calculates it—but that means—it’s essentially
the same problem—then I would know that this program is the most concise
possible, I would know that it’s an elegant program, and you can’t do that
if the program is larger than the axioms. So if it’s N bits of axioms, you
can never determine the program-size complexity of anything that has more
than N bits of complexity, which means almost everything, because almost
everything has more than N bits of complexity. Almost everything has more
complexity than the axioms that you’re using.

Why do I say that? The reason for using axioms is because they’re simple
and believable. So the sets of axioms that mathematicians normally use are
fairly concise, otherwise no one would believe in them! Which means that
in practice there’s this vast world of mathematical truth out there, which is
an infinite amount of information, but any given set of axioms only captures
a tiny finite amount of this information! And that’s why we’re in trouble,
that’s my bottom line, that’s my final conclusion, that’s the real dilemma.

So in summary, I have two ways to explain why I think Gödel incom-
pleteness is natural and inevitable rather than mysterious and surprising.
The two ways are—that the idea of randomness in physics, that some things
make no sense, also happens in pure mathematics, is one way to say it. But
a better way to say it, is that mathematical truth is an infinite amount of
information, but any particular set of axioms just has a finite amount of
information, because there are only going to be a finite number of principles
that you’ve agreed on as the rules of the game. And whenever any statement,
any mathematical assertion, involves more information than the amount in
those axioms, then it’s very natural that it will escape the ability of those
axioms.

So you see, the way that mathematics progresses is you trivialize every-
thing! The way it progresses is that you take a result that originally required
an immense effort, and you reduce it to a trivial corollary of a more general
theory!

Let me give an example involving Fermat’s “last theorem”, namely the
assertion that

xn + yn = zn

has no solutions in positive integers x, y, z, and n with n greater than 2.
Andrew Wiles’s recent proof of this is hundreds of pages long, but, probably,
a century or two from now there will be a one-page proof! But that one-page
proof will require a whole book inventing a theory with concepts that are the
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natural concepts for thinking about Fermat’s last theorem. And when you
work with those concepts it’ll appear immediately obvious—Wiles’s proof will
be a trivial afterthought—because you’ll have imbedded it in the appropriate
theoretical context.

And the same thing is happening with incompleteness.
Gödel’s result, like any very fundamental basic result, starts off by being

very mysterious and complicated, with a long impenetrable proof. People
said about Gödel’s original paper the same thing that they said about Ein-
stein’s theory of relativity, which is that there are less than five people on this
entire planet who understand it. The joke was that Eddington, astronomer
royal Sir Arthur Eddington, is at a formal dinner party—this was just after
World War I—and he’s introduced as one of the three men who understands
Einstein’s theory. And he says, “Let’s see, there’s Einstein, and there’s me,
but who’s the other guy?”

So in 1931 Gödel’s proof was like that. If you look at his original paper, it’s
very complicated. The details are programming details we would say now—
really it’s a kind of complication that we all know how to handle now—but
at the time it looked very mysterious. This was a 1931 mathematics paper,
and all of a sudden you’re doing what amounts to LISP programming, thirty
years before LISP was invented! And there weren’t even any computers then!

But when you get to Turing, he makes Gödel’s result seem much more nat-
ural. And I think that my idea of program-size complexity and information—
really, algorithmic information content—makes Gödel’s result seem more
than natural, it makes it seem, I’d say, obvious, inevitable. But of course
that’s the way it works, that’s how we progress.

Where Do We Go from Here?!

I should say, though, that if this were really true, if it were that simple, then
that would be the end of the field of metamathematics. It would be a sad
thing, because it would mean that this whole subject is dead. But I don’t
think that it is!

You know, I’ve been giving versions of this talk for many years. In these
talks I like to give examples of things that might escape the power of nor-
mal mathematical reasoning. And my favorite examples were Fermat’s last
theorem, the Riemann hypothesis, and the four-color conjecture. When I
was a kid these were the three most outstanding open questions in all of
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mathematics.
But a funny thing happened. First the four-color conjecture was settled

by a computer proof, and recently the proof has been greatly improved.
The latest version has more ideas and less computation, so that’s a big step
forward. And then Wiles settled Fermat’s last theorem. There was a misstep,
but now everyone’s convinced that the new proof is correct.

In fact, I was at a meeting in June 1993, when Wiles was presenting
his proof in Cambridge. I wasn’t there, but I was at a meeting in France,
and the word was going around by e-mail that Wiles had done it. It just
so happened that I was session chairman, and at one point the organizer of
the whole meeting said, “Well, there’s this rumor going around, why don’t
we make an announcement. You’re the session chairman, you do it!” So
I got up and said, “As some of you may have heard, Andrew Wiles has
just demonstrated Fermat’s last theorem.” And there was silence! But
afterwards two people came up and said, “You were joking, weren’t you?”
And I said, “No, I wasn’t joking.” It wasn’t April 1st!

Fortunately the Riemann hypothesis is still open at this point, as far as
I know!

But I was using Fermat’s last theorem as a possible example of incom-
pleteness, as an example of something that might be beyond the power of
the normal mathematical methods. I needed a good example, because peo-
ple used to say to me, “Well, this is all very well and good, AIT is a nice
theory, but give me an example of a specific mathematical result that you
think escapes the power of the usual axioms.” And I would say, well, maybe
Fermat’s last theorem!

So there’s a problem. Algorithmic information theory is very nice and
shows that there are lots of things that you can’t prove, but what about in-
dividual mathematical questions? How about a natural mathematical ques-
tion? Can these methods be applied? Well, the answer is no, my methods
are not as general as they sound. There are technical limitations. I can’t
analyze Fermat’s last theorem with these methods. Fortunately! Because if
I had announced that my methods show that Fermat’s last theorem can’t be
settled, then it’s very embarrassing when someone settles it!

So now the question is, how come in spite of these negative results, math-
ematicians are making so much progress? How come mathematics works so
well in spite of incompleteness? You know, I’m not a pessimist, but my results
have the wrong kind of feeling about them, they’re much too pessimistic!

So I think that a very interesting question now is to look for positive
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results. . . There are already too many negative results! If you take them at
face value, it would seem that there’s no way to do mathematics, that math-
ematics is impossible. Fortunately for those of us who do mathematics, that
doesn’t seem to be the case. So I think that now we should look for pos-
itive results. . . The fundamental questions, like the questions of philosophy,
they’re great, because you never exhaust them. Every generation takes a few
steps forward. . . So I think there’s a lot more interesting work to be done in
this area.

And here’s another very interesting question: Program size is a complex-
ity measure, and we know that it works great in metamathematics, but does
it have anything to do with complexity in the real world? For example,
what about the complexity of biological organisms? What about a theory of
evolution?

Von Neumann talked about a general theory of the evolution of life. He
said that the first step was to define complexity. Well, here’s a definition of
complexity, but it doesn’t seem to be the correct one to use in theoretical
biology. And there is no such thing as theoretical biology, not yet!

As a mathematician, I would love it if somebody would prove a general
result saying that under very general circumstances life has to evolve. But I
don’t know how you define life in a general mathematical setting. We know
it when we see it, right? If you crash into something alive with your car,
you know it! But as a mathematician I don’t know how to tell the difference
between a beautiful deer running across the road and the pile of garbage that
my neighbor left out in the street! Well, actually that garbage is connected
with life, it’s the debris produced by life. . .

So let’s compare a deer with a rock instead. Well, the rock is harder,
but that doesn’t seem to go to the essential difference that the deer is alive
and the rock is a pretty passive object. It’s certainly very easy for us to tell
the difference in practice, but what is the fundamental difference? Can one
grasp that mathematically?

So what von Neumann was asking for was a general mathematical the-
ory. Von Neumann used to like to invent new mathematical theories. He’d
invent one before breakfast every day: the theory of games, the theory of
self-reproducing automata, the Hilbert space formulation of quantum me-
chanics. . . Von Neumann wrote a book on quantum mechanics using Hilbert
spaces—that was done by von Neumann, who had studied under Hilbert, and
who said that this was the right mathematical framework for doing quantum
mechanics.
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Von Neumann was always inventing new fields of mathematics, and since
he was a childhood hero of mine, and since he talked about Gödel and Turing,
well, I said to myself, if von Neumann could do it, I think I’ll give it a try.
Von Neumann even suggested that there should be a theory of the complexity
of computations. He never took any steps in that direction, but I think that
you can find someplace where he said that this has got to be an interesting
new area to develop, and he was certainly right.

Von Neumann also said that we ought to have a general mathematical
theory of the evolution of life. . . But we want it to be a very general theory,
we don’t want to get involved in low-level questions like biochemistry or
geology. . . He insisted that we should do things in a more general way, because
von Neumann believed, and I guess I do too, that if Darwin is right, then it’s
probably a very general thing.

For example, there is the idea of genetic programming, that’s a computer
version of this. Instead of writing a program to do something, you sort of
evolve it by trial and error. And it seems to work remarkably well, but can
you prove that this has got to be the case? Or take a look at Tom Ray’s
Tierra. . . Some of these computer models of biology almost seem to work
too well—the problem is that there’s no theoretical understanding why they
work so well. If you run Ray’s model on the computer you get these parasites
and hyperparasites, you get a whole ecology. That’s just terrific, but as a
pure mathematician I’m looking for theoretical understanding, I’m looking
for a general theory that starts by defining what an organism is and how you
measure its complexity, and that proves that organisms have to evolve and
increase in complexity. That’s what I want, wouldn’t that be nice?

And if you could do that, it might shed some light on how general the
phenomenon of evolution is, and whether there’s likely to be life elsewhere
in the universe. Of course, even if mathematicians never come up with such
a theory, we’ll probably find out by visiting other places and seeing if there’s
life there. . . But anyway, von Neumann had proposed this as an interest-
ing question, and at one point in my deluded youth I thought that maybe
program-size complexity had something to do with evolution. . . But I don’t
think so anymore, because I was never able to get anywhere with this idea. . .

So I think that there’s a lot of interesting work to be done! And I think
that we live in exciting times. In fact, sometimes I think that maybe they’re
even a little bit too exciting!. . . And I hope that if this talk were being given
a century from now, in 2099, there would be another century of exciting
controversy about the foundations of mathematics to summarize, one with
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different concerns and preoccupations. . . It would be interesting to hear what
that talk would be like a hundred years from now! Maybe some of you will
be there! Or give the talk even! Thank you very much!

Further Reading

1. G. J. Chaitin, The Unknowable, Springer-Verlag, 1999.

2. G. J. Chaitin, The Limits of Mathematics, Springer-Verlag, 1998.
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G. J. Chaitin’s 2 March 2000 Carnegie Mellon University School of Computer
Science Distinguished Lecture. The lecture was videotaped; this is an edited
transcript.

We’re in a state of euphoria now in the computer business because things
are going so well: the web, e-commerce. It’s all paying for our salaries, and
it’s a nice moment to be around, when things are going so well. But I’d like
to make the outrageous claim, that has a little bit of truth, that actually all
of this that’s happening now with the computer taking over the world, the
digitalization of our society, of information in human society, you could say
in a way is the result of a philosophical question that was raised by David
Hilbert at the beginning of the century.

It’s not a complete lie to say that Turing invented the computer in order to
shed light on a philosophical question about the foundations of mathematics
that was asked by Hilbert. And in a funny way that led to the creation of
the computer business.

It’s not completely true, but there is some truth in it. You know, most
historical statements are a lie, so this one isn’t that much worse than most
others!

So I’d like to explain the philosophical history of the computer. In a way
what happened, and I’ll tell you more, is that Hilbert said we should formalize
all of mathematics, mathematical reasoning. And this failed: it took Gödel
and Turing to show that it couldn’t be done. It failed in that precise technical
sense. But in fact it succeeded magnificently, not formalization of reasoning,

129
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but formalization of algorithms has been the great technological success of
our time — computer programming languages!

So if you look back at the history of the beginning of this century you’ll
see papers by logicians studying the foundations of mathematics in which
they had programming languages. Now you look back and you say this is
clearly a programming language! If you look at Turing’s paper of course
there’s a machine language. If you look at papers by Alonzo Church you see
the lambda calculus, which is a functional programming language. If you
look at Gödel’s original paper you see what to me looks like LISP, it’s very
close to LISP, the paper begs to be rewritten in LISP!

So I’d like to give you this hidden philosophical history of computer tech-
nology which is how philosophically minded mathematicians set out to solve
once and for all the foundational problems of mathematics and did not suc-
ceed but helped to create computer technology as a by product. This was
the failure of this project! We’re all benefiting from the glorious failure of
this project!

However this project has not died completely. — I’m going to start more
systematically from the beginning; but I’m trying to give an introduction. —
It’s popular to think, well Gödel did this wonderful thing in 1931 and Turing
added a lot of profound stuff in 1936, but the world has moved on from that
point. And what I’d like to do is to tell you that in fact I’ve done some more
work in this area.

You may think it’s misguided! Most of the world has shrugged and gone
on. We had this disappointment. What Gödel and Turing showed is that
axiomatic formal reasoning has certain limitations. You can’t formalize it all.
And at first people were tremendously shocked and then they shrugged and
said, so what? Mathematicians went on, ignoring this. And my misfortune
or fortune was that I didn’t want to shrug. I said, I want to understand this
better. And I’m going to tell you the story of my attempt to understand
Gödel incompleteness. — It’s a psychological problem that a good psychi-
atrist could have cured me of, and then I wouldn’t have done any of this
work!

So let me start at the beginning and tell you this story of a hundred
years of intense worry, crisis, self-doubt, self-examination and angst about
the philosophy of mathematics.

There’ve been lots of crises in the history of mathematics. Mathematics
is not placid, static and eternal.

One of the first crises was the Pythagorean result that the square root of
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two is irrational. And the fact that this was a crisis survives in the word
“irrational”. Remember the Greeks thought that rationality was the supreme
goal — Plato! Reason! If a number is called irrational that means that this
was the Gödel incompleteness theorem of ancient Greece. So there was a
crisis there.

Another crisis was caused by the calculus. A lot of people said this is
nonsense, we’re talking about infinitesimals, what is this? Bishop Berkeley
was a theologian and he said, pure mathematicians make as little sense as
theologians, you can’t reject us saying we’re unreasonable. The way you deal
with evanescent quantities in the calculus — this was before the calculus had
a rigorous foundation — is as bad as our theological discussions! So at that
time it was pretty bad!

Then there was a crisis about the parallel postulate, about non-Euclidean
geometries.

So mathematics is not static and eternal!
But the particular crisis that I want to tell you about goes back a little

more than a hundred years to work of Cantor on set theory.

Cantor: Theory of Infinite Sets

So my talk is very impractical. We all know that you can have a start-up
and in one year make a million dollars if you’re lucky with the web. So this
is about how not to make any money with the web. This is about how to
ruin your career by thinking about philosophy instead.

So Cantor was obsessed with the notion of infinite, and it’s not mentioned
that he was obsessed with infinite because he was interested in theology and
God, which is edited out from the accounts now, but that was the original
idea.

And Cantor had the idea that if you have 1, 2, 3,... why stop there?

1, 2, 3, . . . ω

— I’m giving you a cartoon version of Cantor’s theory of infinite sets. —
You put an omega, ω, this is a Greek letter, the lower case of the last letter
in the Greek alphabet, that’s the reason to pick it. So you just say, I’m going
to put another number here instead of stopping with 1, 2, 3,... This is going
to be the first number after all the finite numbers. This is the first transfinite
number.
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You can keep going for a while.

1, 2, 3, . . . ω, ω + 1, ω + 2, . . .

And then you have another thing like a copy of 1, 2, 3,... : ω + 1, ω + 2,
ω + 3, ... These are names. And then you say, why stop here? I’m going to
put something after all this, so 2ω, 2ω +1, +2, +3, then later 3ω, 4ω... Well,
what comes after all of those? Why stop there? So, ω squared, obviously.

1, 2, 3, . . . ω, ω + 1, ω + 2, . . . 2ω 3ω 4ω ω2

Then you keep going. 5ω2 + 8ω + 96! And then much later you get to ω
cubed! And then eventually ω to the fourth. You keep going and why stop
there? This sequence goes on forever, but let’s put something after all of
those. So what would that be? That would be obviously ω to the ω. This is
starting to get interesting! Then you keep going and you have ω to the ω to
the ω. This is a pretty far-out number already!

1, 2, 3, . . . ω, ω + 1, ω + 2, . . . 2ω 3ω 4ω ω2 ω3 ω4 ωω ωωω

You can see why this is becoming theological. This is the mathematical
equivalent of drug addiction. Instead of getting high on alcohol or grass
you get high on ideas like this. After a while you don’t know where you’re
standing or what’s going on!

Then the next number is ω to the ω to the ω forever.

ωωω
ω

ω
ω
···

This number is the smallest solution of the equation

x = ωx

And it’s called ε0, epsilon nought, I don’t know why. Because you start
having problems with how to name things, because up to here I was using
normal algebraic notation just throwing in ω.

So anyway you can see this is fantastic stuff! I don’t know whether it’s
mathematics, but it’s very imaginative, it’s very pretty, and actually there
was a lot of practical spin-off for pure mathematicians from what Cantor was
doing.
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Some people regarded set theory as a disease. Poincaré, the great French
mathematician, said set theory is a disease, he said, from which I hope future
generations will recover. But other people redid all of mathematics using the
set-theoretic approach. So modern topology and a lot of abstract mathe-
matics of the twentieth century is a result of this more abstract set-theoretic
approach, which generalized questions. The mathematics of the nineteenth
century was at a lower level in some ways, more involved with special cases
and formulas. The mathematics of the twentieth century — it’s hard to write
a history of mathematics from the year ten-thousand looking back because
we’re right here — but the mathematics of the twentieth century you could
almost say is set-theoretical, “structural” would be a way to describe it. The
mathematics of the nineteenth century was concerned with formulas, infinite
Taylor series perhaps. But the mathematics of the twentieth century went
on to a set-theoretic level of abstraction.

And in part that’s due to Cantor, and some people hate it saying that
Cantor wrecked and ruined mathematics by taking it from being concrete and
making it wishy-washy, for example, from hard analysis to abstract analysis.
Other people loved this. It was very controversial.

It was very controversial, and what didn’t help is in fact that there were
some contradictions. It became more than just a matter of opinion. There
were some cases in which you got into really bad trouble, you got obvious
nonsense out. And the place you get obvious nonsense out in fact is a theorem
of Cantor’s that says that for any infinite set there’s a larger infinite set which
is the set of all its subsets, which sounds pretty reasonable. This is Cantor’s
diagonal argument — I don’t have time to give you the details.

So then the problem is that if you believe that for any infinite set there’s a
set that’s even larger, what happens if you apply this to the universal set, the
set of everything? The problem is that by definition the set of everything has
everything, and this method supposedly would give you a larger set, which
is the set of all subsets of everything. So there’s got to be a problem, and
the problem was noticed by Bertrand Russell.

Bertrand Russell

Cantor I think may have noticed it, but Bertrand Russell went around telling
everyone about it, giving the bad news to everyone! — At least Gödel at-
tributes to Russell the recognition that there was a serious crisis.

The disaster that Russell noticed in this proof of Cantor’s was the set of
all sets that are not members of themselves, that turns out to be the key
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step in the proof. And the set of all sets that aren’t members of themselves
sounds like a reasonable way to define a set, but if you ask if it’s inside itself
or not, whatever you assume you get the opposite, it’s a contradiction, it’s
like saying this statement is false. The set of all sets that are not members
of themselves is contained in itself if and only if it’s not contained in itself.

So does this mean that some ways of defining sets are bad, or that the
universal set gets you into trouble? What’s wrong with the set of everything?
So there was a problem with set theory — that became increasingly clear.
I think Russell helped to make it be recognized by everybody that we had
a serious crisis and that methods of reasoning that seemed at first sight
perfectly legitimate in some cases led to obvious disaster, to contradictions.
There were a whole bunch of paradoxes that Russell advertised: the Berry
paradox, the one I just mentioned is called the Russell paradox, and there’s
another paradox, the Burali-Forti paradox.

A lot of these paradoxes in fact were really brought to the attention of the
world by Russell. Russell would typically have a footnote saying this paradox
occurred to me while I was reading a paper by Burali-Forti, so everyone calls
it the Burali-Forti paradox. Burali-Forti I think spent his whole life trying
to live down this attribution because he didn’t believe that mathematics was
in trouble!

Okay so there was a crisis, and I think Russell was one of the key figures
in this. At this point David Hilbert comes to the rescue.

David Hilbert

David Hilbert was a very important mathematician around the turn of the
century. Unlike Poincaré, a very important French mathematician — Hilbert
was a very important German mathematician — Hilbert liked set theory. He
liked this abstract Cantorian approach. And Hilbert had the idea of solving
once and for all these problems. How was he going to do it?

The way Hilbert was going to do it is using the axiomatic method, which
of course goes back to Euclid — Hilbert didn’t invent this. But he went one
significant step further.

Hilbert: Formal Axiomatic Method

Hilbert said let’s use all the technology from symbolic logic, which a lot
of people were involved in inventing, and let’s go to some final extreme.
Because one of the reasons you got into trouble and got contradictions in
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mathematics with set theory is because words are very vague. What we
want to do to get rid of all these problems in mathematics and in reasoning
is get rid of pronouns for example, you don’t know what pronouns refer to.
And there are all kinds of things that are vague in normal language.

Hilbert said that the way to get rid of all these problems is to come up
with a finite set of axioms and an artificial language for doing mathematics
— this is the idea of formalism taken to the limit.

Formalism

Take formalism to the absolute limit and invent a completely artificial lan-
guage with completely precise rules of the game — artificial grammar and
everything — and eliminate all these problems, like the problems that Russell
had. This was an ambitious program to once and for all put mathematics on
a firm footing.

And one thing that Hilbert emphasized, which was as far as I know a key
contribution that he himself made, was that he wanted the rules of the game
for this formal axiomatic system for all of mathematics to be so precise that
you have a mechanical proof checker. So it’s completely certain and objective
and mechanical whether a proof obeys the rules or not. There should be no
human element, there should be no subjective element, there should be no
question of interpretation. If somebody claims they have a proof, it should
be absolutely clear, mechanical, to check it and see, does it obey the rules
and you proved a theorem or does it have a mistake, does it fail.

So this is the idea that mathematics should be absolutely black or white,
precise, absolute truth. This is the traditional notion of mathematics.

Black or White

The real world we know is an absolute mess — right? — everything’s com-
plicated and messy. But the one place where things should be absolutely
clear, black or white, is in pure mathematics.

So this is sort of what Hilbert is saying, and he proposed this as a goal, to
have this formalization of all of mathematics and eliminate all the problems.
Now this was a program, this was not supposed to be something you did
over a weekend. Hilbert proposed this as a goal for putting mathematics on
a very firm foundation. And he and a group of very bright collaborators,
including John von Neumann, set to work on this, and for a while, for thirty
years, it looked sort of encouraging. And then — this is a quick summary of
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a century of work — then as I’m sure all of you know there were a few little
problems!

The problems are 1931, Kurt Gödel, and 1936, Alan Turing.

1931 Gödel
1936 Turing

They showed that it could not be done, that there were fundamental obstacles
to formalizing all of mathematics and making mathematics absolutely black
and white and absolutely crystal clear. Remember what Hilbert is proposing
is that we should formalize all of mathematics so that everyone on planet
earth can agree that a proof is either correct or incorrect. The rules of the
game should be absolutely explicit, it should be an artificial language and
then mathematics will give you absolute truth. “Absolute truth” should
be underlined in a very beautiful font and you should hear the angels singing
when you say these words! This was the thought that we mathematicians
have absolute truth. It’s ours — no one else has it, only us! That was the
idea.

So it turns out this doesn’t quite work. Why doesn’t it work?
Gödel shocked people quite a bit by showing that it couldn’t work. It was

very, very surprising when Gödel did this in 1931. And Turing went I think
more deeply into it. So let me give you a cartoon five minute summary, my
take on what they did.

Gödel starts with “this statement is false”, what I’m now saying is a lie,
I’m lying. If I’m lying, and it’s a lie that I’m lying, then I’m telling the
truth! So “this statement is false” is false if and only if it’s true, so there’s a
problem. Gödel considered instead “this statement is unprovable”.

“This statement is unprovable!”

Here unprovable means unprovable from the axioms of Hilbert’s formal ax-
iomatic system, unprovable within the system that Hilbert was trying to
create.

Now think about a statement that says that it’s unprovable. There are
two possibilities: it’s provable or it’s unprovable. This is assuming you can
make a statement say it’s unprovable, that there’s some way to say this within
Hilbert’s system. That required enormous cleverness: Gödel numbering,
trickery for a statement to refer to itself indirectly, because pronouns that
say “this” or “I” aren’t usually found in mathematical formulas. So this
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required a lot of cleverness on Gödel’s part. But the basic idea is “this
statement is unprovable”.

So there are two possibilities. Either it’s provable or it’s unprovable.
And this means provable or unprovable from the system that Hilbert had
proposed, the final goal of formalizing all of mathematics.

Well, if it’s provable, and it says it’s unprovable, we’re proving something
that’s false. So that’s not very nice. And if it’s unprovable and it says it’s
unprovable, well then, what it states is true, it’s unprovable, and we have a
hole. Instead of proving something false we have incompleteness, we have a
true statement that our formalization has not succeeded in capturing.

So the idea is that either we’re proving false statements, which is terri-
fying, or we get something which is not as bad, but is still awful, which is
that our formal axiomatic system is incomplete — there’s something that’s
true but we can’t prove it within our system. And therefore the goal of
formalizing once and for all all of mathematics ends up on the floor!

Now I don’t think that Hilbert really wanted us to formalize all of math-
ematics. He didn’t say that we should all work in an artificial language and
have formal proofs. Formal proofs tend to be very long and inhuman and
hard to read. I think Hilbert’s goal was philosophical. If you believe that
mathematics gives absolute truth, then it seems to me that Hilbert has got
to be right, that there ought to have been a way to formalize once and for
all all of mathematics. That’s sort of what mathematical logic was trying to
do, that’s sort of what the axiomatic method was trying to do, the idea of
breaking proofs into smaller and smaller steps. And Leibniz thought about
this, and Boole thought about this, and Frege and Peano and Russell and
Whitehead thought about this. It’s the idea of making very clear how math-
ematics operates step by step. So that doesn’t sound bad. Unfortunately it
crashes at this point!

So everyone is in a terrible state of shock at this point. You read essays
by Hermann Weyl or John von Neumann saying things like this: I became
a mathematician because this was my religion, I believed in absolute truth,
here was beauty, the real world was awful, but I took refuge in number theory.
And all of a sudden Gödel comes and ruins everything, and I want to kill
myself!

So this was pretty awful. However, this

“This statement is unprovable!”

is a very strange looking statement. And there are ways of rationalizing,
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human beings are good at that, you don’t want to face unpleasant reality.
And this unpleasant reality is very easy to shrug off: you just say, well, who
cares! The statements I work with normally in mathematics, they’re not
statements of this kind. This is nonsense! If you do this kind of stupidity,
obviously you’re going to get into trouble.

But that’s rationalizing too far. Because in fact Gödel made this

“This statement is unprovable!”

into a statement in elementary number theory. In its original form, sure,
it’s nonsense, who ever heard of a statement in mathematics that says it’s
unprovable? But in fact Gödel made this into a numerical statement in
elementary number theory, in arithmetic. It was a large statement, but in
some clever way, involving Gödel numbering of all arithmetic statements
using prime numbers, he was writing it so that it looked like a statement in
real mathematics. But it really indirectly was referring to itself and saying
that it’s unprovable.

So that’s why there’s a problem. But people didn’t really know what to
make of this. So I would put “surprising” here, surprising, a terrible shock!

1931 Gödel “This statement is unprovable!” Surprising

Now my reaction as a child reading this proof is that I follow it step by step,
but I don’t like it. It doesn’t appeal to me! Which is good, because if I
had said I like it, it’s wonderful, finished, I go ahead and become a molecular
biologist and start up a biotech company, and now I’d be rich, but I wouldn’t
have done any work in this area!

Then comes Turing.

1936 Turing

Now I prefer Turing’s approach. Turing goes more deeply into this. Turing
starts talking about computers. This is the point where it happens!

1936 Turing Computer

Turing has to invent the computer, because Hilbert says that there should
be a mechanical procedure to decide if a proof is correct or not. Turing says
what Hilbert really means is that there should be a computer program for
checking proofs. But first Turing has to say what a computer is, it’s a Turing
machine, and all of this is in a paper of Turing’s in 1936, when there were no
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computers, so it’s a fantastic piece of work. And I would like to claim that
this is the invention of the computer. These were general-purpose computers,
that was the idea, on paper.

What Turing shows is in fact that there is a relatively concrete statement
that escapes the power of mathematics. We now think of computers as
physical devices, so they’re almost like something in physics. It’s a machine
working away, it’s an idealization of that, you have this machine working,
and Turing discovers the halting problem.

1936 Turing Computer Halting problem

The halting problem says there’s no way to decide if a computer program
will eventually halt.

Now obviously to decide if a computer program halts is the easiest thing
in the world. You run it and when you run out of patience, that’s it, it doesn’t
halt as far as you’re concerned. Who cares, you can’t wait any longer! But
what Turing showed is that there’s a problem if you put no time limit. This
is very abstract mathematics — in the real world there’s always a time limit!
You can’t run a program a million years, a billion years, 101010

years! If you
put a time limit, the halting problem is very easy to decide, in principle: you
just run the program that long and you see, does it halt by that point or not.

But what Turing showed is that if you put no time limit, then there is no
solution. There’s no way to decide in advance whether a computer program
will halt or not. If it halts you can eventually discover that by running it.
The problem is to realize that you’ve got to give up. So there’s no mechanical
procedure that will decide in advance if a computer program will halt or not,
and therefore, it turns out, there is no set of mathematical axioms in Hilbert’s
sense that can enable you to prove whether a program will halt or not.

Because if you could always prove whether a program will halt or not,
you could run through all possible proofs in size order and check whether
they’re correct, and eventually either find a proof that the program’s going
to halt or find a proof that it’s not going to halt. And this would give you a
way to decide in advance whether a program’s going to halt.

Now in practice running through all possible proofs requires an astronom-
ical amount of time. Imagine how many proofs are there that are one page
long! You’d never get through them! But in principle you can run through
all possible proofs in size order and check whether they obey the rules, if it’s
a Hilbert formal axiomatic system. So if you had a formal axiomatization
of mathematics that enabled you to always prove whether a program halts
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or not, that would give you a mechanical procedure, by running through all
possible proofs in size order, to decide whether a program will halt or not.
And Turing showed that you can’t do it. His proof, by the way, involves
Cantor’s diagonal argument — all these ideas are connected, but there’s no
time to go into that.

So I think that Turing’s work makes the limits of mathematics seem much
more natural, because we’re talking about a question about a physical device,
it’s a computer.

1936 Turing Computer Halting problem Natural

You fantasize a little bit, you make it a theoretical computer, a computer
that can go on forever, that never breaks down, that has as much storage as
it wants, so that if numbers get too big it can keep going anyway. But that’s
not too much of a fantasy; we have devices like that everywhere, right? So it
sounds much more concrete. The limits of mathematics discovered by Turing
sound more serious, more dangerous than the ones that Gödel found.

And this is the invention of the computer, for this crazy kind of theoretical
argument! You don’t see billions and billions of dollars of technology in this
1936 paper, but it was all there in embryonic form, as von Neumann kept
emphasizing: the universal Turing machine is really the notion of a general-
purpose programmable computer. You had machines that did calculations
before, but they did special-purpose calculations, they were adding machines,
mechanical calculating machines, and I used them when I was a kid. But
the notion of a computer is Turing’s notion of a machine that can do what
any calculating machine can do, and that’s the idea of software: it’s a very
general-purpose machine, it’s a flexible machine. So it’s really there, von
Neumann kept saying, very clearly in Turing’s paper. So you have this whole
technology there!

And in fact Gödel’s paper as I said uses LISP, there’s a programming
language hidden in it, and in Turing’s paper there’s a programming language,
given explicitly, Turing machines, and it’s a machine language. It’s actually a
very bad machine language, it’s a machine that no person in their sane mind
would want to program. But Turing wanted to keep it as simple as possible.
Obviously, if his paper had included a manual for the machine language of a
real machine, it would have been hopeless, no one would have understood it.

Okay, now what happens with all of this? What happens with all of this
is that Hilbert dies, World War II comes, and when I’m a child in the 1950’s
I could still read essays by John von Neumann talking about all of this, but
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the world was clearly going in a less philosophical direction. Things were
going downhill rapidly until we’re all billionaires with our web start-ups!
People were less concerned about philosophy, and computers were becoming
a technology, and Turing was very involved in that, and so was von Neumann.

But stupidly I wanted to understand what was going on in the foundations
of mathematics, so in a way I’m stuck in the 1930’s, I never got past that
stage. What happened? What happened with me is that I couldn’t accept
the fact that everybody said, who cares! Now it’s true that there are a lot
of things in life besides the foundations of mathematics and epistemology!
There’re things like having a family, earning a living, wars, politics, lots of
stuff out there, obviously! But what I couldn’t accept was that even in the
world of pure mathematics, mathematicians were saying, so what, in practice
we should do mathematics exactly the same as we’ve always done it, this does
not apply to the problems I care about! That was basically the reaction to
Gödel’s and Turing’s work on incompleteness.

At first there was terrible shock, then it went from one extreme to another.
Who cares, people would say, it’s obvious, or it’s irrelevant! This has no
impact in practice on how we should do mathematics. I was very unhappy
with that. I was obsessed by incompleteness, and I had an idea.

When I was a kid I really wanted to be a physicist, and a lot of mathe-
maticians say I never made it into mathematics really — I never succeeded,
I’m still stuck! I wanted to be a physicist, and I got corrupted by a lot of
ideas from physics. While all of this crisis was going on in mathematics,
there was a parallel crisis going on in physics, which actually started in the
1920’s: that’s quantum mechanics, and the key date is 1924.

1924 Quantum Mechanics

And that’s the whole question of uncertainty and randomness in fundamental
physics. So when I was a kid, besides reading essays talking about Gödel’s
incompleteness theorem saying “Oh, my God”, there were also essays asking
what happened to determinism in physics, what happened to predictability,
can there be randomness, does God play dice? Einstein said no, God doesn’t
play dice. He hated quantum mechanics. And everybody else said yes, God
plays dice.

God plays dice!

Quantum mechanics is the most successful physical theory ever. We get tran-
sistors and computers from it. But even though Einstein helped to contribute
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to the creation of quantum mechanics he hated it. So it looks like Einstein
was wrong. God does play dice!

So I had a crazy idea. I thought that maybe the problem is larger and
Gödel and Turing were just the tip of the iceberg. Maybe things are much
worse and what we really have here in pure mathematics is randomness.
In other words, maybe sometimes the reason you can’t prove something is
not because you’re stupid or you haven’t worked on it long enough, the
reason you can’t prove something is because there’s nothing there! Sometimes
the reason you can’t solve a mathematical problem isn’t because you’re not
smart enough, or you’re not determined enough, it’s because there is no
solution because maybe the mathematical question has no structure, maybe
the answer has no pattern, maybe there is no order or structure that you
can try to understand in the world of pure mathematics. Maybe sometimes
the reason that you don’t see a pattern or structure is because there is no
pattern or structure!

And one of my motivations was the prime numbers. There’s some work
on the prime numbers that says that in some ways the prime numbers can
be looked at statistically. There seems to be a certain amount of randomness
in the distribution of the primes. That’s one of the ways that people try to
think about the prime numbers. And this even happens in number theory,
which is the queen of pure mathematics!

So on the one hand I heard this talk about probabilistic ways of thinking
about the primes — this was heuristic — and this stuff about God plays
dice in fundamental physics — what goes on in the atom is random — and
I begin to think, well, maybe that’s what’s going on in the foundations of
mathematics.

This is what I set out to do, and this project took a long time. One of
the first steps is clarifying what do you mean by randomness. What do you
mean by lack of structure, lack of order, lack of pattern?

Randomness: Lack of structure

So this is a kind of a logical notion of randomness rather than a statistical
notion of randomness. It’s not like in physics where you say a physical process
is random like coin tossing. I don’t care where something comes from. I just
look at something and say does it have structure or pattern or not. So this is
logical or structural randomness as opposed to physical unpredictability and
randomness. It’s different — it’s very closely related, but they’re different.
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And the idea that I came up with — and Kolmogorov came up with at
the same time independently — is the idea that something is random if it
can’t be compressed into a shorter description, if essentially you just have to
write it out as it is. In other words, there’s no concise theory that produces
it. For example, a set of physical data would be random if the only way
to publish it is as is in a table, but if there’s a theory you’re compressing a
lot of observations into a small number of physical principles or laws. And
the more the compression, the better the theory: in accord with Occam’s
razor, the best theory is the simplest theory. I would say that a theory is
a program — also Ray Solomonoff did some thinking along these lines for
doing induction — he didn’t go on to define randomness, but he should have!
If you think of a theory as a program that calculates the observations, the
smaller the program is relative to the output, which is the observations, the
better the theory is.

By the way, this is also what axioms do. I would say that axioms are
the same idea. You have a lot of theorems or mathematical truth and you’re
compressing them into a set of axioms. Now why is this good? Because
then there’s less risk. Because the axioms are hypotheses that you have to
make and every time you make a hypothesis you have to take it on faith
and there’s risk — you’re not proving it from anything, you’re taking it as a
given, and the less you assume, the safer it is. So the fewer axioms you have,
the better off you are. So the more compression of a lot of theorems, of a
body of theory, into a small set of axioms, the better off you are, I would
say, in mathematics as well as physics.

Okay, so this is this notion of lack of structure or randomness. You have
to define it first! If I’m going to find randomness or lack of structure, lack
of pattern, in pure mathematics, first I’ve got to say what do I mean by
that. And I like to call this subject algorithmic information theory. It deals
with this algorithmic information. Or you can call it complexity if you like,
program-size complexity.

Algorithmic Information

The basic concept is to look at the size of the most concise program, the
smallest program — I don’t care about running time — it’s the most concise
program that calculates something. That’s the number of bits I have to give
a computer in order to get it to produce this object. That’s my most concise
algorithmic description of something, and that’s how I measure its complex-
ity, its algorithmic information content or its program-size complexity.
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This is like recursive function theory: I don’t care about run time — so
this is very impractical! So in that sense also what I’m doing is 1930’s stuff,
with this one extra idea thrown in of program size, of looking at the size of
programs.

So what happens when you start looking at the size of programs? — and
then something is random if the smallest program that calculates it is the
same size as it is, and there’s no compression. So the whole idea is, look
at the size of computer programs, don’t care about run time — if it takes a
billion, billion years I don’t care! Information is the only thing I’m thinking
about, bits of information, size of computer programs. Okay?

So what happens when you start playing with this idea? What happens is,
everywhere you turn, you get incompleteness and undecidability, and you get
it in the worst possible way. For example this happens with the first thing
you want to do: you can never decide that an individual string of digits
satisfies this definition of randomness. Impossible! You can never calculate
the program-size complexity of anything. You can never determine what the
size of the smallest program is.

If you have a program that calculates something, that gives you an upper
bound, its size is an upper bound on the program-size complexity of what it
calculates. But you can never prove any lower bounds. And that’s my first
incompleteness result in this area and I think Jack Schwartz got very excited
about it.

In normal, practical, useful complexity theory where you talk about time
rather than bits of information, lower bounds are much harder than upper
bounds. To get lower bounds on complexity is much harder than getting
upper bounds on complexity. Because if you find a clever algorithm you get
an upper bound on the time it takes to calculate something; if you find a
way to do it that’s fast you’ve shown that it can be done that fast. The
problem is to show that you’ve gotten the fastest possible algorithm, that’s
much harder, right? But it can be done in some cases, within a class of
possible algorithms. Well, in algorithmic information theory you can’t prove
any lower bounds! And I had an article about this in 1975 in Scientific
American.

The basic idea is that you can’t prove any lower bounds on the program-
size complexity of individual objects. So in particular even though most
strings of digits satisfy this definition of randomness, they’re incompressible
in this sense, they’re random in this sense of lack of structure — it turns
out you can show easily that most objects satisfy this definition, they have
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no structure — if you look at all hundred digit numbers, almost all of them
have no structure according to this definition, but you can never be sure in
individual cases, you can never prove it in individual cases.

More precisely, there may be finitely many exceptions. With N bits of
axioms you can determine all the objects of program-size complexity up to
N . But that’s as far as you can go.

And my worst incompleteness result, my very worst incompleteness result,
where you have complete lack of structure in pure mathematics, has to do
with a number I defined called the halting probability.

Ω = halting probability

How is this number defined? It’s very simple. Turing said you can’t decide
whether a program halts, there’s no mechanical procedure for doing that.
And I say, let’s consider a real number Ω which is the probability that a
program generated by tossing a coin halts. So I’m averaging over Turing’s
halting problem, saying if I generate a program by coin tossing, what is the
probability that it halts, with no time limit? So this will give me a real
number that’s determined if you tell me — there’s a subscript — what’s the
programming language.

Ωcomputer = halting probability of computer

Once you decide, then Ω is a well-defined real number. Mathematically it’s
not a very sophisticated thing! Compared to large cardinals, sophisticated
mathematics, this is a fairly low-brow object.

However it turns out this object Ω is maximally unknowable!

Ω is maximally unknowable

What is it that’s maximally unknowable? Well, it’s the digits or bits of
this number. Once I fix the computer programming language this halting
probability is a specific real number, that depends on the choice of computer,
or the programming language in which I generate a program by coin tossing.
So this becomes a specific real number, and let’s say I write it out in binary,
so I get a sequence of 0’s and 1’s, it’s a very simple-minded definition. Well,
it turns out these 0’s and 1’s have no mathematical structure. They cannot
be compressed. To calculate the first N bits of this number in binary requires
an N -bit program. To be able to prove what the first N bits of this number
are requires N bits of axioms. This is irreducible mathematical information,
that’s the key idea.
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Ω is irreducible information

This should be a shocking idea, irreducible mathematical information,
because the whole normal idea of mathematics, the Hilbertian idea, the clas-
sical idea of mathematics, is that all of mathematical truth can be reduced to
a small set of axioms that we can all agree on, that are “self-evident” hope-
fully. But if you want to determine what the bits of the halting probability
Ω are, this is something that cannot be reduced to anything simpler than it
is.

Ω has a mathematical definition with a rather simple structure once I
specify the computer, or the programming language, I’ve even written out
a program in LISP that calculates this number in a weak sense. You can’t
calculate this number. If you could calculate it, then it wouldn’t be unknow-
able! You can get it in the limit from below, but it converges very, very
slowly — you can never know how close you are — there is no computable
regulator of convergence, there is no way to decide how far out to go to get
the first N bits of Ω right. To get Ω in the limit from below, you just look at
more and more programs, for more and more time, and every time you see
that a K-bit program halts, that contributes 1/2K to the halting probability.

Ω =
∑

p halts

2−|p|

So the time you need to get the first N bits of Ω right grows like the longest
possible finite run-time of an N -bit program, which is a version of the Busy-
Beaver function.

So what’s the precise definition of Ω? Generate a program by tossing a
coin for each bit, that’s independent tosses of a fair coin. The key point is
that the program has to be “self-delimiting”. The computer has got to ask
for each bit one by one. Every time the computer says I want another bit
of the program, you flip the coin. And the computer has to decide by itself
that it has enough bits, that it has the whole program. The program has to
be self-delimiting to define this probability measure correctly. So there’s no
blank to indicate where a program ends: a program has to indicate within
itself how long it is with some trick, some coding trick. That’s the technical
issue to get this probability to be well-defined. That’s the one technical point
in my theory.

So this number Ω is a real number between 0 and 1. It’s the probability
that a program each of whose bits is generated by an independent toss of a
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fair coin eventually halts. And I’m fixing the programming language, I pick
the universal Turing machine, there’s a subscript, it’s ΩUTM, it’s the halting
probability of a particular universal Turing machine. And I actually pick a
particular UTM that I programmed in LISP, just to fix the ideas. But you
could do it with essentially any universal Turing machine with self-delimiting
programs; it would work.

So Ω is maximally unknowable. This is a case where mathematical truth
has no structure or pattern and it’s something we’re never going to know!
So let me tell you what I’ve got here. What I’ve got here is maximum
randomness — like independent tosses of a fair coin — in pure mathematics.
In fact, I can even do it in elementary number theory, like Gödel did. I can
make determining bits of Ω into an assertion about a diophantine equation.

The point is, here you’ve got a simple mathematical question — which
is what is each bit of Ω: is the first bit 0 or 1, is the second bit 0 or 1,
is the third bit 0 or 1 — but the answers have no structure, they look like
independent tosses of a fair coin, even though each answer is well-defined
mathematically, because it’s a specific bit of a specific real number and it
has to be a 0 or a 1. In fact, we’re never going to know: this is my version
of independent tosses of a fair coin in pure mathematics. Even if you knew
all the even bits of Ω it wouldn’t help you to get any of the odd bits. Even
if you knew the first million bits, it wouldn’t help you to get the next one.
It really looks like independent tosses of a fair coin, it’s maximally random,
it has maximum entropy.

Physicists feel comfortable with randomness, but this is the black or white
world of pure mathematics — how is this possible, how can it be? Each of
these bits is well-defined, it’s a specific 0 or a 1, because Ω is a specific real
number once I fix the universal Turing machine or the programming language
that I’m dealing with. But it turns out that the right way to think about
each bit is that it’s not black or white, it’s not that it’s a 0 or a 1, it’s so well
balanced, it’s so delicately balanced, that it’s grey!

Here’s another way to put it. Let’s go back to Leibniz. What’s the idea
of mathematics? The normal idea is that if something is true, it’s true for a
reason — Leibniz! — if something is true it’s true for a reason. Now in pure
math, the reason that something is true is called a proof, and the job of the
mathematician is to find proofs, to find the reason something is true. But
the bits of this number Ω, whether they’re 0 or 1, are mathematical truths
that are true for no reason, they’re true by accident! And that’s why we
will never know what these bits are.
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In other words, it’s not just that Hilbert was a little bit wrong. It’s not
just that the normal notion of pure mathematics is a little bit wrong, that
there are a few small holes, that there are a few degenerate cases like “This
statement is unprovable”. It’s not that way! It’s much, much worse than
that! There are extreme cases where mathematical truth has no structure
at all, where it’s maximally unknowable, where it’s completely accidental,
where you have mathematical truths that are like coin tosses, they’re true
by accident, they’re true for no reason. That’s why you can never prove
whether individual bits of Ω are 0 or are 1, because there is no reason that
individual bits are 0 or 1! That’s why you can’t find a proof. In other words,
it’s so delicately balanced whether each bit is 0 or 1 that we’re never going
to know.

So it turned out that not only Hilbert was wrong, as Gödel and Turing
showed. . . I want to summarize all of this. With Gödel it looks surprising
that you have incompleteness, that no finite set of axioms can contain all of
mathematical truth. With Turing incompleteness seems much more natural.
But with my approach, when you look at program size, I would say that it
looks inevitable. Wherever you turn, you smash up against a stone wall and
incompleteness hits you in the face!

Program-size complexity & Ω & irreducible information
→ make incompleteness seem inevitable

So this is what I’ve been working on. Now what is the reaction of the
world to this work?! Well, I think it’s fair to say that the only people who
like what I’m doing are physicists! This is not surprising, because the idea
came in a way from physics. I have a foreign idea called randomness that
I’m bringing into logic, and logicians feel very uncomfortable with it. You
know, the notion of program size, program-size complexity is like the idea
of entropy in thermodynamics. So it turns out that physicists find this nice
because they view it as ideas from their field invading logic. But logicians
don’t like this very much.

I think there may be political reasons, but I think there are also legiti-
mate conceptual reasons, because these are ideas that are so foreign, the idea
of randomness or of things that are true by accident is so foreign to a math-
ematician or a logician, that it’s a nightmare! This is their worst nightmare
come true! I think they would prefer not to think about it.

On the other hand, physicists think this is delightful! Because they re-
member well the crisis that they went through in the 1920’s about random-
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ness at the foundations of physics, and they say, it’s not just us, we’re not
the only people who have randomness, pure math has it too, they’re not any
better than we are!

I’ll give an example of the attitude of physicists to my theory. It just so
happens that this week I found it by chance. There’s an English magazine
New Scientist that comes out every week; it’s like an English version of
Scientific American, except that it’s a little livelier, it’s a little more fun, and
it comes out every week. And the current issue — the one that appeared
February 26th, the next issue hasn’t come out yet — of New Scientist has
on its cover an article called “Random Reality”. And if you open the issue
and look at this article, it turns out to be an article about the work of two
physicists, very speculative work. They’re trying to get space and time,
three or four dimensional spacetime, our world, to emerge from a random
substratum underneath.

The reason that I mention this article is that these physicists say that
their work was inspired by Gödel’s and my work on the limits of logic; they’re
trying to absorb this stuff. They say that physicists were interested in Gödel’s
result, but they couldn’t relate to it, it’s not in terms that make sense to a
physicist. But my work, they say, that makes sense to a physicist! It’s not
surprising: I got the idea by reading physics. So it makes sense to them
because it’s an idea that came from their field and is coming back to their
field.

Actually, they don’t use my definitions or my theorems at all, because I
was asked to referee their paper, and I had to say that it really has nothing
to do with me. My stuff is mentioned in the introduction because it helped
to stimulate their work, but actually their work is in physics and has nothing
to do with my area, which is algorithmic information theory.

But I think this is an interesting example of the fact that crazy ideas
sometimes have unexpected consequences! As I said, formal systems did not
succeed for reasoning, but they succeeded wonderfully for computation. So
Hilbert is the most incredible success in the world, but as technology, not as
epistemology.

And unexpectedly there are physicists who are interested in my notion of
program-size complexity; they view it as another take on thermodynamical
entropy. There’s some work by real physicists on Maxwell’s demon using my
ideas; I mention this for those of you who have some physics background.

But I must say that philosophers have not picked up the ball. I think
logicians hate my work, they detest it! And I’m like pornography, I’m sort
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of an unmentionable subject in the world of logic, because my results are so
disgusting!

So this is my story! To end, let me quote from a posthumous collection
of essays by Isaiah Berlin, The Power of Ideas, that was just published:
“Over a hundred years ago, the German poet Heine warned the French not
to underestimate the power of ideas: philosophical concepts nurtured in the
stillness of a professor’s study could destroy a civilization.” So beware of
ideas, I think it’s really true.

Hilbert’s idea of going to the limit, of complete formalization, which was
for epistemological reasons, this was a philosophical controversy about the
foundations of mathematics — are there foundations? And in a way this
project failed, as I’ve explained, because of the work of Gödel and Turing.
But here we are with these complete formalizations which are computer pro-
gramming languages, they’re everywhere! They pay my salary, they probably
pay your salary. . . well, this is the School of Computer Science, it pays for
all of this, right? Here we are!

So it worked! In another sense, it worked tremendously.
So I like to apologize in an aggressive way about my field. I like to say

that my field has no applications, that the most interesting thing about the
field of program-size complexity is that it has no applications, that it proves
that it cannot be applied! Because you can’t calculate the size of the smallest
program. But that’s what’s fascinating about it, because it reveals limits to
what we can know. That’s why program-size complexity has epistemological
significance.

More seriously, I think the moral of the story is that deep ideas don’t have
a spin-off in dollars right away, but sometimes they have vastly unexpected
consequences. I never expected to see two physicists refer to my stuff the
way they did in “Random Reality”. So who knows!

It’s true that the computer pays for our salaries but I think it’s also true
that there are a lot of fascinating impractical ideas out there. Someone told
me at lunch today that an idea is so beautiful, it’s got to be right. Those are
the ideas to watch out for! Those are the dangerous ones, the ones that can
transform our society. This little idea of a web, for example, of linking stuff
into a web! Or the idea of having completely artificial languages, because
then it becomes mechanical to see what they mean. . . Very dangerous ideas!
Thanks very much!
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Metamathematics and the
foundations of mathematics

This article discusses what can be proved about the foundations of mathe-
matics using the notions of algorithm and information. The first part is ret-
rospective, and presents a beautiful antique, Gödel’s proof; the first modern
incompleteness theorem, Turing’s halting problem; and a piece of postmodern
metamathematics, the halting probability Ω. The second part looks forward
to the new century and discusses the convergence of theoretical physics and
theoretical computer science and hopes for a theoretical biology, in which the
notions of algorithm and information are again crucial.

PART I. THREE INCOMPLETENESS THE-

OREMS

In this article I’m going to concentrate on what we can prove about the
foundations of mathematics using mathematical methods, in other words, on
metamathematics. The current point of departure for metamathematics is
that you’re doing mathematics using an artificial language and you pick a
fixed set of axioms and rules of inference (deduction rules), and everything
is done so precisely that there is a proof-checking algorithm. I’ll call such a
formal system a formal axiomatic theory.

Then, as is pointed out in Turing’s original paper (1936), and as was
emphasized by Post in his American Mathematical Society Bulletin paper
(1944), the set X of all theorems, consequences of the axioms, can be sys-
tematically generated by running through all possible proofs in size order
and mechanically checking which ones are valid. This unending computa-
tion, which would be monumentally time-consuming, is sometimes jocularly
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referred to as the British Museum algorithm.
The size in bits H(X) of the program that generates the set X of

theorems—that’s the program-size complexity of X—will play a crucial role
below. Roughly speaking, it’s the number of bits of axioms in the formal
theory that we are considering. H(X) will give us a way to measure the
algorithmic complexity or the algorithmic information content of a formal
axiomatic theory.

But first let’s retrace history, starting with a beautiful antique, Gödel’s
incompleteness theorem, the very first incompleteness theorem.

• Alan Turing (1936), “On computable numbers, with an application to the entschei-
dungsproblem,” Proceedings of the London Mathematical Society, ser. 2, vol. 42,
pp. 230–265. Reprinted in Davis (1965), pp. 115–154.

• Emil Post (1944), “Recursively enumerable sets of positive integers and their de-
cision problems,” American Mathematical Society Bulletin, vol. 50, pp. 284–316.
Reprinted in Davis (1965), pp. 304–337.

• Martin Davis (1965), The Undecidable, Raven Press.

A Beautiful Antique: Gödel’s Proof (1931)

Let’s fix our formal axiomatic theory as above and ask if “This statement is
unprovable!” can be proven within our theory. “This statement is unprov-
able!” is provable if and only if it’s false! “This statement is unprovable!”
doesn’t sound at all like a mathematical statement, but Gödel shows that it
actually is.

Therefore formal axiomatic theories, if they only prove true theorems, are
incomplete, because they do not prove all true statements. And so true and
provable turn out to be rather different!

How does Gödel’s proof work? Gödel cleverly constructs an arithmetical
or number-theoretic assertion that refers to itself and its unprovability indi-
rectly, via the (Gödel) numbers of the statements and proofs within the for-
mal theory. In other words, he numbers all the statements and proofs within
the formal axiomatic theory, and he can then construct a (very complicated)
bona fide mathematical assertion that states that it itself is unprovable. The
self-reference is indirect, since Gödel’s self-referential statement cannot con-
tain its own Gödel number.

Wonderful as it is, Gödel’s proof does not involve three of the big ideas
of the 20th century, algorithm, information and randomness. The first
step in that direction was taken by Turing only five years later.
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But before discussing Turing’s work, what is an algorithm?

• Kurt Gödel (1931), “Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme I” [“On formally undecidable propositions of Principia

Mathematica and related systems I”], Monatshefte für Mathematik und Physik, vol.
38, pp. 173–198. English translation in Davis (1965), pp. 4–38. [Very difficult to
understand.]

• Ernest Nagel, James R. Newman (1958), Gödel’s Proof, New York University Press.
[A beautifully clear explanation.]

What is an Algorithm? [McCarthy (1962),

Chaitin (1998, 1999, 2001)]

An algorithm is a mechanical procedure for calculating something, usually
formulated in a programming language, for example LISP, which is a com-
putable version of set theory!

In LISP, which is my favorite programming language, applying the func-
tion f to the operands x and y, f(x, y), is written (f x y).

Programs and data in LISP are all S-expressions, which are lists with
sublists, enclosed in parentheses and with successive elements separated by
blanks. For example, (A BC (123 DD)) is an S-expression. The S in S-
expression stands for “symbolic.”

For example, let’s define set membership in LISP.

(define (in-set? member set)

(if (= () set) false

(if (= member (head set)) true

(in-set? member (tail set))

))

)

This defines (in-set? member set) to be false if the set is empty, true if
the member is the first element in the set, and to recursively be (in-set?

member [the rest of the set]) otherwise.
Let me explain some of this: (if x y z) yields/picks y or z depending

on whether or not x is true. And (= x y) checks if x = y, yielding true or
false.

Unfortunately, for historical reasons, head is actually written car and
tail is actually written cdr.
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Then

(in-set? (’ y) (’ (x y z)))

yields true, and

(in-set? (’ q) (’ (x y z)))

yields false.
Here ’ or quote stops evaluation and contains unevaluated data.
In summary, a LISP program isn’t a list of statements that you execute

or run, it’s an expression to be evaluated, and what it does, is it yields a
value. In other words, LISP is a functional programming language, not an
imperative programming language.

• John McCarthy et al. (1962), LISP 1.5 Programmer’s Manual, Massachusetts In-
stitute of Technology Press.

The First Modern Incompleteness Theorem:

Turing’s Halting Problem (1936)

At the beginning of his 1936 paper, Turing provides a mathematical defini-
tion of the notion of algorithm. He does this using an extremely primitive
programming language (now called a Turing machine), not LISP as above,
but it is nevertheless a decisive intellectual step forward into the computer
age.1 He then proves that there are things which cannot be computed. Tur-
ing does this by making brilliant use of Cantor’s diagonal argument from set
theory applied to the list of all computable real numbers. This gives Turing
an uncomputable real number R∗, as we explain below, and a completely
different source of incompleteness than the one discovered by Gödel in 1931.
Real numbers are numbers like 3.1415926. . .

Imagine a numbered list of all possible computer programs for computing
real numbers. That is, a list of all possible computer programs in some fixed
language, ordered by size, and within programs of the same size, in some
arbitrary alphabetical order. So R(N) is the real number (if any) that is
computed by the Nth program in the list (N = 1, 2, 3, . . .).

Let R(N, M) be the Mth digit after the decimal point of the Nth com-
putable real, that is, the real R(N) calculated by the Nth program. Define a

1In Chaitin (1999) I discuss the halting problem and Gödel’s proof using LISP.
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new real R∗ whose Nth digit after the decimal point, R∗(N), is 3 if R(N, N) is
not equal to 3, and otherwise is 2 (including the case that the Nth computer
program never outputs an Nth digit). Then R∗ is an uncomputable real,
because it differs from the Nth computable real in the Nth digit. Therefore
there cannot be any way to decide if the Nth computer program ever outputs
an Nth digit, or we could actually compute R∗, which is impossible.

Corollary: No formal axiomatic theory can always enable you to prove
whether or not the Nth computer program ever outputs an Nth digit, be-
cause otherwise you could run through all possible proofs in size order and
compute R∗, which is impossible.

Note: Whether the Nth computer program ever outputs an Nth digit is
a special case of the halting problem, which is the problem of determining
whether or not a computer program ever halts (with no time limit). If a
program does halt, you can eventually determine that, merely by running it.
The real problem is to decide that a program will never halt, no matter how
much time you give it.

Postmodern Metamathematics: The Halting

Probability Ω [Chaitin (1975, 1987, 1998), De-

lahaye (2002)]

So that’s how Turing brought the notion of algorithm into metamathemat-
ics, into the discussion about the foundations of mathematics. Now let’s
find yet another source of incompleteness, and let’s bring into the discussion
the notions of information, randomness, complexity and irreducibil-
ity. First we need to define a certain kind of computer, or, equivalently, to
specify its binary machine language.

What is the “self-delimiting binary universal computer” U that we use
below?

U ’s program is a finite bit string, and starts off with a prefix that is a LISP
expression. The LISP expression prefix is converted into binary, yielding 8
bits per character, and it’s followed by a special punctuation character, 8
more bits, and that is followed by raw binary data. The LISP prefix is
evaluated or run and it will read the raw binary data in one bit at a time
without ever being allowed to run off the end of the program.

In other words, the LISP prefix must ask for exactly the correct number
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of bits of raw binary data. If it requests another bit after reading the last
one, this does not return a graceful “end of file” condition, it aborts the
computation.

The fact that there is no punctuation marking the end of the raw bi-
nary data, which is also the end of the entire program, is what forces these
machine-language programs to be self-delimiting. In other words, the end of
the binary program is like a cliff, and the computer U must not fall off!

What is the halting probability Ω for U?

Ω =
∑

p halts when run on U

2−(the number of bits in p).

So if the program p halts and is K bits long, that contributes 1/2K to the
halting probability Ω.

This halting probability can be defined in such a manner that it includes
binary programs p of every possible size precisely because these p must be
self-delimiting. That is to say, precisely because U must decide by itself
where to stop reading the program p. U must not overshoot, it cannot fall
off the cliff, it must read precisely up to the last bit of p, but not beyond it.

Knowing the first N bits of the base-two representation of the real number
Ω, which is a probability and therefore between zero and one, answers the
halting problem for all programs up to N bits in size. So if you knew the first
N bits of Ω after the decimal or the binary point, that would theoretically
enable you to decide whether or not each binary computer program p up to
N bits in size halts when run on U .

Would this be useful? Yes, indeed! Let me give an example showing just
how very useful it would be.

Let’s consider the Riemann hypothesis, a famous mathematical conjecture
that is still open, still unresolved. There is a Riemann-hypothesis testing
program that systematically searches for counter-examples and that halts if
and only if it finds one and the Riemann hypothesis is false. The size in
bits of this program is the program-size complexity of testing the Riemann
hypothesis this way. And if this program is H(Riemann) bits long, knowing
that many initial bits of Ω would settle the Riemann hypothesis! It would
enable you to tell whether or not the Riemann hypothesis is true.

Unfortunately the method required to do this, while theoretically sound,
is totally impractical. The computation required, while finite, is much, much
too long to actually carry out. The time needed grows much, much faster
than exponentially in H(Riemann), the number of bits of Ω that we are given.
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In fact, it grows as the time required to simultaneously run all programs on
U up to H(Riemann) bits in size until all the programs that will ever halt
have done so. More precisely, you have to run enough programs for enough
time to get the first H(Riemann) bits of Ω right, which because of carries
from bits that are further out may actually involve programs that are more
than H(Riemann) bits long.

And precisely because the bits of Ω are so useful, it turns out that they
are irreducible mathematical information, that they cannot be derived or
deduced from any simpler principles. More precisely, we have the following
incompleteness result: You need an N -bit formal axiomatic theory (that is,
one that has an N -bit algorithm to generate all the theorems) in order to be
able to determine the first N bits of Ω, or, indeed, the values and positions
of any N bits of Ω.

Actually, what I show in Chaitin (1998) is that an N -bit theory can’t
determine more than N + c bits of Ω, where the constant c is 15328.

Let’s restate this. Consider a formal axiomatic theory with the set of the-
orems X and with algorithmic complexity or algorithmic information content
H(X). Then if a statement such as

“The 99th bit of Ω is 0.”
“The 37th bit of Ω is 1.”

determining the value of a particular bit of Ω in a particular place, is in X
only if it’s true, then there are at most H(X) + c such theorems in X. In
other words, X enables us to determine at most H(X) + c bits of Ω.

We can also describe this irreducibility non-technically, but very force-
fully, as follows: Whether each bit of Ω is a 0 or a 1 is a mathematical fact
that is true for no reason, it’s true by accident!

What is Algorithmic Information? [Chaitin

(1975, 1987, 2001), Calude (2002)]

Ω is actually just one piece of my algorithmic information theory (AIT), it’s
the jewel that I discovered while I was developing AIT. Let me now give some
highlights of AIT.

What else can we do using the computer U that we used to define Ω?
Well, you should look at the size of programs for U. U is the yardstick
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you use to measure algorithmic information. And the unit of algorithmic
information is the 0/1 bit.

You define the absolute algorithmic information content H(X) of an ob-
ject (actually, of a LISP S-expression) X to be the size in bits of the smallest
program for U to compute X. The joint information content H(X, Y ) is
defined to be the size in bits of the smallest program for U to compute the
pair X, Y. (Note that the pair X, Y is actually (X Y ) in LISP.) The relative
information content H(X|Y ) is defined to be the size in bits of the smallest
program for U that computes X from a minimum-size program for Y, not
from Y directly.

And the complexity H(X) of a formal axiomatic theory with theorem set
X is also defined using the computer U. (I glossed over this point before.)
H(X) is defined to be the size in bits of the smallest program that makes U
generate the set of theorems X. Note that this is an endless computation.
You may think of H(X) as the number of bits of information in the most
concise or the most elegant set of axioms that yields the set of theorems X.

Now here are some of the theorems that you can prove about these con-
cepts.

First of all, let’s consider an N -bit string X. H(X) is usually close to
N +H(N), which is approximately N + log2 N. Bit strings X for which this
is the case are said to be algorithmically random, they have the highest
possible information content.

On the other hand, an infinite sequence of bits X is defined to be
algorithmically random if and only if there is a constant c such that
H(the first N bits of X) is greater than N − c for all N . And, crucial point,
the base-two representation for Ω satisfies this definition of algorithmic ran-
domness, which is one of the reasons that Ω is so interesting.

Algorithmic information is (sub)additive:

H(X, Y ) ≤ H(X) + H(Y ) + c.

And the mutual information content H(X : Y ) is defined to be the extent
to which computing two objects together is better than computing them
separately:

H(X : Y ) = H(X) + H(Y ) − H(X, Y ).

X and Y are said to be algorithmically independent if their mutual informa-
tion is small compared with their individual information contents, so that

H(X, Y ) ≈ H(X) + H(Y ).
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Finally, here are some subtle results that relate mutual and relative in-
formation:

H(X, Y ) = H(X) + H(Y |X) + O(1),

H(X : Y ) = H(X) − H(X|Y ) + O(1),

H(X : Y ) = H(Y ) − H(Y |X) + O(1).

Here l.h.s. = r.h.s. + O(1) means that the difference between the left-hand
side and the right-hand side of the equation is bounded, it’s at most a fixed
number of bits. Thus the mutual information is also the extent to which
knowing one of a pair helps you to know the other.

These results are quoted here in order to show that Ω isn’t isolated,
it’s part of an elegant theory of algorithmic information and randomness, a
theory of the program-size complexity for U.

Now let me tell you what I think is the significance of these incompleteness
results and of Ω.

Is Mathematics Quasi-Empirical?

That is, is mathematics more like physics than mathematicians would like to
admit? I think so!

I think that incompleteness cannot be dismissed and that mathemati-
cians should occasionally be willing to add new axioms that are justified by
experience, experimentally, pragmatically, but are not at all self-evident.2

Sometimes to prove more, you need to assume more, to add new axioms!
That’s what my information-theoretic approach to incompleteness suggests
to me.

Of course, at this point, at the juncture of the 20th and the 21st centuries,
this is highly controversial. It goes against the current paradigm of what
mathematics is and how mathematics should be done, it goes against the
current paradigm of the nature of the mathematical enterprise. But my
hope is that the 21st century will eventually decide that adding new axioms
is not at all controversial, that it’s obviously the right thing to do! However
this radical paradigm shift may take many years of discussion and thought
to be accepted, if indeed this ever occurs.

For further discussion of this quasi-empirical, experimental mathematics
viewpoint, see Chaitin (1998, 1999, 2002), Tymoczko (1998), Borwein (2002).

2In my opinion P 6= NP is a good example of such a new axiom.
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For superb histories of many aspects of 20th century thought regarding
the foundations of mathematics that we have not touched upon here, see
Grattan-Guinness (2000), Tasić (2001).
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PART II. FUTURE PERSPECTIVES

Where is Metamathematics Going?

We need a dynamic, not a static metamathematics, one that deals with
the evolution of new mathematical concepts and theories. Where do new
mathematical ideas come from? Classical metamathematics with its incom-
pleteness theorems deals with a static view of mathematics, it considers a
fixed formal axiomatic system. But mathematics is constantly evolving and
changing! Can we explain how this happens? What we really need now is a
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new, optimistic dynamic metamathematics, not the old, pessimistic static
metamathematics.

In my opinion the following line of research is relevant and should not
have been abandoned:

• Douglas Lenat (1984), “Automated theory formation in mathematics,” in W. W.
Bledsoe, D. W. Loveland, Automated Theorem Proving: After 25 Years, American
Mathematical Society, pp. 287–314.

Where is Mathematics Going?

Will mathematics become more like biology, more complicated, less elegant,
with more and more complicated theorems and longer and longer proofs?

Will mathematics become more like physics, more experimental, more
quasi-empirical, with fewer proofs?

For a longer discussion of this, see the chapter on mathematics in the
third millennium in Chaitin (1999).

What is a Universal Turing Machine (UTM)?

As physicists have become more and more interested in complex systems, the
notion of algorithm has become increasing important, together with the idea
that what physical systems actually do is computation. In other words, due
to complex systems, physicists have begun to consider the notion of algorithm
as physics. And the UTM now begins to emerge as a fundamental physical
concept, not just a mathematical concept [Deutsch (1997), Wolfram (2002)].

To a mathematician a UTM is a formal, artificial, unambiguous language
for formulating algorithms, a language that can be interpreted mechanically,
and which enables you to specify any algorithm, all possible algorithms.
That’s why it’s called “universal.”

What is a UTM to a physicist? Well, it’s a physical system whose reper-
toire of potential behavior is extremely rich, in fact maximally rich, universal,
because it can carry out any computation and it can simulate the behavior
of any other physical system.

These are two sides of a single coin.
And, in a sense, all of this was anticipated by Turing in 1936 when he

used the word machine. Also the “halting problem” almost sounds like a
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problem in physics. It sounds very down-to-earth and concrete. It creates
a mental image that is more physical than mathematical, it sounds like you
are trying to stop a runaway locomotive!

After all, what you can compute depends on the laws of physics. A
different universe might have different computers. So, in a way, Turing’s
1936 paper was a physics paper!

• David Deutsch (1997), The Fabric of Reality, Penguin.

• Stephen Wolfram (2002), A New Kind of Science, Wolfram Media.

Convergence of Theoretical Physics and The-

oretical Computer Science

The fact that “UTM” is now in the mental tool kit of physicists as well
as mathematicians is just one symptom. What we are witnessing now is
broader than that, it’s actually the beginning of an amazing convergence
of theoretical physics and theoretical computer science, which would have
seemed inconceivable just a few years ago. There are many lines of research,
many threads, that now go in that direction. Let me indicate some of these
here.

It is sometimes useful to think of physical systems as performing algo-
rithms, and of the entire universe as a single giant computer. Edward Fredkin
was one of the earliest proponents of this view. See Wright (1988).

There is an increasing amount of work by physicists that suggests that it is
fertile to view physical systems as information-processing systems, and that
studies how physical systems process information. The extremely popular
field of research of quantum computation and quantum information [Nielsen
(2000)] certainly follows this paradigm.

And there are also suggestions from black hole thermodynamics and quan-
tum mechanics that the physical universe may actually be discrete, not con-
tinuous, and that the maximum amount of information contained in a phys-
ical system is actually finite. A leading researcher in this area is Jacob
Bekenstein, and for more on this topic, see the chapter on the holographic
principle in Smolin (2001).

Wolfram (2002) is a treasure-trove of simple combinatorial (symbolic,
discrete, non-numerical) algorithms with extremely rich behavior (in fact,
universal behavior, equivalent to a UTM, a universal Turing machine, in other
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words, that can perform an arbitrary computation and simulate an arbitrary
physical system). These are superb building blocks that God might well have
used in building the universe! Here I refer to high-energy or particle physics.
Time will tell—we will see! Wolfram also supports, and himself employs, an
experimental, quasi-empirical approach to doing mathematics.

Let me also cite the physicist who might be considered the inventor of
quantum computing, and also cite a journalist. See the chapter on “Univer-
sality and the limits of computation” in Deutsch (1998), and Siegfried (2000)
on the physics of information and the seminal ideas of Rolf Landauer.

I should mention that my own work on AIT in a sense belongs to this
school; it can be viewed as an application of the physical notion of entropy
(or disorder) to metamathematics. In other words, my work on Ω in a sense
treats formal axiomatic theories as if they were heat engines. That is how I
show that Ω is irreducible, using general, “thermodynamical” arguments on
the limitations of formal axiomatic theories.

Another example of ideas from physics that are invading computer science
are the phase changes that mark a sharp transition from a regime in which
an algorithm is fast to a regime in which the algorithm is extremely slow, for
instance the situation described in Hayes (2002).

• Robert Wright (1988), Three Scientists and Their Gods, Times Books. [On Edward
Fredkin.]

• Michael Nielsen, Isaac Chuang (2000), Quantum Computation and Quantum Infor-

mation, Cambridge University Press.

• Tom Siegfried (2000), The Bit and the Pendulum, Wiley. [For the work of Rolf
Landauer.]

• Lee Smolin (2001), Three Roads to Quantum Gravity, Basic Books.

• Brian Hayes (2002), “The easiest hard problem,” American Scientist, vol. 90, pp.
113–117.

To a Theoretical Biology

What is life? Can there be a general, abstract mathematical theory of the
origin and the evolution of the complexity of life?

Ergodic theory says that things get washed out and less interesting as
time passes. The theory I want would show that interesting things (life!
organisms! us!) emerge and evolve spontaneously, and that things get more
and more interesting, not less and less interesting.
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My old attempt at a theory [Chaitin (1970, 1979)] considered cellular
automata and proposed using mutual algorithmic information to distinguish
a living organism from its environment. My idea was that the parts of an
organism have high mutual information.

Wolfram (2002) sustains the thesis that life is not unusual. He claims
that there is no essential difference between us and any other universal Tur-
ing machine. Furthermore, according to Wolfram, most non-trivial physical
and combinatorial systems are universal Turing machines, UTM’s. (A UTM
is a physical system whose behavior is as rich as possible because it is a
general-purpose computer that can perform an arbitrary computation, in
other words, that can simulate any algorithm and any other physical sys-
tem.) Therefore, according to Wolfram, there is nothing to Darwin, nothing
to understand. The evolution of life is a non-issue. According to Wolfram
you get there, you get life, right away, all at once.

Wolfram’s thesis, while interesting, is not, I believe, the entire story.
Universal Turing machines, computation, may be ubiquitous in nature, but
the amount of software a UTM has is not taken into account by Wolfram.
And that, I believe, is what is actually evolving! After all, DNA is es-
sentially digital software, and we have much more DNA than viruses and
bacteria. Our program-size complexity is higher, H(human) is much greater
than H(bacteria).

This suggests to me a new toy model of evolution very different from
the cellular automata model that I originally considered. My new idea is to
model life, an ecology, as a collection of UTM’s, and to study how their soft-
ware evolves in complexity. The problem is how to model the environment,
more precisely, the interactions of organisms with each other and with their
environment. Let me emphasize that in such a model the problem is not to
distinguish an organism from its environment, which before I attempted to
do using mutual information, it is to model interactions, so that the organ-
isms are not like Leibniz’s windowless monads! And then of course to prove
that the software complexity will evolve. . .

For more on mutual information, see Chaitin (2001). For further discus-
sion of my hopes for a theoretical biology, and for my thoughts on biology in
general, see Chaitin (2002). For von Neumann’s seminal work in this area,
see von Neumann (1966). Two recent books on biology that particularly
impressed me are Maynard Smith (1999), and Kay (2000).

• John von Neumann (1966), Theory of Self-Reproducing Automata, edited and com-
pleted by Arthur Burks, University of Illinois Press.
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• Gregory Chaitin (1970, 1979), “To a mathematical definition of ‘life’,” ACM

SICACT News, January 1970, pp. 12–18; “Toward a mathematical definition
of ‘life’,” in R. D. Levine, M. Tribus, The Maximum Entropy Formalism, Mas-
sachusetts Institute of Technology Press, pp. 477–498.

• John Maynard Smith, Eörs Szathmáry (1999), The Origins of Life, Oxford Univer-
sity Press.

• Lily Kay (2000), Who Wrote the Book of Life?, Stanford University Press. [On
information theory and molecular biology.]

To a Theoretical Psychology

What is psychological information? What is thinking? What is the soul?
What is intelligence? Is it some kind of information-processing capability?
How can we measure it? How can we simulate it? (That’s called AI, artificial
intelligence.) And where do new ideas come from? Ideas in general, not just
mathematical ideas.

See Nørretranders (1998) for some interesting discussions of precisely
these questions.

However, again, I don’t just want an interesting discussion, I want a
mathematical theory with beautiful theorems and proofs! Human intelligence
may just be a very complicated piece of engineering, or there may be some
profound, basic, as yet unknown concepts at play, and a fundamental theory
about them. And these two possibilities are not mutually exclusive. Time
will tell!

• Tor Nørretranders (1998), The User Illusion, Viking. [On information theory and
psychology.]

To the Future!

I trust that a hundred years from now mathematicians will be able to look
back on our current mathematics and metamathematics the way we regard
the mathematics of 1900—with a justified feeling of superiority! I hope that
they will wonder, how we could have been so blind, to miss the simple,
wonderful, beautiful new theories that were just around the corner? I hope
that they will ask themselves, how come we didn’t see all those beautiful new
ideas, when we were almost close enough to touch them and to taste them!
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Paradoxes of randomness

I’ll discuss how Gödel’s paradox “This statement is false/unprovable” yields
his famous result on the limits of axiomatic reasoning. I’ll contrast that with
my work, which is based on the paradox of “The first uninteresting positive
whole number,” which is itself a rather interesting number, since it is precisely
the first uninteresting number. This leads to my first result on the limits of
axiomatic reasoning, namely that most numbers are uninteresting or random,
but we can never be sure, we can never prove it, in individual cases. And these
ideas culminate in my discovery that some mathematical facts are true for no
reason, they are true by accident, or at random. In other words, God not only
plays dice in physics, but even in pure mathematics, in logic, in the world of
pure reason. Sometimes mathematical truth is completely random and has
no structure or pattern that we will ever be able to understand. It is not the
case that simple clear questions have simple clear answers, not even in the
world of pure ideas, and much less so in the messy real world of everyday
life. [This talk was given Monday 13 May 2002 at Monash University in
Melbourne, Australia, and previously to summer visitors at the IBM Watson
Research Center in 2001. There are no section titles; the displayed material
is what I wrote on the whiteboard as I spoke.]

When I was a small child I was fascinated by magic stories, because they
postulate a hidden reality behind the world of everyday appearances. Later I
switched to relativity, quantum mechanics, astronomy and cosmology, which
also seemed quite magical and transcend everyday life. And I learned that
physics says that the ultimate nature of reality is mathematical, that math is
more real than the world of everyday appearances. But then I was surprised
to learn of an amazing, mysterious piece of work by Kurt Gödel that pulled
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the rug out from under mathematical reality! How could this be?! How could
Gödel show that math has limitations? How could Gödel use mathematical
reasoning to show that mathematical reasoning is in trouble?!

Applying mathematical methods to study the power of mathematics is
called meta-mathematics, and this field was created by David Hilbert about
a century ago. He did this by proposing that math could be done using a
completely artificial formal language in which you specify the rules of the
game so precisely that there is a mechanical procedure to decide if a proof is
correct or not. A formal axiomatic theory of the kind that Hilbert proposed
would consist of axioms and rules of inference with an artificial grammar and
would use symbolic logic to fill in all the steps, so that it becomes completely
mechanical to apply the rules of inference to the axioms in every possible
way and systematically deduce all the logical consequences. These are called
the theorems of the formal theory.

You see, once you do this, you can forget that your formal theory has any
meaning and study it from the outside as if it were a meaningless game
for generating strings of symbols, the theorems. So that’s how you can
use mathematical methods to study the power of mathematics, if you can
formulate mathematics as a formal axiomatic theory in Hilbert’s sense. And
Hilbert in fact thought that all of mathematics could be put into one of his
formal axiomatic theories, by making explicit all the axioms or self-evident
truths and all the methods of reasoning that are employed in mathematics.

In fact, Zermelo-Fraenkel set theory with the axiom of choice, ZFC, uses
first-order logic and does this pretty well. And you can see some interesting
work on this by Jacob T. Schwartz at his website at http://www.settheory.
com.

But then in 1931 Kurt Gödel showed that it couldn’t be done, that no
formal axiomatic theory could contain all of mathematical truth, that they
were all incomplete. And this exploded the normal Platonic view of what
math is all about.

How did Gödel do this? How can mathematics prove that mathematics
has limitations? How can you use reasoning to show that reasoning has
limitations?

How does Gödel show that reasoning has limits? The way he does it is
he uses this paradox:

“This statement is false!”

You have a statement which says of itself that it’s false. Or it says
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“I’m lying!”

“I’m lying” doesn’t sound too bad! But “the statement I’m making now is
a lie, what I’m saying right now, this very statement, is a lie,” that sounds
worse, doesn’t it? This is an old paradox that actually goes back to the
ancient Greeks, it’s the paradox of the liar, and it’s also called the Epimenides
paradox, that’s what you call it if you’re a student of ancient Greece.

And looking at it like this, it doesn’t seem something serious. I didn’t take
this seriously. You know, so what! Why should anybody pay any attention
to this? Well, Gödel was smart, Gödel showed why this was important. And
Gödel changed the paradox, and got a theorem instead of a paradox. So how
did he do it? Well, what he did is he made a statement that says of itself,

“This statement is unprovable!”

Now that’s a big, big difference, and it totally transforms a game with words,
a situation where it’s very hard to analyze what’s going on. Consider

“This statement is false!”

Is it true, is it false? In either case, whatever you assume, you get into
trouble, the opposite has got to be the case. Why? Because if it’s true that
the statement is false, then it’s false. And if it’s false that the statement is
false, then it’s true.

But with

“This statement is unprovable!”

you get a theorem out, you don’t get a paradox, you don’t get a contradiction.
Why? Well, there are two possibilities. With

“This statement is false!”

you can assume it’s true, or you can assume it’s false. And in each case, it
turns out that the opposite is then the case. But with

“This statement is unprovable!”

the two possibilities that you have to consider are different. The two cases
are: it’s provable, it’s unprovable.

So if it’s provable, and the statement says it’s unprovable, you’ve got
a problem, you’re proving something that’s false, right? So that would be
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very embarrassing, and you generally assume by hypothesis that this cannot
be the case, because it would really be too awful if mathematics were like
that. If mathematics can prove things that are false, then mathematics is in
trouble, it’s a game that doesn’t work, it’s totally useless.

So let’s assume that mathematics does work. So the other possibility is
that this statement

“This statement is unprovable!”

is unprovable, that’s the other alternative. Now the statement is unprov-
able, and the statement says of itself that it’s unprovable. Well then it’s
true, because what it says corresponds to reality. And then there’s a hole in
mathematics, mathematics is “incomplete,” because you’ve got a true state-
ment that you can’t prove. The reason that you have this hole is because the
alternative is even worse, the alternative is that you’re proving something
that’s false.

The argument that I’ve just sketched is not a mathematical proof, let me
hasten to say that for those of you who are mathematicians and are beginning
to feel horrified that I’m doing everything so loosely. This is just the basic
idea. And as you can imagine, it takes some cleverness to make a statement
in mathematics that says of itself that it’s unprovable. You know, you don’t
normally have pronouns in mathematics, you have to have an indirect way
to make a statement refer to itself. It was a very, very clever piece of work,
and this was done by Gödel in 1931.

1931

The only problem with Gödel’s proof is that I didn’t like it, it seemed
strange to me, it seemed beside the point, I thought there had to be a better,
deeper reason for incompleteness. So I came up with a different approach,
another way of doing things. I found a different source for incompleteness.

Now let me tell you my approach. My approach starts off like this. . . I’ll
give you two versions, a simplified version, and a slightly less-of-a-lie version.

The simplified version is, you divide all numbers into two classes, you
think of whether numbers are interesting or uninteresting, and I’m talking
about whole numbers, positive integers,

1, 2, 3, 4, 5, . . .

That’s the world I’m in, and you talk about whether they’re interesting or
uninteresting.
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Un/Interesting

Somehow you separate them into those that are interesting, and those that
are uninteresting, okay? I won’t tell you how. Later I’ll give you more of a
clue, but for now let’s just keep it like that.

So, the idea is, then, if somehow you can separate all of the positive
integers, the whole numbers, 1, 2, 3, 4, 5, into ones that are interesting and
ones that are uninteresting, you know, each number is either interesting or
uninteresting, then think about the following whole number, the following
positive integer:

“The first uninteresting positive integer”

Now if you think about this number for a while, it’s precisely what? You
start off with 1, you ask is it interesting or not. If it’s interesting, you keep
going. Then you look and see if 2 is interesting or not, and precisely when
you get to the first uninteresting positive integer, you stop.

But wait a second, isn’t that sort of an interesting fact about this positive
integer, that it’s precisely the first uninteresting positive integer?! I mean,
it stands out that way, doesn’t it? It’s sort of an interesting thing about it,
the fact that it happens to be precisely the smallest positive integer that’s
uninteresting! So that begins to give you an idea that there’s a problem, that
there’s a serious problem with this notion of interesting versus uninteresting.

Interestingly enough, last week I gave this talk at the University of Auck-
land in New Zealand, and Prof. Garry Tee showed me the Penguin Dictionary
of Curious and Interesting Numbers by David Wells that was published in
Great Britain in 1986. And I’ll read what it says on page 120: “39—This
appears to be the first uninteresting number, which of course makes it an
especially interesting number, because it is the smallest number to have the
property of being uninteresting.” So I guess if you read his dictionary you
will find that the entries for the positive integers 1 through 38 indicate that
each of them is interesting for some reason!

And now you get into a problem with mathematical proof. Because let’s
assume that somehow you can use mathematics to prove whether a number
is interesting or uninteresting. First you’ve got to give a rigorous definition
of this concept, and later I’ll explain how that goes. If you can do that, and
if you can also prove whether particular positive integers are interesting or
uninteresting, you get into trouble. Why? Well, just think about the first
positive integer that you can prove is uninteresting.
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“The first provably uninteresting positive integer”

We’re in trouble, because the fact that it’s precisely the first positive in-
teger that you can prove is uninteresting, is a very interesting thing about
it! So if there cannot be a first positive integer that you can prove is uninter-
esting, the conclusion is that you can never prove that particular positive
integers are uninteresting. Because if you could do that, the first one would
ipso facto be interesting!

But I should explain that when I talk about the first provably uninter-
esting positive integer I don’t mean the smallest one, I mean the first one
that you find when you systematically run through all possible proofs and
generate all the theorems of your formal axiomatic theory. I should also
add that when you carefully work out all the details, it turns out that you
might be able to prove that a number is uninteresting, but not if its base-two
representation is substantially larger than the number of bits in the pro-
gram for systematically generating all the theorems of your formal axiomatic
theory. So you can only prove that a finite number of positive integers are
uninteresting.

So that’s the general idea. But this paradox of whether you can classify
whole numbers into uninteresting or interesting ones, that’s just a simplified
version. Hopefully it’s more understandable than what I actually worked
with, which is something called the Berry paradox. And what’s the Berry
paradox?

Berry Paradox

I showed you the paradox of the liar, “This statement is false, I’m lying, what
I’m saying right now is a lie, it’s false.” The Berry paradox talks about

“The first positive integer that can’t be named
in less than a billion words”

Or you can make it bytes, characters, whatever, you know, some unit of
measure of the size of a piece of text:

Berry Paradox
“The first positive integer that can’t be named
in less than a billion words/bytes/characters”
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So you use texts in English to name a positive integer. And if you use
texts up to a billion words in length, there are only a finite number of them,
since there are only a finite number of words in English. Actually we’re
simplifying, English is constantly changing. But let’s assume English is fixed
and you don’t add words and a dictionary has a finite size. So there are only
a finite number of words in English, and therefore if you consider all possible
texts with up to a billion words, there are a lot of them, but it’s only a finite
number, as mathematicians say jokingly in their in-house jargon.

And most texts in English don’t name positive integers, you know, they’re
novels, or they’re actually nonsense, gibberish. But if you go through all
possible texts of up to a billion words, and there’s only a finite list of them,
every possible way of using an English text that size to name a number will
be there somewhere. And there are only a finite number of numbers that you
can name with this finite number of texts, because to name a number means
to pick out one specific number, to refer to precisely one of them. But there
are an infinite number of positive integers. So most positive integers, almost
all of them, require more than a billion words, or any fixed number of words.
So just take the first one. Since almost all of them need more than a billion
words to be named, just pick the first one.

So this number is there. The only problem is, I just named it in much
less than a billion words, even with all the explanation! [Laughter] Thanks
for smiling and laughing! If nobody smiles or laughs, it means that I didn’t
explain it well! On a good day everyone laughs!

So there’s a problem with this notion of naming, and this is called the
Berry paradox. And if you think that the paradox of the liar, “this statement
is false,” or “what I’m saying now is a lie,” is something that you shouldn’t
take too seriously, well, the Berry paradox was taken even less seriously. I
took it seriously though, because the idea I extracted from it is the idea of
looking at the size of computer programs, which I call program-size complex-
ity.

Program-Size Complexity

For me the central idea of this paradox is how big a text does it take to
name something. And the paradox originally talks about English, but that’s
much too vague! So to make this into mathematics instead of just being a
joke, you have to give a rigorous definition of what language you’re using and
how something can name something else. So what I do is I pick a computer-
programming language instead of using English or any real language, any
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natural language, I pick a computer-programming language instead. And
then what does it mean, how do you name an integer? Well, you name an
integer by giving a way to calculate it. A program names an integer if its
output is that integer, you know, it outputs that integer, just one, and then
it stops. So that’s how you name an integer using a program.

And then what about looking at the size of a text measured in billions
of words? Well, you don’t want to talk about words, that’s not a convenient
measure of software size. People in fact in practice use megabytes of code,
but since I’m a theoretician I use bits. You know, it’s just a multiplicative
constant conversion factor! In biology the unit is kilobases, right? So every
field has its way of measuring information.

Okay, so what does it mean then for a number to be interesting or unin-
teresting, now that I’m giving you a better idea of what I’m talking about.
Well, interesting means it stands out some way from the herd, and uninter-
esting means it can’t be distinguished really, it’s sort of an average, typical
number, one that isn’t worth a second glance. So how do you define that
mathematically using this notion of the size of computer programs? Well,
it’s very simple: a number is uninteresting or algorithmically random or ir-
reducible or incompressible if there’s no way to name it that’s more concise
than just writing out the number directly. That’s the idea.

In other words, if the most concise computer program for calculating a
number just says to print 123796402, in that case, if that’s the best you can
do, then that number is uninteresting. And that’s typically what happens.
On the other hand, if there is a small, concise computer program that cal-
culates the number, that’s atypical, that means that it has some quality or
characteristic that enables you to pick it out and to compress it into a smaller
algorithmic description. So that’s unusual, that’s an interesting number.

Once you set up this theory properly, it turns out that most numbers,
the great majority of positive integers, are uninteresting. You can prove that
as a theorem. It’s not a hard theorem, it’s a counting argument. There
can’t be a lot of interesting numbers, because there aren’t enough concise
programs. You know, there are a lot of positive integers, and if you look at
programs with the same size in bits, there are only about as many programs
of the same size as there are integers, and if the programs have to be smaller,
then there just aren’t enough of them to name all of those different positive
integers.

So it’s very easy to show that the vast majority of positive integers
cannot be named substantially more concisely than by just exhibiting them
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directly. Then my key result becomes, that in fact you can never prove it, not
in individual cases! Even though most positive integers are uninteresting
in this precise mathematical sense, you can never be sure, you can never
prove it—although there may be a finite number of exceptions. But you
can only prove it in a small number of cases. So most positive integers are
uninteresting or algorithmically incompressible, but you can almost never be
sure in individual cases, even though it’s overwhelmingly likely.

That’s the kind of “incompleteness result” I get. (That’s what you call a
result stating that you can’t prove something that’s true.) And my incom-
pleteness result has a very different flavor than Gödel’s incompleteness result,
and it leads in a totally different direction. Fortunately for me, everyone liked
the liar paradox, but nobody took the Berry paradox really seriously!

Let me give you another version of this result. Let’s pick a computer
programming language, and I’ll say that a computer program is elegant if
no program that is smaller than it is produces the same output that it does.
Then you can’t prove that a program is elegant if it’s substantially larger than
the algorithm for generating all the theorems of the formal axiomatic theory
that you are using, if that’s written in that same computer programming
language. Why?

Well, start generating all the theorems until you find the first one that
proves that a particular computer program that is larger than that is elegant.
That is, find the first provably elegant program that’s larger than the program
in the same language for generating all the theorems. Then run it, and its
output will be your output.

I’ve just described a program that produces the same output as a provably
elegant program, but that’s smaller than it is, which is impossible! This
contradiction shows that you can only prove that a finite number of programs
are elegant, if you are using a fixed formal axiomatic theory.

By the way, this implies that you can’t always prove whether or not
a program halts, because if you could do that then it would be easy to
determine whether or not a program is elegant. So I’m really giving you
an information-theoretic perspective on what’s called Turing’s halting prob-
lem, I’m connecting that with the idea of algorithmic information and with
program-size complexity.

I published an article about all of this in Scientific American in 1975,
it was called “Randomness and mathematical proof,” and just before that I
called Gödel on the phone to tell him about it, that was in 1974.

I was working for IBM in Buenos Aires at the time, and I was visiting the
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IBM Watson Research Center in New York—that was before I joined IBM
Research permanently. And just before I had to go back to Buenos Aires I
called Gödel on the phone at the Princeton Institute for Advanced Study and
I said, “I’m fascinated by your work on incompleteness, and I have a different
approach, using the Berry paradox instead of the paradox of the liar, and
I’d really like to meet you and tell you about it and get your reaction.” And
he said, “It doesn’t make any difference which paradox you use!” (And his
1931 paper said that too.) I answered, “Yes, but this suggests to me a new
information-theoretic view of incompleteness that I’d very much like to tell
you about.” He said, “Well, send me a paper on this subject and call me
back, and I’ll see if I give you an appointment.”

I had one of my first papers then, actually it was the proofs of one of
my first papers on the subject. It was my 1974 IEEE Information Theory
Transactions paper; it’s reprinted in Tymoczko, New Directions in the Phi-
losophy of Mathematics. And I mailed it to Gödel. And I called back. And
incredibly enough, he made a small technical remark, and he gave me an
appointment. I was delighted, you can imagine, my hero, Kurt Gödel! And
the great day arrives, and I’m in my office in the Watson Research Center
at Yorktown Heights, NY, and it was April 1974, spring. In fact, it was the
week before Easter. And I didn’t have a car. I was coming from Buenos
Aires, I was staying at the YMCA in White Plains, but I figured out how to
get to Princeton, New Jersey by train. You know, I’d take the train into New
York City and then out to Princeton. It would only take me three hours,
probably, to do it!

So I’m in my office, ready to go, almost, and the phone rings. And I
forgot to tell you, even though it was the week before Easter, it had snowed.
It wasn’t a whole lot of snow; you know, nothing would stop me from visiting
my hero Gödel at Princeton. So anyway, the phone rings, and it’s Gödel’s
secretary, and she says, “Prof. Gödel is extremely careful about his health,
and because it’s snowed, he’s not going to be coming in to the Institute today,
so your appointment is canceled!”

And as it happened, that was just two days before I had to take a plane
back to Buenos Aires from New York. So I didn’t get to meet Gödel! This is
one of the stories that I put in my book Conversations with a Mathematician.

So all it takes is a new idea! And the new idea was waiting there for
anybody to grab it. The other thing you have to do when you have a new
idea is, don’t give up too soon. As George Polya put it in his book How to
Solve It, theorems are like mushrooms, usually where there’s one, others will



Paradoxes of randomness 179

pop up! In other words, another way to put it, is that usually the difference
between a professional, expert mathematician with lots of experience and
a young, neophyte mathematician is not that the older mathematician has
more ideas. In fact, the opposite is usually the case. It’s usually the kids
that have all the fresh ideas! It’s that the professional knows how to take
more advantage of the ideas he has. And one of the things you do, is you
don’t give up on an idea until you get all the milk, all the juice out of it!

So what I’m trying to lead up to is that even though I had an article
in Scientific American in 1975 about the result I just told you, that most
numbers are random, algorithmically random, but you can never prove it,
I didn’t give up, I kept thinking about it. And sure enough, it turned out
that there was another major result there, that I described in my article in
Scientific American in 1988. Let me try to give you the general idea.

The conclusion is that

Some mathematical facts
are true for no reason,

they’re true by accident!

Let me just explain what this means, and then I’ll try to give an idea of how
I arrived at this surprising conclusion. The normal idea of mathematics is
that if something is true it’s true for a reason, right? The reason something
is true is called a proof. And a simple version of what mathematicians do
for a living is they find proofs, they find the reason that something is true.

Okay, what I was able to find, or construct, is a funny area of pure
mathematics where things are true for no reason, they’re true by accident.
And that’s why you can never find out what’s going on, you can never prove
what’s going on. More precisely, what I found in pure mathematics is a way
to model or imitate, independent tosses of a fair coin. It’s a place where God
plays dice with mathematical truth. It consists of mathematical facts which
are so delicately balanced between being true or false that we’re never going
to know, and so you might as well toss a coin. You can’t do better than
tossing a coin. Which means the chance is half you’re going to get it right if
you toss the coin and half you’ll get it wrong, and you can’t really do better
than that.

So how do I find this complete lack of structure in an area of pure math-
ematics? Let me try to give you a quick summary. For those of you who
may have heard about it, this is what I like to call Ω, it’s a real number, the
halting probability.
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Omega Number
“Halting Probability”

And some people are nice enough to call this “Chaitin’s number.” I call it
Ω. So let me try to give you an idea of how you get to this number. By the
way, to show you how much interest there is in Ω, let me mention that this
month there is a very nice article on Ω numbers by Jean-Paul Delahaye in
the French popular science magazine Pour la Science, it’s in the May 2002
issue.

Well, following Vladimir Tasić, Mathematics and the Roots of Postmodern
Thought, the way you explain how to get to this number that shows that some
mathematical facts are true for no reason, they’re only true by accident, is you
start with an idea published by Émile Borel in 1927, of using one real number
to answer all possible yes/no questions, not just mathematical questions, all
possible yes/no questions in English—and in Borel’s case it was questions in
French. How do you do it?

Well, the idea is you write a list of all possible questions. You make a list
of all possible questions, in English, or in French. A first, a second, a third,
a fourth, a fifth:

Question # 1
Question # 2
Question # 3
Question # 4
Question # 5

The general idea is you order questions say by size, and within questions of
the same size, in some arbitrary alphabetical order. You number all possible
questions.

And then you define a real number, Borel’s number, it’s defined like this:

Borel’s Number
.d1d2d3d4d5

The Nth digit after the decimal point, dN ,
answers the Nth question!!

Well, you may say, most of these questions are going to be garbage probably,
if you take all possible texts from the English alphabet, or French alphabet.
Yes, but a digit has ten possibilities, so you can let 1 mean the answer is
yes, 2 mean the answer is no, and 3 mean it’s not a valid yes/no question in
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English, because it’s not valid English, or it is valid English, but it’s not a
question, or it is a valid question, but it’s not a yes/no question, for example,
it asks for your opinion. There are various ways to deal with all of this.

So you can do all this with one real number—and a real number is a
number that’s measured with infinite precision, with an infinite number of
digits dN after the decimal point—you can give the answers to all yes/no
questions! And these will be questions about history, questions about phi-
losophy, questions about mathematics, questions about physics.

It can do this because there’s an awful lot you can put into a real number.
It has an infinite amount of information, because it has an infinite number
of digits. So this is a way to say that real numbers are very unreal, right?
So let’s start with this very unreal number that answers all yes/no questions,
and I’ll get to my Ω number in a few steps.

The next step is to make it only answer questions about Turing’s halting
problem. So what’s Turing’s halting problem? Well, the halting problem is
a famous question that Turing considered in 1936. It’s about as famous as
Gödel’s 1931 work, but it’s different.

Turing’s Halting Problem 1936
[1931 Gödel]

And what Turing showed is that there are limits to mathematical reason-
ing, but he did it very differently from Gödel, he found something concrete.
He doesn’t say “this statement is unprovable” like Gödel, he found something
concrete that mathematical reasoning can’t do: it can’t settle in advance
whether a computer program will ever halt. This is the halting problem, and
it’s in a wonderful paper, it’s the beginning of theoretical computer science,
and it was done before there were computers. And this is the Turing who
then went on and did important things in cryptography during the Second
World War, and built computers after the war. Turing was a Jack of all
trades.

So how do you prove Turing’s result that there’s no algorithm to decide
if a computer program—a self-contained computer program—will ever halt?
(Actually the problem is to decide that it will never halt.) Well, that’s not
hard to do, in many different ways, and I sketched a proof before, when I
was talking about proving that programs are elegant.

So let’s take Borel’s real number, and let’s change it so that it only answers
instances of the halting problem. So you just find a way of numbering all
possible computer programs, you pick some fixed language, and you number
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all programs somehow: first program, second program, third program, you
make a list of all possible computer programs in your mind, it’s a mental
fantasy.

Computer Program # 1
Computer Program # 2
Computer Program # 3
Computer Program # 4
Computer Program # 5

And then what you do is you define a real number whose Nth digit—well,
let’s make it binary now instead of decimal—whose Nth bit tells us if the
Nth computer program ever halts.

Turing’s Number
.b1b2b3b4b5

The Nth bit after the binary point, bN ,
tells us if the Nth computer program ever halts.

So we’ve already economized a little, we’ve gone from a decimal number
to a binary number. This number is between zero and one, and so is Borel’s
number, there’s no integer part to this real number. It’s all in the fractional
part. You have an infinite number of digits or bits after the decimal point
or the binary point. In the previous number, Borel’s original one, the Nth
digit answers the Nth yes/no question in French. And here the Nth bit of
this new number, Turing’s number, will be 0 if the Nth computer program
never halts, and it’ll be 1 if the Nth computer program does eventually halt.

So this one number would answer all instances of Turing’s halting prob-
lem. And this number is uncomputable, Turing showed that in his 1936
paper. There’s no way to calculate this number, it’s an uncomputable real
number, because the halting problem is unsolvable. This is shown by Turing
in his paper.

So what’s the next step? This still doesn’t quite get you to randomness.
This number gets you to uncomputability. But it turns out this number,
Turing’s number, is redundant. Why is it redundant?

Redundant

Well, the answer is that there’s a lot of repeated information in the bits of
this number. We can actually compress it more, we don’t have complete



Paradoxes of randomness 183

randomness yet. Why is there a lot of redundancy? Why is there a lot of
repeated information in the bits of this number? Well, because different cases
of the halting problem are connected. These bits bN are not independent of
each other. Why?

Well, let’s say you have K instances of the halting problem. That is to
say, somebody gives you K computer programs and asks you to determine
in each case, does it halt or not.

K instances of the halting problem?

Is this K bits of mathematical information? K instances of the halting
problem will give us K bits of Turing’s number. Are these K bits independent
pieces of information? Well, the answer is no, they never are. Why not?
Because you don’t really need to know K yes/no answers, it’s not really K
full bits of information. There’s a lot less information. It can be compressed.
Why?

Well, the answer is very simple. If you have to ask God or an oracle
that answers yes/no questions, you don’t really need to ask K questions to
the oracle, you don’t need to bother God that much! You really only need
to know what? Well, it’s sufficient to know how many of the programs
halt.

And this is going to be a number between zero and K, a number that’s
between zero and K.

0 ≤ # that halt ≤ K

And if you write this number in binary it’s really only about log2 K bits.

# that halt = log2 K bits

If you know how many of these K programs halt, then what you do is you just
start running them all in parallel until you find that precisely that number
of programs have halted, and at that point you can stop, because you know
the other ones will never halt. And knowing how many of them halt is a lot
less than K bits of information, it’s really only about log2 K bits, it’s the
number of bits you need to be able to express a number between zero and K
in binary, you see.

So different instances of the halting problem are never independent,
there’s a lot of redundant information, and Turing’s number has a lot of
redundancy. But essentially just by using this idea of telling how many of
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them halt, you can squeeze out all the redundancy. You know, the way to
get to randomness is to remove redundancy! You distill it, you concentrate
it, you crystallize it. So what you do is essentially you just take advantage
of this observation—it’s a little more sophisticated than that—and what you
get is my halting probability.

So let me write down an expression for it. It’s defined like this:

Omega Number
Ω =

∑

p halts 2−|p|

|p| = size in bits of program p
0 < Ω < 1

Then write Ω in binary!

So this is how you get randomness, this is how you show that there are facts
that are true for no reason in pure math. You define this number Ω, and to
explain this I would take a long time and I don’t have it, so this is just a
tease!

For more information you can go to my books. I actually have four
small books published by Springer-Verlag on this subject: The Limits of
Mathematics, The Unknowable, Exploring Randomness and Conversations
with a Mathematician. These books come with LISP software and a Java
applet LISP interpreter that you can get at my website.

So you define this Ω number to be what? You pick a computer program-
ming language, and you look at all programs p that halt, p is a program, and
you sum over all programs p that halt. And what do you sum? Well, if the
program p is K bits long, it contributes 1/2K, one over two to the K, to this
halting probability.

In other words, each K-bit program has probability 1/2K, and you’ll im-
mediately notice that there are two to the thousand thousand-bit programs,
so probably this sum will diverge and give infinity, if you’re not careful. And
the answer is yes, you’re right if you worry about that. So you have to be
careful to do things right, and the basic idea is that no extension of a valid
program is a valid program. And if you stipulate that the programming lan-
guage is like that, that its programs are “self-delimiting,” then this sum is
in fact between zero and one and everything works. Okay?

Anyway, I don’t want to go into the details because I don’t have time. So
if you do everything right, this sum

∑

p halts

2−|p|



Paradoxes of randomness 185

actually converges to a number between zero and one which is the halting
probability Ω. This is the probability that a program, each bit of which is
generated by an independent toss of a fair coin, eventually halts. And it’s a
way of summarizing all instances of the halting problem in one real number
and doing it so cleverly that there’s no redundancy.

So if you take this number and then you write it in binary, this halting
probability, it turns out that those bits of this number written in binary,
these are independent, irreducible mathematical facts, there’s absolutely no
structure. Even though there’s a simple mathematical definition of Ω, those
bits, if you could see them, could not be distinguished from independent
tosses of a fair coin. There is no mathematical structure that you would ever
be able to detect with a computer, there’s no algorithmic pattern, there’s no
structure that you can capture with mathematical proofs—even though Ω
has a simple mathematical definition. It’s incompressible, irreducible math-
ematical information. And the reason is, because if you knew the first N
bits of this number Ω, it would solve the halting problem for all programs
up to N bits in size, it would enable you to answer the halting problem
for all programs p up to N bits in size. That’s how you prove that this Ω
number is random in the sense I explained before of being algorithmically
incompressible information.

And that means that not only you can’t compress it into a smaller algo-
rithm, you can’t compress it into fewer bits of axioms. So if you wanted to
be able to determine K bits of Ω, you’d need K bits of axioms to be able to
prove what K bits of this number are. It has—its bits have—no structure or
pattern that we are capable of seeing.

However, you can prove all kinds of nice mathematical theorems about
this Ω number. Even though it’s a specific real number, it really mimics
independent tosses of a fair coin. So for example you can prove that 0’s
and 1’s happen in the limit exactly fifty percent of the time, each of them.
You can prove all kinds of statistical properties, but you can’t determine
individual bits!

So this is the strongest version I can come up with of an incompleteness
result. . .

Actually, in spite of this, Cristian Calude, Michael Dinneen and Chi-Kou
Shu at the University of Auckland have just succeeded in calculating the
first 64 bits of a particular Ω number. The halting probability Ω actually
depends on the choice of computer or programming language that you write
programs in, and they picked a fairly natural one, and were able to decide
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which programs less than 85 bits in size halt, and from this to get the first
64 bits of this particular halting probability.

This work by Calude et alia is reported on page 27 of the 6 April 2002
issue of the British science weekly New Scientist, and it’s also described
in Delahaye’s article in the May 2002 issue of the French monthly Pour
la Science, and it’ll be included in the second edition of Calude’s book on
Information and Randomness, which will be out later this year.

But this doesn’t contradict my results, because all I actually show is that
an N -bit formal axiomatic theory can’t enable you to determine substantially
more than N bits of the halting probability. And by N -bit axiomatic theory
I mean one for which there is an N -bit program for running through all
possible proofs and generating all the theorems. So you might in fact be able
to get some initial bits of Ω.

Now, what would Hilbert, Gödel and Turing think about all of this?!
I don’t know, but I’ll tell you what I think it means, it means that math

is different from physics, but it’s not that different. This is called the quasi-
empirical view of mathematics, and Tymoczko has collected a bunch of inter-
esting papers on this subject, in his book on New Directions in the Philoso-
phy of Mathematics. This is also connected with what’s called experimental
mathematics, a leading proponent of which is Jonathan Borwein, and there’s
a book announced called Mathematics by Experiment by Borwein and Bailey
that’s going to be about this. The general idea is that proofs are fine, but if
you can’t find a proof, computational evidence can be useful, too.

Now I’d like to tell you about some questions that I don’t know how to
answer, but that I think are connected with this stuff that I’ve been talking
about. So let me mention some questions I don’t know how to answer.
They’re not easy questions.

Well, one question is positive results on mathematics:

Positive Results
Where do new mathematical concepts come from?

I mean, Gödel’s work, Turing’s work and my work are negative in a way,
they’re incompleteness results, but on the other hand, they’re positive, be-
cause in each case you introduce a new concept: incompleteness, uncom-
putability and algorithmic randomness. So in a sense they’re examples that
mathematics goes forward by introducing new concepts! So how about an
optimistic theory instead of negative results about the limits of mathemat-
ical reasoning? In fact, these negative metamathematical results are taking
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place in a century which is a tremendous, spectacular success for mathemat-
ics, mathematics is advancing by leaps and bounds. So there’s no reason for
pessimism. So what we need is a more realistic theory that gives us a better
idea of why mathematics is doing so splendidly, which it is. But I’d like to
have some theoretical understanding of this, not just anecdotal evidence, like
the book about the Wiles proof of Fermat’s result.1

So this is one thing that I don’t know how to do and I hope somebody
will do.

Another thing which I think is connected, isn’t where new mathematical
ideas come from, it’s where do new biological organisms come from. I want
a theory of evolution, biological evolution.2

Biological Evolution
Where do new biological ideas come from?

You see, in a way biological organisms are ideas, or genes are ideas. And
good ideas get reused. You know, it’s programming, in a way, biology.

Another question isn’t theoretical evolutionary biology—which doesn’t
exist, but that is what I’d like to see—another question is where do new
ideas come from, not just in math! Our new ideas. How does the brain
work? How does the mind work? Where do new ideas come from? So to
answer that, you need to solve the problem of AI or how the brain works!

AI/Brain/Mind
Where do new ideas come from?

In a sense, where new mathematical concepts come from is related to this,
and so is the question of the origin of new biological ideas, new genes, new
ideas for building organisms—and the ideas keep getting reused. That’s how
biology seems to work. Nature is a cobbler!—So I think these problems are
connected, and I hope they have something to do with the ideas I mentioned,
my ideas, but perhaps not in the form that I’ve presented them here.

So I don’t know how to answer these questions, but maybe some of you
will be able to answer them. I hope so! The future is yours, do great things!

1Simon Singh, Fermat’s Enigma; see also the musical Fermat’s Last Tango.
2In Chapter 12 of A New Kind of Science, Stephen Wolfram says that he thinks there

is nothing to it, that you get life right away, we’re just universal Turing machines, but I
think there’s more to it than that.
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Two philosophical applications
of algorithmic information
theory

Two philosophical applications of the concept of program-size complexity are
discussed. First, we consider the light program-size complexity sheds on
whether mathematics is invented or discovered, i.e., is empirical or is a pri-
ori. Second, we propose that the notion of algorithmic independence sheds
light on the question of being and how the world of our experience can be
partitioned into separate entities.

1. Introduction. Why is program size of philo-

sophical interest?

The cover of the January 2003 issue of La Recherche asks this dramatic
question:

Dieu est-il un ordinateur? [Is God a computer?]

The long cover story [1] is a reaction to Stephen Wolfram’s controversial book
A New Kind of Science [2]. The first half of the article points out Wolfram’s
predecessors, and the second half criticizes Wolfram.

The second half of the article begins (p. 38) with these words:

Il [Wolfram] n’avance aucune raison sérieuse de penser que les
complexités de la nature puissent être générées par des règles
énonçables sous forme de programmes informatiques simples.

189
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The reason for thinking that a simple program might describe the world is,
basically, just Plato’s postulate that the universe is rationally comprehensible
(Timaeus). A sharper statement of this principle is in Leibniz’s Discours de
métaphysique [3], section VI. Here is Leibniz’s original French (1686):

Mais Dieu a choisi celuy qui est le plus parfait, c’est à dire celuy
qui est en même temps le plus simple en hypotheses et le plus riche
en phenomenes, comme pourroit estre une ligne de Geometrie
dont la construction seroit aisée et les proprietés et effects seroient
fort admirables et d’une grande étendue.

For an English translation of this, see [4].
And Hermann Weyl [5] discovered that in Discours de métaphysique Leib-

niz also states that a physical law has no explicative power if it is as compli-
cated as the body of data it was invented to explain.1

This is where algorithmic information theory (AIT) comes in. AIT posits
that a theory that explains X is a computer program for calculating X, that
therefore must be smaller, much smaller, than the size in bits of the data
X that it explains. AIT makes a decisive contribution to philosophy by
providing a mathematical theory of complexity. AIT defines the complexity
or algorithmic information content of X to be the size in bits H(X) of the
smallest computer program for calculating X. H(X) is also the complexity
of the most elegant (the simplest) theory for X.

In this article we discuss some other philosophical applications of AIT.

For those with absolutely no background in philosophy, let me recommend
two excellent introductions, Magee [6] and Brown [7]. For introductions to
AIT, see Chaitin [8, 9]. For another discussion of the philosophical implica-
tions of AIT, see Chaitin [10].

2. Is mathematics empirical or is it a priori?

2.1. Einstein: Math is empirical

Einstein was a physicist and he believed that math is invented, not discov-
ered. His sharpest statement on this is his declaration that “the series of

1See the Leibniz quote in Section 2.3 below.
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integers is obviously an invention of the human mind, a self-created tool
which simplifies the ordering of certain sensory experiences.”

Here is more of the context:

In the evolution of philosophic thought through the centuries the
following question has played a major rôle: What knowledge is
pure thought able to supply independently of sense perception?
Is there any such knowledge?. . . I am convinced that. . . the con-
cepts which arise in our thought and in our linguistic expressions
are all. . . the free creations of thought which can not inductively
be gained from sense-experiences. . . Thus, for example, the
series of integers is obviously an invention of the human
mind, a self-created tool which simplifies the ordering of
certain sensory experiences.2

The source is Einstein’s essay “Remarks on Bertrand Russell’s theory of
knowledge.” It was published in 1944 in the volume [11] on The Philosophy
of Bertrand Russell edited by Paul Arthur Schilpp, and it was reprinted in
1954 in Einstein’s Ideas and Opinions [12].

And in his Autobiographical Notes [13] Einstein repeats the main point
of his Bertrand Russell essay, in a paragraph on Hume and Kant in which he
states that “all concepts, even those closest to experience, are from the point
of view of logic freely chosen posits.” Here is the bulk of this paragraph:

Hume saw clearly that certain concepts, as for example that of
causality, cannot be deduced from the material of experience by
logical methods. Kant, thoroughly convinced of the indispens-
ability of certain concepts, took them. . . to be the necessary
premises of any kind of thinking and distinguished them from
concepts of empirical origin. I am convinced, however, that this
distinction is erroneous or, at any rate, that it does not do justice
to the problem in a natural way. All concepts, even those
closest to experience, are from the point of view of logic
freely chosen posits. . .

2[The boldface emphasis in this and future quotations is mine, not the author’s.]
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2.2. Gödel: Math is a priori

On the other hand, Gödel was a Platonist and believed that math is a pri-
ori. He makes his position blindingly clear in the introduction to an unpub-
lished lecture Gödel *1961/?, “The modern development of the foundations
of mathematics in the light of philosophy,” Collected Works [14], vol. 3:3

I would like to attempt here to describe, in terms of philosophical
concepts, the development of foundational research in mathemat-
ics. . . , and to fit it into a general schema of possible philosophical
world-views [Weltanschauungen]. . . I believe that the most fruit-
ful principle for gaining an overall view of the possible world-views
will be to divide them up according to the degree and the manner
of their affinity to or, respectively, turning away from metaphysics
(or religion). In this way we immediately obtain a division into
two groups: skepticism, materialism and positivism stand on one
side, spiritualism, idealism and theology on the other. . . Thus
one would, for example, say that apriorism belongs in principle
on the right and empiricism on the left side. . . Now it is a familiar
fact, even a platitude, that the development of philosophy since
the Renaissance has by and large gone from right to left. . . It
would truly be a miracle if this (I would like to say rabid) devel-
opment had not also begun to make itself felt in the conception of
mathematics. Actually, mathematics, by its nature as an a
priori science, always has, in and of itself, an inclination toward
the right, and, for this reason, has long withstood the spirit
of the time [Zeitgeist] that has ruled since the Renaissance; i.e.,
the empiricist theory of mathematics, such as the one set forth
by Mill, did not find much support. . . Finally, however, around
the turn of the century, its hour struck: in particular, it was the
antinomies of set theory, contradictions that allegedly appeared
within mathematics, whose significance was exaggerated by skep-
tics and empiricists and which were employed as a pretext for the
leftward upheaval. . .

3The numbering scheme used in Gödel’s Collected Works begins with an * for unpub-
lished papers, followed by the year of publication, or the first/last year that Gödel worked
on an unpublished paper.
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Nevertheless, the Platonist Gödel makes some remarkably strong state-
ments in favor of adding to mathematics axioms which are not self-evident
and which are only justified pragmatically. What arguments does he present
in support of these heretical views?

First let’s take a look at his discussion of whether Cantor’s continuum
hypothesis could be established using a new axiom [Gödel 1947, “What is
Cantor’s continuum problem?”, Collected Works, vol. 2]:

. . . even disregarding the intrinsic necessity of some new
axiom, and even in case it has no intrinsic necessity at all, a
probable decision about its truth is possible also in an-
other way, namely, inductively by studying its “success.”
Success here means fruitfulness in consequences, in particular in
“verifiable” consequences, i.e., consequences demonstrable with-
out the new axiom, whose proofs with the help of the new ax-
iom, however, are considerably simpler and easier to discover, and
make it possible to contract into one proof many different proofs.
The axioms for the system of real numbers, rejected by intu-
itionists, have in this sense been verified to some extent, owing
to the fact that analytical number theory frequently allows one
to prove number-theoretical theorems which, in a more cumber-
some way, can subsequently be verified by elementary methods.
A much higher degree of verification than that, however, is con-
ceivable. There might exist axioms so abundant in their ver-
ifiable consequences, shedding so much light upon a whole field,
and yielding such powerful methods for solving problems (and
even solving them constructively, as far as that is possible) that,
no matter whether or not they are intrinsically necessary, they
would have to be accepted at least in the same sense as
any well-established physical theory.

Later in the same paper Gödel restates this:

It was pointed out earlier. . . that, besides mathematical in-
tuition, there exists another (though only probable) crite-
rion of the truth of mathematical axioms, namely their
fruitfulness in mathematics and, one may add, possibly also in
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physics. . . The simplest case of an application of the criterion un-
der discussion arises when some. . . axiom has number-theoretical
consequences verifiable by computation up to any given integer.

And here is an excerpt from Gödel’s contribution [Gödel 1944, “Russell’s
mathematical logic,” Collected Works, vol. 2] to the same Bertrand Russell
festschrift volume [11] that was quoted above:

The analogy between mathematics and a natural science is en-
larged upon by Russell also in another respect. . . axioms need
not be evident in themselves, but rather their justifica-
tion lies (exactly as in physics) in the fact that they make
it possible for these “sense perceptions” to be deduced. . .
I think that. . . this view has been largely justified by subsequent
developments, and it is to be expected that it will be still more
so in the future. It has turned out that the solution of certain
arithmetical problems requires the use of assumptions essentially
transcending arithmetic. . . Furthermore it seems likely that for
deciding certain questions of abstract set theory and even for cer-
tain related questions of the theory of real numbers new axioms
based on some hitherto unknown idea will be necessary. Perhaps
also the apparently insurmountable difficulties which some other
mathematical problems have been presenting for many years are
due to the fact that the necessary axioms have not yet been found.
Of course, under these circumstances mathematics may lose a
good deal of its “absolute certainty;” but, under the influence of
the modern criticism of the foundations, this has already hap-
pened to a large extent. . .

Finally, take a look at this excerpt from Gödel *1951, “Some basic theo-
rems on the foundations,” Collected Works, vol. 3, an unpublished essay by
Gödel:

I wish to point out that one may conjecture the truth of a uni-
versal proposition (for example, that I shall be able to verify a
certain property for any integer given to me) and at the same
time conjecture that no general proof for this fact exists. It is
easy to imagine situations in which both these conjectures would
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be very well founded. For the first half of it, this would, for exam-
ple, be the case if the proposition in question were some equation
F (n) = G(n) of two number-theoretical functions which could be
verified up to very great numbers n.4 Moreover, exactly as in the
natural sciences, this inductio per enumerationem simplicem is by
no means the only inductive method conceivable in mathemat-
ics. I admit that every mathematician has an inborn abhorrence
to giving more than heuristic significance to such inductive argu-
ments. I think, however, that this is due to the very prejudice that
mathematical objects somehow have no real existence. If math-
ematics describes an objective world just like physics,
there is no reason why inductive methods should not be
applied in mathematics just the same as in physics. The
fact is that in mathematics we still have the same attitude today
that in former times one had toward all science, namely, we try to
derive everything by cogent proofs from the definitions (that is,
in ontological terminology, from the essences of things). Perhaps
this method, if it claims monopoly, is as wrong in mathematics
as it was in physics.

So Gödel the Platonist has nevertheless managed to arrive, at least par-
tially, at what I would characterize, following Tymoczko [16], as a pseudo-
empirical or a quasi-empirical position!

2.3. AIT: Math is quasi-empirical

What does algorithmic information theory have to contribute to this dis-
cussion? Well, I believe that AIT also supports a quasi-empirical view of
mathematics. And I believe that it provides further justification for Gödel’s
belief that we should be willing to add new axioms.

Why do I say this?
As I have argued on many occasions, AIT, by measuring the complexity

(algorithmic information content) of axioms and showing that Gödel incom-
pleteness is natural and ubiquitous, deepens the arguments that forced Gödel,

4Such a verification of an equality (not an inequality) between two number-theoretical
functions of not too complicated or artificial structure would certainly give a great
probability to their complete equality, although its numerical value could not be estimated
in the present state of science. However, it is easy to give examples of general propositions
about integers where the probability can be estimated even now. . .
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in spite of himself, in spite of his deepest instincts about the nature of math-
ematics, to believe in inductive mathematics. And if one considers the use of
induction rather than deduction to establish mathematical facts, some kind
of notion of complexity must necessarily be involved. For as Leibniz stated in
1686, a theory is only convincing to the extent that it is substantially simpler
than the facts it attempts to explain:

. . . non seulement rien n’arrive dans le monde, qui soit absolument
irregulier, mais on ne sçauroit mêmes rien feindre de tel. Car
supposons par exemple que quelcun fasse quantité de points sur le
papier à tout hazard, comme font ceux qui exercent l’art ridicule
de la Geomance, je dis qu’il est possible de trouver une ligne
geometrique dont la motion soit constante et uniforme suivant
une certaine regle, en sorte que cette ligne passe par tous ces
points. . . Mais quand une regle est fort composée, ce qui
luy est conforme, passe pour irrégulier. Ainsi on peut dire
que de quelque maniere que Dieu auroit créé le monde, il auroit
tousjours esté regulier et dans un certain ordre general. Mais
Dieu a choisi celuy qui est le plus parfait, c’est à dire celuy qui
est en même temps le plus simple en hypotheses et le plus
riche en phenomenes. . . [Discours de métaphysique, VI]

In fact Gödel himself, in considering inductive rather than deductive
mathematical proofs, began to make some tentative initial attempts to for-
mulate and utilize notions of complexity. (I’ll tell you more about this in a
moment.) And it is here that AIT makes its decisive contribution to philos-
ophy, by providing a highly-developed and elegant mathematical theory of
complexity. How does AIT do this? It does this by considering the size of
the smallest computer program required to calculate a given object X, which
may also be considered to be the most elegant theory that explains X.

Where does Gödel begin to think about complexity? He does so in two
footnotes in vol. 3 of his Collected Works. The first of these is a footnote
to Gödel *1951. This footnote begins “Such a verification. . . ” and it was
reproduced, in part, in Section 2.2 above. And here is the relevant portion
of the second, the more interesting, of these two footnotes:

. . .Moreover, if every number-theoretical question of Goldbach
type. . . is decidable by a mathematical proof, there must exist an
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infinite set of independent evident axioms, i.e., a set m of evident
axioms which are not derivable from any finite set of axioms (no
matter whether or not the latter axioms belong to m and whether
or not they are evident). Even if solutions are desired only for all
those problems of Goldbach type which are simple enough to be
formulated in a few pages, there must exist a great number of
evident axioms or evident axioms of great complication, in
contradistinction to the few simple axioms upon which
all of present day mathematics is built. (It can be proved
that, in order to solve all problems of Goldbach type of a certain
degree of complication k, one needs a system of axioms whose
degree of complication, up to a minor correction, is ≥ k.)5

This is taken from Gödel *1953/9–III, one of the versions of his unfinished
paper “Is mathematics syntax of language?” that was intended for, but was
finally not included, in Schilpp’s Carnap festschrift in the same series as the
Bertrand Russell festschrift [11].

Unfortunately these tantalizing glimpses are, as far as I’m aware, all that
we know about Gödel’s thoughts on complexity. Perhaps volumes 4 and
5, the two final volumes of Gödel’s Collected Works, which contain Gödel’s
correspondence with other mathematicians, and which will soon be available,
will shed further light on this.

Now let me turn to a completely different—but I believe equally
fundamental—application of AIT.

3. How can we partition the world into distinct

entities?

For many years I have asked myself, “What is a living being? How can we
define this mathematically?!” I still don’t know the answer! But at least

5[This is reminiscent of the theorem in AIT that pk = (the program of size ≤ k bits
that takes longest to halt) is the simplest possible “axiom” from which one can solve the
halting problem for all programs of size ≤ k. Furthermore, pk’s size and complexity both
differ from k by at most a fixed number of bits: |pk| = k + O(1) and H(pk) = k + O(1).

Actually, in order to solve the halting problem for all programs of size ≤ k, in addition
to pk one needs to know k − |pk|, which is how much pk’s size differs from k. This fixed
amount of additional information is required in order to be able to determine k from pk.]
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I think I now know how to come to grips with the more general notion of
“entity” or “being.” In other words, how can we decompose our experience
into parts? How can we partition the world into its components? By what
right do we do this in spite of mystics who like Parmenides insist that the
world must be perceived as an organic unity (is a single substance) and
cannot be decomposed or analized into independent parts?

I believe that the key to answering this fundamental question lies in AIT’s
concept of algorithmic independence. What is algorithmic independence?
Two objects X and Y are said to be algorithmically independent if their
complexity is (approximately) additive. In other words, X and Y are algo-
rithmically independent if their information content decomposes additively,
i.e., if their joint information content (the information content of X and Y )
is approximately equal to the sum of their individual information contents:

H(X, Y ) ≈ H(X) + H(Y ).

More precisely, the left-hand side is the size in bits of the smallest program
that calculates the pair X, Y , and the right-hand side adds the size in bits
of the smallest program that produces X to the size in bits of the smallest
program that calculates Y .

Contrariwise, if X and Y are not at all independent, then it is much
better to compute them together than to compute them separately and
H(X) + H(Y ) will be much larger than H(X, Y ). The worst case is X = Y .
Then H(X) + H(Y ) is twice as large as H(X, Y ).

I feel that this notion of algorithmic independence is the key to decom-
posing the world into parts, parts the most interesting example of which are
living beings, particularly human beings. For what enables me to partition
the world in this way? The fact that thinking of the world as a sum of such
parts does not complicate my description of the world substantially and at
the same time enables me to use separate subroutines such as “my wife” and
“my cat” in thinking about the world. That is why such an analysis of the
world, such a decomposition, works.

Whereas on the contrary “my left foot” and “my right hand” are not
well thought of as independent components of the world but can best be
understood as parts of me. A description of my right hand and its activities
and history would not be substantially simpler than a description of me and
my entire life history, since my right hand is a part of me whose actions
express my intentions, and not its own independent desires.
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Of course, these observations are just the beginning. A great deal more
work is needed to develop this point of view. . .

For a technical discussion of algorithmic independence and the associated
notion of mutual algorithmic information defined as follows

H(X : Y ) ≡ H(X) + H(Y ) − H(X, Y ),

see my book Chaitin [17].

4. Conclusion and future prospects

Let’s return to our starting point, to the cover of the January 2003 issue of
La Recherche. Is God a computer, as Wolfram and some others think, or is
God, as Plato and Pythagoras affirm, a mathematician?

And, an important part of this question, is the physical universe dis-
crete, the way computers prefer, not continuous, the way it seems to be
in classical Newtonian/Maxwellian physics? Speaking personally, I like the
discrete, not the continuous. And my theory, AIT, deals with discrete, digital
information, bits, not with continuous quantities. But the physical universe
is of course free to do as it likes!

Hopefully pure thought will not be called upon to resolve this. Indeed, I
believe that it is incapable of doing so; Nature will have to tell us. Perhaps
someday an experimentum crucis will provide a definitive answer. In fact,
for a hundred years quantum physics has been pointing insistently in the
direction of discreteness.6
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On the intelligibility of the
universe and the notions of
simplicity, complexity and
irreducibility

We discuss views about whether the universe can be rationally comprehended,
starting with Plato, then Leibniz, and then the views of some distinguished
scientists of the previous century. Based on this, we defend the thesis that
comprehension is compression, i.e., explaining many facts using few theoret-
ical assumptions, and that a theory may be viewed as a computer program for
calculating observations. This provides motivation for defining the complex-
ity of something to be the size of the simplest theory for it, in other words,
the size of the smallest program for calculating it. This is the central idea of
algorithmic information theory (AIT), a field of theoretical computer science.
Using the mathematical concept of program-size complexity, we exhibit irre-
ducible mathematical facts, mathematical facts that cannot be demonstrated
using any mathematical theory simpler than they are. It follows that the world
of mathematical ideas has infinite complexity and is therefore not fully com-
prehensible, at least not in a static fashion. Whether the physical world has
finite or infinite complexity remains to be seen. Current science believes that
the world contains randomness, and is therefore also infinitely complex, but
a deterministic universe that simulates randomness via pseudo-randomness
is also a possibility, at least according to recent highly speculative work of
S. Wolfram. [Written for a meeting of the German Philosophical Society,
Bonn, September 2002.]
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“Nature uses only the longest threads to weave her patterns, so that each small piece of
her fabric reveals the organization of the entire tapestry.”

—Feynman, The Character of Physical Law, 1965, at the very end of Chapter 1, “The
Law of Gravitation”.1

“The most incomprehensible thing about the universe is that it is comprehensible.”
—Attributed to Einstein. The original source, where the wording is somewhat

different, is Einstein, “Physics and Reality”, 1936, reprinted in Einstein, Ideas and

Opinions, 1954.2

It’s a great pleasure for me to speak at this meeting of the German Philo-
sophical Society. Perhaps it’s not generally known that at the end of his life
my predecessor Kurt Gödel was obsessed with Leibniz.3 Writing this paper
was for me a voyage of discovery—of the depth of Leibniz’s thought! Leib-
niz’s power as a philosopher is informed by his genius as a mathematician;
as I’ll explain, some of the key ideas of AIT are clearly visible in embryonic
form in his 1686 Discourse on Metaphysics.

I Plato’s Timaeus—The Universe is Intelligible.

Origins of the Notion of Simplicity: Simplicity

as Symmetry [Brisson, Meyerstein 1991]

“[T]his is the central idea developed in the Timaeus : the order established by the demiurge
in the universe becomes manifest as the symmetry found at its most fundamental level, a
symmetry which makes possible a mathematical description of such a universe.”

—Brisson, Meyerstein, Inventing the Universe, 1995 (1991 in French). This book
discusses the cosmology of Plato’s Timaeus, modern cosmology and AIT; one of their key
insights is to identify symmetry with simplicity.

According to Plato, the world is rationally understandable because it has
structure. And the universe has structure, because it is a work of art created

1An updated version of this chapter would no doubt include a discussion of the infamous
astronomical missing mass problem.

2Einstein actually wrote “Das ewig Unbegreifliche an der Welt ist ihre Begreiflichkeit”.
Translated word for word, this is “The eternally incomprehensible about the world is its
comprehensibility”. But I prefer the version given above, which emphasizes the paradox.

3See Menger, Reminiscences of the Vienna Circle and the Mathematical Colloquium,

1994.
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by a God who is a mathematician. Or, more abstractly, the structure of
the world consists of God’s thoughts, which are mathematical. The fabric
of reality is built out of eternal mathematical truth. [Brisson, Meyerstein,
Inventer l’Univers, 1991]

Timaeus postulates that simple, symmetrical geometrical forms are the
building blocks for the universe: the circle and the regular solids (cube,
tetrahedron, icosahedron, dodecahedron, octahedron).

What was the evidence that convinced the ancient Greeks that the world
is comprehensible? Partly it was the beauty of mathematics, particularly ge-
ometry and number theory, and partly the Pythagorean work on the physics
of stringed instruments and musical tones, and in astronomy, the regularities
in the motions of the planets and the starry heavens and eclipses. Strangely
enough, mineral crystals, whose symmetries magnify enormously quantum-
mechanical symmetries that are found at the atomic and molecular level, are
never mentioned.

What is our current cosmology?
Since the chaos of everyday existence provides little evidence of simplicity,

biology is based on chemistry is based on physics is based on high-energy
or particle physics. The attempt to find underlying simplicity and pattern
leads reductionist modern science to break things into smaller and smaller
components in an effort to find the underlying simple building blocks.

And the modern version of the cosmology of Timaeus is the application
of symmetries or group theory to understand sub-atomic particles (formerly
called elementary particles), for example, Gell-Mann’s eightfold way, which
predicted new particles. This work classifying the “particle zoo” also resem-
bles Mendeleev’s periodic table of the elements that organizes their chemical
properties so well.4

And modern physicists have also come up with a possible answer to the
Einstein quotation at the beginning of this paper. Why do they think that the
universe is comprehensible? They invoke the so-called “anthropic principle”
[Barrow, Tipler, The Anthropic Cosmological Principle, 1986], and declare
that we would not be here to ask this question unless the universe had enough
order for complicated creatures like us to evolve!

Now let’s proceed to the next major step in the evolution of ideas on

4For more on this, see the essay by Freeman Dyson on “Mathematics in the Physical
Sciences” in COSRIMS, The Mathematical Sciences, 1969. This is an article of his that
was originally published in Scientific American.
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simplicity and complexity, which is a stronger version of the Platonic creed
due to Leibniz.

II What Does it Mean for the Universe to Be

Intelligible? Leibniz’s Discussion of Simplicity,

Complexity and Lawlessness [Weyl 1932]

“As for the simplicity of the ways of God, this holds properly with respect to his means,
as opposed to the variety, richness, and abundance, which holds with respect to his ends
or effects.”

“But, when a rule is extremely complex, what is in conformity with it passes
for irregular. Thus, one can say, in whatever manner God might have created the world,
it would always have been regular and in accordance with a certain general order. But
God has chosen the most perfect world, that is, the one which is at the same
time the simplest in hypotheses and the richest in phenomena, as might be a line
in geometry whose construction is easy and whose properties and effects are extremely
remarkable and widespread.”

—Leibniz, Discourse on Metaphysics, 1686, Sections 5–6, from Leibniz, Philosophical

Essays, edited and translated by Ariew and Garber, 1989, pp. 38–39.
“The assertion that nature is governed by strict laws is devoid of all content if we do not

add the statement that it is governed by mathematically simple laws. . . That the notion
of law becomes empty when an arbitrary complication is permitted was already
pointed out by Leibniz in his Metaphysical Treatise [Discourse on Metaphysics ]. Thus
simplicity becomes a working principle in the natural sciences. . . The astonishing thing is
not that there exist natural laws, but that the further the analysis proceeds, the finer the
details, the finer the elements to which the phenomena are reduced, the simpler—and not
the more complicated, as one would originally expect—the fundamental relations become
and the more exactly do they describe the actual occurrences. But this circumstance is apt
to weaken the metaphysical power of determinism, since it makes the meaning of natural
law depend on the fluctuating distinction between mathematically simple and complicated
functions or classes of functions.”

—Hermann Weyl, The Open World, Three Lectures on the Metaphysical Implications

of Science, 1932, pp. 40–42. See a similar discussion on pp. 190–191 of Weyl, Philosophy

of Mathematics and Natural Science, 1949, Section 23A, “Causality and Law”.5

“Weyl said, not long ago, that ‘the problem of simplicity is of central importance
for the epistemology of the natural sciences’. Yet it seems that interest in the problem
has lately declined; perhaps because, especially after Weyl’s penetrating analysis, there
seemed to be so little chance of solving it.”

5This is a remarkable anticipation of my definition of “algorithmic randomness”, as a
set of observations that only has what Weyl considers to be unacceptable theories, ones
that are as complicated as the observations themselves, without any “compression”.
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—Weyl, Philosophy of Mathematics and Natural Science, 1949, p. 155, quoted in
Popper, The Logic of Scientific Discovery, 1959, Chapter VII, “Simplicity”, p. 136.

In his novel Candide, Voltaire ridiculed Leibniz, caricaturing Leibniz’s
subtle views with the memorable phrase “this is the best of all possi-
ble worlds”. Voltaire also ridiculed the efforts of Maupertius to develop a
physics in line with Leibniz’s views, one based on a principle of least effort.

Nevertheless versions of least effort play a fundamental role in modern
science, starting with Fermat’s deduction of the laws for reflection and re-
fraction of light from a principle of least time. This continues with the
Lagrangian formulation of mechanics, stating that the actual motion min-
imizes the integral of the difference between the potential and the kinetic
energy. And least effort is even important at the current frontiers, such as in
Feynman’s path integral formulation of quantum mechanics (electron waves)
and quantum electrodynamics (photons, electromagnetic field quanta).6

However, all this modern physics refers to versions of least effort, not to
ideas, not to information, and not to complexity—which are more closely
connected with Plato’s original emphasis on symmetry and intellectual sim-
plicity = intelligibility. An analogous situation occurs in theoretical computer
science, where work on computational complexity is usually focussed on time,
not on the complexity of ideas or information. Work on time complexity is of
great practical value, but I believe that the complexity of ideas is of greater
conceptual significance. Yet another example of the effort/information divide
is the fact that I am interested in the irreducibility of ideas (see Sections V
and VI), while Stephen Wolfram (who is discussed later in this section) in-
stead emphasizes time irreducibility, physical systems for which there are no
predictive short-cuts and the fastest way to see what they do is just to run
them.

Leibniz’s doctrine concerns more than “least effort”, it also implies that
the ideas that produce or govern this world are as beautiful and as simple
as possible. In more modern terms, God employed the smallest possible
amount of intellectual material to build the world, and the laws of physics
are as simple and as beautiful as they can be and allow us, intelligent beings,

6See the short discussion of minimum principles in Feynman, The Character of Physical

Law, 1965, Chapter 2, “The Relation of Mathematics to Physics”. For more information,
see The Feynman Lectures on Physics, 1963, Vol. 1, Chapter 26, “Optics: The Principle
of Least Time”, Vol. 2, Chapter 19, “The Principle of Least Action”.
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to evolve.7 The belief in this Leibnizean doctrine lies behind the continu-
ing reductionist efforts of high-energy physics (particle physics) to find the
ultimate components of reality. The continuing vitality of this Leibnizean
doctrine also lies behind astrophysicist John Barrow’s emphasis in his “The-
ories of Everything” essay on finding the minimal TOE that explains the
universe, a TOE that is as simple as possible, with no redundant elements
(see Section VII below).

Important point: To say that the fundamental laws of physics must be
simple does not at all imply that it is easy or fast to deduce from them how
the world works, that it is quick to make predictions from the basic laws.
The apparent complexity of the world we live in—a phrase that is constantly
repeated in Wolfram, A New Kind of Science, 2002—then comes from the
long deductive path from the basic laws to the level of our experience.8 So
again, I claim that minimum information is more important than minimum
time, which is why in Section IV I do not care how long a minimum-size
program takes to produce its output, nor how much time it takes to calculate
experimental data using a scientific theory.

More on Wolfram: In A New Kind of Science, Wolfram reports on
his systematic computer search for simple rules with very complicated conse-
quences, very much in the spirit of Leibniz’s remarks above. First Wolfram
amends the Pythagorean insight that Number rules the universe to assert the
primacy of Algorithm, not Number. And those are discrete algorithms, it’s
a digital philosophy!9 Then Wolfram sets out to survey all possible worlds,
at least all the simple ones.10 Along the way he finds a lot of interesting stuff.
For example, Wolfram’s cellular automata rule 110 is a universal computer,
an amazingly simple one, that can carry out any computation. A New Kind
of Science is an attempt to discover the laws of the universe by pure thought,
to search systematically for God’s building blocks!

The limits of reductionism: In what sense can biology and psychol-
ogy be reduced to mathematics and physics?! This is indeed the acid test
of a reductionist viewpoint! Historical contingency is often invoked here:
life as “frozen accidents” (mutations), not something fundamental [Wolfram,

7This is a kind of “anthropic principle”, the attempt to deduce things about the universe
from the fact that we are here and able to look at it.

8It could also come from the complexity of the initial conditions, or from coin-tossing,
i.e., randomness.

9That’s a term invented by Edward Fredkin, who has worked on related ideas.
10That’s why his book is so thick!
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Gould]. Work on artificial life (Alife) plus advances in robotics are par-
ticularly aggressive reductionist attempts. The normal way to “explain”
life is evolution by natural selection, ignoring Darwin’s own sexual selection
and symbiotic/cooperative views of the origin of biological progress—new
species—notably espoused by Lynn Margulis (“symbiogenesis”). Other prob-
lems with Darwinian gradualism: following the DNA as software paradigm,
small changes in DNA software can produce big changes in organisms, and a
good way to build this software is by trading useful subroutines (this is called
horizontal or lateral DNA transfer).11 In fact, there is a lack of fossil evidence
for many intermediate forms,12 which is evidence for rapid production of new
species (so-called “punctuated equilibrium”).

III What do Working Scientists Think about

Simplicity and Complexity?

“Science itself, therefore, may be regarded as a minimal problem, consisting of the com-
pletest possible presentment of facts with the least possible expenditure of thought. . .

Those ideas that hold good throughout the widest domains of research and that sup-
plement the greatest amount of experience, are the most scientific.”

—Ernst Mach, The Science of Mechanics, 1893, Chapter IV, Section IV, “The Econ-
omy of Science”, reprinted in Newman, The World of Mathematics, 1956.

“Furthermore, the attitude that theoretical physics does not explain phenomena, but
only classifies and correlates, is today accepted by most theoretical physicists. This means
that the criterion of success for such a theory is simply whether it can, by a simple and
elegant classifying and correlating scheme, cover very many phenomena, which without
this scheme would seem complicated and heterogeneous, and whether the scheme even
covers phenomena which were not considered or even not known at the time when the
scheme was evolved. (These two latter statements express, of course, the unifying and the
predicting power of a theory.)”

—John von Neumann, “The Mathematician”, 1947, reprinted in Newman, The World

of Mathematics, 1956, and in Bródy, Vámos, The Neumann Compendium, 1995.
“These fundamental concepts and postulates, which cannot be further re-

duced logically, form the essential part of a theory, which reason cannot touch.
It is the grand object of all theory to make these irreducible elements as simple
and as few in number as possible. . . [As] the distance in thought between the funda-
mental concepts and laws on the one side and, on the other, the conclusions which have
to be brought into relation with our experience grows larger and larger, the simpler the

11This is how bacteria acquire immunity to antibiotics.
12Already noted by Darwin.
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logical structure becomes—that is to say, the smaller the number of logically independent
conceptual elements which are found necessary to support the structure.”

—Einstein, “On the Method of Theoretical Physics”, 1934, reprinted in Einstein, Ideas

and Opinions, 1954.
“The aim of science is, on the one hand, a comprehension, as complete as possible,

of the connection between the sense experiences in their totality, and, on the other hand,
the accomplishment of this aim by the use of a minimum of primary concepts and rela-

tions. (Seeking as far as possible, logical unity in the world picture, i.e., paucity in logical
elements.)”

“Physics constitutes a logical system of thought which is in a state of evolution, whose
basis cannot be distilled, as it were, from experience by an inductive method, but can only
be arrived at by free invention. . . Evolution is proceeding in the direction of increased
simplicity of the logical basis. In order further to approach this goal, we must resign to
the fact that the logical basis departs more and more from the facts of experience, and
that the path of our thought from the fundamental basis to those derived propositions,
which correlate with sense experiences, becomes continually harder and longer.”

—Einstein, “Physics and Reality”, 1936, reprinted in Einstein, Ideas and Opinions,

1954.
“[S]omething general will have to be said. . . about the points of view from which

physical theories may be analyzed critically. . . The first point of view is obvious: the
theory must not contradict empirical facts. . . The second point of view is not concerned
with the relationship to the observations but with the premises of the theory itself, with
what may briefly but vaguely be characterized as the ‘naturalness’ or ‘logical simplicity’
of the premises (the basic concepts and the relations between these). . . We prize a theory
more highly if, from the logical standpoint, it does not involve an arbitrary choice among
theories that are equivalent and possess analogous structures. . . I must confess herewith
that I cannot at this point, and perhaps not at all, replace these hints by more precise
definitions. I believe, however, that a sharper formulation would be possible.”

—Einstein, “Autobiographical Notes”, originally published in Schilpp, Albert Einstein,

Philosopher-Scientist, 1949, and reprinted as a separate book in 1979.
“What, then, impels us to devise theory after theory? Why do we devise theories at

all? The answer to the latter question is simply: because we enjoy ‘comprehending,’
i.e., reducing phenomena by the process of logic to something already known
or (apparently) evident. New theories are first of all necessary when we encounter new
facts which cannot be ‘explained’ by existing theories. But this motivation for setting up
new theories is, so to speak, trivial, imposed from without. There is another, more subtle
motive of no less importance. This is the striving toward unification and simplification of
the premises of the theory as a whole (i.e., Mach’s principle of economy, interpreted as a
logical principle).”

“There exists a passion for comprehension, just as there exists a passion for music.
That passion is rather common in children, but gets lost in most people later on. Without
this passion, there would be neither mathematics nor natural science. Time and again
the passion for understanding has led to the illusion that man is able to comprehend the
objective world rationally, by pure thought, without any empirical foundations—in short,
by metaphysics. I believe that every true theorist is a kind of tamed metaphysicist, no
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matter how pure a ‘positivist’ he may fancy himself. The metaphysicist believes that
the logically simple is also the real. The tamed metaphysicist believes that
not all that is logically simple is embodied in experienced reality, but that
the totality of all sensory experience can be ‘comprehended’ on the basis of a
conceptual system built on premises of great simplicity. The skeptic will say that
this is a ‘miracle creed.’ Admittedly so, but it is a miracle creed which has been borne
out to an amazing extent by the development of science.”

—Einstein, “On the Generalized Theory of Gravitation”, 1950, reprinted in Einstein,
Ideas and Opinions, 1954.

“One of the most important things in this ‘guess—compute consequences—compare
with experiment’ business is to know when you are right. It is possible to know when
you are right way ahead of checking all the consequences. You can recognize truth by its
beauty and simplicity. It is always easy when you have made a guess, and done two or
three little calculations to make sure that it is not obviously wrong, to know that it is right.
When you get it right, it is obvious that it is right—at least if you have any
experience—because usually what happens is that more comes out than goes
in. Your guess is, in fact, that something is very simple. If you cannot see immediately
that it is wrong, and it is simpler than it was before, then it is right. The inexperienced,
and crackpots, and people like that, make guesses that are simple, but you can immediately
see that they are wrong, so that does not count. Others, the inexperienced students, make
guesses that are very complicated, and it sort of looks as if it is all right, but I know it
is not true because the truth always turns out to be simpler than you thought. What we
need is imagination, but imagination in a terrible strait-jacket. We have to find a new
view of the world that has to agree with everything that is known, but disagree in its
predictions somewhere, otherwise it is not interesting. And in that disagreement it must
agree with nature. . . ”

—Feynman, The Character of Physical Law, 1965, Chapter 7, “Seeking New Laws”.
“It is natural that a man should consider the work of his hands or his brain to be useful

and important. Therefore nobody will object to an ardent experimentalist boasting of his
measurements and rather looking down on the ‘paper and ink’ physics of his theoretical
friend, who on his part is proud of his lofty ideas and despises the dirty fingers of the other.
But in recent years this kind of friendly rivalry has changed into something more serious. . .
[A] school of extreme experimentalists. . . has gone so far as to reject theory altogether. . .
There is also a movement in the opposite direction. . . claiming that to the mind well
trained in mathematics and epistemology the laws of Nature are manifest without appeal
to experiment.”

“Given the knowledge and the penetrating brain of our mathematician, Maxwell’s
equations are a result of pure thinking and the toil of experimenters antiquated and su-
perfluous. I need hardly explain to you the fallacy of this standpoint. It lies in the fact
that none of the notions used by the mathematicians, such as potential, vector potential,
field vectors, Lorentz transformations, quite apart from the principle of action itself, are
evident or given a priori. Even if an extremely gifted mathematician had constructed
them to describe the properties of a possible world, neither he nor anybody else would
have had the slightest idea how to apply them to the real world.”

“Charles Darwin, my predecessor in my Edinburgh chair, once said something like



210 Thinking about Gödel & Turing

this: ‘The Ordinary Man can see a thing an inch in front of his nose; a few can see things
2 inches distant; if anyone can see it at 3 inches, he is a man of genius.’ I have tried to
describe to you some of the acts of these 2- or 3-inch men. My admiration of them is
not diminished by the consciousness of the fact that they were guided by the experience
of the whole human race to the right place into which to poke their noses. I have also
not endeavoured to analyse the idea of beauty or perfection or simplicity of
a natural law which has often guided the correct divination. I am convinced that
such an analysis would lead to nothing; for these ideas are themselves subject
to development. We learn something new from every new case, and I am not
inclined to accept final theories about invariable laws of the human mind.”

“My advice to those who wish to learn the art of scientific prophecy is not to rely on
abstract reason, but to decipher the secret language of Nature from Nature’s documents,
the facts of experience.”

—Max Born, Experiment and Theory in Physics, 1943, pp. 1, 8, 34–35, 44.

These eloquent discussions of the role that simplicity and complexity play
in scientific discovery by these distinguished 20th century scientists show the
importance that they ascribe to these questions.

In my opinion, the fundamental point is this: The belief that the universe
is rational, lawful, is of no value if the laws are too complicated for us to
comprehend, and is even meaningless if the laws are as complicated as our
observations, since the laws are then no simpler than the world they are
supposed to explain. As we saw in the previous section, this was emphasized
(and attributed to Leibniz) by Hermann Weyl, a fine mathematician and
mathematical physicist.

But perhaps we are overemphasizing the role that the notions of simplicity
and complexity play in science?

In his beautiful 1943 lecture published as a small book on Experiment
and Theory in Physics, the theoretical physicist Max Born criticized those
who think that we can understand Nature by pure thought, without hints
from experiments. In particular, he was referring to now forgotten and rather
fanciful theories put forth by Eddington and Milne. Now he might level these
criticisms at string theory and at Stephen Wolfram’s A New Kind of Science
[Jacob T. Schwartz, private communication].

Born has a point. Perhaps the universe is complicated, not simple! This
certainly seems to be the case in biology more than in physics. Then thought
alone is insufficient; we need empirical data. But simplicity certainly reflects
what we mean by understanding: understanding is compression. So
perhaps this is more about the human mind than it is about the universe.
Perhaps our emphasis on simplicity says more about us than it says about
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the universe!
Now we’ll try to capture some of the essential features of these philosoph-

ical ideas in a mathematical theory.

IV A Mathematical Theory of Simplicity,

Complexity and Irreducibility: AIT

The basic idea of algorithmic information theory (AIT) is that a scientific
theory is a computer program, and the smaller, the more concise the program
is, the better the theory!

But the idea is actually much broader than that. The central idea of
algorithmic information theory is reflected in the belief that the
following diagrams all have something fundamental in common. In
each case, ask how much information we put in versus how much we get out.
And everything is digital, discrete.

Shannon information theory (communications engineering), noiseless cod-
ing:

encoded message → Decoder → original message

Model of scientific method:

scientific theory → Calculations → empirical/experimental data

Algorithmic information theory (AIT), definition of program-size complexity:

program → Computer → output

Central dogma of molecular biology:

DNA → Embryogenesis/Development → organism

(In this connection, see Küppers, Information and the Origin of Life, 1990.)
Turing/Post abstract formulation of a Hilbert-style formal axiomatic math-
ematical theory as a mechanical procedure for systematically deducing all
possible consequences from the axioms:

axioms → Deduction → theorems

Contemporary physicists’ efforts to find a Theory of Everything (TOE):
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TOE → Calculations → Universe

Leibniz, Discourse on Metaphysics, 1686:

Ideas → Mind of God → The World

In each case the left-hand side is smaller, much smaller, than the right-hand
side. In each case, the right-hand side can be constructed (re-constructed)
mechanically, or systematically, from the left-hand side. And in each case we
want to keep the right-hand side fixed while making the left-hand side as small
as possible. Once this is accomplished, we can use the size of the left-hand
side as a measure of the simplicity or the complexity of the corresponding
right-hand side.

Starting with this one simple idea, of looking at the size of computer
programs, or at program-size complexity, you can develop a sophisticated,
elegant mathematical theory, AIT, as you can see in my four Springer-Verlag
volumes listed in the bibliography of this paper.

But, I must confess that AIT makes a large number of important hid-
den assumptions! What are they?

Well, one important hidden assumption of AIT is that the choice of com-
puter or of computer programming language is not too important, that it
does not affect program-size complexity too much, in any fundamental way.
This is debatable.

Another important tacit assumption: we use the discrete computation
approach of Turing 1936, eschewing computations with “real” (infinite-
precision) numbers like π = 3.1415926. . . which have an infinite number
of digits when written in decimal notation, but which correspond, from a
geometrical point of view, to a single point on a line, an elemental notion
in continuous, but not in discrete, mathematics. Is the universe discrete
or continuous? Leibniz is famous for his work on continuous mathematics.
AIT sides with the discrete, not with the continuous. [Françoise Chaitin-
Chatelin, private communication]

Also, in AIT we completely ignore the time taken by a computation, con-
centrating only on the size of the program. And the computation run-times
may be monstrously large, quite impracticably so, in fact, totally astronom-
ical in size. But trying to take time into account destroys AIT, an elegant,
simple theory of complexity, and one which imparts much intuitive under-
standing. So I think that it is a mistake to try to take time into account
when thinking about this kind of complexity.
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We’ve talked about simplicity and complexity, but what about irre-
ducibility? Now let’s apply AIT to mathematical logic and obtain some
limitative metatheorems. However, following Turing 1936 and Post 1944,
I’ll use the notion of algorithm to deduce limits to formal reasoning, not
Gödel’s original 1931 approach. I’ll take the position that a Hilbert-style
mathematical theory, a formal axiomatic theory, is a mechanical procedure
for systematically generating all the theorems by running through all possible
proofs, systematically deducing all consequences of the axioms.13 Consider
the size in bits of the algorithm for doing this. This is how we measure the
simplicity or complexity of the formal axiomatic theory. It’s just another
instance of program-size complexity!

But at this point, Chaitin-Chatelin insists, I should admit that we are
making an extremely embarrassing hidden assumption, which is that you can
systematically run through all the proofs. This assumption, which is bundled
into my definition of a formal axiomatic theory, means that we are assuming
that the language of our theory is static, and that no new concepts can ever
emerge. But no human language or field of thought is static!14 And this idea
of being able to make a numbered list with all possible proofs was clearly
anticipated by Émile Borel in 1927 when he pointed out that there is a real
number with the problematical property that its Nth digit after the decimal
point gives us the answer to the Nth yes/no question in French.15

Yes, I agree, a Hilbert-style formal axiomatic theory is indeed a fantasy,
but it is a fantasy that inspired many people, and one that even helped to
lead to the creation of modern programming languages. It is a fantasy that it
is useful to take seriously long enough for us to show in Section VI that even if
you are willing to accept all these tacit assumptions, something else is terribly
wrong. Formal axiomatic theories can be criticized from within, as well as
from without. And it is far from clear how weakening these tacit assumptions
would make it easier to prove the irreducible mathematical truths that are
exhibited in Section VI.

13In a way, this point of view was anticipated by Leibniz with his lingua characteristica

universalis.
14And computer programming languages aren’t static either, which can be quite a nui-

sance.
15Borel’s work was brought to my attention by Vladimir Tasić in his book Mathematics

and the Roots of Postmodern Thought, 2001, where he points out that in some ways it
anticipates the Ω number that I’ll discuss in Section IX. Borel’s paper is reprinted in
Mancosu, From Brouwer to Hilbert, 1998, pp. 296–300.
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And the idea of a fixed, static computer programming language in which
you write the computer programs whose size you measure is also a fantasy.
Real computer programming languages don’t stand still, they evolve, and
the size of the computer program you need to perform a given task can
therefore change. Mathematical models of the world like these are always
approximations, “lies that help us to see the truth” (Picasso). Nevertheless,
if done properly, they can impart insight and understanding, they can help
us to comprehend, they can reveal unexpected connections. . .

V From Computational Irreducibility to Logi-

cal Irreducibility. Examples of Computational

Irreducibility: “Elegant” Programs

Our goal in this section and the next is to use AIT to establish the existence
of irreducible mathematical truths. What are they, and why are they
important?

Following Euclid’s Elements, a mathematical truth is established by re-
ducing it to simpler truths until self-evident truths—“axioms” or “postu-
lates”16—are reached. Here we exhibit an extremely large class of mathemat-
ical truths that are not at all self-evident but which are not consequences of
any principles simpler than they are.

Irreducible truths are highly problematical for traditional philosophies of
mathematics, but as discussed in Section VIII, they can be accommodated
in an emerging “quasi-empirical” school of the foundations of mathematics,
which says that physics and mathematics are not that different.

Our path to logical irreducibility starts with computational irreducibility.
Let’s start by calling a computer program “elegant” if no smaller program
in the same language produces exactly the same output. There are lots of
elegant programs, at least one for each output. And it doesn’t matter how
slow an elegant program is, all that matters is that it be as small as possible.

An elegant program viewed as an object in its own right is computationally
irreducible. Why? Because otherwise you can get a more concise program
for its output by computing it first and then running it. Look at this diagram:

program2 → Computer → program1 → Computer → output

16Atoms of thought!



On the intelligibility of the universe 215

If program1 is as concise as possible, then program2 cannot be much more
concise than program1. Why? Well, consider a fixed-sized routine for running
a program and then immediately running its output. Then

program2 + fixed-size routine → Computer → output

produces exactly the same output as program1 and would be a more concise
program for producing that output than program1 is. But this is impossible
because it contradicts our hypothesis that program1 was already as small as
possible. Q.E.D.

Why should elegant programs interest philosophers? Well, because of
Occam’s razor, because the best theory to explain a fixed set of data is an
elegant program!

But how can we get irreducible truths? Well, just try proving that a
program is elegant!

VI Irreducible Mathematical Truths. Exam-

ples of Logical Irreducibility: Proving a Pro-

gram is Elegant

Hauptsatz: You cannot prove that a program is elegant if its size is sub-
stantially larger than the size of the algorithm for generating all the theorems
in your theory.

Proof: The basic idea is to run the first provably elegant program you
encounter when you systematically generate all the theorems, and that is
substantially larger than the size of the algorithm for generating all the theo-
rems. Contradiction, unless no such theorem can be demonstrated, or unless
the theorem is false.

Now I’ll explain why this works. We are given a formal axiomatic math-
ematical theory:

theory = program → Computer → set of all theorems

We may suppose that this theory is an elegant program, i.e., as concise as
possible for producing the set of theorems that it does. Then the size of
this program is by definition the complexity of the theory, since it is the
size of the smallest program for systematically generating the set of all the
theorems, which are all the consequences of the axioms. Now consider a
fixed-size routine with the property that
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theory + fixed-size routine → Computer →
output of the first provably elegant program larger than

complexity of theory

More precisely,

theory + fixed-size routine → Computer →
output of the first provably elegant program larger than
(complexity of theory + size of the fixed-size routine)

This proves our assertion that a mathematical theory cannot prove that a
program is elegant if that program is substantially larger than the complexity
of the theory.

Here is the proof of this result in more detail. The fixed-size routine knows
its own size and is given the theory, a computer program for generating the-
orems, whose size it measures and which it then runs, until the first theorem
is encountered asserting that a particular program P is elegant that is larger
than the total input to the computer. The fixed-size routine then runs the
program P , and finally produces as output the same output as P produces.
But this is impossible, because the output from P cannot be obtained from
a program that is smaller than P is, not if, as we assume by hypothesis, all
the theorems of the theory are true and P is actually elegant. Therefore P
cannot exist. In other words, if there is a provably elegant program P whose
size is greater than the complexity of the theory + the size of this fixed-size
routine, either P is actually inelegant or we have a contradiction. Q.E.D.

Because no mathematical theory of finite complexity can enable you to
determine all the elegant programs, the following is immediate:

Corollary: The mathematical universe has infinite complexity.17

This strengthens Gödel’s 1931 refutation of Hilbert’s belief that a single,
fixed formal axiomatic theory could capture all of mathematical truth.

Given the significance of this conclusion, it is natural to demand more
information. You’ll notice that I never said which computer programming
language I was using!

Well, you can actually carry out this proof using either high-level lan-
guages such as the version of LISP that I use in The Unknowable, or using

17On the other hand, our current mathematical theories are not very complex. On pages
773–774 of A New Kind of Science, Wolfram makes this point by exhibiting essentially
all of the axioms for traditional mathematics—in just two pages! However, a program to
generate all the theorems would be larger.
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low-level binary machine languages, such as the one that I use in The Limits
of Mathematics. In the case of a high-level computer programming language,
one measures the size of a program in characters (or 8-bit bytes) of text. In
the case of a binary machine language, one measures the size of a program
in 0/1 bits. My proof works either way.

But I must confess that not all programming languages permit my proof
to work out this neatly. The ones that do are the kinds of programming
languages that you use in AIT, the ones for which program-size complexity
has elegant properties instead of messy ones, the ones that directly expose
the fundamental nature of this complexity concept (which is also called algo-
rithmic information content), not the programming languages that bury the
basic idea in a mass of messy technical details.

This paper started with philosophy, and then we developed a mathemat-
ical theory. Now let’s go back to philosophy. In the last three sections of this
paper we’ll discuss the philosophical implications of AIT.

VII Could We Ever Be Sure that We Had the

Ultimate TOE? [Barrow 1995]

“The search for a ‘Theory of Everything’ is the quest for an ultimate compression of the
world. Interestingly, Chaitin’s proof of Gödel’s incompleteness theorem using the concepts
of complexity and compression reveals that Gödel’s theorem is equivalent to the fact that
one cannot prove a sequence to be incompressible. We can never prove a compression to
be the ultimate one; there might be a yet deeper and simpler unification waiting to be
found.”

—John Barrow, essay on “Theories of Everything” in Cornwell, Nature’s Imagination,

1995, reprinted in Barrow, Between Inner Space and Outer Space, 1999.

Here is the first philosophical application of AIT. According to astro-
physicist John Barrow, my work implies that even if we had the optimum,
perfect, minimal (elegant!) TOE, we could never be sure a simpler theory
would not have the same explanatory power.

(“Explanatory power” is a pregnant phrase, and one can make a case that
it is a better name to use than the dangerous word “complexity”, which has
many other possible meanings. One could then speak of a theory with N bits
of algorithmic explanatory power, rather than describe it as a theory having
a program-size complexity of N bits. [Françoise Chaitin-Chatelin, private
communication])
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Well, you can dismiss Barrow by saying that the idea of having the ul-
timate TOE is pretty crazy—who expects to be able to read the mind of
God?! Actually, Wolfram believes that a systematic computer search might
well find the ultimate TOE.18 I hope he continues working on this project!

In fact, Wolfram thinks that he not only might be able to find the ultimate
TOE, he might even be able to show that it is the simplest possible TOE! How
does he escape the impact of my results? Why doesn’t Barrow’s observation
apply here?

First of all, Wolfram is not very interested in proofs, he prefers compu-
tational evidence. Second, Wolfram does not use program-size complexity
as his complexity measure. He uses much more down-to-earth complexity
measures. Third, he is concerned with extremely simple systems, while my
methods apply best to objects with high complexity.

Perhaps the best way to explain the difference is to say that he is looking
at “hardware” complexity, and I’m looking at “software” complexity. The
objects he studies have complexity less than or equal to that of a univer-
sal computer. Those I study have complexity much larger than a universal
computer. For Wolfram, a universal computer is the maximum possible com-
plexity, and for me it is the minimum possible complexity.

Anyway, now let’s see what’s the message from AIT for the working math-
ematician.

VIII Should Mathematics Be More Like

Physics? Must Mathematical Axioms Be Self-

Evident?

“A deep but easily understandable problem about prime numbers is used in the following
to illustrate the parallelism between the heuristic reasoning of the mathematician and the
inductive reasoning of the physicist. . . [M]athematicians and physicists think alike; they
are led, and sometimes misled, by the same patterns of plausible reasoning.”

—George Pólya, “Heuristic Reasoning in the Theory of Numbers”, 1959, reprinted in
Alexanderson, The Random Walks of George Pólya, 2000.

“The role of heuristic arguments has not been acknowledged in the philosophy of
mathematics, despite the crucial role that they play in mathematical discovery. The
mathematical notion of proof is strikingly at variance with the notion of proof in other

18See pages 465–471, 1024–1027 of A New Kind of Science.
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areas. . . Proofs given by physicists do admit degrees: of two proofs given of the same
assertion of physics, one may be judged to be more correct than the other.”

—Gian-Carlo Rota, “The Phenomenology of Mathematical Proof”, 1997, reprinted in
Jacquette, Philosophy of Mathematics, 2002, and in Rota, Indiscrete Thoughts, 1997.

“There are two kinds of ways of looking at mathematics. . . the Babylonian tradition
and the Greek tradition. . . Euclid discovered that there was a way in which all the theorems
of geometry could be ordered from a set of axioms that were particularly simple. . . The
Babylonian attitude. . . is that you know all of the various theorems and many of the
connections in between, but you have never fully realized that it could all come up from a
bunch of axioms. . . [E]ven in mathematics you can start in different places. . . In physics
we need the Babylonian method, and not the Euclidian or Greek method.”

—Richard Feynman, The Character of Physical Law, 1965, Chapter 2, “The Relation
of Mathematics to Physics”.

“The physicist rightly dreads precise argument, since an argument which is only con-
vincing if precise loses all its force if the assumptions upon which it is based are slightly
changed, while an argument which is convincing though imprecise may well be stable under
small perturbations of its underlying axioms.”

—Jacob Schwartz, “The Pernicious Influence of Mathematics on Science”, 1960,
reprinted in Kac, Rota, Schwartz, Discrete Thoughts, 1992.

“It is impossible to discuss realism in logic without drawing in the empirical sciences. . .
A truly realistic mathematics should be conceived, in line with physics, as a branch of the
theoretical construction of the one real world and should adopt the same sober and cautious
attitude toward hypothetic extensions of its foundation as is exhibited by physics.”

—Hermann Weyl, Philosophy of Mathematics and Natural Science, 1949, Appendix
A, “Structure of Mathematics”, p. 235.

The above quotations are eloquent testimonials to the fact that although
mathematics and physics are different, maybe they are not that different!
Admittedly, math organizes our mathematical experience, which is mental
or computational, and physics organizes our physical experience.19 They
are certainly not exactly the same, but maybe it’s a matter of degree, a
continuum of possibilities, and not an absolute, black and white difference.

Certainly, as both fields are currently practiced, there is a definite differ-
ence in style. But that could change, and is to a certain extent a matter of
fashion, not a fundamental difference.

A good source of essays that I—but perhaps not the authors!—regard
as generally supportive of the position that math be considered a branch
of physics is Tymoczko, New Directions in the Philosophy of Mathematics,
1998. In particular there you will find an essay by Lakatos giving the name
“quasi-empirical” to this view of the nature of the mathematical enterprise.

19And in physics everything is an approximation, no equation is exact.
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Why is my position on math “quasi-empirical”? Because, as far as I
can see, this is the only way to accommodate the existence of irreducible
mathematical facts gracefully. Physical postulates are never self-evident,
they are justified pragmatically, and so are close relatives of the not at all
self-evident irreducible mathematical facts that I exhibited in Section VI.

I’m not proposing that math is a branch of physics just to be controversial.
I was forced to do this against my will! This happened in spite of the fact
that I’m a mathematician and I love mathematics, and in spite of the fact
that I started with the traditional Platonist position shared by most working
mathematicians. I’m proposing this because I want mathematics to work
better and be more productive. Proofs are fine, but if you can’t find a proof,
you should go ahead using heuristic arguments and conjectures.

Wolfram’s A New Kind of Science also supports an experimental, quasi-
empirical way of doing mathematics. This is partly because Wolfram is a
physicist, partly because he believes that unprovable truths are the rule, not
the exception, and partly because he believes that our current mathemati-
cal theories are highly arbitrary and contingent. Indeed, his book may be
regarded as a very large chapter in experimental math. In fact, he had to
develop his own programming language, Mathematica, to be able to do the
massive computations that led him to his conjectures.

See also Tasić, Mathematics and the Roots of Postmodern Thought, 2001,
for an interesting perspective on intuition versus formalism. This is a key
question—indeed in my opinion it’s an inescapable issue—in any discussion
of how the game of mathematics should be played. And it’s a question with
which I, as a working mathematician, am passionately concerned, because,
as we discussed in Section VI, formalism has severe limitations. Only intu-
ition can enable us to go forward and create new ideas and more powerful
formalisms.

And what are the wellsprings of mathematical intuition and creativity?
In his important forthcoming book on creativity, Tor Nørretranders makes
the case that a peacock, an elegant, graceful woman, and a beautiful math-
ematical theory, are all shaped by the same forces, namely what Darwin
referred to as “sexual selection”. Hopefully this book will be available soon
in a language other than Danish! Meanwhile, see my dialogue with him in
my book Conversations with a Mathematician.20

20[An English edition of Nørretranders’ book on creativity is now available: The Gen-

erous Man, Thunder’s Mouth Press, 2005.]
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Now, for our last topic, let’s look at the entire physical universe!

IX Is the Universe Like π or Like Ω? Rea-

son versus Randomness! [Brisson, Meyerstein

1995]

“Parce qu’on manquait d’une définition rigoreuse de complexité, celle qu’a proposée la
TAI [théorie algorithmique de l’information], confondre π avec Ω a été plutôt la règle que
l’exception. Croire, parce que nous avons ici affaire à une croyance, que toutes les suites,
puisqu’elles ne sont que l’enchâınement selon une règle rigoureuse de symboles déterminés,
peuvent toujours être comprimées en quelque chose de plus simple, voilà la source de
l’erreur du réductionnisme. Admettre la complexité a toujours paru insupportable aux
philosophes, car c’était renoncer à trouver un sens rationnel à la vie des hommes.”

—Brisson, Meyerstein, Puissance et Limites de la Raison, 1995, “Postface. L’erreur
du réductionnisme”, p. 229.

First let me explain what the number Ω is. It’s the jewel in AIT’s crown,
and it’s a number that has attracted a great deal of attention, because it’s a
very dangerous number! Ω is defined to be the halting probability of what
computer scientists call a universal computer, or universal Turing machine.21

So Ω is a probability and therefore it’s a real number, a number measured
with infinite precision, that’s between zero and one.22 That may not sound
too dangerous!

What’s dangerous about Ω is that (a) it has a simple, straightforward
mathematical definition, but at the same time (b) its numerical value is max-
imally unknowable, because a formal mathematical theory whose program-
size complexity or explanatory power is N bits cannot enable you to deter-
mine more than N bits of the base-two expansion of Ω! In other words, if
you want to calculate Ω, theories don’t help very much, since it takes N
bits of theory to get N bits of Ω. In fact, the base-two bits of Ω are maxi-
mally complex, there’s no redundancy, and Ω is the prime example of how
unadulterated infinite complexity arises in pure mathematics!

How about π = 3.1415926. . . the ratio of the circumference of a circle to
its diameter? Well, π looks pretty complicated, pretty lawless. For example,

21In fact, the precise value of Ω actually depends on the choice of computer, and in The

Limits of Mathematics I’ve done that, I’ve picked one out.
22It’s ironic that the star of a discrete theory is a real number! This illustrates the

creative tension between the continuous and the discrete.
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all its digits seem to be equally likely,23 although this has never been proven.24

If you are given a bunch of digits from deep inside the decimal expansion of
π, and you aren’t told where they come from, there doesn’t seem to be any
redundancy, any pattern. But of course, according to AIT, π in fact only
has finite complexity, because there are algorithms for calculating it with
arbitrary precision.25

Following Brisson, Meyerstein, Puissance et Limites de la Raison, 1995,
let’s now finally discuss whether the physical universe is like π = 3.1415926. . .
which only has a finite complexity, namely the size of the smallest program
to generate π, or like Ω, which has unadulterated infinite complexity. Which
is it?!

Well, if you believe in quantum physics, then Nature plays dice, and
that generates complexity, an infinite amount of it, for example, as frozen
accidents, mutations that are preserved in our DNA. So at this time most
scientists would bet that the universe has infinite complexity, like Ω does. But
then the world is incomprehensible, or at least a large part of it will always
remain so, the accidental part, all those frozen accidents, the contingent part.

But some people still hope that the world has finite complexity like π, it
just looks like it has high complexity. If so, then we might eventually be
able to comprehend everything, and there is an ultimate TOE! But then you
have to believe that quantum mechanics is wrong, as currently practiced,
and that all that quantum randomness is really only pseudo-randomness,
like what you find in the digits of π. You have to believe that the world is
actually deterministic, even though our current scientific theories say that it
isn’t!

I think Vienna physicist Karl Svozil feels that way [private communica-
tion; see his Randomness & Undecidability in Physics, 1994]. I know Stephen
Wolfram does, he says so in his book. Just take a look at the discussion of
fluid turbulence and of the second law of thermodynamics in A New Kind
of Science. Wolfram believes that very simple deterministic algorithms ulti-
mately account for all the apparent complexity we see around us, just like

23In any base all the digits of Ω are equally likely. This is called “Borel normality”. For
a proof, see my book Exploring Randomness. For the latest on Ω, see Calude, Information

and Randomness.
24Amazingly enough, there’s been some recent progress in this direction by Bailey and

Crandall.
25In fact, some terrific new ways to calculate π have been discovered by Bailey, Borwein

and Plouffe. π lives, it’s not a dead subject!
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they do in π.26 He believes that the world looks very complicated, but is ac-
tually very simple. There’s no randomness, there’s only pseudo-randomness.
Then nothing is contingent, everything is necessary, everything happens for
a reason. [Leibniz!]

Who knows! Time will tell!
Or perhaps from inside this world we will never be able to tell the differ-

ence, only an outside observer could do that [Svozil, private communication].

Postscript

Readers of this paper may enjoy the somewhat different perspective in my
chapter “Complexité, logique et hasard” in Benkirane, La Complexité. Leib-
niz is there too.

In addition, see my Conversations with a Mathematician, a book on phi-
losophy disguised as a series of dialogues—not the first time that this has
happened!

Last but not least, see Zwirn, Les Limites de la Connaissance, that also
supports the thesis that understanding is compression, and the masterful
multi-author two-volume work, Kurt Gödel, Wahrheit & Beweisbarkeit, a
treasure trove of information about Gödel’s life and work.
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Leibniz, information, math &
physics

The information-theoretic point of view proposed by Leibniz in 1686 and de-
veloped by algorithmic information theory (AIT) suggests that mathematics
and physics are not that different. This will be a first-person account of some
doubts and speculations about the nature of mathematics that I have enter-
tained for the past three decades, and which have now been incorporated in a
digital philosophy paradigm shift that is sweeping across the sciences.

1. What is algorithmic information theory?

The starting point for my own work on AIT forty years ago was the insight
that a scientific theory is a computer program that calculates the observa-
tions, and that the smaller the program is, the better the theory. If there
is no theory, that is to say, no program substantially smaller than the data
itself, considering them both to be finite binary strings, then the observations
are algorithmically random, theory-less, unstructured, incomprehensible and
irreducible.

theory = program −→ Computer −→ output = experimental data

So this led me to a theory of randomness based on program-size com-
plexity [1], whose main application turned out to be not in science, but in
mathematics, more specifically, in meta-mathematics, where it yields power-
ful new information-theoretic versions of Gödel’s incompleteness theorem [2,
3, 4]. (I’ll discuss this in Section 3.)
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And from this new information-theoretic point of view, math and physics
do not seem too different. In both cases understanding is compression, and
is measured by the extent to which empirical data and mathematical theo-
rems are respectively compressed into concise physical laws or mathematical
axioms, both of which are embodied in computer software [5].

And why should one use reasoning at all in mathematics?! Why not pro-
ceed entirely empirically, more or less as physicists do? Well, the advantange
of proving things is that assuming a few bits of axioms is less risky than
assuming many empirically-suggested mathematical assertions. (The disad-
vantage, of course, is the length of the proofs and the risk of faulty proofs.)
Each bit in an irreducible axiom of a mathematical theory is a freely-chosen
independent assumption, with an a priori probability of half of being the
right choice, so one wants to reduce the number of such independent choices
to a minimum in creating a new theory.

So this point of view would seem to suggest that while math and physics
are admittedly different, perhaps they are not as different as most people
usually believe. Perhaps we should feel free to pursue not only rigorous,
formal modern proofs, but also the swash-buckling experimental math that
Euler enjoyed so much. And in fact theoretical computer scientists have to
some extent already done this, since their P 6= NP hypothesis is probably
currently the best candidate for canonization as a new axiom. And, as is
suggested in [6], another possible candidate is the Riemann hypothesis.

But before discussing this in more detail, I’d like to tell how I discovered
that in 1686 Leibniz anticipated some of the basic ideas of AIT.

2. How Leibniz almost invented algorithmic

information theory [7]

One day last year, while preparing my first philosophy paper [5], for a philos-
ophy congress in Bonn, I was reading a little book on philosophy by Hermann
Weyl that was published in 1932, and I was amazed to find the following,
which captures the essential idea of my definition of algorithmic randomness:

“The assertion that nature is governed by strict laws is devoid
of all content if we do not add the statement that it is gov-
erned by mathematically simple laws. . . That the notion of law
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becomes empty when an arbitrary complication is per-
mitted was already pointed out by Leibniz in his Metaphysical
Treatise [Discourse on Metaphysics]. Thus simplicity becomes a
working principle in the natural sciences.”

—Weyl [8, pp. 40–42]. See a similar discussion on pp. 190–191 of
Weyl [9], Section 23A, “Causality and Law”.

In fact, I actually read Weyl [9] as a teenager, before inventing AIT at
age 15, but the matter is not stated so sharply there. And a few years ago
I stumbled on the above-quoted text in Weyl [8], but hadn’t had the time
to pursue it until stimulated to do so by an invitation from the German
Philosophy Association to talk at their 2002 annual congress, that happened
to be on limits and how to transcend them.

So I got a hold of Leibniz’s Discourse on Metaphysics to see what he
actually said. Here it is:

“As for the simplicity of the ways of God, this holds properly
with respect to his means, as opposed to the variety, richness,
and abundance, which holds with respect to his ends or effects.”

“. . . not only does nothing completely irregular occur in the world,
but we would not even be able to imagine such a thing. Thus,
let us assume, for example, that someone jots down a number of
points at random on a piece of paper, as do those who practice
the ridiculous art of geomancy.1 I maintain that it is possible
to find a geometric line whose [m]otion is constant and uniform,
following a certain rule, such that this line passes through all the
points in the same order in which the hand jotted them down.”

“But, when a rule is extremely complex, what is in con-
formity with it passes for irregular. Thus, one can say, in
whatever manner God might have created the world, it would al-
ways have been regular and in accordance with a certain general
order. But God has chosen the most perfect world, that
is, the one which is at the same time the simplest in hy-
potheses and the richest in phenomena, as might be a line
in geometry whose construction is easy and whose properties and
effects are extremely remarkable and widespread.”

1[A way to foretell the future; a form of divination.]
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—Leibniz, Discourse on Metaphysics, 1686, Sections 5–6, as
translated by Ariew and Garber [10, pp. 38–39].

ideas = input −→ Mind of God −→ output = the universe

And after finishing my paper [5] for the Bonn philosophy congress, I
learned that Leibniz’s original Discourse on Metaphysics was in French,
which I know, and fortunately not in Latin, which I don’t know, and that it
was readily available from France:

“Pour ce qui est de la simplicité des voyes de Dieu, elle a lieu
proprement à l’égard des moyens, comme au contraire la varieté,
richesse ou abondance y a lieu à l’égard des fins ou effects.”

“. . . non seulement rien n’arrive dans le monde, qui soit absolu-
ment irregulier, mais on ne sçauroit mêmes rien feindre de tel. Car
supposons par exemple que quelcun fasse quantité de points sur le
papier à tout hazard, comme font ceux qui exercent l’art ridicule
de la Geomance, je dis qu’il est possible de trouver une ligne ge-
ometrique dont la [m]otion soit constante et uniforme suivant une
certaine regle, en sorte que cette ligne passe par tous ces points,
et dans le même ordre que la main les avoit marqués.”

“Mais quand une regle est fort composée, ce qui luy est
conforme, passe pour irrégulier. Ainsi on peut dire que de
quelque maniere que Dieu auroit créé le monde, il auroit tousjours
esté regulier et dans un certain ordre general. Mais Dieu a choisi
celuy qui est le plus parfait, c’est à dire celuy qui est en même
temps le plus simple en hypotheses et le plus riche en
phenomenes, comme pourroit estre une ligne de Geometrie dont
la construction seroit aisée et les proprietés et effects seroient fort
admirables et d’une grande étendue.”

—Leibniz, Discours de métaphysique, V–VI [11, pp. 40–41].

(Here “dont la motion” is my correction. The Gallimard text [11] states
“dont la notion,” an obvious misprint, which I’ve also corrected in the English
translation by Ariew and Garber.)

So, in summary, Leibniz observes that for any finite set of points there
is a mathematical formula that produces a curve that goes through them
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all, and it can be parametrized so that it passes through the points in the
order that they were given and with a constant speed. So this cannot give
us a definition of what it means for a set of points to obey a law. But if the
formula is very simple, and the data is very complex, then that’s a real law !

Recall that Leibniz was at the beginning of the modern era, in which
ancient metaphysics was colliding with modern empirical science. And he
was a great mathematician as well as a philosopher. So here he is able to
take a stab at clarifying what it means to say that Nature is lawful and what
are the conditions for empirical science to be possible.

AIT puts more meat on Leibniz’s proposal, it makes his ideas more precise
by giving a precise definition of complexity.

And AIT goes beyond Leibniz by using program-size complexity to clarify
what it means for a sequence of observations to be lawless, one which has
no theory, and by applying this to studying the limits of formal axiomatic
reasoning, i.e., what can be achieved by mindlessly and mechanically grinding
away deducing all possible consequences of a fixed set of axioms. (I’ll say
more about metamathematical applications of AIT in Section 3 below.)

axioms = program −→ Computer −→ output = theorems

By the way, the articles by philosophy professors that I’ve seen that dis-
cuss the above text by Leibniz criticize what they see as the confused and
ambiguous nature of his remarks. On the contrary, I admire his prescience
and the manner in which he has unerringly identified the central issue, the
key idea. He even built a mechanical calculator and with his speculations
regarding a Characteristica Universalis (“Adamic” language of creation) en-
visioned something that Martin Davis [12] has argued was a direct intellectual
ancestor of the universal Turing machine, which is precisely the device that
is needed in order for AIT to be able to quantify Leibniz’s original insight!

Davis quotes some interesting remarks by Leibniz about the practical
utility of his calculating machine. Here is part of the Davis Leibniz quote:

“And now that we may give final praise to the machine we may
say that it will be desirable to all who are engaged in compu-
tations which, it is well known, are the managers of financial
affairs, the administrators of others’ estates, merchants, survey-
ors, geographers, navigators, astronomers. . . For it is unworthy of
excellent men to lose hours like slaves in the labor of calculations
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which could safely be relegated to anyone else if the machine were
used.”

This reminds me of a transcript of a lecture that von Neumann gave at
the inauguration of the NORC (Naval Ordnance Computer) that I read many
years ago. It attempted to convince people that computers were of value. It
was a hard sell! The obvious practical and scientific utility of calculators and
computers, though it was evident to Leibniz, Babbage and von Neumann,
was far from evident to most people. Even von Neumann’s colleagues at the
Princeton Institute for Advanced Study completely failed to understand this
(see Casti [13]).

And I am almost forgetting something important that I read in E. T. Bell
[14] as a child, which is that Leibniz invented base-two binary notation
for integers. Bell reports that this was a result of Leibniz’s interest in Chinese
culture; no doubt he got it from the I Ching. So in a sense, all of information
theory derives from Leibniz, for he was the first to emphasize the creative
combinatorial potential of the 0 and 1 bit, and how everything can be built
up from this one elemental choice, from these two elemental possibilities. So,
perhaps not entirely seriously, I should propose changing the name of the
unit of information from the bit to the leibniz !

3. The halting probability Ω and information-

theoretic incompleteness

Enough philosophy, let’s do some mathematics! The first step is to pick a
universal binary computer U with the property that for any other binary
computer C there is a binary prefix πC such that

U(πC p) = C(p).

Here p is a binary program for C and the prefix πC tells U how to simulate
C and does not depend on p. In the U that I’ve picked, πC consists of a
description of C written in the high-level non-numerical functional program-
ming language LISP, which is much like a computerized version of set theory,
except that all sets are finite.

Next we define the algorithmic information content (program-size com-
plexity) of a LISP symbolic expression (S-expression) X to be the size in bits
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|p| of the smallest binary program p that makes our chosen U compute X:

H(X) ≡ min
U(p)=X

|p|.

Similarly, the information content or complexity of a formal axiomatic
theory with the infinite set of theorems T is defined to be the size in bits of
the smallest program that makes U generate the infinite set of theorems T ,
which is a set of S-expressions.

H(T ) ≡ min
U(p)=T

|p|.

Think of this as the minimum number of bits required to tell U how to run
through all possible proofs and systematically generate all the consequences
of the fixed set of axioms. H(T ) is the size in bits of the most concise axioms
for T .

Next we define the celebrated halting probability Ω:

Ω ≡
∑

U(p) halts

2−|p|.

A small technical detail: To get this sum to converge it is necessary that
programs for U be “self-delimiting.” I.e., no extension of a valid program is
a valid program, the set of valid programs has to be a prefix-free set of bit
strings.

So Ω is now a specific, well-defined real number between zero and one, and
let’s consider its binary expansion, i.e., its base-two representation. Discard-
ing the initial decimal (or binary) point, that’s an infinite binary sequence
b1b2b3 . . . To eliminate any ambiguity in case Ω should happen to be a dyadic
rational (which it actually isn’t), let’s agree to change 1000. . . to 0111. . . here
if necessary.

Right away we get into trouble. From the fact that knowing the first N
bits of Ω

ΩN ≡ b1b2b3 . . . bN

would enable us to answer the halting problem for every program p for U with
|p| ≤ N , it is easy to see that the bits of Ω are computationally irreducible:

H(ΩN) ≥ N − c.

And from this it follows using a straight-forward program-size argument (see
[3]) that the bits of Ω are also logically irreducible.
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What does this mean? Well, consider a formal axiomatic theory with
theorems T , an infinite set of S-expressions. If we assume that a theorem of
the form “The kth bit of Ω is 0/1” is in T only if it’s true, then T cannot
enable us to determine more than H(T ) + c′ bits of Ω.

So the bits of Ω are irreducible mathematical facts, they are mathematical
facts that contradict Leibniz’s principle of sufficient reason by being true
for no reason. They must, to use Kantian terminology, be apprehended
as things in themselves. They cannot be deduced as consequences of any
axioms or principles that are simpler than they are.

(By the way, this also implies that the bits of Ω are statistically random,
e.g., Ω is absolutely Borel normal in every base. I.e., all blocks of digits of
the same size have equal limiting relative frequency, regardless of the radix
chosen for representing Ω.)

Furthermore, in my 1987 Cambridge University Press monograph [15]
I celebrate the fact that the bits of Ω can be encoded via a diophantine
equation. There I exhibit an exponential diophantine equation L(k,x) =
R(k,x) with parameter k and about twenty-thousand unknowns x that has
infinitely many solutions iff the kth bit of Ω is a 1. And recently Ord and
Kieu [16] have shown that this can also be accomplished using the even/odd
parity of the number of solutions, rather than its finite/infinite cardinality.
So Ω’s irreducibility also infects elementary number theory!

These rather brutal incompleteness results show how badly mistaken
Hilbert was to assume that a fixed formal axiomatic theory could encompass
all of mathematics. And if you have to extend the foundations of math-
ematics by constantly adding new axioms, new concepts and fundamental
principles, then mathematics becomes much more tentative and begins to
look much more like an empirical science. At least I think so, and you can
even find quotes by Gödel that I think point in the same direction.

These ideas are of course controversial; see for example a highly critical
review of two of my books in the AMS Notices [17]. I discuss the hostile
reaction of the logic community to my ideas in more detail in an interview
with performance artist Marina Abramovic [18]. Here, however, I prefer
to tell why I think that the world is actually moving rather quickly in my
direction. In fact, I believe that my ideas are now part of an unstoppable
tidal wave of change spreading across the sciences!
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4. The digital philosophy paradigm shift

As I have argued in the second half of my 2002 paper in the EATCS Bulletin
[19], what we are witnessing now is a dramatic convergence of mathematics
with theoretical computer science and with theoretical physics. The partic-
ipants in this paradigm shift believe that information and computation are
fundamental concepts in all three of these domains, and that what physical
systems actually do is computation, i.e., information processing. In other
words, as is asked on the cover of a recent issue of La Recherche with an
article [20] about this, “Is God a Computer?”

But that is not quite right. Rather, we should ask, “Is God a Program-
mer?” The intellectual legacy of the West, and in this connection let me recall
Pythagoras, Plato, Galileo and James Jeans, states that “Everything is num-
ber; God is a mathematician.” We are now beginning to believe something
slightly different, a refinement of the original Pythagorean credo: “Every-
thing is software; God is a computer programmer.” Or perhaps I should say:
“All is algorithm!” Just as DNA programs living beings, God programs the
universe.

In the digital philosophy movement I would definitely include: the ex-
tremely active field of quantum information and quantum computation [21],
Wolfram’s work [22] on A New Kind of Science, Fredkin’s work on reversible
cellular automata and his website at http://digitalphilosophy.org (the
pregnant phrase “digital philosophy” is due to Fredkin), the Bekenstein-
t’Hooft “holographic principle” [23], and AIT. Ideas from theoretical physics
and theoretical computer science are definitely leaking across the traditional
boundaries between these two fields. And this holds for AIT too, because its
two central concepts are versions of randomness and of entropy, which are
ideas that I took with me from physics and into mathematical logic.

Wolfram’s work is particularly relevant to our discussion of the nature
of mathematics, because he believes that most simple systems are either
trivial or equivalent to a universal computer, and therefore that mathematical
questions are either trivial or can never be solved, except, so to speak, for a
set of measure zero. This he calls his principle of computational equivalence,
and it leads him to take the incompleteness phenomenon much more seriously
than most mathematicians do. In line with his thesis, his book presents a
great deal of computational evidence, but not many proofs.

Another important issue studied in Wolfram’s book [22] is the question
of whether, to use Leibnizian terminology, mathematics is necessary or is
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contingent. I.e., would intelligent creatures on another planet necessarily
discover the same concepts that we have, or might they develop a perfectly
viable mathematics that we would have a great deal of trouble in recognizing
as such? Wolfram gives a number of examples that suggest that the latter is
in fact the case.

I should also mention some recent books on the quasi-empirical view of
mathematics [24] and on experimental mathematics [25, 26], as well as Dou-
glas Robertson’s two volumes [27, 28] on information as a key historical and
cultural parameter and motor of social change, and John Maynard Smith’s
related books on biology [29, 30].

Maynard Smith and Szathmáry [29, 30] measure biological evolutionary
progress in terms of abrupt improvements in the way information is repre-
sented and transmitted inside living organisms. Robertson sees social evolu-
tion as driven by the same motor. According to Robertson [27, 28], spoken
language defines the human, writing creates civilization, the printing press
provoked the Renaissance, and the Internet is weaving a new World-Wide
Web. These are abrupt improvements in the way human society is able
to store and transmit information. And they result in abrupt increases in
cultural complexity, in abrupt increases in social intelligence, as it were.

(And for the latest results on Ω, see Calude [31].)

5. Digital philosophy is Leibnizian; Leibniz’s

legacy

None of us who made this paradigm shift happen were students of Leibniz,
but he anticipated us all. As I hinted in a letter to La Recherche, in a sense
all of Wolfram’s thousand-page book is the development of one sentence in
Leibniz:

“Dieu a choisi celuy qui est. . . le plus simple en hypothe-
ses et le plus riche en phenomenes”
[God has chosen that which is the most simple in hypotheses and the

most rich in phenomena]

This presages Wolfram’s basic insight that simple programs can have very
complicated-looking output.

And all of my work may be regarded as the development of another
sentence in Leibniz:
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“Mais quand une regle est fort composée, ce qui luy est
conforme, passe pour irrégulier”
[But when a rule is extremely complex, that which conforms to it

passes for random]

Here I see the germ of my definition of algorithmic randomness and irre-
ducibility.

Newtonian physics is now receding into the dark, distant intellectual past.
It’s not just that it has been superseded by quantum physics. No, it’s much
deeper than that. In our new interest in complex systems, the concepts
of energy and matter take second place to the concepts of information and
computation. And the continuum mathematics of Newtonian physics now
takes second place to the combinatorial mathematics of complex systems.

As E. T. Bell stated so forcefully [32], Newton made one big contribution
to math, involving the continuum, but Leibniz made two: his work on the
continuum and his work on discrete combinatorics (which Leibniz named).
Newton obliterated Leibniz and stole from him both his royal patron and the
credit for the calculus. Newton was buried with full honors at Westminster
Abbey, while a forgotten Leibniz was accompanied to his grave by only his
secretary. But, as E. T. Bell stated a half a century ago [32], with every
passing year, the shadow cast by Leibniz gets larger and larger.

How right Bell was! The digital philosophy paradigm is a direct intellec-
tual descendent of Leibniz, it is part of the Leibnizian legacy. The human
race has finally caught up with this part of Leibniz’s thinking. Are there,
Wolfram and I wonder, more treasures there that we have not yet been able
to decipher and appreciate?

6. Acknowledgment; Coda on the continuum

and the Kabbalah

The author wishes to thank Françoise Chaitin-Chatelin for sharing with him
her understanding and appreciation of Leibniz, during innumerable lengthy
conversations. In her opinion, however, this essay does Leibniz an injustice
by completely ignoring his deep interest in the “labyrinth of the continuum,”
which is her specialty.

Let me address her concern. According to Leibniz, the integers are hu-
man, the discrete is at the level of Man. But the continuum transcends
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Man and brings us closer to God. Indeed, Ω is transcendent, and may be
regarded as the concentrated essence of mathematical creativity. In a note
on the Kabbalah, which regards Man as perfectable and evolving towards
God, Leibniz [33, pp. 112–115] observes that with time we shall know all
interesting theorems with proofs of up to any given fixed size, and this can
be used to measure human progress.

If the axioms and rules of inference are fixed, then this kind of progress can
be achieved mechanically by brute force, which is not very interesting. The
interesting case is allowing new axioms and concepts. So I would propose
instead that human progress—purely intellectual, not moral progress—be
measured by the number of bits of Ω that we have been able to determine
up to any given time.

Let me end with Leibniz’s remarks about the effects of this kind of
progress [33, pp. 115]:

“If this happens, it must follow that those minds which are not
yet sufficiently capable will become more capable so that they can
comprehend and invent such great theorems, which are necessary
to understand nature more deeply and to reduce physical truths
to mathematics, for example, to understand the mechanical func-
tioning of animals, to forsee certain future contingencies with a
certain degree of accuracy, and to do certain wonderful things in
nature, which are now beyond our capacity. . . ”

“Every mind has a horizon in respect to its present intellectual
capacity but not in respect to its future intellectual capacity.”
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Leibniz, randomness &
the halting probability

Dedicated to Alan Turing on the 50th Anniversary of his Death

Turing’s remarkable 1936 paper On computable numbers, with an applica-
tion to the Entscheidungsproblem marks a dramatic turning point in modern
mathematics. On the one hand, the computer enters center stage as a major
mathematical concept. On the other hand, Turing establishes a link between
mathematics and physics by talking about what a machine can accomplish.
It is amazing how far these ideas have come in a comparatively short amount
of time; a small stream has turned into a major river.

I have recently completed a small book about some of these developments,
Meta Math! It is currently available as an e-book on my personal website,
and is scheduled to be published next year. Here I will merely give a few
highlights.

My story begins with Leibniz in 1686, the year before Newton published
his Principia. Due to a snow storm, Leibniz is forced to take a break in
his attempts to improve the water pumps for some important German silver
mines, and writes down an outline of some of his ideas, now known to us
as the Discours de métaphysique. Leibniz then sends a summary of the ma-
jor points through a mutual friend to the famous fugitive French philosophe
Arnauld, who is so horrified at what he reads that Leibniz never sends him
nor anyone else the entire manuscript. It languishes among Leibniz’s volumi-
nous personal papers and is only discovered and published many years after
Leibniz’s death.

In sections V and VI of the Discours de métaphysique, Leibniz discusses
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the crucial question of how we can distinguish a world in which science applies
from one in which it does not. Imagine, he says, that someone has splattered
a piece of paper with ink spots determining in this manner a finite set of
points on the page. Nevertheless, Leibniz observes, there will always be a
mathematical equation that passes through this finite set of points. Indeed,
many good ways to do this are now known. For example, what is called
Lagrangian interpolation will do.

So the existence of a mathematical curve passing through a set of points
cannot enable us to distinguish between points that are chosen at random
and those that obey some kind of a scientific law. How then can we tell the
difference? Well, says Leibniz, if the equation must be extremely complex
(“fort composée”) that is not a valid scientific law and the points are random
(“irrégulier”).

Leibniz had a million other interests and earned a living as a consultant
to princes, and as far as I know after having this idea he never returned to
this subject. Indeed, he was always tossing out good ideas, but rarely, with
the notable exception of the infinitesimal calculus, had the time to develop
them in depth.

The next person to take up this subject, as far as I know, is Hermann
Weyl in his 1932 book The Open World, consisting of three lectures on meta-
physics that Weyl gave at Yale University. In fact, I discovered Leibniz’s
work on complexity and randomness by reading this little book by Weyl.
And Weyl points out that Leibniz’s way of distinguishing between points
that are random and those that follow a law by invoking the complexity of a
mathematical formula is unfortunately not too well defined, since it depends
on what primitive functions you are allowed to use in writing that formula
and therefore varies as a function of time.

Well, the field that I invented in 1965 and which I call algorithmic infor-
mation theory provides a possible solution for the problem noticed by Her-
mann Weyl. This theory defines a string of bits to be random, irreducible,
structureless, if it is algorithmically incompressible, that is to say, if the size
of the smallest computer program that produces that particular finite string
of bits as output is about the same size as the output it produces.

So we have added two ideas to Leibniz’s 1686 proposal. First, we measure
complexity in terms of bits of information, i.e., 0s and 1s. Second, instead of
mathematical equations, we use binary computer programs. Crucially, this
enables us to compare the complexity of a scientific theory (the computer
program) with the complexity of the data that it explains (the output of the
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computer program).
As Leibniz observed, for any data there is always a complicated theory,

which is a computer program that is the same size as the data. But that
doesn’t count. It is only a real theory if there is compression, if the program is
much smaller than its output, both measured in 0/1 bits. And if there can be
no proper theory, then the bit string is algorithmically random or irreducible.
That’s how you define a random string in algorithmic information theory.

I should point out that Leibniz had the two key ideas that you need to get
this modern definition of randomness, he just never made the connection. For
Leibniz produced one of the first calculating machines, which he displayed
at the Royal Society in London, and he was also one of the first people to
appreciate base-two binary arithmetic and the fact that everything can be
represented using only 0s and 1s. So, as Martin Davis argues in his book The
Universal Computer: The Road from Leibniz to Turing, Leibniz was the first
computer scientist, and he was also the first information theorist. I am sure
that Leibniz would have instantly understood and appreciated the modern
definition of randomness.

I should mention that A. N. Kolmogorov also proposed this definition of
randomness. He and I did this independently in 1965. Kolmogorov was at
the end of his career, and I was a teenager at the beginning of my own career
as a mathematician. As far as I know, neither of us was aware of the Leibniz
Discours. Let me compare Kolmogorov’s work in this area with my own. I
think that there are two key points to note.

Firstly, Kolmogorov never realised as I did that our original definition of
randomness was incorrect. It was a good initial idea but it was technically
flawed. Nine years after he and I independently proposed this definition, I
realised that it was important for the computer programs that are used in the
theory to be what I call “self-delimiting”; without this it is not even possible
to define my Ω number that I’ll discuss below. And there are other important
changes that I had to make in the original definitions that Kolmogorov never
realised were necessary.

Secondly, Kolmogorov thought that the key application of these ideas
was to be to obtain a new, algorithmic version of probability theory. It’s
true, that can be done, but it’s not very interesting, it’s too systematic a
re-reading of standard probability theory. In fact, every statement that is
true with probability one, merely becomes a statement that must necessarily
be true, for sure, for what are defined to be the random infinite sequences of
bits. Kolmogorov never realised as I did that the really important application
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of these ideas was the new light that they shed on Gödel’s incompleteness
theorem and on Turing’s halting problem.

So let me tell you about that now, and I’m sure that Turing would have
loved these ideas if his premature death had not prevented him from learn-
ing about them. I’ll tell you how my Ω number, which is defined to be the
halting probability of a binary program whose bits are generated using in-
dependent tosses of a fair coin, shows that in a sense there is randomness in
pure mathematics.

Instead of looking at individual instances of Turing’s famous halting prob-
lem, you just put all possible computer programs into a bag, shake it well,
pick out a program, and ask what is the probability that it will eventually
halt. That’s how you define the halting probability Ω, and for this to work
it’s important that the programs have to be self-delimiting. Otherwise the
halting probability diverges to infinity instead of being a real number be-
tween zero and one like all probabilities have to be. You’ll have to take my
word for this; I can’t explain this in detail here.

Anyway, once you do things properly you can define a halting probability
Ω between zero and one. The particular value of Ω that you get depends on
your choice of computer programming language, but its surprising properties
don’t depend on that choice.

And what is Ω’s most surprising property? It’s the fact that if you write Ω
in binary, the bits in its base-two expansion, the bits after the binary decimal
point, seem to have absolutely no mathematical structure. Even though Ω
has a simple mathematical definition, its individual bits seem completely
patternless. In fact, they are maximally unknowable, they have, so to speak,
maximum entropy. Even though they are precisely defined once you specify
the programming language, the individual bits are maximally unknowable,
maximally irreducible. They seem to be mathematical facts that are true for
no reason.

Why? Well, it is impossible to compress N bits of Ω into a computer
program that is substantially smaller than N bits in size (so that Ω satisfies
the definition of randomness of algorithmic information theory). But not
only does computation fail to compress Ω, reason fails as well. No formal
mathematical theory whose axioms have less than N bits of complexity can
enable us to determine N bits of Ω. In other words, essentially the only way
to be able to prove what the values of N bits of Ω are, is to assume what you
want to prove as an axiom, which of course is cheating and doesn’t really
count, because you are not using reasoning at all. However, in the case of Ω,
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that is the best that you can ever do!
So this is an area in which mathematical truth has absolutely no structure,

no structure that we will ever be able to appreciate in detail, only statistically.
The best way of thinking about the bits of Ω is to say that each bit has
probability 1/2 of being zero and probability 1/2 of being one, even though
each bit is mathematically determined.

So that’s where Turing’s halting problem has led us, to the discovery of
pure randomness in a part of mathematics. I think that Turing and Leibniz
would be delighted at this remarkable turn of events.

Now I’d like to make a few comments about what I see as the philosophical
implications of all of this. These are just my views, and they are quite
controversial. For example, even though a recent critical review of two of
my books in the Notices of the American Mathematical Society does not
claim that there are any technical mistakes in my work, the reviewer strongly
disagrees with my philosophical conclusions, and in fact he claims that my
work has no philosophical implications whatsoever. So these are just my
views, they are certainly not a community consensus, not at all.

My view is that Ω is a much more disagreeable instance of mathematical
incompleteness than the one found by Gödel in 1931, and that it therefore
forces our hand philosophically. In what way? Well, in my opinion, in a
quasi-empirical direction, which is a phrase coined by Imre Lakatos when
he was doing philosophy in England after leaving Hungary in 1956. In my
opinion, Ω suggests that even though math and physics are different, perhaps
they are not as different as most people think.

What do I mean by this? (And whether Lakatos would agree or not, I
cannot say.) I think that physics enables us to compress our experimental
data, and math enables us to compress the results of our computations, into
scientific or mathematical theories as the case may be. And I think that
neither math nor science gives absolute certainty; that is an asymptotic limit
unobtainable by mortal beings. And in this connection I should mention
the book (actually two books) just published by Borwein and Bailey on
experimental math.

To put it bluntly, if the incompleteness phenomenon discovered by Gödel
in 1931 is really serious—and I believe that Turing’s work and my own work
suggest that incompleteness is much more serious than people think—then
perhaps mathematics should be pursued somewhat more in the spirit of ex-
perimental science rather than always demanding proofs for everything. In
fact, that is what theoretical computer scientists are currently doing. Al-



246 Thinking about Gödel & Turing

though they may not want to admit it, and refer to P 6= NP as an unproved
hypothesis, that community is in fact behaving as if this were a new axiom,
the way that physicists would.

At any rate, that’s the way things seem to me. Perhaps by the time
we reach the centenary of Turing’s death this quasi-empirical view will have
made some headway, or perhaps instead these foreign ideas will be utterly
rejected by the immune system of the math community. For now they cer-
tainly are rejected. But the past fifty years have brought us many surprises,
and I expect that the next fifty years will too, a great many indeed.
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Complexity & Leibniz

Inaugural Académie Internationale de Philosophie des Sciences lec-
ture by Gregory Chaitin, Tenerife, September 2005.

Cum Deus calculat, fit mundus.
As God calculates, so the world is made.

—Leibniz

I am a mathematician and my field is algorithmic information theory
(AIT). AIT deals with program-size complexity or algorithmic information
content, which I regard more or less as the complexity of ideas. I think that
this has much greater philosophical significance than the much more popular
complexity concepts based on time or other measures of computational
effort or work.

Thank you very much for making me a member of the Académie Inter-
nationale de Philosophie des Sciences. And thanks for squeezing me into the
program and making space for me to give a short talk. Thank you very much
for asking me to give a talk even though I was not scheduled to be a speaker
at this meeting.

I’ve brought with me, hot off the press, a copy of my new book Meta
Math!. This book has been 40 years in the making. I’ve been working on
these questions for that long. In this brief talk, I’ll merely touch on topics
that are developed at much greater length in my book.

To start the ball rolling, let’s consider physics versus biology. Is mathe-
matics more like physics or is it more like biology? Well, in physics we have
simple equations, whereas biology is the domain of complexity. So nor-
mally people think that math is much closer to physics than it is to biology.
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After all, mathematics and physics have co-evolved, and not much mathe-
matics is used in biology. However, as I’ll explain in this talk, mathematics
contains infinite complexity and is therefore, in a fundamental sense, much
closer to biology than it is to physics!

How does AIT manage to show this surprising and unexpected connection
between mathematics and biology? AIT is at this point in time a fully devel-
oped elegant mathematical theory of program-size complexity. But for the
purposes of this discussion, we, as philosophers of science, do not really need
to know the mathematical details of AIT. Instead it suffices to understand
the basic concepts, which amazingly enough can be traced back to Leibniz.
Here are three texts by Leibniz that caught my eye as a mathematician.
They are, as far as I’m aware, his key texts on the concept of complexity:

1. Discours de métaphysique, Sections 5–6:
As Hermann Weyl put it, if an arbitrarily complicated law is per-
mitted, then the concept of “law” becomes vacuous, because there is
always a law!

2. Principles of Nature and Grace, Section 7:
Why is there something rather than nothing? For nothing is simpler
and easier than something! (This is a fascinating question, but it has
nothing to do with AIT, which is a mathematical theory, it has more
to do with physics and cosmology.)

3. The Monadology, Sections 33–35:
Proof consists of reducing complicated assertions to simpler ones
until assertions are reached that are self-evident or axioms. And going
beyond Leibniz, let me ask you to ponder what if this is impossible,
what if we have complicated irreducible truths?!

Having used Leibniz as an introduction, let me now leap into the heart
of AIT. One of the central topics in AIT is a number that I’ve discovered
that I like to call Ω. Briefly, Ω is the halting probability of a computer, it’s
equal to 2 raised to the power −K summed over the size in bits K of every
program that ever halts:

0 < Ω =
∑

p halts

2−(size in bits of p) < 1.
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Ω is important because it’s an oracle for Turing’s halting problem, it’s the
most compact, the most concise way of summarizing all the possible answers
to questions asking

“Does a particular computer program p ever halt?,”

as originally discussed by Turing in 1936. Ω is irredundant, the infinite stream
of base-two bits in its binary expansion are irreducible mathematical facts.
In other words, whether each bit in the base-two binary expansion of Ω is a
0 or a 1 is a mathematical fact that is true for no reason, no reason simpler
than just directly knowing the bits themselves. More precisely:

You need an N-bit mathematical theory—one with N bits of

axioms—in order to be able to determine N bits of Ω.

Please note that this information-theoretic limitative meta-theorem con-
tradicts Leibniz’s principle of sufficient of reason, which says that if
something is true then it has to be true for a reason. (Of course this applies
only to necessary not to contingent truths.) Those reasons as Leibniz
points out in The Monadology would necessarily have to be simpler than
the bits of Ω in order to be able to count as the reasons determining their
individual 0/1 values. But in the case of Ω, which is irreducible, no simpler
reasons are possible. In other words, the bits of Ω are logically as well as
computationally irreducible, that is why they refute the principle of suffi-
cient reason. Essentially the only way to establish what these bits are is to
add that information directly to your mathematical theory as a new axiom.
But anything can be established by adding it as a new axiom. That’s not
using reasoning, that’s not much of a proof, it’s a new assumption.

Furthermore, in toto the bits of Ω are infinitely complex, which establishes
the promised link between mathematics and biology.

To conclude, I would like to thank you all again for making me a member
of this Academy. I know I’ve rushed through this material very, very quickly.
But if you want to know more about all of this, please take a look at my
new book. In fact, it’s actually my système du monde, it’s my attempt to
formulate a complete speculative metaphysics. Meta Math! is a serious book
in spite of the frivolous-sounding title. For example, let me mention three
important topics in my book that I haven’t had time to discuss here:

1. My “quasi-empirical” view of mathematics.
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2. The ontological status of real numbers, which in my opinion are unreal.

3. The ontological status of discrete binary information, which in my opin-
ion is real even though it may not have a material basis (no physical
implementation or recording technology).

Thank you.
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The limits of reason

Ideas on complexity and randomness originally suggested by Gottfried W.
Leibniz in 1686, combined with modern information theory, imply that there
can never be a “theory of everything” for all of mathematics.

In 1956 Scientific American published an article by Ernest Nagel and James
R. Newman entitled “Gödel’s Proof.” Two years later the writers published
a book with the same title—a wonderful work that is still in print. I was a
child, not even a teenager, and I was obsessed by this little book. I remember
the thrill of discovering it in the New York Public Library. I used to carry it
around with me and try to explain it to other children.

It fascinated me because Kurt Gödel used mathematics to show that
mathematics itself has limitations. Gödel refuted the position of David
Hilbert, who about a century ago declared that there was a theory of ev-
erything for math, a finite set of principles from which one could mindlessly
deduce all mathematical truths by tediously following the rules of symbolic
mathematical logic. But Gödel demonstrated that mathematics contains
true statements that cannot be proved that way. His result is based on two
self-referential paradoxes: “This statement is false” and “This statement is
unprovable.” (For more on Gödel’s incompleteness theorem, see Box 1.)

My attempt to understand Gödel’s proof took over my life, and now half
a century later I have published a little book of my own. In some respects,
it is my own version of Nagel and Newman’s book, but it does not focus
on Gödel’s proof. The only things the two books have in common are their
small size and their goal of critiquing mathematical methods.

Unlike Gödel’s approach, mine is based on measuring information and
showing that some mathematical facts cannot be compressed into a theory
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because they are too complicated. This new approach suggests that what
Gödel discovered was just the tip of the iceberg: an infinite number of true
mathematical theorems exist that cannot be proved from any finite system
of axioms.

Complexity and Scientific Laws

My story begins in 1686 with Gottfried W. Leibniz’s philosophical essay Dis-
cours de métaphysique (Discourse on Metaphysics), in which he discusses
how one can distinguish between facts that can be described by some law
and those that are lawless, irregular facts. Leibniz’s very simple and pro-
found idea appears in section VI of the Discours, in which he essentially
states that a theory has to be simpler than the data it explains, otherwise
it does not explain anything. The concept of a law becomes vacuous if ar-
bitrarily high mathematical complexity is permitted, because then one can
always construct a law no matter how random and patternless the data re-
ally are. Conversely, if the only law that describes some data is an extremely
complicated one, then the data are actually lawless.

Today the notions of complexity and simplicity are put in precise quan-
titative terms by a modern branch of mathematics called algorithmic in-
formation theory. Ordinary information theory quantifies information by
asking how many bits are needed to encode the information. For example,
it takes one bit to encode a single yes/no answer. Algorithmic information,
in contrast, is defined by asking what size computer program is necessary to
generate the data. The minimum number of bits—what size string of zeros
and ones—needed to store the program is called the algorithmic information
content of the data. Thus, the infinite sequence of numbers 1, 2, 3, . . . has
very little algorithmic information; a very short computer program can gen-
erate all those numbers. It does not matter how long the program must take
to do the computation or how much memory it must use—just the length of
the program in bits counts. (I gloss over the question of what programming
language is used to write the program—for a rigorous definition, the language
would have to be specified precisely. Different programming languages would
result in somewhat different values of algorithmic information content.)

To take another example, the number π, 3.14159. . . , also has only a little
algorithmic information content, because a relatively short algorithm can be
programmed into a computer to compute digit after digit. In contrast, a



The limits of reason 253

random number with a mere million digits, say 1.341285 . . . 64, has a much
larger amount of algorithmic information. Because the number lacks a defin-
ing pattern, the shortest program for outputting it will be about as long as
the number itself:

Begin

Print "1.341285...64"

End

(All the digits represented by the ellipsis are included in the program.) No
smaller program can calculate that sequence of digits. In other words, such
digit streams are incompressible, they have no redundancy; the best that one
can do is transmit them directly. They are called irreducible or algorithmi-
cally random.

How do such ideas relate to scientific laws and facts? The basic insight
is a software view of science: a scientific theory is like a computer program
that predicts our observations, the experimental data. Two fundamental
principles inform this viewpoint. First, as William of Occam noted, given two
theories that explain the data, the simpler theory is to be preferred (Occam’s
razor). That is, the smallest program that calculates the observations is the
best theory. Second is Leibniz’s insight, cast in modern terms—if a theory
is the same size in bits as the data it explains, then it is worthless, because
even the most random of data has a theory of that size. A useful theory
is a compression of the data; comprehension is compression. You compress
things into computer programs, into concise algorithmic descriptions. The
simpler the theory, the better you understand something.

Sufficient Reason

Despite living 250 years before the invention of the computer program, Leib-
niz came very close to the modern idea of algorithmic information. He had
all the key elements. He just never connected them. He knew that everything
can be represented with binary information, he built one of the first calcu-
lating machines, he appreciated the power of computation, and he discussed
complexity and randomness.

If Leibniz had put all this together, he might have questioned one of the
key pillars of his philosophy, namely, the principle of sufficient reason—that
everything happens for a reason. Furthermore, if something is true, it must
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be true for a reason. That may be hard to believe sometimes, in the confusion
and chaos of daily life, in the contingent ebb and flow of human history. But
even if we cannot always see a reason (perhaps because the chain of reasoning
is long and subtle), Leibniz asserted, God can see the reason. It is there! In
that, he agreed with the ancient Greeks, who originated the idea.

Mathematicians certainly believe in reason and in Leibniz’s principle of
sufficient reason, because they always try to prove everything. No matter
how much evidence there is for a theorem, such as millions of demonstrated
examples, mathematicians demand a proof of the general case. Nothing less
will satisfy them.

And here is where the concept of algorithmic information can make its
surprising contribution to the philosophical discussion of the origins and lim-
its of knowledge. It reveals that certain mathematical facts are true for no
reason, a discovery that flies in the face of the principle of sufficient reason.

Indeed, as I will show later, it turns out that an infinite number of math-
ematical facts are irreducible, which means no theory explains why they are
true. These facts are not just computationally irreducible, they are logically
irreducible. The only way to “prove” such facts is to assume them directly
as new axioms, without using reasoning at all.

The concept of an “axiom” is closely related to the idea of logical irre-
ducibility. Axioms are mathematical facts that we take as self-evident and
do not try to prove from simpler principles. All formal mathematical the-
ories start with axioms and then deduce the consequences of these axioms,
which are called its theorems. That is how Euclid did things in Alexandria
two millennia ago, and his treatise on geometry is the classical model for
mathematical exposition.

In ancient Greece, if you wanted to convince your fellow citizens to vote
with you on some issue, you had to reason with them—which I guess is how
the Greeks came up with the idea that in mathematics you have to prove
things rather than just discover them experimentally. In contrast, previous
cultures in Mesopotamia and Egypt apparently relied on experiment. Using
reason has certainly been an extremely fruitful approach, leading to mod-
ern mathematics and mathematical physics and all that goes with them,
including the technology for building that highly logical and mathematical
machine, the computer.

So am I saying that this approach that science and mathematics has been
following for more than two millennia crashes and burns? Yes, in a sense I
am. My counterexample illustrating the limited power of logic and reason,
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my source of an infinite stream of unprovable mathematical facts, is the
number that I call Ω.

The Number Omega

The first step on the road to Ω came in a famous paper published precisely 250
years after Leibniz’s essay. In a 1936 issue of the Proceedings of the London
Mathematical Society, Alan M. Turing began the computer age by presenting
a mathematical model of a simple, general-purpose, programmable digital
computer. He then asked, Can we determine whether or not a computer
program will ever halt? This is Turing’s famous halting problem.

Of course, by running a program you can eventually discover that it halts,
if it halts. The problem, and it is an extremely fundamental one, is to decide
when to give up on a program that does not halt. A great many special cases
can be solved, but Turing showed that a general solution is impossible. No
algorithm, no mathematical theory, can ever tell us which programs will halt
and which will not. (For a modern proof of Turing’s thesis, see Box 2.) By
the way, when I say “program,” in modern terms I mean the concatenation
of the computer program and the data to be read in by the program.

The next step on the path to the number Ω is to consider the ensemble
of all possible programs. Does a program chosen at random ever halt? The
probability of having that happen is my Ω number. First, I must specify
how to pick a program at random. A program is simply a series of bits, so
flip a coin to determine the value of each bit. How many bits long should
the program be? Keep flipping the coin so long as the computer is asking
for another bit of input. Ω is just the probability that the machine will
eventually come to a halt when supplied with a stream of random bits in this
fashion. (The precise numerical value of Ω depends on the choice of computer
programming language, but Ω’s surprising properties are not affected by this
choice. And once you have chosen a language, Ω has a definite value, just
like π or the number 3.)

Being a probability, Ω has to be greater than 0 and less than 1, because
some programs halt and some do not. Imagine writing Ω out in binary. You
would get something like 0.1110100. . . These bits after the decimal point
form an irreducible stream. They are our irreducible mathematical facts
(each fact being whether the bit is a 0 or a 1).

Ω can be defined as an infinite sum, and each N -bit program that halts
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contributes precisely 1/2N to the sum [see Box 3]. In other words, each N -bit
program that halts adds a 1 to the Nth bit in the binary expansion of Ω.
Add up all the bits for all programs that halt, and you would get the precise
value of Ω. This description may make it sound like you can calculate Ω
accurately, just as if it were

√
2 or the number π. Not so—Ω is perfectly

well defined and it is a specific number, but it is impossible to compute in
its entirety.

We can be sure that Ω cannot be computed because knowing Ω would
let us solve Turing’s halting problem, but we know that this problem is
unsolvable. More specifically, knowing the first N bits of Ω would enable
you to decide whether or not each program up to N bits in size ever halts
[see Box 4]. From this it follows that you need at least an N -bit program to
calculate N bits of Ω.

Note that I am not saying that it is impossible to compute some digits
of Ω. For example, if we knew that computer programs 0, 10 and 110 all
halt, then we would know that the first digits of Ω were 0.111. The point is
that the first N digits of Ω cannot be computed using a program significantly
shorter than N bits long.

Most important, Ω supplies us with an infinite number of these irreducible
bits. Given any finite program, no matter how many billions of bits long, we
have an infinite number of bits that the program cannot compute. Given any
finite set of axioms, we have an infinite number of truths that are unprovable
in that system.

Because Ω is irreducible, we can immediately conclude that a theory of
everything for all of mathematics cannot exist. An infinite number of bits
of Ω constitute mathematical facts (whether each bit is a 0 or a 1) that
cannot be derived from any principles simpler than the string of bits itself.
Mathematics therefore has infinite complexity, whereas any individual theory
of everything would have only finite complexity and could not capture all the
richness of the full world of mathematical truth.

This conclusion does not mean that proofs are no good, and I am certainly
not against reason. Just because some things are irreducible does not mean
we should give up using reasoning. Irreducible principles—axioms—have
always been a part of mathematics. Ω just shows that a lot more of them
are out there than people suspected.

So perhaps mathematicians should not try to prove everything. Some-
times they should just add new axioms. That is what you have got to do
if you are faced with irreducible facts. The problem is realizing that they
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are irreducible! In a way, saying something is irreducible is giving up, saying
that it cannot ever be proved. Mathematicians would rather die than do
that, in sharp contrast with their physicist colleagues, who are happy to be
pragmatic and to use plausible reasoning instead of rigorous proof. Physi-
cists are willing to add new principles, new scientific laws, to understand new
domains of experience. This raises what I think is an extremely interesting
question: Is mathematics like physics?

Mathematics and Physics

The traditional view is that mathematics and physics are quite different.
Physics describes the universe and depends on experiment and observation.
The particular laws that govern our universe—whether Newton’s laws of mo-
tion or the Standard Model of particle physics—must be determined empir-
ically and then asserted like axioms that cannot be logically proved, merely
verified.

Mathematics, in contrast, is somehow independent of the universe. Re-
sults and theorems, such as the properties of the integers and real numbers,
do not depend in any way on the particular nature of reality in which we find
ourselves. Mathematical truths would be true in any universe.

Yet both fields are similar. In physics, and indeed in science generally,
scientists compress their experimental observations into scientific laws. They
then show how their observations can be deduced from these laws. In math-
ematics, too, something like this happens—mathematicians compress their
computational experiments into mathematical axioms, and they then show
how to deduce theorems from these axioms.

If Hilbert had been right, mathematics would be a closed system, without
room for new ideas. There would be a static, closed theory of everything
for all of mathematics, and this would be like a dictatorship. In fact, for
mathematics to progress you actually need new ideas and plenty of room for
creativity. It does not suffice to grind away, mechanically deducing all the
possible consequences of a fixed number of basic principles. I much prefer an
open system. I do not like rigid, authoritarian ways of thinking.

Another person who thought mathematics is like physics was Imre
Lakatos, who left Hungary in 1956 and later worked on philosophy of science
in England. There Lakatos came up with a great word, “quasi-empirical,”
which means that even though there are no true experiments that can be
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carried out in mathematics, something similar does take place. For example,
the Goldbach conjecture states that any even number greater than 2 can be
expressed as the sum of two prime numbers. This conjecture was arrived at
experimentally, by noting empirically that it was true for every even number
that anyone cared to examine. The conjecture has not yet been proved, but
it has been verified up to 1014.

I think that mathematics is quasi-empirical. In other words, I feel that
mathematics is different from physics (which is truly empirical) but perhaps
not as different as most people think.

I have lived in the worlds of both mathematics and physics, and I never
thought there was such a big difference between these two fields. It is a matter
of degree, of emphasis, not an absolute difference. After all, mathematics
and physics coevolved. Mathematicians should not isolate themselves. They
should not cut themselves off from rich sources of new ideas.

New Mathematical Axioms

The idea of choosing to add more axioms is not an alien one to mathematics.
A well-known example is the parallel postulate in Euclidean geometry: given
a line and a point not on the line, there is exactly one line that can be
drawn through the point that never intersects the original line. For centuries
geometers wondered whether that result could be proved using the rest of
Euclid’s axioms. It could not. Finally, mathematicians realized that they
could substitute different axioms in place of the Euclidean version, thereby
producing the non-Euclidean geometries of curved spaces, such as the surface
of a sphere or of a saddle.

Other examples are the law of the excluded middle in logic and the axiom
of choice in set theory. Most mathematicians are happy to make use of those
axioms in their proofs, although others do not, exploring instead so-called
intuitionist logic or constructivist mathematics. Mathematics is not a single
monolithic structure of absolute truth!

Another very interesting axiom may be the “P 6= NP” conjecture. P
and NP are names for classes of problems. An NP problem is one for which
a proposed solution can be verified quickly. For example, for the problem
“find the factors of 8,633,” one can quickly verify the proposed solution “97
and 89” by multiplying those two numbers. (There is a technical definition of
“quickly,” but those details are not important here.) A P problem is one that
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can be solved quickly even without being given the solution. The question
is—and no one knows the answer—can every NP problem be solved quickly?
(Is there a quick way to find the factors of 8,633?) That is, is the class P
the same as the class NP? This problem is one of the Clay Millennium Prize
Problems for which a reward of $1 million is on offer.

Computer scientists widely believe that P 6= NP, but no proof is known.
One could say that a lot of quasi-empirical evidence points to P not being
equal to NP. Should P 6= NP be adopted as an axiom, then? In effect, this
is what the computer science community has done. Closely related to this
issue is the security of certain cryptographic systems used throughout the
world. The systems are believed to be invulnerable to being cracked, but no
one can prove it.

Experimental Mathematics

Another area of similarity between mathematics and physics is experimental
mathematics: the discovery of new mathematical results by looking at many
examples using a computer. Whereas this approach is not as persuasive as a
short proof, it can be more convincing than a long and extremely complicated
proof, and for some purposes it is quite sufficient.

In the past, this approach was defended with great vigor by George Pólya
and Lakatos, believers in heuristic reasoning and in the quasi-empirical na-
ture of mathematics. This methodology is also practiced and justified in
Stephen Wolfram’s A New Kind of Science (2002).

Extensive computer calculations can be extremely persuasive, but do they
render proof unnecessary? Yes and no. In fact, they provide a different
kind of evidence. In important situations, I would argue that both kinds
of evidence are required, as proofs may be flawed, and conversely computer
searches may have the bad luck to stop just before encountering a counterex-
ample that disproves the conjectured result.

All these issues are intriguing but far from resolved. It is now 2006, 50
years after this magazine published its article on Gödel’s proof, and we still
do not know how serious incompleteness is. We do not know if incompleteness
is telling us that mathematics should be done somewhat differently. Maybe
50 years from now we will know the answer.
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Overview/Irreducible Complexity

• Kurt Gödel demonstrated that mathematics is necessarily incomplete,
containing true statements that cannot be formally proved. A remark-
able number known as Ω reveals even greater incompleteness by pro-
viding an infinite number of theorems that cannot be proved by any
finite system of axioms. A “theory of everything” for mathematics is
therefore impossible.

• Ω is perfectly well defined [see Box 3] and has a definite value, yet it
cannot be computed by any finite computer program.

• Ω’s properties suggest that mathematicians should be more willing to
postulate new axioms, similar to the way that physicists must evalu-
ate experimental results and assert basic laws that cannot be proved
logically.

• The results related to Ω are grounded in the concept of algorithmic
information. Gottfried W. Leibniz anticipated many of the features of
algorithmic information theory more than 300 years ago.

Box 1. What Is Gödel’s Proof?

Kurt Gödel’s incompleteness theorem demonstrates that mathematics con-
tains true statements that cannot be proved. His proof achieves this by
constructing paradoxical mathematical statements. To see how the proof
works, begin by considering the liar’s paradox: “This statement is false.”
This statement is true if and only if it is false, and therefore it is neither true
nor false.

Now let’s consider “This statement is unprovable.” If it is provable, then
we are proving a falsehood, which is extremely unpleasant and is generally
assumed to be impossible. The only alternative left is that this statement is
unprovable. Therefore, it is in fact both true and unprovable. Our system of
reasoning is incomplete, because some truths are unprovable.

Gödel’s proof assigns to each possible mathematical statement a so-called
Gödel number. These numbers provide a way to talk about properties of the
statements by talking about the numerical properties of very large integers.
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Gödel uses his numbers to construct self-referential statements analogous to
the plain English paradox “This statement is unprovable.”

Strictly speaking, his proof does not show that mathematics is incom-
plete. More precisely, it shows that individual formal axiomatic mathemat-
ical theories fail to prove the true numerical statement “This statement is
unprovable.” These theories therefore cannot be “theories of everything” for
mathematics.

The key question left unanswered by Gödel: Is this an isolated phe-
nomenon, or are there many important mathematical truths that are
unprovable?—G.C.

Box 2. Why Is Turing’s Halting Problem Un-

solvable?

A key step in showing that incompleteness is natural and pervasive was
taken by Alan M. Turing in 1936, when he demonstrated that there can
be no general procedure to decide if a self-contained computer program will
eventually halt.

To demonstrate this result, let us assume the opposite of what we want to
prove is true. Namely, assume that there is a general procedure H that can
decide whether any given computer program will halt. From this assumption
we shall derive a contradiction. This is what is called a reductio ad absurdum
proof.

So assuming the existence of H, we can construct the following program
P that uses H as a subroutine. The program P knows its own size in bits
(N)—there is certainly room in P for it to contain the number N—and then
using H, which P contains, P takes a look at all programs up to 100 times
N bits in size to see which halt and which do not. Then P runs all the ones
that halt to determine the output that they produce. This will be precisely
the set of all digital objects with complexity up to 100 times N . Finally, our
program P outputs the smallest positive integer not in this set, and then P
itself halts.

So P halts, P ’s size is N bits, and P ’s output is an integer that cannot
be produced by a program whose size is less than or equal to 100 times N
bits. But P has just produced this integer as its output, and it is much too
small to be able to do this, because P ’s size is only N bits, which is much
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less than 100 times N . Contradiction! Therefore, a general procedure H for
deciding whether or not programs ever halt cannot exist, for if it did then
we could actually construct this paradoxical program P using H.

Finally, Turing points out that if there were a theory of everything that
always enables you to prove that an individual program halts or to prove that
it never does, whichever is the case, then by systematically running through
all possible proofs you could eventually decide whether individual programs
ever halt. In other words, we could use this theory to construct H, which we
have just shown cannot exist. Therefore there is no theory of everything for
the halting problem.

Similar reasoning shows that no program that is substantially shorter
than N bits long can solve the Turing halting problem for all programs up
to N bits long.—G.C.

Box 3. How Omega Is Defined

To see how the value of the number Ω is defined, look at a simplified example.
Suppose that the computer we are dealing with has only three programs that
halt, and they are the bit strings 110, 11100 and 11110. These programs are,
respectively, 3, 5 and 5 bits in size. If we are choosing programs at random by
flipping a coin for each bit, the probability of getting each of them by chance
is precisely 1/23, 1/25 and 1/25, because each particular bit has probability
1/2. So the value of Ω (the halting probability) for this particular computer
is given by the equation:

Ω = 1/23 + 1/25 + 1/25

= .001 + .00001 + .00001

= .00110

This binary number is the probability of getting one of the three halting
programs by chance. Thus, it is the probability that our computer will halt.
Note that because program 110 halts we do not consider any programs that
start with 110 and are larger than three bits—for example, we do not consider
1100 or 1101. That is, we do not add terms of .0001 to the sum for each
of those programs. We regard all the longer programs, 1100 and so on, as
being included in the halting of 110. Another way of saying this is that
the programs are self-delimiting; when they halt, they stop asking for more
bits.—G.C.
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Box 4. Why Is Omega Incompressible?

I wish to demonstrate that Ω is incompressible—that one cannot use a pro-
gram substantially shorter than N bits long to compute the first N bits of Ω.
The demonstration will involve a careful combination of facts about Ω and
the Turing halting problem that it is so intimately related to. Specifically, I
will use the fact that the halting problem for programs up to length N bits
cannot be solved by a program that is itself shorter than N bits (see Box 2).

My strategy for demonstrating that Ω is incompressible is to show that
having the first N bits of Ω would tell me how to solve the Turing halting
problem for programs up to length N bits. It follows from that conclusion
that no program shorter than N bits can compute the first N bits of Ω. (If
such a program existed, I could use it to compute the first N bits of Ω and
then use those bits to solve Turing’s problem up to N bits—a task that is
impossible for such a short program.)

Now let us see how knowing N bits of Ω would enable me to solve the
halting problem—to determine which programs halt—for all programs up to
N bits in size. Do this by performing a computation in stages. Use the
integer K to label which stage we are at: K = 1, 2, 3, . . .

At stage K, run every program up to K bits in size for K seconds. Then
compute a halting probability, which we will call ΩK , based on all the pro-
grams that halt by stage K. ΩK will be less than Ω because it is based on
only a subset of all the programs that halt eventually, whereas Ω is based on
all such programs.

As K increases, the value of ΩK will get closer and closer to the actual
value of Ω. As it gets closer to Ω’s actual value, more and more of ΩK ’s first
bits will be correct—that is, the same as the corresponding bits of Ω.

And as soon as the first N bits are correct, you know that you have
encountered every program up to N bits in size that will ever halt. (If there
were another such N -bit program, at some later-stage K that program would
halt, which would increase the value of ΩK to be greater than Ω, which is
impossible.)

So we can use the first N bits of Ω to solve the halting problem for all
programs up to N bits in size. Now suppose we could compute the first N
bits of Ω with a program substantially shorter than N bits long. We could
then combine that program with the one for carrying out the ΩK algorithm,
to produce a program shorter than N bits that solves the Turing halting
problem up to programs of length N bits.
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But, as stated up front, we know that no such program exists. Conse-
quently, the first N bits of Ω must require a program that is almost N bits
long to compute them. That is good enough to call Ω incompressible or
irreducible. (A compression from N bits to almost N bits is not significant
for large N .)—G.C.
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Gödel’s Proof. Revised edition. E. Nagel, J. R. Newman and D. R. Hofstadter.

New York University Press, 2002.

Mathematics by Experiment: Plausible Reasoning in the 21st Century.

J. Borwein and D. Bailey. A. K. Peters, 2004.
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How real are real numbers?

We discuss mathematical and physical arguments against continuity and in
favor of discreteness, with particular emphasis on the ideas of Emile Borel
(1871–1956).

1. Introduction

Experimental physicists know how difficult accurate measurements are. No
physical quantity has ever been measured with more than 15 or so digits of
accuracy. Mathematicians, however, freely fantasize with infinite-precision
real numbers. Nevertheless within pure math the notion of a real number is
extremely problematic.

We’ll compare and contrast two parallel historical episodes:

1. the diagonal and probabilistic proofs that reals are uncountable, and

2. the diagonal and probabilistic proofs that there are uncomputable reals.

Both case histories open chasms beneath the feet of mathematicians. In the
first case these are the famous Jules Richard paradox (1905), Emile Borel’s
know-it-all real (1927), and the fact that most reals are unnameable, which
was the subject of [Borel, 1952], his last book, published when Borel was 81
years old [James, 2002].

In the second case the frightening features are the unsolvability of the halt-
ing problem (Turing, 1936), the fact that most reals are uncomputable, and
last but not least, the halting probability Ω, which is irreducibly complex (al-
gorithmically random), maximally unknowable, and dramatically illustrates
the limits of reason [Chaitin, 2005].

267



268 Thinking about Gödel & Turing

In addition to this mathematical soul-searching regarding real numbers,
some physicists are beginning to suspect that the physical universe is actually
discrete [Smolin, 2000] and perhaps even a giant computer [Fredkin, 2004,
Wolfram, 2002]. It will be interesting to see how far this so-called “digital
philosophy,” “digital physics” viewpoint can be taken.

Nota bene: To simplify matters, throughout this paper we restrict our-
selves to reals in the interval between 0 and 1. We can therefore identify a
real number with the infinite sequence of digits or bits after its decimal or
binary point.

2. Reactions to Cantor’s Theory of Sets: The

Trauma of the Paradoxes of Set Theory

Cantor’s theory of infinite sets, developed in the late 1800’s, was a decisive
advance for mathematics, but it provoked raging controversies and abounded
in paradox. One of the first books by the distinguished French mathematician
Emile Borel (1871–1956)1 was his Leçons sur la Théorie des Fonctions [Borel,
1950], originally published in 1898, and subtitled Principes de la théorie des
ensembles en vue des applications à la théorie des fonctions.

This was one of the first books promoting Cantor’s theory of sets (ensem-
bles), but Borel had serious reservations about certain aspects of Cantor’s
theory, which Borel kept adding to later editions of his book as new appen-
dices. The final version of Borel’s book, which was published by Gauthier-
Villars in 1950, has been kept in print by Gabay. That’s the one that I have,
and this book is a treasure trove of interesting mathematical, philosophical
and historical material.

One of Cantor’s crucial ideas is the distinction between the denumerable
or countable infinite sets, such as the positive integers or the rational num-
bers, and the much larger nondenumerable or uncountable infinite sets, such
as the real numbers or the points in the plane or in space. Borel had construc-
tivist leanings, and as we shall see he felt comfortable with denumerable sets,
but very uncomfortable with nondenumerable ones. And one of Cantor’s key
results that is discussed by Borel is Cantor’s proof that the set of reals is
nondenumerable, i.e., cannot be placed in a one-to-one correspondence with
the positive integers. I’ll prove this now in two different ways.

1For a biography of Borel, see [James, 2002].
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2.1. Cantor’s diagonal argument: Reals are uncount-

able/nondenumerable

Cantor’s proof of this is a reductio ad absurdum.
Suppose on the contrary that we have managed to list all the reals, with

a first real, a second real, etc. Let d(i, j) be the jth digit after the decimal
point of the ith real in the list. Consider the real r between 0 and 1 whose
kth digit is defined to be 4 if d(k, k) = 3, and 3 otherwise. In other words,
we form r by taking all the decimal digits on the diagonal of the list of all
reals, and then changing each of these diagonal digits.

The real r differs from the ith real in this presumably complete list of
all reals, because their ith digits are different. Therefore this list cannot be
complete, and the set of reals is uncountable. Q.E.D.

Nota bene: The most delicate point in this proof is to avoid having r end
in an infinity of 0’s or an infinity of 9’s, to make sure that having its kth
digit differ from the kth digit of the kth real in the list suffices to guarantee
that r is not equal to the kth real in the list. This is how we get around the
fact that some reals can have more than one decimal representation.

2.2. Alternate proof: Any countable/denumerable set
of reals has measure zero

Now here is a radically different proof that the reals are uncountable. This
proof, which I learned in [Courant & Robbins, 1947], was perhaps or at least
could have been originally discovered by Borel, because it uses the math-
ematical notion of measure, which was invented by Borel and later perfected
by his Ecole Normale Supérieure student Lebesgue, who now usually gets all
the credit.

Measure theory and probability theory are really one and the same—
it’s just different names for the same concepts. And Borel was interested in
both the technical mathematical aspects and in the many important practical
applications, which Borel discussed in many of his books.

So let’s suppose we are given a real ε > 0, which we shall later make
arbitrarily small. Consider again that supposedly complete enumeration of
all the reals, a first one, a second one, etc. Cover each real with an interval,
and take the interval for covering the ith real in the list to be of length ε/2i.
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The total length of all the covering intervals is therefore

ε

2
+

ε

4
+ · · · ε

2i
+ · · · = ε,

which we can make as small as we wish.
In other words, any countable set of reals has measure zero and is a so-

called null set, i.e., has zero probability and is an infinitesimal subset of the
set of all reals. Q.E.D.

We have now seen the two fundamentally different ways of showing that
the reals are infinitely more numerous than the positive integers, i.e., that the
set of all reals is a higher-order infinity than the set of all positive integers.

So far, so good! But now, let’s show what a minefield this is.

2.3. Richard’s paradox: Diagonalize over all nameable
reals −→ a nameable, unnameable real

The problem is that the set of reals is uncountable, but the set of all possible
texts in English or French is countable, and so is the set of all possible
mathematical definitions or the set of all possible mathematical questions,
since these also have to be formulated within a language, yielding at most
a denumerable infinity of possibilities. So there are too many reals, and not
enough texts.

The first person to notice this difficulty was Jules Richard in 1905, and the
manner in which he formulated the problem is now called Richard’s paradox.

Here is how it goes. Since all possible texts in French (Richard was
French) can be listed or enumerated, a first text, a second one, etc.,2 you
can diagonalize over all the reals that can be defined or named in French and
produce a real number that cannot be defined and is therefore unnameable.
However, we’ve just indicated how to define it or name it!

In other words, Richard’s paradoxical real differs from every real that
is definable in French, but nevertheless can itself be defined in French by
specifying in detail how to apply Cantor’s diagonal method to the list of all
possible mathematical definitions for individual real numbers in French!

How very embarrassing! Here is a real number that is simultaneously
nameable yet at the same time it cannot be named using any text in French.

2List all possible texts in size order, and within texts that are the same size, in alpha-
betical order.
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2.4. Borel’s know-it-all number

The idea of being able to list or enumerate all possible texts in a language
is an extremely powerful one, and it was exploited by Borel in 1927 [Tasić,
2001, Borel, 1950] in order to define a real number that can answer every
possible yes/no question!

You simply write this real in binary, and use the nth bit of its binary
expansion to answer the nth question in French.

Borel speaks about this real number ironically. He insinuates that it’s
illegitimate, unnatural, artificial, and that it’s an “unreal” real number, one
that there is no reason to believe in.

Richard’s paradox and Borel’s number are discussed in [Borel, 1950] on
the pages given in the list of references, but the next paradox was considered
so important by Borel that he devoted an entire book to it. In fact, this was
Borel’s last book [Borel, 1952] and it was published, as I said, when Borel
was 81 years old. I think that when Borel wrote this work he must have
been thinking about his legacy, since this was to be his final book-length
mathematical statement. The Chinese, I believe, place special value on an
artist’s final work, considering that in some sense it contains or captures that
artist’s soul.3 If so, [Borel, 1952] is Borel’s “soul work.”

Unfortunately I have not been able to obtain this crucial book. But based
on a number of remarks by other people and based on what I do know about
Borel’s methods and concerns, I am fairly confident that I know what [Borel,
1952] contains. Here it is:4

2.5. Borel’s “inaccessible numbers:” Most reals are un-
nameable, with probability one

Borel’s often-expressed credo is that a real number is really real only if it
can be expressed, only if it can be uniquely defined, using a finite number
of words.5 It’s only real if it can be named or specified as an individual
mathematical object. And in order to do this we must necessarily employ
some particular language, e.g., French. Whatever the choice of language,

3I certainly feel that way about Bach’s Die Kunst der Fuge and about Bergman’s Fanny

och Alexander.
4Note added in proof. In fact, this is on page 21 of [Borel, 1952].
5See for example [Borel, 1960].
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there will only be a countable infinity of possible texts, since these can be
listed in size order, and among texts of the same size, in alphabetical order.

This has the devastating consequence that there are only a denumerable
infinitely of such “accessible” reals, and therefore, as we saw in Sec. 2.2, the
set of accessible reals has measure zero.

So, in Borel’s view, most reals, with probability one, are mathematical
fantasies, because there is no way to specify them uniquely. Most reals are
inaccessible to us, and will never, ever, be picked out as individuals using any
conceivable mathematical tool, because whatever these tools may be they
could always be explained in French, and therefore can only “individualize”
a countable infinity of reals, a set of reals of measure zero, an infinitesimal
subset of the set of all possible reals.

Pick a real at random, and the probability is zero that it’s accessible—
the probability is zero that it will ever be accessible to us as an individual
mathematical object.

3. History Repeats Itself: Computability The-

ory and Its Limitative Meta-Theorems

That was an exciting chapter in the history of ideas, wasn’t it! But history
moves on, and the collective attention of the human species shifts elsewhere,
like a person who is examining a huge painting.

What completely transformed the situation is the idea of the computer,
the computer as a mathematical concept, not a practical device, although
the current ubiquity of computers doesn’t hurt. It is, as usual, unfair to
single out an individual, but in my opinion the crucial event was the 1936
paper by Turing On computable numbers, and here Turing is in fact referring
to computable real numbers. You can find this paper at the beginning of the
collection [Copeland, 2004], and at the end of this book there happens to be
a much more understandable paper by Turing explaining just the key idea.6

History now repeats itself and recycles the ideas that were presented in
Sec. 2. This time the texts will be written in artificial formal languages, they
will be computer programs or proofs in a formal axiomatic math theory. They
won’t be texts that are written in a natural language like English or French.

6It’s Turing’s 1954 Penguin Science News paper on Solvable and unsolvable problems,

which I copied out into a notebook by hand when I was a teenager.
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And this time we won’t get paradoxes, instead we’ll get meta-theorems, we’ll
get limitative theorems, ones that show the limits of computation or the
limitations of formal math theories. So in their current reincarnation, which
we’ll now present, the ideas that we saw in Sec. 2 definitely become much
sharper and clearer.

Formal languages avoid the paradoxes by removing the ambiguities of
natural languages. The paradoxes are eliminated, but there is a price. Para-
doxical natural languages are evolving open systems. Artificial languages
are static closed systems subject to limitative meta-theorems. You avoid the
paradoxes, but you are left with a corpse!

The following tableau summarizes the transformation (paradigm shift):

• Natural languages −→ Formal languages.

• Something is true −→ Something is provable within a particular formal axiomatic
math theory.7

• Naming a real number −→ Computing a real number digit by digit.

• Number of words required to name something8 −→ Size in bits of the smallest
program for computing something (program-size complexity).9

• List of all possible texts in French −→ List of all possible programs, or
List of all possible texts in French −→ List of all possible proofs.10

• Paradoxes −→ Limitative meta-theorems.

Now let’s do Sec. 2 all over again. First we’ll examine two different
proofs that there are uncomputable reals: a diagonal argument proof, and
a measure-theoretic proof. Then we’ll show how the Richard paradox yields
the unsolvability of the halting problem. Finally we’ll discuss the halting
probability Ω, which plays roughly the same role here that Borel’s know-it-
all real did in Sec. 2.

7This part of the paradigm shift is particularly important in the story of how Gödel
converted the paradox of “this statement is false” into the proof of his famous 1931 in-
completeness theorem, which is based on “this statement is unprovable.” This changes
something that’s true if and only if it’s false, into something that’s true if and only if it’s
unprovable, thus transforming a paradox into a meta-theorem.

8See [Borel, 1960].
9See [Chaitin, 2005].

10The idea of systematically combining concepts in every possible way can be traced
through Leibniz back to Ramon Llull (13th century), and is ridiculed by Swift in Gulliver’s

Travels (Part III, Chapter 5, on the Academy of Lagado).
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3.1. Turing diagonalizes over all computable reals −→
uncomputable real

The set of all possible computer programs is countable, therefore the set of all
computable reals is countable, and diagonalizing over the computable reals
immediately yields an uncomputable real. Q.E.D.

Let’s do it again more carefully.
Make a list of all possible computer programs. Order the programs by

their size, and within those of the same size, order them alphabetically. The
easiest thing to do is to include all the possible character strings that can be
formed from the finite alphabet of the programming language, even though
most of these will be syntactically invalid programs.

Here’s how we define the uncomputable diagonal number 0 < r < 1.
Consider the kth program in our list. If it is syntactically invalid, or if the
kth program never outputs a kth digit, or if the kth digit output by the kth
program isn’t a 3, pick 3 as the kth digit of r. Otherwise, if the kth digit
output by the kth program is a 3, pick 4 as the kth digit of r.

This r cannot be computable, because its kth digit is different from the
kth digit of the real number that is computed by the kth program, if there
is one. Therefore there are uncomputable reals, real numbers that cannot be
calculated digit by digit by any computer program.

3.2. Alternate proof: Reals are uncomputable with
probability one

In a nutshell, the set of computer programs is countable, therefore the set of
all computable reals is countable, and therefore, as in Sec. 2.2, of measure
zero. Q.E.D.

More slowly, consider the kth computer program again. If it is syntacti-
cally invalid or fails to compute a real number, let’s skip it. If it does compute
a real, cover that real with an interval of length ε/2k. Then the total length
of the covering is less than ε, which can be made arbitrarily small, and the
computable reals are a null set.

In other words, the probability of a real’s being computable is zero, and
the probability that it’s uncomputable is one.11

11Who should be credited for this measure-theoretic proof that there are uncomputable
reals? I have no idea. It seems to have always been part of my mental baggage.
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What if we allow arbitrary, highly nonconstructive means to specify par-
ticular reals, not just computer programs? The argument of Sec. 2.5 carries
over immediately within our new framework in which we consider formal
languages instead of natural languages. Most reals remain unnameable, with
probability one.12

3.3. Turing’s halting problem: No algorithm settles
halting, no formal axiomatic math theory settles halting

Richard’s paradox names an unnameable real. More precisely, it diagonalizes
over all reals uniquely specified by French texts to produce a French text
specifying an unspecifiable real. What becomes of this in our new context in
which we name reals by computing them?

Let’s go back to Turing’s use of the diagonal argument in Sec. 3.1. In Sec.
3.1 we constructed an uncomputable real r. It must be uncomputable, by
construction. Nevertheless, as was the case in the Richard paradox, it would
seem that we gave a procedure for calculating Turing’s diagonal real r digit
by digit. How can this procedure fail? What could possibly go wrong?

The answer is this: The only noncomputable step has got to be determin-
ing if the kth computer program will ever output a kth digit. If we could do
that, then we could certainly compute the uncomputable real r of Sec. 3.1.

In other words, Sec. 3.1 actually proves that there can be no algorithm
for deciding if the kth computer program will ever output a kth digit.

And this is a special case of what’s called Turing’s halting problem. In
this particular case, the question is whether or not the wait for a kth digit
will ever terminate. In the general case, the question is whether or not a
computer program will ever halt.

The algorithmic unsolvability of Turing’s halting problem is an extremely
fundamental meta-theorem. It’s a much stronger result than Gödel’s famous
1931 incompleteness theorem. Why? Because in Turing’s original 1936 paper
he immediately points out how to derive incompleteness from the halting
problem.

A formal axiomatic math theory (FAMT) consists of a finite set of axioms
and of a finite set of rules of inference for deducing the consequences of those
axioms. Viewed from a great distance, all that counts is that there is an

12This theorem is featured in [Chaitin, 2005] at the end of the chapter entitled The

Labyrinth of the Continuum.
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algorithm for enumerating (or generating) all the possible theorems, all the
possible consequences of the axioms, one by one, by systematically applying
the rules of inference in every possible way. This is in fact what’s called a
breadth-first (rather than a depth-first) tree walk, the tree being the tree of
all possible deductions.13

So, argued Turing in 1936, if there were a FAMT that always enabled you
to decide whether or not a program eventually halts, there would in fact be
an algorithm for doing so. You’d just run through all possible proofs until
you find a proof that the program halts or you find a proof that it never
halts.

So uncomputability is much more fundamental than incompleteness. In-
completeness is an immediate corollary of uncomputability. But uncom-
putability is not a corollary of incompleteness. The concept of incomplete-
ness does not contain the concept of uncomputability.

Now let’s get an even more disturbing limitative meta-theorem. We’ll do
that by considering the halting probability Ω [Chaitin, 2005], which is what
corresponds to Borel’s know-it-all real (Sec. 2.4) in the current context.14

3.4. Irreducible complexity, perfect randomness, maxi-

mal unknowability: The halting probability Ω

Where does the halting probability come from? Well, our motivation is
the contrast between Sec. 3.1 and Sec. 3.2. Sec. 3.1 is to Sec. 3.2 as the
halting problem is to the halting probability! In other words, the fact that
we found an easier way to show the existence of uncomputable reals using a
probabilistic argument, suggests looking at the probability that a program
chosen at random will ever halt instead of considering individual programs
as in Turing’s 1936 paper.

Formally, the halting probability Ω is defined as follows:

0 < Ω ≡
∑

program p halts

2−(the size in bits of p) < 1.

To avoid having this sum diverge to infinity instead of converging to a number
between zero and one, it is important that the programs p should be self-

13This is another way to achieve the effect of running through all possible texts.
14[Tasić, 2001] was the first person to make the connection between Borel’s real and Ω.

I became aware of Borel’s real through Tasić.
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delimiting (no extension of a valid program is a valid program; see [Chaitin,
2005]).

What’s interesting about Ω is that it behaves like a compressed version
of Borel’s know-it-all real. Knowing the first n bits of Borel’s real enables us
to answer the first n yes/no questions in French. Knowing the first n bits of
Ω enables us to answer the halting problem for all programs p up to n bits
in size. I.e., n bits of Ω tells us whether or not each p up to n bits in size
ever halts. (Can you see how?) That’s a lot of information!

In fact, Ω compactly encodes so much information that you essentially
need an n-bit FAMT in order to be able to determine n bits of Ω! In other
words, Ω is irreducible mathematical information, it’s a place where
reasoning is completely impotent. The bits of Ω are mathematical facts that
can be proved, but essentially only by adding them one by one as new axioms!
I’m talking about how difficult it is to prove theorems such as

“the 5th bit of Ω is a 0”

and
“the 9th bit of Ω is a 1”

or whatever the case may be.
To prove that Ω is computationally and therefore logically irreducible,

requires a theory of program-size complexity that I call algorithmic infor-
mation theory (AIT) [Chaitin, 2005]. The key idea in AIT is to measure
the complexity of something via the size in bits of the smallest program for
calculating it. This is a more refined version of Borel’s idea [Borel, 1960] of
defining the complexity of a real number to be the number of words required
to name it.

And the key fact that is proved in AIT about Ω is that

H(Ωn) ≥ n − c.

I.e.,
(the string Ωn consisting of the first n bits of Ω)

has program-size complexity or “algorithmic entropy H” greater than or
equal to n− c. Here c is a constant, and I’m talking about the size in bits of
self-delimiting programs.

In other words, any self-delimiting program for computing the first n bits
of Ω will have to be at least n − c bits long.
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The irreducible sequence of bits of Ω is a place where mathematical truth
has absolutely no pattern or structure that we will ever be able to detect. It’s
a place where mathematical truth has maximum possible entropy—a place
where, in a sense, God plays dice.15

Why should we believe in real numbers, if most of them are uncom-
putable? Why should we believe in real numbers, if most of them, it turns
out,16 are maximally unknowable like Ω?17

4. Digital Philosophy and Digital Physics

So much for mathematics! Now let’s turn to physics.
Discreteness entered modern science through chemistry, when it was dis-

covered that matter is built up out of atoms and molecules. Recall that the
first experimental evidence for this was Gay-Lussac’s discovery of the simple
integer ratios between the volumes of gaseous substances that are combined
in chemical reactions. This was the first evidence, two centuries ago, that
discreteness plays an important role in the physical world.

At first it might seem that quantum mechanics (QM), which began with
Einstein’s photon as the explanation for the photoelectric effect in 1905,
goes further in the direction of discreteness. But the wave-particle duality
discovered by de Broglie in 1925 is at the heart of QM, which means that
this theory is profoundly ambiguous regarding the question of discreteness
vs. continuity. QM can have its cake and eat it too, because discreteness is
modeled via standing waves (eigenfunctions) in a continuous medium.

The latest strong hints in the direction of discreteness come from quantum
gravity [Smolin, 2000], in particular from the Bekenstein bound and the
so-called “holographic principle.” According to these ideas the amount of
information in any physical system is bounded, i.e., is a finite number of 0/1
bits.

15On the other hand, if Gödel is correct in thinking that mathematical intuition can at
times directly perceive the Platonic world of mathematical ideas, then the bits of Ω may
in fact be accessible.

16See the chapter entitled The Labyrinth of the Continuum in [Chaitin, 2005].
17In spite of the fact that most individual real numbers will forever escape us, the notion

of an arbitrary real has beautiful mathematical properties and is a concept that helps us
to organize and understand the real world. Individual concepts in a theory do not need
to have concrete meaning on their own; it is enough if the theory as a whole can be
compared with the results of experiments.
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But it is not just fundamental physics that is pushing us in this direction.
Other hints come from our pervasive digital technology, from molecular biol-
ogy where DNA is the digital software for life, and from a priori philosophical
prejudices going back to the ancient Greeks.

According to Pythagoras everything is number, and God is a mathemati-
cian. This point of view has worked pretty well throughout the development
of modern science. However now a neo-Pythagorian doctrine is emerging,
according to which everything is 0/1 bits, and the world is built entirely
out of digital information. In other words, now everything is software, God
is a computer programmer, not a mathematician, and the world is a giant
information-processing system, a giant computer [Fredkin, 2004, Wolfram,
2002, Chaitin, 2005].

Indeed, the most important thing in understanding a complex system is
to understand how it processes information. This viewpoint regards phys-
ical systems as information processors, as performing computations. This
approach also sheds new light on microscopic quantum systems, as is demon-
strated in the highly developed field of quantum information and quantum
computation. An extreme version of this doctrine would attempt to build
the world entirely out of discrete digital information, out of 0 and 1 bits.18

Whether or not this ambitious new research program can eventually suc-
ceed, it will be interesting to see how far it gets. The problem of the infinite
divisibility of space and time has been with us for more than two millennia,
since Zeno of Elea and his famous paradoxes, and it is also discussed by
Maimonides in his Guide for the Perplexed (12th century).

Modern versions of this ancient problem are, for example, the infinite
amount of energy contained in the electric field surrounding a point electron
according to Maxwell’s theory of electromagnetism, and the breakdown of
space-time because of the formation of black holes due to extreme quantum
fluctuations (arbitrarily high energy virtual pairs) in the vacuum quantum
field.

I do not expect that the tension between the continuous and the discrete
will be resolved any time soon. Nevertheless, one must try. And, as we
have seen in our two case studies, before being swept away, each generation
contributes something to the ongoing discussion.

18This idea, like so many others, can be traced back to Leibniz. He thought it was
important enough to have it cast in the form of a medallion.
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Epistemology as information
theory: From Leibniz to Ω

In 1686 in his Discours de métaphysique, Leibniz points out that if an
arbitrarily complex theory is permitted then the notion of “theory” becomes
vacuous because there is always a theory. This idea is developed in the mod-
ern theory of algorithmic information, which deals with the size of computer
programs and provides a new view of Gödel’s work on incompleteness and
Turing’s work on uncomputability. Of particular interest is the halting prob-
ability Ω, whose bits are irreducible, i.e., maximally unknowable mathematical
facts. More generally, these ideas constitute a kind of “digital philosophy”
related to recent attempts of Edward Fredkin, Stephen Wolfram and others to
view the world as a giant computer. There are also connections with recent
“digital physics” speculations that the universe might actually be discrete, not
continuous. This système du monde is presented as a coherent whole in
my book Meta Math!, which will be published this fall. [Alan Turing Lecture
on Computing and Philosophy, E-CAP’05, European Computing and Philos-
ophy Conference, Mälardalen University, Väster̊as, Sweden, June 2005.]

Introduction

I am happy to be here with you enjoying the delicate Scandinavian summer; if
we were a little farther north there wouldn’t be any darkness at all. And I am
especially delighted to be here delivering the Alan Turing Lecture. Turing’s
famous 1936 paper is an intellectual milestone that seems larger and more
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important with every passing year.1

People are not merely content to enjoy the beautiful summers in the far
north, they also want and need to understand, and so they create myths.
In this part of the world those myths involve Thor and Odin and the other
Norse gods. In this talk, I’m going to present another myth, what the French
call a système du monde, a system of the world, a speculative metaphysics
based on information and the computer.2

The previous century had logical positivism and all that emphasis on the
philosophy of language, and completely shunned speculative metaphysics,
but a number of us think that it is time to start again. There is an emerging
digital philosophy and digital physics, a new metaphysics associated with
names like Edward Fredkin and Stephen Wolfram and a handful of like-
minded individuals, among whom I include myself. As far as I know the terms
“digital philosophy” and “digital physics” were actually invented by Fredkin,
and he has a large website with his papers and a draft of a book about this.
Stephen Wolfram attracted a great deal of attention to the movement and
stirred up quite a bit of controversy with his very large and idiosyncratic
book on A New Kind of Science.

And I have my own book on the subject, in which I’ve attempted to
wrap everything I know and care about into a single package. It’s a small
book, and amazingly enough it’s going to be published by a major New York
publisher a few months from now. This talk will be an overview of my book,
which presents my own personal version of “digital philosophy,” since each
of us who works in this area has a different vision of this tentative, emerging
world view. My book is called Meta Math!, which may not seem like a serious
title, but it’s actually a book intended for my professional colleagues as well
as for the general public, the high-level, intellectual, thinking public.

“Digital philosophy” is actually a neo-Pythagorean vision of the world,
it’s just a new version of that. According to Pythagoras, all is number — and
by number he means the positive integers, 1, 2, 3, . . . — and God is a math-
ematician. “Digital philosophy” updates this as follows: Now everything is

1For Turing’s original paper, with commentary, see Copeland’s The Essential Turing.
2One reader’s reaction (GDC): “Grand unified theories may be like myths, but surely

there is a difference between scientific theory and any other narrative?” I would argue
that a scientific narrative is more successful than the Norse myths because it explains
what it explains more precisely and without having to postulate new gods all the time,
i.e., it’s a better “compression” (which will be my main point in this lecture; that’s how
you measure how successful a theory is).
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made out of 0/1 bits, everything is digital software, and God is a computer
programmer, not a mathematician! It will be interesting to see how well
this vision of the world succeeds, and just how much of our experience and
theorizing can be included or shoe-horned within this new viewpoint.3

Let me return now to Turing’s famous 1936 paper. This paper is usu-
ally remembered for inventing the programmable digital computer via a
mathematical model, the Turing machine, and for discovering the extremely
fundamental halting problem. Actually Turing’s paper is called “On com-
putable numbers, with an application to the Entscheidungsproblem,” and
by computable numbers Turing means “real” numbers, numbers like e or
π = 3.1415926 . . . that are measured with infinite precision, and that can be
computed with arbitrarily high precision, digit by digit without ever stop-
ping, on a computer.

Why do I think that Turing’s paper “On computable numbers” is so
important? Well, in my opinion it’s a paper on epistemology, because we only
understand something if we can program it, as I will explain in more detail
later. And it’s a paper on physics, because what we can actually compute
depends on the laws of physics in our particular universe and distinguishes it
from other possible universes. And it’s a paper on ontology, because it shows
that some real numbers are uncomputable, which I shall argue calls into
question their very existence, their mathematical and physical existence.4

To show how strange uncomputable real numbers can be, let me give a
particularly illuminating example of one, which actually preceded Turing’s

3Of course, a system of the world can only work by omitting everything that doesn’t
fit within its vision. The question is how much will fail to fit, and conversely, how many
things will this vision be able to help us to understand. Remember, if one is wearing rose
colored glasses, everything seems pink. And as Picasso said, theories are lies that help us
to see the truth. No theory is perfect, and it will be interesting to see how far this digital
vision of the world will be able to go.

4You might exclaim (GDC), “You can’t be saying that before Turing and the computer
no one understood anything; that can’t be right!” My response to this is that before
Turing (and my theory) people could understand things, but they couldn’t measure
how well they understood them. Now you can measure that, in terms of the degree of
compression that is achieved. I will explain this later at the beginning of the section on
computer epistemology. Furthermore, programming something forces you to understand
it better, it forces you to really understand it, since you are explaining it to a machine.
That’s sort of what happens when a student or a small child asks you what at first you
take to be a stupid question, and then you realize that this question has in fact done you
the favor of forcing you to formulate your ideas more clearly and perhaps even question
some of your tacit assumptions.
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1936 paper. It’s a very strange number that was invented in a 1927 pa-
per by the French mathematician Emile Borel. Borel’s number is sort of
an anticipation, a partial anticipation, of Turing’s 1936 paper, but that’s
only something that one can realize in retrospect. Borel presages Turing,
which does not in any way lessen Turing’s important contribution that so
dramatically and sharply clarified all these vague ideas.5

Borel was interested in “constructive” mathematics, in what you can
actually compute we would say nowadays. And he came up with an extremely
strange non-constructive real number. You list all possible yes/no questions
in French in an immense, an infinite list of all possibilities. This will be
what mathematicians call a denumerable or a countable infinity of questions,
because it can be put into a one-to-one correspondence with the list of positive
integers 1, 2, 3, . . . In other words, there will be a first question, a second
question, a third question, and in general an Nth question.

You can imagine all the possible questions to be ordered by size, and
within questions of the same size, in alphabetical order. More precisely, you
consider all possible strings, all possible finite sequences of symbols in the
French alphabet, including the blank so that you get words, and the period
so that you have sentences. And you imagine filtering out all the garbage
and being left only with grammatical yes/no questions in French. Later I will
tell you in more detail how to actually do this. Anyway, for now imagine
doing this, and so there will be a first question, a second question, an Nth
question.

And the Nth digit or the Nth bit after the decimal point of Borel’s
number answers the Nth question: It will be a 0 if the answer is no, and
it’ll be a 1 if the answer is yes. So the binary expansion of Borel’s number
contains the answer to every possible yes/no question! It’s like having an
oracle, a Delphic oracle that will answer every yes/no question!

How is this possible?! Well, according to Borel, it isn’t really possible,
this can’t be, it’s totally unbelievable. This number is only a mathematical
fantasy, it’s not for real, it cannot claim a legitimate place in our ontology.
Later I’ll show you a modern version of Borel’s number, my halting proba-
bility Ω. And I’ll tell you why some contemporary physicists, real physicists,
not mavericks, are moving in the direction of digital physics.

[Actually, to make Borel’s number as real as possible, you have to avoid the

5I learnt of Borel’s number by reading Tasic’s Mathematics and the Roots of Postmodern

Thought, which also deals with many of the issues discussed here.
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problem of filtering out all the yes/no questions. And you have to use decimal

digits, you can’t use binary digits. You number all the possible finite strings of

French symbols including blanks and periods, which is quite easy to do using a

computer. Then the Nth digit of Borel’s number is 0 if the Nth string of characters

in French is ungrammatical and not proper French, it’s 1 if it’s grammatical, but

not a yes/no question, it’s 2 if it’s a yes/no question that cannot be answered (e.g.,

“Is the answer to this question ‘no’?”), it’s 3 if the answer is no, and it’s 4 if the

answer is yes.]

Geometrically a real number is the most straightforward thing in the
world, it’s just a point on a line. That’s quite natural and intuitive. But
arithmetically, that’s another matter. The situation is quite different. From
an arithmetical point of view reals are extremely problematical, they are
fraught with difficulties!

Before discussing my Ω number, I want to return to the fundamental
question of what does it mean to understand. How do we explain or com-
prehend something? What is a theory? How can we tell whether or not
it’s a successful theory? How can we measure how successful it is? Well,
using the ideas of information and computation, that’s not difficult to do,
and the central idea can even be traced back to Leibniz’s 1686 Discours de
métaphysique.

Computer Epistemology: What is a mathe-

matical or scientific theory? How can we judge

whether it works or not?

In Sections V and VI of his Discourse on Metaphysics, Leibniz asserts that
God simultaneously maximizes the variety, diversity and richness of the
world, and minimizes the conceptual complexity of the set of ideas that
determine the world. And he points out that for any finite set of points there
is always a mathematical equation that goes through them, in other words, a
law that determines their positions. But if the points are chosen at random,
that equation will be extremely complex.

This theme is taken up again in 1932 by Hermann Weyl in his book The
Open World consisting of three lectures he gave at Yale University on the
metaphysics of modern science. Weyl formulates Leibniz’s crucial idea in
the following extremely dramatic fashion: If one permits arbitrarily complex
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laws, then the concept of law becomes vacuous, because there is always a
law! Then Weyl asks, how can we make more precise the distinction between
mathematical simplicity and mathematical complexity? It seems to be very
hard to do that. How can we measure this important parameter, without
which it is impossible to distinguish between a successful theory and one that
is completely unsuccessful?

This problem is taken up and I think satisfactorily resolved in the new
mathematical theory I call algorithmic information theory. The epistemolog-
ical model that is central to this theory is that a scientific or mathematical
theory is a computer program for calculating the facts, and the smaller the
program, the better. The complexity of your theory, of your law, is measured
in bits of software:

program (bit string) −→ Computer −→ output (bit string)
theory −→ Computer −→ mathematical or scientific facts

Understanding is compression!

Now Leibniz’s crucial observation can be formulated much more precisely.
For any finite set of scientific or mathematical facts, there is always a the-
ory that is exactly as complicated, exactly the same size in bits, as the facts
themselves. (It just directly outputs them “as is,” without doing any compu-
tation.) But that doesn’t count, that doesn’t enable us to distinguish between
what can be comprehended and what cannot, because there is always a the-
ory that is as complicated as what it explains. A theory, an explanation,
is only successful to the extent to which it compresses the number of bits
in the facts into a much smaller number of bits of theory. Understanding
is compression, comprehension is compression! That’s how we can tell the
difference between real theories and ad hoc theories.6

What can we do with this idea that an explanation has to be simpler
than what it explains? Well, the most important application of these ideas
that I have been able to find is in metamathematics, it’s in discussing what
mathematics can or cannot achieve. You simultaneously get an information-
theoretic, computational perspective on Gödel’s famous 1931 incompleteness
theorem, and on Turing’s famous 1936 halting problem. How?7

6By the way, Leibniz also mentions complexity in Section 7 of his Principles of Nature

and Grace, where he asks the amazing question, “Why is there something rather than
nothing? For nothing is simpler and easier than something.”

7For an insightful treatment of Gödel as a philosopher, see Rebecca Goldstein’s Incom-

pleteness.
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Here’s how! These are my two favorite information-theoretic incomplete-
ness results:

• You need an N -bit theory in order to be able to prove that a specific
N -bit program is “elegant.”

• You need an N -bit theory in order to be able to determine N bits of
the numerical value, of the base-two binary expansion, of the halting
probability Ω.

Let me explain.
What is an elegant program? It’s a program with the property that

no program written in the same programming language that produces the
same output is smaller than it is. In other words, an elegant program is the
most concise, the simplest, the best theory for its output. And there are
infinitely many such programs, they can be arbitrarily big, because for any
computational task there has to be at least one elegant program. (There may
be several if there are ties, if there are several programs for the same output
that have exactly the minimum possible number of bits.)

And what is the halting probability Ω? Well, it’s defined to be the prob-
ability that a computer program generated at random, by choosing each of
its bits using an independent toss of a fair coin, will eventually halt. Turing
is interested in whether or not individual programs halt. I am interested in
trying to prove what are the bits, what is the numerical value, of the halting
probability Ω. By the way, the value of Ω depends on your particular choice
of programming language, which I don’t have time to discuss now. Ω is also
equal to the result of summing 1/2 raised to powers which are the size in bits
of every program that halts. In other words, each K-bit program that halts
contributes 1/2K to Ω.

And what precisely do I mean by an N -bit mathematical theory? Well,
I’m thinking of formal axiomatic theories, which are formulated using sym-
bolic logic, not in any natural, human language. In such theories there are
always a finite number of axioms and there are explicit rules for mechani-
cally deducing consequences of the axioms, which are called theorems. An
N -bit theory is one for which there is an N -bit program for systematically
running through the tree of all possible proofs deducing all the consequences
of the axioms, which are all the theorems in your formal theory. This is slow
work, but in principle it can be done mechanically, that’s what counts. David
Hilbert believed that there had to be a single formal axiomatic theory for all
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of mathematics; that’s just another way of stating that math is static and
perfect and provides absolute truth.

Not only is this impossible, not only is Hilbert’s dream impossible to
achieve, but there are in fact an infinity of irreducible mathematical truths,
mathematical truths for which essentially the only way to prove them is to
add them as new axioms. My first example of such truths was determining
elegant programs, and an even better example is provided by the bits of Ω.
The bits of Ω are mathematical facts that are true for no reason (no reason
simpler than themselves), and thus violate Leibniz’s principle of sufficient
reason, which states that if anything is true it has to be true for a reason.

In math the reason that something is true is called its proof. Why are
the bits of Ω true for no reason, why can’t you prove what their values
are? Because, as Leibniz himself points out in Sections 33 to 35 of The
Monadology, the essence of the notion of proof is that you prove a complicated
assertion by analyzing it, by breaking it down until you reduce its truth to
the truth of assertions that are so simple that they no longer require any
proof (self-evident axioms). But if you cannot deduce the truth of something
from any principle simpler than itself, then proofs become useless, because
anything can be proven from principles that are equally complicated, e.g.,
by directly adding it as a new axiom without any proof. And this is exactly
what happens with the bits of Ω.

In other words, the normal, Hilbertian view of math is that all
of mathematical truth, an infinite number of truths, can be com-
pressed into a finite number of axioms. But there are an infinity
of mathematical truths that cannot be compressed at all, not one
bit!

This is an amazing result, and I think that it has to have profound philo-
sophical and practical implications. Let me try to tell you why.

On the one hand, it suggests that pure math is more like biology than
it is like physics. In biology we deal with very complicated organisms and
mechanisms, but in physics it is normally assumed that there has to be a
theory of everything, a simple set of equations that would fit on a T-shirt
and in principle explains the world, at least the physical world. But we have
seen that the world of mathematical ideas has infinite complexity, it cannot
be explained with any theory having a finite number of bits, which from a
sufficiently abstract point of view seems much more like biology, the domain
of the complex, than like physics, where simple equations reign supreme.

On the other hand, this amazing result suggests that even though math
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and physics are different, they may not be as different as most people think!
I mean this in the following sense: In math you organize your computational
experience, your lab is the computer, and in physics you organize physical
experience and have real labs. But in both cases an explanation has to be
simpler than what it explains, and in both cases there are sets of facts that
cannot be explained, that are irreducible. Why? Well, in quantum physics
it is assumed that there are phenomena that when measured are equally
likely to give either of two answers (e.g., spin up, spin down) and that are
inherently unpredictable and irreducible. And in pure math we have a similar
example, which is provided by the individual bits in the binary expansion of
the numerical value of the halting probability Ω.

This suggests to me a quasi-empirical view of math, in which one is more
willing to add new axioms that are not at all self-evident but that are justified
pragmatically, i.e., by their fruitful consequences, just like a physicist would.
I have taken the term quasi-empirical from Lakatos. The collection of essays
New Directions in the Philosophy of Mathematics edited by Tymoczko in my
opinion pushes strongly in the direction of a quasi-empirical view of math,
and it contains an essay by Lakatos proposing the term “quasi-empirical,”
as well as essays of my own and by a number of other people. Many of them
may disagree with me, and I’m sure do, but I repeat, in my opinion all of
these essays justify a quasi-empirical view of math, what I mean by quasi-
empirical, which is somewhat different from what Lakatos originally meant,
but is in quite the same spirit, I think.

In a two-volume work full of important mathematical examples, Borwein,
Bailey and Girgensohn have argued that experimental mathematics is an ex-
tremely valuable research paradigm that should be openly acknowledged and
indeed vigorously embraced. They do not go so far as to suggest that one
should add new axioms whenever they are helpful, without bothering with
proofs, but they are certainly going in that direction and nod approvingly at
my attempts to provide some theoretical justification for their entire enter-
prise by arguing that math and physics are not that different.

In fact, since I began to espouse these heretical views in the early 1970’s,
largely to deaf ears, there have actually been several examples of such new
pragmatically justified, non-self-evident axioms:

• the P 6= NP hypothesis regarding the time complexity of computa-
tions,

• the axiom of projective determinacy in set theory, and
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• increasing reliance on diverse unproved versions of the Riemann hy-
pothesis regarding the distribution of the primes.

So people don’t need to have theoretical justification; they just do whatever
is needed to get the job done. . .

The only problem with this computational and information-theoretic epis-
temology that I’ve just outlined to you is that it’s based on the computer,
and there are uncomputable reals. So what do we do with contemporary
physics which is full of partial differential equations and field theories, all of
which are formulated in terms of real numbers, most of which are in fact
uncomputable, as I’ll now show. Well, it would be good to get rid of all
that and convert to a digital physics. Might this in fact be possible?! I’ll
discuss that too.

Computer Ontology: How real are real num-

bers? What is the world made of?

How did Turing prove that there are uncomputable reals in 1936? He did it
like this. Recall that the possible texts in French are a countable or denu-
merable infinity and can be placed in an infinite list in which there is a first
one, a second one, etc. Now let’s do the same thing with all the possible
computer programs (first you have to choose your programming language).
So there is a first program, a second program, etc. Every computable real
can be calculated digit by digit by some program in this list of all possible
programs. Write the numerical value of that real next to the programs that
calculate it, and cross off the list all the programs that do not calculate an
individual computable real. We have converted a list of programs into a list
of computable reals, and no computable real is missing.

Next discard the integer parts of all these computable reals, and just keep
the decimal expansions. Then put together a new real number by chang-
ing every digit on the diagonal of this list (this is called Cantor’s diagonal
method; it comes from set theory). So your new number’s first digit differs
from the first digit of the first computable real, its second digit differs from
the second digit of the second computable real, its third digit differs from
the third digit of the third computable real, and so forth and so on. So it
can’t be in the list of all computable reals and it has to be uncomputable.
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And that’s Turing’s uncomputable real number!8

Actually, there is a much easier way to see that there are uncomputable
reals by using ideas that go back to Emile Borel (again!). Technically, the
argument that I’ll now present uses what mathematicians call measure theory,
which deals with probabilities. So let’s just look at all the real numbers
between 0 and 1. These correspond to points on a line, a line exactly one
unit in length, whose leftmost point is the number 0 and whose rightmost
point is the number 1. The total length of this line segment is of course
exactly one unit. But I will now show you that all the computable reals in
this line segment can be covered using intervals whose total length can be
made as small as desired. In technical terms, the computable reals in the
interval from 0 to 1 are a set of measure zero, they have zero probability.

How do you cover all the computable reals? Well, remember that list
of all the computable reals that we just diagonalized over to get Turing’s
uncomputable real? This time let’s cover the first computable real with an
interval of size ε/2, let’s cover the second computable real with an interval of
size ε/4, and in general we’ll cover the Nth computable real with an interval
of size ε/2N . The total length of all these intervals (which can conceivably
overlap or fall partially outside the unit interval from 0 to 1), is exactly
equal to ε, which can be made as small as we wish! In other words, there
are arbitrarily small coverings, and the computable reals are therefore a set
of measure zero, they have zero probability, they constitute an infinitesimal
fraction of all the reals between 0 and 1. So if you pick a real at random
between 0 and 1, with a uniform distribution of probability, it is infinitely
unlikely, though possible, that you will get a computable real!

What disturbing news! Uncomputable reals are not the exception, they
are the majority! How strange!

In fact, the situation is even worse than that. As Emile Borel points
out on page 21 of his final book, Les nombres inaccessibles (1952), without
making any reference to Turing, most individual reals are not even uniquely
specifiable, they cannot even be named or pointed out, no matter how non-
constructively, because of the limitations of human languages, which permit
only a countable infinity of possible texts. The individually accessible or
nameable reals are also a set of measure zero. Most reals are un-nameable,
with probability one! I rediscovered this result of Borel’s on my own in a

8Technical Note: Because of synonyms like .345999 . . . = .346000 . . . you should avoid
having any 0 or 9 digits in Turing’s number.
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slightly different context, in which things can be done a little more rigorously,
which is when one is dealing with a formal axiomatic theory or an artificial
formal language instead of a natural human language. That’s how I present
this idea in Meta Math!.

So if most individual reals will forever escape us, why should we believe in
them?! Well, you will say, because they have a pretty structure and are a nice
theory, a nice game to play, with which I certainly agree, and also because
they have important practical applications, they are needed in physics. Well,
perhaps not! Perhaps physics can give up infinite precision reals! How? Why
should physicists want to do that?

Because it turns out that there are actually many reasons for being skepti-
cal about the reals, in classical physics, in quantum physics, and particularly
in more speculative contemporary efforts to cobble together a theory of black
holes and quantum gravity.

First of all, as my late colleague the physicist Rolf Landauer used to
remind me, no physical measurement has ever achieved more than a small
number of digits of precision, not more than, say, 15 or 20 digits at most, and
such high-precision experiments are rare masterpieces of the experimenter’s
art and not at all easy to achieve.

This is only a practical limitation in classical physics. But in quantum
physics it is a consequence of the Heisenberg uncertainty principle and wave-
particle duality (de Broglie). According to quantum theory, the more accu-
rately you try to measure something, the smaller the length scales you are
trying to explore, the higher the energy you need (the formula describing this
involves Planck’s constant). That’s why it is getting more and more expen-
sive to build particle accelerators like the one at CERN and at Fermilab, and
governments are running out of money to fund high-energy physics, leading
to a paucity of new experimental data to inspire theoreticians.

Hopefully new physics will eventually emerge from astronomical obser-
vations of bizarre new astrophysical phenomena, since we have run out of
money here on earth! In fact, currently some of the most interesting physical
speculations involve the thermodynamics of black holes, massive concentra-
tions of matter that seem to be lurking at the hearts of most galaxies. Work
by Stephen Hawking and Jacob Bekenstein on the thermodynamics of black
holes suggests that any physical system can contain only a finite amount of
information, a finite number of bits whose possible maximum is determined
by what is called the Bekenstein bound. Strangely enough, this bound on
the number of bits grows as the surface area of the physical system, not as



Epistemology as information theory: From Leibniz to Ω 293

its volume, leading to the so-called “holographic” principle asserting that in
some sense space is actually two-dimensional even though it appears to have
three dimensions!

So perhaps continuity is an illusion, perhaps everything is really discrete.
There is another argument against the continuum if you go down to what
is called the Planck scale. At distances that extremely short our current
physics breaks down because spontaneous fluctuations in the quantum vac-
uum should produce mini-black holes that completely tear spacetime apart.
And that is not at all what we see happening around us. So perhaps distances
that small do not exist.

Inspired by ideas like this, in addition to a priori metaphysical biases
in favor of discreteness, a number of contemporary physicists have proposed
building the world out of discrete information, out of bits. Some names
that come to mind in this connection are John Wheeler, Anton Zeilinger,
Gerard ’t Hooft, Lee Smolin, Seth Lloyd, Paola Zizzi, Jarmo Mäkelä and
Ted Jacobson, who are real physicists. There is also more speculative work
by a small cadre of cellular automata and computer enthusiasts including
Edward Fredkin and Stephen Wolfram, whom I already mentioned, as well
as Tommaso Toffoli, Norman Margolus, and others.

And there is also an increasing body of highly successful work on quan-
tum computation and quantum information that is not at all speculative,
it is just a fundamental reworking of standard 1920’s quantum mechanics.
Whether or not quantum computers ever become practical, the workers in
this highly popular field have clearly established that it is illuminating to
study sub-atomic quantum systems in terms of how they process qubits of
quantum information and how they perform computation with these qubits.
These notions have shed completely new light on the behavior of quantum
mechanical systems.

Furthermore, when dealing with complex systems such as those that occur
in biology, thinking about information processing is also crucial. As I believe
Seth Lloyd said, the most important thing in understanding a complex sys-
tem is to determine how it represents information and how it processes that
information, i.e., what kinds of computations are performed.

And how about the entire universe, can it be considered to be a computer?
Yes, it certainly can, it is constantly computing its future state from its
current state, it’s constantly computing its own time-evolution! And as I
believe Tom Toffoli pointed out, actual computers like your PC just hitch a
ride on this universal computation!
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So perhaps we are not doing violence to Nature by attempting to force
her into a digital, computational framework. Perhaps she has been flirting
with us, giving us hints all along, that she is really discrete, not continuous,
hints that we choose not to hear, because we are so much in love and don’t
want her to change!

For more on this kind of new physics, see the books by Smolin and von
Baeyer in the bibliography. Several more technical papers on this subject are
also included there.

Conclusion

Let me now wrap this up and try to give you a present to take home, more
precisely, a piece of homework. In extremely abstract terms, I would say
that the problem is, as was emphasized by Ernst Mayr in his book This is
Biology, that the current philosophy of science deals more with physics and
mathematics than it does with biology. But let me try to put this in more
concrete terms and connect it with the spine, with the central thread, of the
ideas in this talk.

To put it bluntly, a closed, static, eternal fixed view of math can no longer
be sustained. As I try to illustrate with examples in my Meta Math! book,
math actually advances by inventing new concepts, by completely changing
the viewpoint. Here I emphasized new axioms, increased complexity, more
information, but what really counts are new ideas, new concepts, new view-
points. And that leads me to the crucial question, crucial for a proper open,
dynamic, time-dependent view of mathematics,

“Where do new mathematical ideas come from?”

I repeat, math does not advance by mindlessly and mechanically grinding
away deducing all the consequences of a fixed set of concepts and axioms,
not at all! It advances with new concepts, new definitions, new perspectives,
through revolutionary change, paradigm shifts, not just by hard work.

In fact, I believe that this is actually the central question in biology as
well as in mathematics, it’s the mystery of creation, of creativity:

“Where do new mathematical and biological ideas come from?”
“How do they emerge?”
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Normally one equates a new biological idea with a new species, but in
fact every time a child is born, that’s actually a new idea incarnating; it’s
reinventing the notion of “human being,” which changes constantly.

I have no idea how to answer this extremely important question; I wish
I could. Maybe you will be able to do it. Just try! You might have to keep
it cooking on a back burner while concentrating on other things, but don’t
give up! All it takes is a new idea! Somebody has to come up with it. Why
not you?9

Appendix: Leibniz and the Law

I am indebted to Professor Ugo Pagallo for explaining to me that Leibniz,
whose ideas and their elaboration were the subject of my talk, is regarded as
just as important in the field of law as he is in the fields of mathematics and
philosophy.

The theme of my lecture was that if a law is arbitrarily complicated,
then it is not a law; this idea was traced via Hermann Weyl back to Leibniz.
In mathematics it leads to my Ω number and the surprising discovery of
completely lawless regions of mathematics, areas in which there is absolutely
no structure or pattern or way to understand what is happening.

The principle that an arbitrarily complicated law is not a law can also be

9I’m not denying the importance of Darwin’s theory of evolution. But I want much
more than that, I want a profound, extremely general mathematical theory that captures
the essence of what life is and why it evolves. I want a theory that gets to the heart of
the matter. And I suspect that any such theory will necessarily have to shed new light
on mathematical creativity as well. Conversely, a deep theory of mathematical creation
might also cover biological creativity.

A reaction from Gordana Dodig-Crnkovic: “Regarding Darwin and Neo-Darwinism I
agree with you — it is a very good idea to go beyond. In my view there is nothing more
beautiful and convincing than a good mathematical theory. And I do believe that it must
be possible to express those thoughts in a much more general way. . . I believe that it
is a very crucial thing to try to formulate life in terms of computation. Not to say life
is nothing more than a computation. But just to explore how far one can go with that
idea. Computation seems to me a very powerful tool to illuminate many things about the
material world and the material ground for mental phenomena (including creativity). . .
Or would you suggest that creativity is given by God’s will? That it is the very basic
axiom? Isn’t it possible to relate to pure chance? Chance and selection? Wouldn’t it be a
good idea to assume two principles: law and chance, where both are needed to reconstruct
the universe in computational terms? (like chaos and cosmos?)”
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interpreted with reference to the legal system. It is not a coincidence that the
words “law” and “proof” and “evidence” are used in jurisprudence as well
as in science and mathematics. In other words, the rule of law is equivalent
to the rule of reason, but if a law is sufficiently complicated, then it can in
fact be completely arbitrary and incomprehensible.
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Is incompleteness
a serious problem?

Lecture at a meeting in Turin celebrating Gödel’s 100th birthday.

In 1931 Kurt Gödel astonished the mathematical world by showing that no
finite set of axioms can suffice to capture all of mathematical truth. He did
this by constructing an assertion GF about the whole numbers that manages
to assert that it itself is unprovable (from a given finite set F of axioms using
formal logic).1

GF : “GF cannot be proved from the finite set of axioms F .”

This assertion GF is therefore true if and only if it is unprovable, and the
formal axiomatic system F in question either proves falsehoods (because it
enables us to prove GF ) or fails to prove a true assertion (because it does not
enable us to prove GF ). If we assume that the former situation is impossible,
we conclude that F is necessarily incomplete since it does not permit us to
establish the true statement GF .

Either GF is provable and F proves false statements,
or GF is unprovable and therefore true, and F is incomplete.

Today, a century after Gödel’s birth, the full implications of this “incom-
pleteness” result are still quite controversial.2

1Gödel’s paper is included in the well-known anthology [1].
2Compare for example the attitude in Franzén [2,3] with that in Chaitin [4,5,6].
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An important step forward was achieved by Alan Turing in 1936. He
showed that incompleteness could be derived as a corollary of uncomputabil-
ity. Because if there are things that cannot be computed (Turing’s halting
problem), then these things also cannot be proven. More precisely, if there
were a finite set of axioms F that always enabled us to prove whether partic-
ular programs P halt or fail to halt, then we could calculate whether a given
program P halts or not by running through the tree of all possible deduc-
tions from the axioms F until we either find a proof that P halts or we find
a proof that P never halts. But, as Turing showed in his famous 1936 paper
“On Computable Numbers with an Application to the Entscheidungsprob-
lem,” there cannot be an algorithm for deciding whether or not individual
programs P halt.3

If we can always prove whether or not P halts,
then we can always calculate whether or not P halts

(by systematically running through the tree of all possible proofs).

Now let’s combine Turing’s approach with ideas from Sections V and VI
of Leibniz’s Discours de métaphysique (1686). Consider the following toy
model of what physicists do:

Theory (program) → COMPUTER → Experimental Data (output).

In other words, this is a software model of science, in which theories
are considered to be programs for computing experimental data. In this
toy model, the statement that the simplest theory is best corresponds to
choosing the smallest, the most concise program for calculating the facts
that we are trying to explain. And a key insight of Leibniz [7] is that if we
allow arbitrarily complicated theories then the concept of theory becomes
vacuous because there is always a theory. More precisely, in our software
model for science this corresponds to the observation that if we have N bits
of experimental data then our theory must be a program that is much less
than N bits in size, because if the theory is allowed to have as many bits as
the data, then there is always a theory.

Understanding = Compression!

Now let’s abstract from this the concept of an “elegant” program:

3Turing’s paper is also included in the collection [1].
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P is an elegant program if and only if
no smaller program Q written

in the same programming language
produces exactly the same output that P does.

In our software model for science, the best theory is always an elegant
program. Furthermore, there are infinitely many elegant programs, since for
any computational task there is always at least one elegant program, and
there are infinitely many computational tasks. However, what if we want
to prove that a particular program P is elegant? Astonishingly enough,
any finite set of axioms F can only enable us to prove that finitely many
individual programs P are elegant!

Why is this the case? Consider the following paradoxical program PF :

PF : The output of PF is the same as
the output of the first provably elegant program Q

that is larger than PF is.

PF runs through the tree of all possible deductions from the finite set of
axioms F until it finds the first provably elegant program Q that is larger
than PF is, and then PF simulates the computation that Q performs and
then produces as its output the same output that Q produces. But this
is impossible because PF is too small to be able to produce that output!
Assuming that F cannot enable us to prove false theorems, we must conclude
that Q cannot exist. Thus if Q is an elegant program that is larger than PF

is, then the axioms F cannot enable us to prove that Q is elegant. Therefore
F can only enable us to prove that finitely many individual programs Q are
elegant. Q.E.D.4

My personal belief, which is not shared by many in the mathematics
community, is that modern incompleteness results such as this one push us
in the direction of a “quasi-empirical” view of mathematics, in which we
should be willing to accept new mathematical axioms that are not at all

4An immediate corollary is that the halting problem is unsolvable. For if we could de-
termine all the programs that halt, then by running them and seeing their output we could
also determine all the elegant programs, which we have just shown to be impossible. This
program-size complexity argument for deriving the unsolvability of the halting problem is
completely different from Turing’s original 1936 proof, which is basically just an instance
of Cantor’s diagonal argument—from set theory—applied to the set of all computable real
numbers.



302 Thinking about Gödel & Turing

self-evident but that are justified pragmatically, because they enable us to
explain vast tracts of mathematical results. In other words, I believe that in
mathematics, just as in physics, the function of theories is to enable us to
compress many observations into a much more compact set of assumptions.5

So, in my opinion, incompleteness is extremely serious: It forces us to
realize that perhaps mathematics and physics are not as different as most
people think.6

Mathematics ≈ Physics?!
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Speculations on biology,
information & complexity

It would be nice to have a mathematical understanding of basic biological
concepts and to be able to prove that life must evolve in very general circum-
stances. At present we are far from being able to do this. But I’ll discuss
some partial steps in this direction plus what I regard as a possible future line
of attack.

Can Darwinian evolution be made into a math-

ematical theory? Is there a fundamental math-

ematical theory for biology?

Darwin = math ?!

In 1960 the physicist Eugene Wigner published a paper with a wonder-
ful title, “The unreasonable effectiveness of mathematics in the natural sci-
ences.” In this paper he marveled at the miracle that pure mathematics is
so often extremely useful in theoretical physics.

To me this does not seem so marvelous, since mathematics and physics co-
evolved. That however does not diminish the miracle that at a fundamental
level Nature is ruled by simple, beautiful mathematical laws, that is, the
miracle that Nature is comprehensible.
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I personally am much more disturbed by another phenomenon, pointed
out by I. M. Gel’fand and propagated by Vladimir Arnold in a lecture of
his that is available on the web, which is the stunning contrast between the
relevance of mathematics to physics, and its amazing lack of relevance to
biology!

Indeed, unlike physics, biology is not ruled by simple laws. There is
no equation for your spouse, or for a human society or a natural ecology.
Biology is the domain of the complex. It takes 3 × 109 bases = 6 × 109 bits
of information to specify the DNA that determines a human being.

Darwinian evolution has acquired the status of a dogma, but to me as
a mathematician seems woefully vague and unsatisfactory. What is evolu-
tion? What is evolving? How can we measure that? And can we prove,
mathematically prove, that with high probability life must arise and evolve?

In my opinion, if Darwin’s theory is as simple, fundamental and basic as
its adherents believe, then there ought to be an equally fundamental math-
ematical theory about this, that expresses these ideas with the generality,
precision and degree of abstractness that we are accustomed to demand in
pure mathematics.

Look around you. We are surrounded by evolving organisms, they’re
everywhere, and their ubiquity is a challenge to the mathematical way of
thinking. Evolution is not just a story for children fascinated by dinosaurs.
In my own lifetime I have seen the ease with which microbes evolve immunity
to antibiotics. We may well live in a future in which people will again die of
simple infections that we were once briefly able to control.

Evolution seems to work remarkably well all around us, but not as a
mathematical theory!

In the next section of this paper I will speculate about possible directions
for modeling evolution mathematically. I do not know how to solve this
difficult problem; new ideas are needed. But later in the paper I will have
the pleasure of describing a minor triumph. The program-size complexity
viewpoint that I will now describe to you does have some successes to its
credit, even though they only take us an infinitesimal distance in the direction
we must travel to fully understand evolution.
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A software view of biology: Can we model evo-
lution via evolving software?

I’d like to start by explaining my overall point of view. It is summarized
here:

Life = Software ?

program −→ COMPUTER −→ output
DNA −→ DEVELOPMENT/PREGNANCY −→ organism

(Size of program in bits) ≈ (Amount of DNA in bases) × 2

So the idea is firstly that I regard life as software, biochemical software.
In particular, I focus on the digital information contained in DNA. In my
opinion, DNA is essentially a programming language for building an organism
and then running that organism.

More precisely, my central metaphor is that DNA is a computer program,
and its output is the organism. And how can we measure the complexity of an
organism? How can we measure the amount of information that is contained
in DNA? Well, each of the successive bases in a DNA strand is just 2 bits
of digital software, since there are four possible bases. The alphabet for
computer software is 0 and 1. The alphabet of life is A, G, C, and T,
standing for adenine, cytosine, guanine, and thymine. A program is just a
string of bits, and the human genome is just a string of bases. So in both
cases we are looking at digital information.

My basic approach is to measure the complexity of a digital object by the
size in bits of the smallest program for calculating it. I think this is more
or less analogous to measuring the complexity of a biological organism by 2
times the number of bases in its DNA.

Of course, this is a tremendous oversimplification. But I am only search-
ing for a toy model of biology that is simple enough that I can prove some
theorems, not for a detailed theory describing the actual biological organ-
isms that we have here on earth. I am searching for the Platonic essence of
biology; I am only interested in the actual creatures we know and love to the
extent that they are clues for finding ideal Platonic forms of life.

How to go about doing this, I am not sure. But I have some suggestions.
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It might be interesting, I think, to attempt to discover a toy model for
evolution consisting of evolving, competing, interacting programs. Each or-
ganism would consist of a single program, and we would measure its com-
plexity in bits of software. The only problem is how to make the programs
interact! This kind of model has no geometry, it leaves out the physical uni-
verse in which the organisms live. In fact, it omits bodies and retains only
their DNA. This hopefully helps to make the mathematics more tractable.
But at present this model has no interaction between organisms, no notion
of time, no dynamics, and no reason for things to evolve. The question is
how to add that to the model.

Hopeless, you may say. Perhaps not! Let’s consider some other models
that people have proposed. In von Neumann’s original model creatures are
embedded in a cellular automata world and are largely immobile. Not so
good! There is also the problem of dissecting out the individual organisms
that are embedded in a toy universe, which must be done before their in-
dividual complexities can be measured. My suggestion in one of my early
papers that it might be possible to use the concept of mutual information—
the extent to which the complexity of two things taken together is smaller
than the sum of their individual complexities—in order to accomplish this,
is not, in my current opinion, particularly fruitful.

In von Neumann’s original model we have the complete physics for a
toy cellular automata universe. Walter Fontana’s ALChemy = algorithmic
chemistry project went to a slightly higher level of abstraction. It used
LISP S-expressions to model biochemistry. LISP is a functional programming
language in which everything—programs as well as data—is kept in identical
symbolic form, namely as what are called LISP S-expressions. Such programs
can easily operate on each other and produce other programs, much in the
way that molecules can react and produce other molecules.

I have a feeling that both von Neumann’s cellular automata world and
Fontana’s algorithmic chemistry are too low-level to model biological evo-
lution.1 So instead I am proposing a model in which individual creatures
are programs. As I said, the only problem is how to model the ecology in
which these creatures compete. In other words, the problem is how to insert

1A model with perhaps the opposite problem of being at too high a level, is Douglas
Lenat’s AM = Automated Mathematician project, which dealt with the evolution of new
mathematical concepts.
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a dynamics into this static software world.2

Since I have not been able to come up with a suitable dynamics for the
software model I am proposing, I must leave this as a challenge for the
future and proceed to describe a few biologically relevant things that I can
do by measuring the size of computer programs. Let me tell you what this
viewpoint can buy us that is a tiny bit biologically relevant.

Pure mathematics has infinite complexity and

is therefore like biology

Okay, program-size complexity can’t help us very much with biological com-
plexity and evolution, at least not yet. It’s not much help in biology. But
this viewpoint has been developed into a mathematical theory of complexity
that I find beautiful and compelling—since I’m one of the people who cre-
ated it—and that has important applications in another major field, namely
metamathematics. I call my theory algorithmic information theory, and in
it you measure the complexity of something X via the size in bits of the
smallest program for calculating X, while completely ignoring the amount
of effort which may be necessary to discover this program or to actually run
it (time and storage space). In fact, we pay a severe price for ignoring the
time a program takes to run and concentrating only on its size. We get a
beautiful theory, but we can almost never be sure that we have found the
smallest program for calculating something. We can almost never determine
the complexity of anything, if we chose to measure that in terms of the size
of the smallest program for calculating it!

This amazing fact, a modern example of the incompleteness phenomenon
first discovered by Kurt Gödel in 1931, severely limits the practical utility of
the concept of program-size complexity. However, from a philosophical point
of view, this paradoxical limitation on what we can know is precisely the
most interesting thing about algorithmic information theory, because that
has profound epistemological implications.

2Thomas Ray’s Tierra project did in fact create an ecology with software parasites
and hyperparasites. The software creatures he considered were sequences of machine
language instructions coexisting in the memory of a single computer and competing for
that machine’s memory and execution time. Again, I feel this model was too low-level. I
feel that too much micro-structure was included.
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The jewel in the crown of algorithmic information theory is the halting
probability Ω, which provides a concentrated version of Alan Turing’s 1936
halting problem. In 1936 Turing asked if there was a way to determine
whether or not individual self-contained computer programs will eventually
stop. And his answer, surprisingly enough, is that this cannot be done.
Perhaps it can be done in individual cases, but Turing showed that there
could be no general-purpose algorithm for doing this, one that would work
for all possible programs.

The halting probability Ω is defined to be the probability that a program
that is chosen at random, that is, one that is generated by coin tossing, will
eventually halt. If no program ever halted, the value of Ω would be zero. If
all programs were to halt, the value of Ω would be one. And since in actual
fact some programs halt and some fail to halt, the value of Ω is greater
than zero and less than one. Moreover, Ω has the remarkable property that
its numerical value is maximally unknowable. More precisely, let’s imagine
writing the value of Ω out in binary, in base-two notation. That would consist
of a binary point followed by an infinite stream of bits. It turns out that these
bits are irreducible, both computationally and logically:

• You need an N -bit program in order to be able to calculate the first N
bits of the numerical value of Ω.

• You need N bits of axioms in order to be able to prove what are the
first N bits of Ω.

• In fact, you need N bits of axioms in order to be able to determine the
positions and values of any N bits of Ω, not just the first N bits.

Thus the bits of Ω are, in a sense, mathematical facts that are true for
no reason, more precisely, for no reason simpler than themselves. Essentially
the only way to determine the values of some of these bits is to directly add
that information as a new axiom.

And the only way to calculate individual bits of Ω is to separately add
each bit you want to your program. The more bits you want, the larger your
program must become, so the program doesn’t really help you very much.
You see, you can only calculate bits of Ω if you already know what these bits
are, which is not terribly useful. Whereas with π = 3.1415926 . . . we can get
all the bits or all the digits from a single finite program, that’s all you have
to know. The algorithm for π compresses an infinite amount of information



Speculations on biology, information & complexity 309

into a finite package. But with Ω there can be no compression, none at all,
because there is absolutely no structure.

Furthermore, since the bits of Ω in their totality are infinitely complex,
we see that pure mathematics contains infinite complexity. Each of the bits
of Ω is, so to speak, a complete surprise, an individual atom of mathematical
creativity. Pure mathematics is therefore, fundamentally, much more similar
to biology, the domain of the complex, than it is to physics, where there
is still hope of someday finding a theory of everything, a complete set of
equations for the universe that might even fit on a T-shirt.

In my opinion, establishing this surprising fact has been the most impor-
tant achievement of algorithmic information theory, even though it is actually
a rather weak link between pure mathematics and biology. But I think it’s
an actual link, perhaps the first.

Computing Ω in the limit from below as a

model for evolution

I should also point out that Ω provides an extremely abstract—much too
abstract to be satisfying—model for evolution. Because even though Ω con-
tains infinite complexity, it can be obtained in the limit of infinite time via
a computational process. Since this extremely lengthy computational pro-
cess generates something of infinite complexity, it may be regarded as an
evolutionary process.

How can we do this? Well, it’s actually quite simple. Even though, as
I have said, Ω is maximally unknowable, there is a simple but very time-
consuming way to obtain increasingly accurate lower bounds on Ω. To do
this simply pick a cut-off t, and consider the finite set of all programs p up
to t bits in size which halt within time t. Each such program p contributes
1/2|p|, 1 over 2 raised to p’s size in bits, to Ω. In other words,

Ω = lim
t−→∞







∑

|p| ≤ t & halts within time t

2−|p|





 .

This may be cute, and I feel compelled to tell you about it, but I certainly
do not regard this as a satisfactory model for biological evolution, since there
is no apparent connection with Darwin’s theory.
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[7] G. Chaitin, “To a mathematical definition of ‘life’,” ACM SICACT News, January
1970, pp. 12–18.

[8] G. Chaitin, “Toward a mathematical definition of ‘life’,” R. Levine, M. Tribus, The

Maximum Entropy Formalism, MIT Press, 1979, pp. 477–498.

[9] G. Chaitin, “Algorithmic information and evolution,” O. Solbrig, G. Nicolis, Per-

spectives on Biological Complexity, IUBS Press, 1991, pp. 51–60.

[10] G. Chaitin, “Complexity and biology,” New Scientist, 5 October 1991, p. 52.

3An earlier account of von Neumann’s thinking on this subject was published in [1],
which I read as a child.



Speculations on biology, information & complexity 311

[11] G. Chaitin, “Meta-mathematics and the foundations of mathematics,” Bulletin of

the European Association for Theoretical Computer Science, June 2002, pp. 167–
179.

[12] D. Lenat, “Automated theory formation in mathematics,” pp. 833–842 in volume
2 of R. Reddy, Proceedings of the 5th International Joint Conference on Artificial

Intelligence, Cambridge, MA, August 1977, William Kaufmann, 1977.



This page intentionally left blank



How much information can
there be in a real number?

This note gives some information about the magical number Ω and why it is of
interest. Our purpose is to explain the significance of recent work by Calude
and Dinneen attempting to compute Ω. Furthermore, we propose measuring
human intellectual progress (not scientific progress) via the number of bits
of Ω that can be determined at any given moment in time using the current
mathematical theories.

1. Introduction

A real number corresponds to the length of a line segment that is measured
with infinite precision. A rational number has a periodic decimal expansion.
For example,

1

3
= 0.3333333 . . .

The decimal expansion of an irrational real number is not periodic. Here are
three well-known irrational reals that everyone encounters in high school and
college mathematics:

√
2, π, and e.

Each of these numbers would seem to contain an infinite amount of infor-
mation, because they have an infinite decimal expansion that never repeats.
For example,

π = 3.1415926 . . .

However, π actually only contains a finite amount of information, because
there is a small computer program for computing π. Instead of sending
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someone the digits of π, we can just explain to them how to compute as
many digits as they want.

Are there any real numbers that contain an infinite amount of informa-
tion? Well, clearly, if the successive decimal digits are chosen at random, the
resulting stream of digits has no structure, each digit is a complete surprise,
and there cannot be an algorithm for computing the number digit by digit.

However, this random sequence of digits is not useful information, not
at all. It’s an infinite amount of completely useless information.

2. Borel’s Know-It-All Real Number

In 1927, the French mathematician Emile Borel pointed out that there are
real numbers which contain an infinite amount of extremely useful informa-
tion. The particular example that he gave is defined like this: Its Nth digit
answers the Nth yes/no question in an infinite list of all possible yes/no
questions, questions about the weather, the stock market, history, the fu-
ture, physics, mathematics. . . Here I am talking about the Nth digit after
the decimal point. Borel’s number is between zero and one; there is nothing
before the decimal point, only stuff after the decimal point. And we can as-
semble this list of questions because the set of all possible questions is what
mathematicians call a countable or a denumerable set.

3. Using a Real Number as an Oracle for the

Halting Problem

Borel’s real number may seem rather unreal, rather fantastic, even though it
exists in some Platonic, ideal, conceptual sense. How about a more realistic
example, and now let’s use base two, not base ten. Well, there is a real Θ
whose Nth bit tells us whether or not the Nth computer program ever halts.
This time we imagine an infinite list of all possible self-contained computer
programs—not yes/no questions—and ask which programs will eventually
finish running. This is Alan Turing’s famous 1936 halting problem.

Θ doesn’t tell us anything about the stock market or history, but it does
tell us a great deal about mathematics. Why? Because knowing this number
Θ would automatically enable us to resolve famous mathematical problems
like Fermat’s so-called last theorem, which asserts that there are no positive
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integer solutions for
xN + yN = zN

with the power N greater than two.
How can Θ enable us to decide if Fermat was right and this equation

has no solutions? There is a simple computer program for systematically
searching for a solution of Fermat’s equation. This program will fail to halt
precisely if Fermat’s conjecture that there are no solutions is correct.

However, in the case of Fermat’s conjecture there is no need to wait for
the number Θ; Andrew Wiles now has a proof that there are no solutions.
But Θ would enable us to answer an infinite number of such conjectures, more
precisely, all conjectures that can be refuted by a single counter example that
we can search for using a computer.

4. N Cases of the Halting Problem is Only

log2 N Bits of Information

So knowing the answers to individual cases of the halting problem can be
valuable information, and Θ enables us to answer all such problems, but
unfortunately not in an optimal way. Θ isn’t optimal, it is highly redundant,
we’re wasting lots of bits. Individual answers to the halting problem aren’t
independent, they’re highly correlated.

Why? Because if we are given N programs, we can determine which ones
halt and which ones don’t if we merely know how many of these N programs
halt, and to know that is only about log2 N bits of information. (Run all
N programs in parallel until precisely the correct number have stopped; the
remaining programs will never stop.)

Furthermore, log2 N is much smaller than N for all sufficiently large values
of N .

So what is the best we can do? Is there an oracle for the halting problem
that isn’t redundant, that doesn’t waste any bits?
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5. The Halting Probability Ω is the Most Com-
pact Oracle for the Halting Problem

The best way to pack information about the halting problem into a real num-
ber is to know a great many bits of the numerical value of the probability that
a program chosen at random will eventually halt. Precisely how do I define
this halting probability? Well, the exact definition is a little complicated,
and in fact the numerical value of Ω depends on the particular computer and
the programming language that you pick.

The general idea is that the computer that we are using flips a fair coin
to generate each bit of the program, a heads yields a 1, a tails yields a 0,
successive coin tosses are independent, and the computer starts running the
program right away as it generates these bits. Ω is the probability that this
process will eventually halt.

More precisely, each K-bit program p that halts contributes precisely
1/2K to the halting probability Ω:

Ω =
∑

p halts

2−(the size of p in bits).

Furthermore, to avoid having this sum diverge to infinity, the set of mean-
ingful programs must be a prefix-free set, in other words, no extension of a
valid program is a valid program. Then what information theorists call the
Kraft inequality applies to the set of all programs and Ω is necessarily less
than one.

Ω is a very valuable oracle, because knowing the first N bits of Ω would
enable us to resolve the halting problem for all programs up to N bits in size.
No oracle for the halting problem can do better than this. Ω is so valuable
precisely because it is the most compact way to represent this information.
It’s the best possible oracle for the halting problem. You get the biggest
bang for your buck with each bit!

And because this information is so valuable, Ω is maximally unknow-
able, maximally uncomputable: An N -bit computer program can compute
at most N bits of Ω, and a mathematical theory with N bits of axioms can
enable us to determine at most N bits of Ω. In other words, the bits of
Ω are incompressible, irreducible information, both logically irreducible and
computationally irreducible.

Paradoxically, however, even though Ω is packed full of useful information,
its successive bits appear to be totally unstructured and random, totally
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chaotic, because otherwise Ω would not be the most compact oracle for the
halting problem. If one could predict future bits from past bits, then Ω would
not be the best possible compression of all the answers to individual cases of
Turing’s halting problem.

6. Measuring Mathematical or Human Intel-

lectual Progress in Terms of Bits of Ω

Counting how many bits of Ω our current mathematical theories permit us
to know, gives us a way to measure the complexity of our mathematical
knowledge as a function of time. Ω is infinitely complex, and at any given
moment our theories capture at most a finite amount of this complexity. Our
minds are finite, not infinitely complex like Ω.

But what if we bravely try to compute Ω anyway?

7. Storming the Heavens: Attempting to

Compute the Uncomputable Bits of Ω

This amounts to a systematic attempt to increase the complexity of our
mathematical knowledge, and it is precisely what Calude and Dinneen try to
do in [1]. As they show, you can start off well enough and indeed determine
a few of the initial bits of Ω. But as I have tried to explain, the further you
go, the more creativity, the more ingenuity is required. To continue making
progress, you will eventually need to come up with more and more compli-
cated mathematical principles, novel principles that are not consequences of
our current mathematical knowledge.

Will mathematics always be able to advance in this way, or will we even-
tually hit an insurmountable obstacle? Who knows! What is clear is that
Ω can never be known in its entirety, but if the growth of our mathematical
knowledge continues unabated, each individual bit of Ω can eventually be
known.

I hope that this note gives some idea why [1] is of interest. (See also [2].)
For more on Ω, please see my article in Scientific American [3] or my book
[4]. A more recent paper is my Enriques lecture at the University of Milan
in 2006 [5].



318 Thinking about Gödel & Turing
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The halting probability Ω:
Irreducible complexity
in pure mathematics

Some Gödel centenary reflections on whether incompleteness is really serious,
and whether mathematics should be done somewhat differently, based on using
algorithmic complexity measured in bits of information. [Enriques lecture
given Monday, October 30, 2006, at the University of Milan.]

Introduction: What is mathematics?

It is a pleasure for me to be here today giving this talk in a lecture series in
honor of Frederigo Enriques. Enriques was a great believer in mathematical
intuition, and disdained formal proofs. The work of Gödel, Turing and myself
that I will review goes some way to justifying Enriques’s belief in intuition.
And, as you will see, I also agree with Enriques’s emphasis on the importance
of the philosophy and the history of science and mathematics.

This year is the centenary of Kurt Gödel’s birth. Nevertheless, his famous
1931 incompleteness theorem remains controversial. To postmodernists, it
justifies the belief that truth is a social construct, not absolute. Most math-
ematicians ignore incompleteness, and carry on as before, in a formalist,
axiomatic, Hilbertian, Bourbaki spirit. I, on the contrary, have bet my life
on the hunch that incompleteness is really serious, that it cannot be ignored,
and that it means that mathematics is actually somewhat different from what
most people think it is.
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Gödel himself did not think that his theorem showed that mathematics
has limitations. In several essays he made it clear that he believed that
mathematicians could eventually settle any significant question by using their
mathematical intuition, their ability to directly perceive the Platonic world
of mathematical ideas, and by inventing or discovering new concepts and new
axioms, new principles.

Furthermore, I share Enriques’s faith in intuition. I think that excessive
formalism and abstraction is killing mathematics. In my opinion math papers
shouldn’t attempt to replace all words by formulas, instead they should be
like literary essays, they should attempt to explain and convince.

So let me tell you the story of metamathematics, of how mathematicians
have tried to use mathematical methods to study the power and the limita-
tions of math itself. It’s a fairly dramatic story; in a previous era it might
have been the subject of epic poems, of Iliads and Odysseys of verse. I’ll
start with David Hilbert.

Hilbert: Can mathematics be entombed in a

formal axiomatic theory?

Hilbert stated the traditional belief that mathematics can provide absolute
truth, complete certainty, that mathematical truth is black or white with no
uncertainty. His contribution was to realize, to emphasize, that if this were
the case, then there should be, there ought to be, a formal axiomatic theory,
a theory of everything, for all of mathematics.

In practice, the closest we have come to this today is Zermelo-Fraenkel
set theory with the axiom of choice, the formal theory ZFC using first-order
logic, which seems to suffice for most contemporary mathematics.

Hilbert did not invent mathematical logic, he took advantage of work go-
ing back to Leibniz, de Morgan, Boole, Frege, Peano, Russell and Whitehead,
etc. But in my opinion he enunciated more clearly than anyone before him
the idea that if math provides absolute truth, complete certainty, then there
should be a finite set of axioms that we can all agree on from which it would
in principle be possible to prove all mathematical truths by mechanically
following the rules of formal mathematical logic. It would be slow, but it
would work like an army of reason marching inexorably forward. It would
make math into a merciless machine.
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Hilbert did not say that mathematics should actually be done in this
extremely formal way in which proofs are broken down into their atomic
steps, with nothing omitted, excruciatingly detailed, using symbolic logic
instead of a normal human language. But the idea was to eliminate all
uncertainty, to make clear exactly when a proof is valid, so that this can be
checked mechanically, thus making mathematical truth completely objective,
eliminating all subjective elements, all matters of opinion.

Hilbert started with Peano arithmetic, but his ultimate goal was to axiom-
atize analysis and then all of mathematics, absolutely everything. In 1931,
however, Gödel surprised everyone by showing that it couldn’t be done, it
was impossible.

Gödel: “This statement is unprovable!”

In fact, Gödel showed that no finite set of axioms suffice for elementary
number theory, for the theory of 0, 1, 2, . . . and addition and multiplication,
that is, for Peano arithmetic. His proof is very strange. First of all he
numbers all possible assertions and all possible proofs in Peano arithmetic.
This converts the assertion that x is a proof of y into an arithmetic assertion
about x and y.

Next Gödel constructs an assertion that refers to itself indirectly. It
says that if you calculate a certain number, that gives you the number of an
unprovable assertion, and this is done in such a way that we get an arithmetic
statement asserting its own unprovability.

Consider “I am unprovable.” It is either provable or not. If provable, we
are proving a false assertion, which we very much hope is impossible. The
only alternative left is that “I’m unprovable” is unprovable. If so it is true
but unprovable, and there is a hole in formal mathematics, a true assertion
that we cannot prove. In other words, our formal axiomatic theory must be
incomplete, if we assume that only true assertions can be proved, which we
fervently hope to be the case. Proving false assertions is even worse than not
being able to prove a true assertion!

So that’s Gödel’s famous 1931 incompleteness theorem, and it was a
tremendous shock to everyone. When I was a young student I read essays
by John von Neumann, Hermann Weyl and others attesting to what a shock
it was. I didn’t realize that the generation that cared about this had been
swept away by the Second World War and that mathematicians were going



322 Thinking about Gödel & Turing

on exactly as before, ignoring Gödel. In fact, I thought that what Gödel
discovered was only the tip of the iceberg. I thought that the problem had
to be really serious, really profound, and that the traditional philosophy of
math couldn’t be slightly wrong, so that even a small scratch would shatter
it into pieces. It had to be all wrong, in my opinion.

Does that mean that if you cannot prove a result that you like and have
some numerical evidence for, if you cannot do this in a week, then invoking
Gödel, you just add this conjectured result as a new axiom?! No, not at
all, that is too extreme a reaction. But, as I will explain later, I do have
something like that in mind.

You see, the real problem with Gödel’s proof is that it gives no idea how
serious incompleteness is. Gödel’s true but unprovable assertion is bizarre, so
it is easy to shrug it off. But if it turns out that incompleteness is pervasive,
is ubiquitous, that is another matter.

And an important first step in the direction of showing that incomplete-
ness is really serious was taken only five years later, in 1936, by Alan Turing,
in a famous paper “On computable numbers. . . ”

Turing: Most real numbers are uncomputable!

This paper is remembered, in fact, celebrated nowadays, for proposing a toy
model of the computer called a Turing machine, and for its discussion of
what we now call the halting problem. But this paper is actually about dis-
tinguishing between computable and uncomputable real numbers, numbers
like π or e or

√
2 that we can compute with infinite precision, with arbitrary

accuracy, and those that we cannot.
Yes, it’s true, Turing’s paper does contain the idea of software as op-

posed to hardware, of a universal digital machine that can simulate any other
special-purpose digital machine. Mathematicians refer to this as a universal
Turing machine, and, as I learned from von Neumann, it is the conceptual
basis for all computer technology. But even more interesting is the fact that
it is easy to see that most real numbers are uncomputable, and the new per-
spective this gives on incompleteness, as Turing himself points out. Let me
summarize his discussion.

First of all, all possible software, all possible algorithms, can be placed
in an infinite list and numbered 1, 2, 3, . . . and so this set is denumer-
able or countable. However, the set of real numbers is, as Cantor showed,
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a higher-order infinity, it’s uncountable, nondenumerable. Therefore most
real numbers must be uncomputable. In Turing’s paper he exhibits a single
example of an uncomputable real, one that is obtained by applying Cantor’s
diagonal method to the list of all computable real numbers to obtain a new
and different real, one that is not in the list.

In fact, using ideas that go back to Emile Borel, it is easy to see that if
you pick a real number between 0 and 1 at random, with uniform probability,
it is possible to pick a computable real, but this is infinitely improbable,
because the computable reals are a set of measure zero, they can be covered
with intervals whose total length is arbitrarily small. Just cover the first
computable real in [0,1] with an interval of size ε/2, the second real with an
interval of size ε/4, and in general the Nth real with an interval of size ε/2N .
This covering has lengths totalling exactly ε, which can be made as small as
we want.

Turing does not, however, make this observation. Instead he points out
that it looks easy to compute his uncomputable real by taking the Nth digit
produced by the Nth program and changing it. Why doesn’t this work?
Because we can never decide if the Nth program will ever produce an Nth
digit! If we could, we could actually diagonalize over all computable reals
and calculate an uncomputable real, which is impossible. And being able to
decide if the Nth program will ever output an Nth digit is a special case of
Turing’s famous halting problem.

Note that there is no problem if you place an upper bound on the time
allowed for a computation. It is easy to decide if the Nth program outputs
an Nth digit in a trillion years, all you need to do is be patient and try it
and see. Turing’s halting problem is only a problem if there is no time limit.
In other words, this is a deep conceptual problem, not a practical limitation
on what we can do.

And, as Turing himself points out, incompleteness is an immediate corol-
lary. For let’s say we’d like to be able to prove whether individual computer
programs, those that are self-contained and read no input, eventually halt or
not. There can be no formal axiomatic theory for this, because if there were,
by systematically running through the tree of all possible proofs, all possible
deductions from the axioms using formal logic, we could always eventually
decide whether an individual program halts or not, which is impossible.

In my opinion this is a fundamental step forward in the philosophy of
mathematics because it makes incompleteness seem much more concrete and
much more natural. It’s almost a problem in physics, it’s about a machine,
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you just ask whether or not it’s going to eventually stop, and it turns out
there’s no way, no general way, to answer that question.

Let me emphasize that if a program does halt, we can eventually discover
that. The problem, an extremely deep one, is to show that a program will
never halt if this is in fact so. One can settle many special cases, even an
infinity of them, but no finite set of axioms can enable you to settle all
possible cases.

My own work takes off from here. My approach to incompleteness follows
Turing, not Gödel. Later I’ll consider the halting probability Ω and show that
this number is wildly, in fact maximally, uncomputable and unknowable. I’ll
take Turing’s halting problem and convert it into a real number. . .

My approach is very 1930’s. All I add to Turing is that I measure software
complexity, I look at the size of computer programs. In a moment, I’ll tell
you how these ideas actually go back to Leibniz. But first, let me tell you
more about Borel’s ideas on uncomputable reals, which are closely related to
Turing’s ideas.

Borel: Know-it-all and unnameable reals

Borel in a sense anticipated Turing, because he came up with an example of
an uncomputable real in a small paper published in 1927. Borel’s idea was to
use the digits of a single real number as an oracle that can answer any yes/no
question. Just imagine a list of all possible yes/no questions in French, said
Borel. This is obviously a countable infinity, so there is an Nth question,
an N + 1th question, etc. And you can place all the answers in the decimal
expansion of a single real number; just use the Nth digit to answer the Nth
question. Questions about history, about math, about the stock market!

So, says Borel, this real number exists, but to him it is a mathematical
fantasy, not something real. Basically Borel has a constructive attitude, he
believes that something exists only if we can calculate it, and Borel’s oracle
number can certainly not be calculated.

Borel didn’t linger over this, he made his point and moved on, but his
example is in my opinion a very interesting one, and will later lead us step
by step to my Ω number.

Before I used Borel’s ideas on measure and probability to point out
that Turing’s computable reals have measure zero, they’re infinitely unlikely.
Borel however seemed unaware of Turing’s work. His own version of these
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ideas, in his final book, written when he was 80, Les nombres inaccessibles,
is to point out that the set of reals that can somehow be individually identi-
fied, constructively or not, has measure zero, because the set of all possible
descriptions of a real is countable. Thus, with probability one, a real cannot
be uniquely specified, it can never be named, there are simply not enough
names to go around!

The real numbers are the simplest thing in the world geometrically, they
are just points on a line. But arithmetically, as individuals, real numbers are
actually rather unreal. Turing’s 1936 uncomputable real is just the tip of the
iceberg, the problem is a lot more serious than that.

Let me now talk about looking at the size of computer programs and
what that has to tell us about incompleteness. To explain why program
size is important, I have to start with Leibniz, with some ideas in his 1686
Discours de métaphysique, which was found among his papers long after his
death.

Theories as software, Understanding as com-

pression, Lawless incompressible facts

The basic model of what I call algorithmic information theory (AIT) is that
a scientific theory is a computer program that enables you to compute or
explain your experimental data:

theory (program) −→ Computer −→ data (output).

In other words, the purpose of a theory is to compute facts. The key obser-
vation of Leibniz is that there is always a theory that is as complicated as
the facts it is trying to explain. This is useless: a theory is of value only to
the extent that it compresses a great many bits of data into a much smaller
number of bits of theory.

In other words, as Hermann Weyl put it in 1932, the concept of law
becomes vacuous if an arbitrarily complicated law is permitted, for then
there is always a law. A law of nature has to be much simpler than the data
it explains, otherwise it explains nothing. The problem, asks Weyl, is how
can we measure complexity? Looking at the size of equations is not very
satisfactory.

AIT does this by considering both theories and data to be digital infor-
mation; both are a finite string of bits. Then it is easy to compare the size
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of the theory with the size of the data it supposedly explains, by merely
counting the number of bits of information in the software for the theory
and comparing this with the number of bits of experimental data that we are
trying to understand.

Leibniz was actually trying to distinguish between a lawless world and
one that is governed by law. He was trying to elucidate what it means to
say that science works. This was at a time when modern science, then called
mechanical philosophy, was just beginning; 1686 was the year before Leibniz’s
nemesis Newton published his Principia.

Leibniz’s original formulation of these ideas was like this. Take a piece of
paper, and spot it with a quill pen, so that you get a finite number of random
points on a page. There is always a mathematical equation that passes
precisely through these points. So this cannot enable you to distinguish
between points that are chosen at random and points that obey a law. But
if the equation is simple, then that’s a law. If, on the contrary, there is no
simple equation, then the points are lawless, random.

So part and parcel of these ideas is a definition of randomness or law-
lessness for finite binary strings, as those which cannot be compressed into a
program for calculating them that is substantially smaller in size. In fact, it
is easy to see that most finite binary strings require programs of about the
same size as they are. So these are the lawless, random or algorithmically
irreducible strings, and they are the vast majority of all strings. Obeying
a law is the exception, just as being able to name an individual real is an
exception.

Let’s go a bit further with this theories as software model. Clearly, the
best theory is the simplest, the most concise, the smallest program that
calculates your data. So let’s abstract things a bit, and consider what I call
elegant programs:

• A program is elegant if no smaller program written in the same lan-
guage, produces the same output.

In other words, an elegant program is the optimal, the simplest theory for
its output. How can we be sure that we have the best theory? How can we
tell whether a program is elegant? The answer, surprisingly enough, is that
we can’t!
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Provably elegant programs

To show this, consider the following paradoxical program P :

• P computes the output of the first provably elegant program larger
than P .

In other words, P systematically deduces all the consequences of the axioms,
which are all the theorems in our formal axiomatic theory. As it proves each
theorem, P examines it. First of all, P filters out all proofs that do not
show that a particular program is elegant. For example, if P finds a proof
of the Riemann hypothesis, it throws that away; it only keeps proofs that
programs are elegant. And as it proves that individual programs are elegant,
it checks each provably elegant program to see if this program is larger than
P . As soon as P finds a provably elegant program that is larger than it is,
it starts running that program, and produces that program’s output as its
own output. In other words, P ’s output is precisely the same as the output
of the first provably elegant program that is larger than P .

However, P is too small to produce the same output as an elegant program
that is larger than P , because this contradicts the definition of elegance!
What to do? How can we avoid the contradiction?

First of all, we are assuming that our formal axiomatic theory only proves
true theorems, and in particular, that if it proves that a program is elegant,
this is in fact the case. Furthermore, the program P is not difficult to write
out; I’ve done this in one of my books using the programming language called
LISP. So the only way out is if P never finds the program it is looking for! In
other words, the only way out is if it is never possible to prove that a program
that’s larger than P is elegant! But there are infinitely many possible elegant
programs, and they can be arbitrarily big. But provably elegant programs
can’t be arbitrarily big, they can’t be larger than P .

So how large is P , that’s the key question. Well, the bulk of P is actu-
ally concerned with systematically producing all the theorems in our formal
axiomatic theory. So I’ll define the complexity of a formal axiomatic theory
to be the size in bits of the smallest program for doing that. Then we can
restate our metatheorem like this: You can’t prove that a program is elegant
if its size in bits is substantially larger than the complexity of the formal
axiomatic theory you are working with. In other words, using a formal ax-
iomatic theory with N bits of complexity, you can’t prove that any program
larger than N + c bits in size is elegant. Here the constant c is the size
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in bits of the main program in P , the fixed number of bits not in that big
N -bit subroutine for running the formal axiomatic theory and producing all
its theorems.

Loosely put:

• You need an N -bit theory to show that an N -bit program is elegant.1

Why is this so interesting? Well, right away it presents incompleteness in
an entirely new light. How? Because it shows that mathematics has infinite
complexity, but any formal axiomatic theory can only capture a finite part
of this complexity. In fact, just knowing which programs are elegant has
infinite complexity.

So this makes incompleteness very natural; math has an infinite basis,
no finite basis will do. Now incompleteness is the most natural thing in the
world; it’s not at all mysterious!

Now let me tell you about the halting probability Ω, which shows even
better that math is infinitely complex.

What is the halting probability Ω?

Let’s start with Borel’s know-it-all number, but now let’s use the Nth binary
digit to tell us whether or not the Nth computer program ever halts. So now
Borel’s number is an oracle for the halting problem. For example, there is a
bit which tells us whether or not the Riemann hypothesis is true, for that is
equivalent to the statement that a program that systematically searches for
zeros of the zeta function that are in the wrong place, never halts.

It turns out that this number, which I’ll call Turing’s number even though
it does not occur in Turing’s paper, is wasting bits, it is actually highly
redundant. We don’t really need N bits to answer N cases of the halting
problem, a much smaller number of bits will do. Why?

Well, consider some large number N of cases of the halting problem, some
large number N of individual programs for which we want to know whether
or not each one halts. Is this really N bits of mathematical information? No,

1By the way, it is an immediate corollary that the halting problem is unsolvable, because
if we could decide which programs halt, then we could run all the programs that halt and
see what they output, and this would give us a way to determine which halting programs
are elegant, which we’ve just shown is impossible. This is a new information-theoretic proof
of Turing’s theorem, rather different from Turing’s original diagonal-argument proof.
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the answers are not independent, they are highly correlated. How? Well, in
order to answer N cases of the halting problem, we don’t really need to know
each individual answer; it suffices to know how many of these N programs
will eventually halt. Once we know this number, which is only about log2 N
bits of information, we can run the N programs in parallel until exactly this
number of them halt, and then we know that none of the remaining programs
will ever halt. And log2 N is much, much less than N for all sufficiently large
N . In other words, Turing’s number isn’t the best possible oracle for the
halting problem. It is highly redundant, it uses far too many bits.

Using essentially this idea, we can get the best possible oracle number
for the halting problem; that is the halting probability Ω, which has no
redundancy, none at all.

I don’t have time to explain this in detail, but here is a formula for the
halting probability:

Ω =
∑

p halts

2−|p|.

The idea is that each K-bit program that halts contributes exactly 1/2K to
the halting probability Ω. In other words, Ω is the halting probability of a
program p whose bits are generated by independent tosses of a fair coin.

Technical point: For this to work, for this sum to converge to a num-
ber between 0 and 1 instead of diverging to infinity, it is important that
programs be self-delimiting, that no extension of a valid program be a valid
program. In other words, our computer must decide by itself when to stop
reading the bits of the program without waiting for a blank endmarker. In old
Shannon-style information theory this is a well-known lemma called the Kraft
inequality that applies to prefix-free sets of strings, to sets of strings which
are never prefixes or extensions of each other. And an extended, slightly
more complicated, version of the Kraft inequality plays a fundamental role
in AIT.

I should also point out that the precise numerical value of Ω depends
on your choice of computer programming language, or, equivalently, on your
choice of universal self-delimiting Turing machine. But its surprising prop-
erties do not, they hold for a large class of universal Turing machines.

Anyway, once you fix the programming language, the precise numerical
value of Ω is determined, it’s well-defined. Let’s imagine having Ω written
out in base-two binary notation:

Ω = .110110 . . .
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These bits are totally lawless, algorithmically irreducible mathematical facts.
They cannot be compressed into any theory smaller than they are.

More precisely, the bits of the halting probability Ω are both computa-
tionally and logically irreducible:

• You need an N -bit program to calculate N bits of Ω (any N bits, not
just the first N).

• You need an N -bit theory to be able to determine N bits of Ω (any N
bits, not just the first N).

Ω is an extreme case of total lawlessness; in effect, it shows that God
plays dice in pure mathematics. More precisely, the bits of Ω refute Leibniz’s
principle of sufficient reason, because they are mathematical facts that are
true for no reason (no reason simpler than they are). Essentially the only way
to determine bits of Ω is to directly add these bits to your axioms. But you
can prove anything by adding it as a new axiom; that’s not using reasoning!

Why does Ω have these remarkable properties? Well, because it’s such a
good oracle for the halting problem. In fact, knowing the first N bits of Ω
enables you to answer the halting problem for all programs up to N bits in
size. And you can’t do any better; that’s why these bits are incompressible,
irreducible information. If you think of what I called Turing’s number as a
piece of coal, then Ω is the diamond that you get from this coal by subjecting
it to very high temperatures and pressures. A relatively small number of
bits of Ω would in principle enable you to tell whether or not the Riemann
hypothesis is false.

Concluding discussion

So Ω shows us, directly and immediately, that math has infinite complexity,
because the bits of Ω are infinitely complex. But any formal axiomatic theory
only has a finite, in fact, a rather small complexity, otherwise we wouldn’t
believe in it! What to do? How can we get around this obstacle? Well, by
increasing the complexity of our theories, by adding new axioms, complicated
axioms that are pragmatically justified by their usefulness instead of simple
self-evident axioms of the traditional kind.

Here are some recent examples:

• The hypothesis that P 6= NP in theoretical computer science.
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• The axiom of projective determinacy in abstract set theory.

• Various versions of the Riemann hypothesis in analytic number theory.

In other words, I am advocating a “quasi-empirical” view of mathemat-
ics, a term that was invented by Imre Lakatos, by the way. (He wouldn’t
necessarily approve of the way I’m using it, though.)

To put it bluntly, from the point of view of AIT, mathematics and physics
are not that different. In both cases, theories are compressions of facts, in
one case facts we discover in a physics lab, in the other case, numerical facts
discovered using a computer. Or, as Vladimir Arnold so nicely puts it, math
is like physics, except that the experiments are cheaper! I’m not saying that
math and physics are the same, but I am saying that maybe they are not as
different as most people think.

Another way to put all of this, is that the DNA for pure math, Ω, is
infinitely complex, whereas the human genome is 3 × 109 bases = 6 × 109

bits, a large number, but a finite one. So pure math is even more complex
than the traditional domain of the complicated, biology! Math does not have
finite complexity the way that Hilbert thought, not at all, on the contrary!

These are highly heretical suggestions, suggestions that the mathematics
community is extremely uncomfortable with. And I have to confess that I
have attempted to show that incompleteness is serious and that math should
be done somewhat differently, but I haven’t been able to make an absolutely
watertight case. I’ve done the best I can with one lifetime of effort, though.

But if you really started complicating mathematics by adding new non-
self-evident axioms, what would happen? Might mathematics break into
separate factions? Might different groups with contradictory axioms go to
war? Hilbert thought math was an army of reason marching inexorably
forward, but this sounds more like anarchy!

Perhaps anarchy isn’t so bad; it’s better than a prison, and it leaves more
room for intuition and creativity. I think that Enriques might have been
sympathetic to this point of view. After all, as Cantor, who created a crazy,
theological, paradoxical theory of infinite magnitudes, said, the essence of
mathematics resides in its freedom, in the freedom to imagine and to create.
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The halting probability Ω:
Concentrated creativity

The number Ω is the probability that a self-contained computer program
chosen at random, a program whose bits are picked one by one by tossing a
coin, will eventually stop, rather than continue calculating forever:

Ω =
∑

p halts

2−|p|.

Surprisingly enough, the precise numerical value of Ω is uncomputable, in
fact, irreducibly complex.

Ω can be interpreted pessimistically, as indicating there are limits to
human knowledge. The optimistic interpretation, which I prefer, is that Ω
shows that one cannot do mathematics mechanically and that intuition and
creativity are essential. Indeed, in a sense Ω is the crystalized, concentrated
essence of mathematical creativity. — Gregory Chaitin

[This is my contribution to a collection of Formulas for the Twenty-
First Century, each explained in 120 words or less, assembled by art cura-
tor Hans-Ulrich Obrist.]
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• G. Chaitin, “Information-theoretic incompleteness,” Applied Mathematics and

Computation 52 (1992), pp. 83–101.

• G. Chaitin, “LISP program-size complexity II,” Applied Mathematics and Compu-

tation 52 (1992), pp. 103–126.

• G. Chaitin, “LISP program-size complexity III,” Applied Mathematics and Com-

putation 52 (1992), pp. 127–139.

• G. Chaitin, “LISP program-size complexity IV,” Applied Mathematics and Compu-

tation 52 (1992), pp. 141–147.

• G. Chaitin, “A Diary on Information Theory,” The Mathematical Intelligencer 14,
No. 4 (Fall 1992), pp. 69–71.

• G. Chaitin, Information-Theoretic Incompleteness, World Scientific, 1992. Includes
the preceding nine papers.

• G. Chaitin, Algorithmic Information Theory, 4th printing, Cambridge University
Press, 1992. Identical to 3rd printing.

• G. Chaitin, “Randomness in arithmetic and the decline and fall of reductionism
in pure mathematics,” Bulletin of the European Association for Theoretical Com-

puter Science 50 (Jun. 1993), pp. 314–328. Reprinted in J. Cornwell, Nature’s

Imagination, Oxford University Press, 1995. Reprinted in G. Chaitin, The Limits

of Mathematics, Springer-Verlag, 1998. Reprinted in G. Chaitin, Thinking about
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