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PREFACE TO THE DOVER EDITION

In this reprinting it has been possible to correct a number of errors of certain
sorts. These comprise purely typographical errors, and also certain cases where
an essential word or two was inadvertently omitted or misplaced. The only
corrections whIch affect the sense are the following two.

The original proof of (ii) under Theorem 4D7, page 157, contained an error
which was first noticed by E. C. W. Krabbe, then a student at the University of
Amsterdam. The theorem, however, is correct as stated. That incorrect part
of the proof iR here replaced by a new one, which is actually simpler than the
original.

In Exercise 7C6, page 349, the student was asked to prove something false. For
the discovery and published correction of the error see my article in Contributions
to Mathematical Logic, edited by H. A. Schmidt, K. Schutte, and H. J. Thiele,
Amsterdam, 1968, p. 101. The exercise is here replaced by another one.

Besides these corrections a rather large number of changes have been suggested
by various persons or by my own further study. One of the most interesting of
these is the following. The rules Px on page 193 and Nx on page 262 are not
strictly analogous. If we were to modify Px so as to be analogous to Nx, or Nx so
as to be analogous to Px, certain simplifications in various parts of the work would
ensue. This would require extensive changes. Although such changes would
doubtless improve the work, they are not suitable to be made here.

My thanks are due to the rather considerable number of persons who have
suggested corrections, and to Dover Publications, who have made this reprint
possible.
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July 10, 1976
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PREFACE TO THE FIRST EDITION
For several years I have given a general course in logic for graduate

students at The Pennsylvania State University. At first this was an intro
ductory course, intended for persons who might be mature mathematically
but had no previous experience with logic; however, it soon developed that
the students would benefit much more by the course if they had a com
paratively elementary one first. This book is a development of that course.

In view of this origin the reader will not expect to find here a book for
absolute beginners, nor for persons who do not have the degree of maturity
regarded as normal in a graduate student. But for students to whom it is
net necessary to explain the most elementary facts about logical symbolism,
nor to give extensive training in the translation of notions of ordinary
language into that symbolism or vice versa, this book is intended to be self
contained. It aims to give a thorough account of a part of mathematical
logic which is truly fundamental, not in a theoretical or philosophical sense,
but from the standpoint of a student; a part which needs to be thoroughly
understood, not only by those who will later become specialists in logic, but
by all mathematicians, philosophers, and scientists whose work impinges
upon logic.

The part of mathematical logic which is selected for treatment may be
described as the constructive theory of the first-order predicate calculus.
That this calculus is central in modern mathematical logic does not need to
be argued. Likewise, the constructive aspects of this calculus are funda
mental for its higher study. Furthermore, it is becoming increasingly
apparent that mathematicians in general need to be aware of the difference
between the constructive and the nonconstructive, and there is hardly any
better way of increasing this awareness than by giving a separate treatment
of the former. Thus there seems to be a need for a graduate-level exposition
of this fundamental domain.

The exposition here given differs in its point of view from that generally
current, particularly in the textbooks designed for beginners. The tradi
tional approach to the logical calculus is that it is a formal system like any
other; it is peculiar only in that it must be formalized more rigorously, since
we cannot take "logic" for granted, and in that it can be interpreted in the
statements of ordinary discourse. Here the point of view is taken that we
may interpret our systems in the more circumscribed set of statements which
we form in dealing with some other (unspecified) formal system. The
origin of the point of view so far as I am concerned is described in Sec. 5S1.
This is a point of view which I share with Lorenzen, who arrived at a similar
position independently and on the basis of a quite different philosophy.
Since in the study of a formal system we can form statements which cannot
be decided by the devices of that system, this brings in possibilities which
did not arise, or seemed only pathological, in the traditional theories. The
result is that various different systems of logical calculus stand here more or
leJs on a par, and there are a number of alternatives, for example, in the
definition of negation.

From this point of view logical study is a part of the methodology of
formal systems. In order to develop it, we have to begin with the study of
formal systems themselves. Thus, after Chapter 1, which is an introduction
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iv PREFACE

to the whole subject, the next two chapters are devoted to the study of
formal methods as such. This is done here with some care, for unfortu
nately there has been a great deal of misunderstanding of this matter even
on the part of experts. A brief treatment of the Markov theory of algorithms
is included. After these two chapters there is a rather easy chapter, Chapter
4, concerned with the elementary facts about lattices and similar algebraic
systems.

After these preliminaries the proper business of this book begins with
Chapter 5. The general method of the inquiry is to seek for a formulation
which expresses the meaning we wish to attach to the logical connectives,
and then to develop the properties which follow from the assumptions so
motivated. The connectives are not taken up all at once; the positive con
nectives-implication, conjunction, and alternation-are taken up in Chapter
5, negation in Chapter 6, quantification in Chapter 7, and modal operations
in Chapter 8. Of these, Chapter 5 is fuller and more detailed than the
others, not only because its principal connective, implication (conjunction
and alternation are relatively trivial, and are carried along as by-products)
is in a sense the central connective of logic, but because the general principles
of the inquiry are established in that chapter; in the later chapters we merely
extend to the new operations the results already obtained for the old. On
the other hand, the treatment of modality is very brief, for the reasons
which are explained in the introduction to that chapter.

This mode of approach is adapted to the semantical situation-each
chapter is concerned with a factor in that situation which was not present
in the previous one. However, the arrangement has one disadvantage, viz.,
that when one extends the proofs of theorems to cases not contemplated
when those theorems were originally proved, one tends to forget certain
important details and to assume too readily that everything is going to be
all right in the new situation. Anyone with experience can cite cases of
errors which have arisen in just this way. This is, however, a price which
has to be paid for the advantages of the semantical approach. Besides, it
is typical of the way in which mathematics grows; we are continually ex
tending results, often with suitable modifications, to situations similar to,
but not exactly the same as, those originally encountered.

The last four chapters in this book make extensive use of the methods of
Gentzen. These have been presented hitherto as having their essential
significance in showing that a proof can be put in a certain standard form,
and from this fact important necessary conditions for deducibility follow.
Important as these considerations are, they do not exhaust the possibilities
of the method. As the reader proceeds through this book, it will become clear
to him that the Gentzen rules have a natural interpretation directly in
terms of the semantical situation we are attempting to formalize. They are
thus a tool of the semantical analysis. Further, the significance of the
principal theorem is that it shows that the formulation obtained from the
semantical situation is adequate for that situation, or to put it the other way
around, failure of the theorem is evidence that there is some factor inherent
in the meaning of the operations which has not been adequately taken
account of. Thus formulations for which the theorem fails are to be regarded
with suspicion. This is a conviction which does not lie on the surface where



PREFACE V

it can be seen and explained at the very beginning, but it will become evident
as one proceeds.

This being a book for graduate students, it has certain features which would
be out of place in an elementary text. In the first place, it is thoroughly
documented. Graduate students are expected to become proficient in re
search; for that purpose they need to know something about the technical
literature and to go there on occasion for additional information. Thus
there are copious references for supplementary purposes. I have not hesi
tated to include material in foreign languages, some of which are relatively
unfamiliar to English-speaking students. Even if a student cannot read the
material in question, or for some other reason it is inaccessible to him, he
should know what he is missing.

Each of the eight chapters of this book is divided into from three to five
sections, indicated by the letters A to E; in addition, there is a supplementary
section S. As its name suggests, the last treats rather informally topics
which supplement the text in various ways. Here there are historical and
bibliographical comment and other supplementary references to the litera
ture, discussions of aspects of the subject which are too specialized, or perhaps
controversial, to be included in the main text, etc. Two precautions should
be kept in mind about this material. The first is that it may require more
background of the reader than is supposed in the main text. The second is
that it is intended to be suggestive rather than definitive. The last remark
applies particularly to the historical comments; I have attempted to state
completely the material used in the preparation of the main text, but beyond
that point to give only such information as I happen to possess.

At the end of most sections will be found a list of exercises. These vary
greatly in difficulty, but on the whole there is relatively little of the kind of
practice material one finds in an undergraduate textbook. Problems of
which I do not know the solution myself are marked with a star; however,
one should not infer that these are the most difficult ones. For the benefit
of readers who may use this book for self-instruction, references are given
to places in the literature-sometimes later in this same book-where infor
mation bearing on the problem, perhaps a solution, may be found; however,
the solutions found in the places cited may often be improved.

It is a pleasure to acknowledge here the help which I have received from
various sources. To my secretary, Veronica P. Zerbey, I am indebted for
the somewhat arduous task of preparing the manuscript. My research
assistants, Josiah P. Alford, Franklin S. Brenneman, and Frederick C.
Zerbey, have helped a great deal with the details, including the preparation
of the bibliography. For financial support which rendered this assistance
possible, I am indebted to the U.S. National Science Foundation. Sugges
tions have also been received from my students William Craven and Herman
J. Biesterfeldt. The illustrations in this book are used by permission of
Gauthier-Villars of Paris and originally appeared in my book "LeQons de
logique algebrique." In the later stages of preparation I have received
valuable assistance from my colleague, Professor Hugo Ribeiro, and my student
Luis E. Sanchis.

Haskell B. Curry
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EXPLANATION OF CONVENTIONS

Here are collected for reference certain conventions in regard to the format
of this book.

Cross references. The system used for designating parts of the book
and making cross references from one part to the other is essentially the
same as that used in the author's book, "Combinatory Logic."

The chapters of this book are designated by Arabic numerals. References
to whole chapters are made thus: Chap. 3.

The major divisions of the chapters are called sections and are designated
by ROlnan capital letters. A reference to a section in the same chapter is
made by the section letter preceded by the abbreviation Sec.; e.g., Sec. B.
For a section in a different chapter the chapter number precedes the section
letter; thus Sec. 5B indicates Chapter 5, Section B.

Sections are divided into subsections designated by Arabic numerals.
Subsections in the same section are referred to by this numeral preceded
by 'Sec.'; thus, Sec. 5. Subsections of a different section are cited by giving
the number of the subsection preceded by the section designation and, if
necessary, the chapter number. Thus, Sec. 5C3 and Sec. C3 are subsections
3 of Sec. 5C or Sec. C, respectively.

Occasionally subsections are divided into still smaller subdivisions desig
nated a, b, C, which are cited in an analogous fashion.

Theorems and formulas are numbered consecutively throughout the
sections. When a theorem or formula is cited without a section designa
tion, the reference is to a theorem or formula in the same section. Other
wise the theorems are identified by section number thus: Theorem D2 means
Theorem 2 of Sec. D in the same chapter; Theorem 5D2 is Theorem 2 of
Sec. 5D. Formula numbers can be distinguished from subsection numbers
by the fact that they are enclosed in parentheses. If a formula number is
given without further identification the reference is to a formula in the
same section. Otherwise it is identified by section; for example, (5) in Sec.
5D. Corollaries are numbered by adding a digit, in the form of a decimal
fraction, to the number of the theorem.

The numbering of lemmas, remarks, and examples is less formal. Unless
the situation is clear these will be cited explicitly in connection with a sub
section; e.g., Remark 2 of Sec. 7A4.

In this book definitions are generally made informally in the main text,
with the new term being defined in italics; such definitions may then be
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viii EXPLANATION OF CONVENTIONS

found through the index. In the few cases where it seems necessary to be
more formal they are treated like lemmas and remarks.

Citations in brackets. References to the Bibliography are made by
abbreviations consisting of Roman letters in brackets (e.g. [CLg]), with or
without the author's name. For a fuller explanation see the beginning of
the Bibliography.

Use of letters. With few exceptions the use of letters in formulas
conforms to established mathematical practice. Only certain special letters,
which are used with a fixed meaning throughout the book, will be com
mented on here. The letters 'B', 'C', 'F', 'I', 'K', '5', 'W' will be used to
designate special notions of combinatory logic. These special letters are
used only in those few occasions where a relationship with combinatory
logic is under discussion; notions derived from them are symbolized in ways
which suggest this origin, but do not require special type. Roman letters
are used in the main text and explanations accompanying formulas as fixed
abbreviations, and the Greek letters 'A', 'n', and 'L' are used in the same
way. In Chapter 6 the letters F and 3' are given fixed meanings.

Special symbols. Single quotation marks are used throughout this
book to indicate that the expression enclosed in them is being mentioned,
not used. This is a technical usage; for explanations in connection with it
see Sec. 2A3. Double quotation marks are used in their ordinary sense.

For conventions connected with symbols used as functors, dot notation,
etc., see Sees. 2A3 and 2A4.



Chapter 1

INTRODUCTION

It is appropriate to start the study of mathematical logic by inquiring
what mathematical logic is. This question will be answered in a prelinlinary
manner in Sec. A. We shall then turn to a somewhat deeper consideration
of the nature of mathematics and its relation to logic. This consideration
will begin, in Sec. B, with a discussion of the paradoxes of logic and of the
lessons that are to be drawn from them in regard to the logic of mathe
matics. We shall then proceed, in Sec. C, to a critique of the various views
as to the nature of mathematics. Finally, in Sec. D, we shall return to the
relation of mathematics and logic. The chapter is intended to give some
background for the formal developments which begin in Chap. 2.

A. THE NATURE OF MATHEMATICAL LOGIC

We open this inquiry by examining three senses which the word 'logic'
has in ordinary discourse.

The first sense is that intended when we say that "logic is the analysis
and criticism of thought. "1 We observe that we reason, in the sense that
we draw conclusions from our data; that sometimes these conclusions are
correct, sometimes not; and that sometimes these errors are explained by
the fact that some of our data were mistaken, but not always; and gradually
we become aware that reasonings conducted according to certain norms can
be depended on if the data are correct. The study of these norms, or prin
ciples of valid reasoning, has always been regarded as a branch of philosophy.
In order to distinguish logic in this sense from other senses introduced later,
we shall call it philosophical logic.

In the study of philosophical logic it has been found fruitful to use mathe
matical methods, Le., to construct nlathenlatical systems having some
connection therewith. 'Vhat such a system is, and the nature of the connec
tion, are questions which will concern us later. The systenls so created are
naturally a proper subject for study in themselves, and it is customary to
apply the ternl 'logic' to such a study. Logic in this sense is a branch of
mathematics. To distinguish it from other senses, it will be called mathe
maticallogic.

1 See Johnson [Lgc, part I, p. xiii]~

For an explanation of the convention that has been followed in this and all Sllbsequent
citationR, see the introduction to tho Bibliography, at. the end of the book.

I



2 INTRODUCTION [CHAP. 1

In both of its preceding senses 'logic' was used as a proper name. The
word is also frequently used as a common noun, and this usage is a third
sense of the word distinct from the first two. In this sense a logic is a
system, or theory, such as one considers in Inathematical or philosophical
logic. Thus we may have classical logics, modal logics, matrix logics, Aris
totelian logics, Kantian logics, etc.

We may clarify somewhat the relation between these three senses of 'logic'
if we consider the corresponding senses of 'geonletry'. In the first sense
geometry is the science of space. Etymologically the word means the mea
surement of the earth, and the oldest geometry is said to have been the rules
of measurement of the ancient Egyptian surveyors. So conceived, geometry
is a branch of physics. But alongside this there is geometry as a branch of
mathematics. In this one considers mathematical systems which have some
connection with the study of space. Finally, we have many sorts of geom
etries: we can speak of a projective geometry, a differential geometry, a
nonarchimedean or a nondesarguesian geometry, a four-dinlensional geom
etry, and so on.

Mathematical logic, then, is a branch of mathematics which has much the
same relation to the analysis and criticisrn of thought as geometry does to the
science of space.

This is as far as it is desirable to go, at present, in defining 'mathematical
logic'. As a matter of fact, it is futile to attempt to define any branch of
science by delimiting precisely its boundaries; rather, one states the central
idea or purpose of the subject and leaves the boundaries to fall where they
may. It is an advantage that the definition of logic is broad enough to
adnlit different shades of opinion. Furthermore, it will be permissible to
speak of "logical systems," "logical algebras," without giving a precise cri
terion for deciding whether a given system is such; it suffices that such
systems have a connection of one sort or another with the analysis of thought.

There are, however, several remarks which it is appropriate to make now
to amplify and clarify the above discussion.

In the first place, the connection between a geometry and actual space
may be quite remote, as, for example, in the case of a finite geometry, a
nondesarguesian geometry, or a geometry with infinitely many dimensions.
Indeed, it is not clear just when a system is a geometry and when it is not.
In this respect the situation in regard to a logic is analogous. We can and
do consider logics as formal structures, whose interest from the standpoint
of philosophical logic may lie in some formal analogy with other systems
which are more directly applicable.

In the second place, current usage restricts 'geometry' to the mathemat
ical aspect of the subject. Indeed, this mathematical aspect has devel
oped to such an extent that, if one wishes to speak of the physical aspect,
one is forced to use some other term. An analogous developnlent in the
case of logic has not yet taken place-whether or not it will do so in the
future, as some maintain, it is not our business to decide. It is quite in
accord with current usage to speak of philosophical and mathematical logic
in the way it has been done here.

In the third place, although the distinction between the different senses of
'logic' has been stressed here as a means of clarifying our thinking, it would



SEC. B] THE LOGICAL ANTINOMIES 3

be a mistake to suppose that philosophical and mathematical logic are
completely separate subjects. Actually, there is a unity bet""een thenl.
Mathematical logic, as has been said, is fruitful as a means of studying
philosophical logic. Any sharp line between the two aspects would be
arbitrary.

Finally, mathematical logic has a peculiar relation to the rest of Inathe
matics. For mathematics is a deductive science, at least in the sense that a
concept of rigorous proof is fundamental to all parts of it. The question of
wh3t constitutes a rigorous proof is a logical question in the sense of the
preceding discussion. The question therefore falls within the province of
logic; since it is relevant to mathematics, it is expedient to consider it in
mathematical logic. rrhus the task of explaining the nature of mathematical
rigor falls to mathematical logic, and indeed may be regarded as its most
essential problem. We understand this task as including the explanation of
nlathematical truth and the nature of mathematics generally. We express
this by saying that mathernatical logic includes the study oj the joundations oj
mathematics.

B. THE LOGICAL ANTINOMIES

We now proceed with the program of discussing, on an intuitive basis,
the nature of mathematics and its relation to logic as ordinarily conceived.
We shall begin with considerations affecting the nature of mathematical
rigor as it ,vas understood at the close of the nineteenth century.

To the mathematicians of that time a mathematical proof was rigorous
when it was "strictly logical." Take, for example, the theorem that if the
real functionj(x) is continuous for a ~ x ~ b, and if further j(a) < 0 < j(b),
then there is a value c such that a < c < band j(c) = O. Before the era
of arithmetization, one could only "see" that this was true from the fact
that the graph ofj(x), being a continuous curve which was above the x axis
at one end and below it at the other, must cross the x axis at some point.
Experience with contradictions derived from such reasoning (and especially
from arguments regarding infinite series without adequate investigation of
convergence) showed the need for a more precise treatment. This was
achieved, as is well known, by conceiving a function as a set of ordered
pairs, by an arithmetical definition of continuity, and by a "strictly logical"
proof of the above theorem in terms of these definitions'!

But now what was the logic in terms of which such a logical proof could
be defined1 Certainly it was not the traditional logic, for that was in
adequate to express reasonings in terms of relations (such as inequality)
which were the very soul of such a proof. Indeed, it seems that the mathe
maticians of that time carried out their reasoning in terms of logical intui
tions which were never formulated as explicit principles. Apparently it
was tacitly assumed that everyone had such intuitions and that they formed
an absolutely reliable criterion of rigor.

Into this situation the discovery, about the beginning of the twentieth
century, that there are arguments which, although perfectly sound from
the intuitive point of view, nevertheless lead to contradictions, fell like a

1 On this point cf. Black [RMP, especially pp. 156-157].
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and hence

bombshell. Such arguments are now called paradoxes, or antinomies.l

Some of them had been known since antiquity, but their relevance in this
particular connection was not appreciated. Because of their importance for
mathematical logic, it will be expedient to consider some of them here.

Russell's paradox.2 Our intuition tells us that we can consider classes of
objects as forming new objects. Thus we can consider the class of all chairs
in this room, the class of all men, of all houses, of natural numbers. Like
wise we can consider classes of classes, and even such notions as the class of
all classes, or the class of all ideas. Among these classes there will be two
sorts, which we shall call proper and improper classes. Proper classes are
those, like men, houses, numbers, which are not members of themselves;
improper classes are those which, like the class of all classes or the class of all
ideas, are members of themselves. Now let R (the Russell class) be the
class of all proper classes. If R is a proper class, then, since R is the class
of all such classes, R is a member of R, and hence R is not a proper class.
On the other hand, if R is not a proper class, then R is not a member of R,
and therefore R is a proper class. Either assumption leads to a contradic
tion.

It is instructive to express the paradox in symbols. Let the statement
that x is a member of the class y be symbolized by the notation

XEy

'x' and 'y' being variables for which names of arbitrary notions can be sub
stituted, and let j and ~ be symbols for negation and logical equivalence,
respectively. Then, by the definition of R, we have, for arbitrary x,

x ER~ j(x EX)

RER~j(RE R)

Thus the statement that R E R is equivalent to its own falsehood, and hence
if it is true it is also false, and vice versa.

The following two arguments, although not paradoxical, are of a nature
similar to that of the Russell paradox and shed some light upon it.

Barber pseudoparadox.3 The council of a certain village is said to have
given orders that the village barber (supposedly unique) was to shave all the

1 These terms are equivalent in meaning. Some persons have, to be sure, attempted a
hairsplitting distinction between them, but I think such persons have been misled by
false etymology. 'Paradox' means something which is not 'in agreement with prevailing
opinion; it is formed from 1ra.pa. + ~o~a., where ~o~a. means 'opinion', or 'expectation', and
1ra.pa. means generally 'beside', but often has the connotation of missing the target and
going beyond it, as in English 'beside the point'. 'Antinomy' on the other hand, means
contrary (Ii V'TL) to law or custom (VOJ.lO~). Although the metaphor in the two words is
slightly different, I do not see any etymological justification for the claim that one of
them is to be preferred over the other for designating the logical contradictions.

2 That is, Bertrand Russell (1872- ), English philosopher, coauthor with A. N.
Whitehead of [PMt]. For a popular biography, see Leggett [BRP]; for a critical account
of his philosophy, see Schilpp [PBR]. The paradox appeared in his lPMt], pp. 79ff. It is
first treated as related to predicates rather than classes; then later (pp. 10Iff.) a statement
in terms of classes is given. The paradox was communicated by letter to 'Frege (see his
[GGA. II], pp. 253ff.; cf. the footnote to Sec. C2 below).

3 This variant appears to have been due to Russell. The subject index in Church [BSL]
refers to an item (number 111.25) which is not available to me. My source is some lectures
delivered by M. Geiger at Gottingen in 1928.
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men in the village who did not shave themselves, and only those men. Who
shaved the barber?

Catalogue pseudoparadox.1 A certain library undertook to compile a
bibliographic catalogue listing all bibliographic catalogues, and only those
catalogues, which did not list themselves. Did the catalogue list itself?

These arguments are here called pseudoparadoxes because there is no ac
tual contradiction. In the first case the village barber could not obey the
law, which was therefore ridiculous, like that said to have been passed by an
American state legislature to the effect that, when two trains approach a
crossing at right angles, each one must wait until the other one passes by.
Likewise, the library simply could not make a catalogue satisfying the stated
requirements. But such explanations as these do not apply to the Russell
paradox. In terms of logic as it was known in the nineteenth century, the
situation is simply inexplicable. This is true in spite of the fact that in the
greater sophistication of the present time one may see, or think he sees,
wherein the fallacy consists.

Burali-Forti! paradox. This, the first of the mathematical paradoxes
to be published, is of a more technical nature. It involves the theory of
transfinite ordinal numbers. For readers acquainted with that theory the
paradox can be stated as follows. It is shown in that theory that (1) every
well-ordered set has a (unique) ordinal number; (2) every segment of ordi
nals (Le., any set of ordinals arranged in natural order which contains all
predecessors of each of its elements) has an ordinal number which is greater
than any ordinal in the segment; and (3) the set B of all ordinals in natural
order is well ordered. Then, by statements (3) and (I}, B has an ordinal
p; since p is in B, we have P< Pby statement (2), which is a contradiction.3

Cantor· paradox. This paradox, although not published until 1932, was
known to Cantor as early as 1899; it had a great influence in leading Russell
to construct his paradox, in fact rather more than did the earlier paradox of
Burali-FortL5 It is based on the theory of cardinal numbers. According
to that theory the set of all subsets of a set M has a cardinal number higher
than that of M. This is a contradiction if M is the set of all sets.

We now consider paradoxes of a different sort, involving a notion of de
scription and definition.

Liar paradox. This paradox takes several forms. The simplest is that
of the man who says "I am lying"; if he lies, he is speaking the truth, and
vice versa. Another version is that of Epimenides the Cretan, who is al
leged to have stated that all statements made by Cretans were lies, it being

1 See Gonseth [MRI, p. 253].
2 C. Burali-Forti (1861-1931), Italian mathematician, one of the collaborators with

G. Peano (1858-1932) in the production of the Formulaire demathematiques, which has had
a great influence on mathematical logic, pEJ.rticularly in matters of notation. Burali
Forti's [LMt] is the most readable systematic presentation of the Peanese logic.

3 For a study of the history of this paradox see Copi [BFP]. Copi argues that histori
cal statements made by Fraenkel in regard to Cantor's anticipation of the paradox are not
established with certainty. In particular, attention should be called to his footnote 7
regarding the allegation that the paradox was known to Cantor in 1895.

4 Georg Cantor (1845-1918), German mathematician, founder of the theory of trans
finite numbers and of the theory of point sets.

5 There is abundant evidence of this in Russell [PMt]. See also Copi, Ope cit.
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understood that all other statements lnade by Cretans were certainly false.
l\lodern versions give a statement to the effect that a proposition described
in such and such a way is false, the description being constructed so as to
apply uniquely to the statement itself. The paradox caused a great com
motion in antiquity, and is said to have caused the death of a certain Phi
lites of Cos. The first-mentioned form of the paradox seems to be due to
Eubulides of Miletus; any actual connection of Epimenides with any form
of it is doubtful.!

Richard paradox. 2 The following argument is often used to prove that
the set of all numerical functions is nonenunlerable. Suppose there were an
enumeration; let fm(n) be the value, for the argument n, of the rnth function
in the enumeration. Form the function g such that, for any n,

g(n) = fn(n) + 1

Let p be the index of g in the enumeration, so that

g(n) = fp(n)
Then

Since this is a contradiction, we conclude that the numerical functions are
not enumerable.

Now suppose that we consider, not the set of all numerical functions, but
the set of all definable ones. By 'definable' is meant, of course, definable in
some fixed language, such as (mathematical) English, with a fixed dictionary
and grammar. Since the number of words in the language is finite, the
number of expressions is enumerable, and hence the expressions which con
stitute definitions of numerical functions, and thus the definable functions
themselves, must also be enumerable. Now such a language can be so con
stituted that the above argument can be carried out in it. This again is an
insoluble contradiction.

Berry paradox.3 The number of natural integers which can be named in
English in less than a fixed number of syllables (or letters) is certainly finite;
hence there must be a least number which cannot be so named. But "the
least integer which cannot be named in English in less than 50 syllables" is
an English name of less than 50 syllables. Various modifications exist.

Grellin~ paradox. Among English adjectives there are some, such as
'short', 'polysyllabic', 'English', ,vhich apply to themselves. Let us call
such adjectives autological; all others heterological. Thus 'long', 'mono
syllabic', 'green' are hetel'ological. Then if 'heterological' is heterological, it
is autological, and vice versa.

Skolem paradox. This argument, although not strictly a contradiction,
and therefore not relevant to the main point of this section, is appropriate
for consideration here because it is frequently associated with the para
doxes and, in the broad sense, has a paradoxical character. It requires
some anticipation of matters which we shall take up later. According to a
celebrated theorem of Lowenheim and Skolem, any system ,vhich can be

1 For references on this paradox see Rec. IH6.
2 For references see Church [BHL].
3 Whitehead and Russell [PMt.I, p. 60].
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formalized in the first-order predicate calculus will be such that, if it has a
model at all, it will have an enumerable model. Now various systems of
higher logic and set theory, ·within which standard proofs of nonenumer
ability can be formalized, come under this theorem. Of course, this means
simply that, when a nonenumerable set has an enumeration obtained from
the model, that enumeration cannot be obtained, so to speak, within the
system, and therefore one can conclude that it is impossible to charac
terize the situation by means of a systenl of the kind considered. This con
clusion appears so counterintuitive to many people, that the application of
the name 'paradox' seems justified.

These examples are typical of a number of paradoxes. I shall not pause
to consider more of them here, nor to discuss the great variety of attempted
explanations. There are, however, a few general remarks which it is ex
pedient to make because of their bearing on our future program.

The English logician Ramseyl proposed in 1925 that paradoxes could con
veniently be divided into two groups, which he called Group A and Group B.
The Russell, Burali-Forti, and Cantor paradoxes are examples of his Group
A; the other paradoxes here mentioned, from the liar to Grelling's, are
examples of his Group B; Skolem's paradox does not fit into the classifica
tion because it is not a paradox in the same sense as the others. Ramsey
maintained that paradoxes of Group A contain only notions such as one
would expect to find in a logical or mathematical system, whereas those of
Group B contain notions of naming, defining, truth, etc., which are not
strictly mathematical, but belong rather to epistemology, linguistics, or what
not, and can therefore be ignored. It is now customary to call the para
doxes of Ramsey's Group A logical paradoxes, those of Group B semantical
(sometimes "epistemological") paradoxes. Ramsey was not quite correct in
his view that mathematics did not have to take account of the semantical
paradoKes, and some of the most significant results of modern logic have
come from a deeper study of them. Inasmuch as the two kinds have been
defined only by examples, the distinction is a little vague and tends to be
obliterated in modern logic; nevertheless it is of some importance.

These paradoxes show incontrovertibly that logic, as it was taken in
tuitively in the nineteenth century, is inadequate as a final criterion of
mathematical proof. The absolute rigor, which was then thought to have
been attained by the arithmetization of analysis, turns out to be a delusion.
This, to be sure, does not nlean that mathematics is in danger of utter col
lapse. There have been crises before, and this has not happened. Although
the paradoxes have caused something of a furor, yet the number of
mathematicians who concern themselves with them, and with foundational
questions generally, is relatively small. This is as it should be, for mathe
maticians have other things to do. As a matter of fact, the inexact methods
of the, eighteenth century were used by mathematicians for deriving signi
ficant results in certain areas until quite recent times; they are still used by
most engineers without affecting their ability to build Grand Coulee dams
and nuclear reactors. But the problem of explaining the paradoxes remains
an important open problem. Although there is a vast literature devoted to

1 Died in January, 1930, when he was not quite twenty-seven years old. See his [FML],
p.20.
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them and a great variety of explanations have been offered, yet there is at
present no one explanation which is universally accepted. It seems that a
complete reform of logic is called for, and mathematical logic can be the
principal instrument for bringing this about.

c. THE NATURE OF MATHEMATICS

The fact that mathematical logic is to be studied by mathematical methods
makes it pertinent to examine current views on the nature of mathematics.
Let it be said at once that there is no unanimity on the subject. This is a
healthy situation, for each point of view suggests problems and methods
which the others do not. This discussion begins, in Sec. 1, by listing the
different types of opinion now current in regard to t.he nature of mathe
matics. In Sec. 2, two examples will be discussed which illustrate some of
the different views. Finally, in Sec. 3, there will be some critical comments.

1. Opinions as to the nature of mathematics. There are two main
types of opinion in regard to the nature of mathematics. We shall call
these contensivism and formalism. According to contensivism,l mathematics
has a definite subject matter or content; the objects with which its state
ments deal, as they are ordinarily understood in mathematical discourse
its numbers, sets, relations, functions, etc.-exist in some sense, and those
statements are true just in so far as they agree with the facts. On the other
hand, from the point of view of formalism, mathematics is characterized
more by its method than its subject matter; its objects either are unspecified
or, if they are specified, are such that their exact nature is irrelevant, so that
certain sorts of changes can be made in them without affecting the truth of
the theorems. We must, for example, assign to formalism any view which
asserts that mathematics deals with symbols, for even though a unique sym
bolism may be specified, no one would seriously maintain that any particular
symbolism is essential. In contrast, it is characteristic of contensivism that
the mathematical objects are unique.

Contensivism may be further divided into two principal species. One
species, known as platonism2 , affirms that essentially all the notions of num
ber and set have a real existence apart from our knowledge of them, and
that classical mathematics, though it needs a more secure foundation, is not
actually unsound. On the other hand, there are those who maintain that
there is something rotten in the state of mathematics and that large parts of
classical analysis must be discarded. It is appropriate to call this second
species critical contensivism. Each of these two specie~ has several varieties.

One might think that the paradoxes make some of the more extreme forms
of platonism untenable. As that term has been defined here, that is not so.
For in each of these paradoxes there is formulated a sentence purporting to
make a statement equivalent to its own negation. If this statement is either
true or false, then it is both, and we have indeed a contradiction; but we get
no contradiction if we suppose that it is not a statement at all, and thus is

1 The word 'contensive' was coined in [APM] to stand as translation for the German
'inhaltlich' .

2 This term is not to be confused with 'Platonism' as used by philosophers. The term,
as used here, comes from Bemays [PMt].
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neither true nor false. That this is not too preposterous a conclusion appears
evident if we change the sentence in the liar paradox to "this statement is
true"; there is now no contradiction, but neither is there any information
in the supposed statement. Thus the contradiction does not arise from the
"self-contradictory concepts" themselves, but from the properties which one
affirms of them.! Still, the paradoxes show that, if one takes this view, one
cannot take logic in a naive fashion also.

Probably platonism is the view adopted, more or less subconsciously, by
most mathematicians who do not concern themselves explicitly with founda
tional questions. It is also the position of the pioneers in mathematical
logic, Frege (see Sec. 2a) and Russell, and it is defended today by some of
the ablest logicians.

The presently leading variety of critical contensivism is called intuition
ism. This is the doctrine espoused by Brouwer2 beginning with 1907; the
name is sometimes also extended to include some similar doctrines, especially
those of his predecessors. The doctrine presupposes a primordial intuition,
in terms of which the human mind "constructs" the natural numbers and the
continuum. Only those mathematical objects exist which the human mind
so constructs. The construction is necessarily finite, so that such notions as
the totality of all natural numbers cannot be considered a completed con
struction, but only as something which is in process of growth. Likewise,
an infinite sequence is replaced by a sequence of choices, which may be en
tirely free and unpredictable or restricted by some law. Thus the theory
has two main characteristics: (1) its constructive character, and (2) a certain
metaphysical background in terms of which the ontology of mathematical
entities is to be explained. It will be convenient to discuss these two aspects
separately.

So far as the constructive character is concerned, the following example,
due to Heyting,3 illustrates the point. Consider the following two defini
tions:

1. p is the greatest prime such that p - 1 is also prime, or p = 1 if such a
number does not exist.

2. q is the greatest prime such that q - 2 is also prime, or q = 1 if such a
nunlber does not exist.

Here it is clear that statement (1) defines a unique number, namely,
p = 3. On the other hand, there is no way known at present of calculating
the number q. Of course, if the "twin prime" problem were solved, the con
struction of the number q would be complete, but until that time no con
struction depending on the calculation of q can actually be carried out.
Even an argument of the form "If q = 1, A is true, if q > 1, A is also true"

1 Cf. [GKL], p. 515. It is worthwhile to notice that the same argument applies to void
descriptions. For the notion expressed by 'the king of France' is not meaningless, since
we can always tell whether a given object is the king of France or not. We get no con
tradiction (with the real world) if we suppose that 'the king of France' denotes an object
of some kind; we only get a contradiction if we suppose that object is really the king of
France (cf. [rev. Rosser]). In the language of Frege, such expressions would be said to
have a sense (Sinn) but no denotation (Bedeutung).

2 L. E. J. Brouwer (1881- ), noted Dutch mathematician, formerly professor at the
University of Amsterdam. He is distinguished also for his contributions to topology.

3 [Int, pp. 1-2].
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cannot be admitted as a constructive proof that A is true, because until we
know the value of q we cannot decide which of the alternatives is correct,
and the construction is blocked at that point'! It should be clear from this
why the intuitionists deny the law of excluded middle for constructions in
volving an infinite totality. The effect of the restriction to constructive
methods is to destroy a large portion of modern mathematics, and some of
what remains is so changed as to be almost unrecognizable. Intuitionistic
set theory, for example, is so different as to be a new subject; this effect is
heightened by the fact that the terminology used is such as to intensify rather
than to minimize the differences.

The intuitionist metaphysics, on the other hand, is very obscure. In
Brouwer's thesis, 2 the primordial intuition is linked to an a priori intuition
of time,3 but I do not know to what extent present intuitionists regard this
idea· as essential. However, they still appear to postulate the following
characteristics for their basic intuition: (1) It is a thinking activity of the
human mind. (2) It is independent of language; the intuitionist construc
tion has no need of being bound to any linguistic expression, and although
language is necessary to communicate the results, this language can give
only an imperfect reproduction of the pure thought, which alone is exact.
(3) It cannot be adequately described by any prescribed rules: a proof is
valid when it is a construction the individual steps of which are immediately
evident; no matter what rules are given, a valid proof can be found which
does not conform to them. (4) It has an a priori character, in the sense that
it is independent of experience. (5) It has objective reality, in that it is the
same in all thinking beings.

Before passing to the discussion of formalism, it is necessary to guard
against a possible misconception. Even in the nineteenth century4 many
persons realized that mathematics often deals with "postulate systems."
In such cases a branch of mathematics can be characterized by giving a set
of postulates, such as those for a group, a field, a betweenness relation, a
euclidean geometry, etc.; then the theorems of that branch are the state
ments obtained from the postulates by "logical deduction." Although the
primitive ideas of such a postulate system are unspecified, yet the view in
question is not formalism as here conceived. For each theorem of such a
postulate system really asserts that a certain property of (or relation be
tween) the primitive ideas, viz., the property (or relation) expressed in the
statement of the theorem, is a logical consequence of those stated in the
postulates.5 The crux of the matter is then the definition of the term 'logical
consequence'. Until this term has been explained, one does not have an
opinion as to the nature of mathematics at all. The explanation may be

1 From the constructive point of view the 'if--1, then --2' connective is to be under
stood (cf. Sec. 3A2) as meaning that there is an effective process (Sec. 2A5) of obtaining
the conclusion from the premise. This effective construction is indeed blocked if we can
not determine which of the two premises is true.

2 Brouwer [GLW].
3 Perhaps akin to Kant's a priori intuition of space and time. Noneuclidean geOlnetry

upset the a priori conception of space.
4 One might say even in antiquity. But the ideas of the ancients were different. For

the development of the nineteenth-century ideas see Nagel [FMCl.
5 The "primitive ideas" are thus the bound variables in a statement, of pure logic.



SEC. C] THE NATURE OF MATHEMATICS 11

given from any of the points of view here sketched, and the view of mathe
matics is to be classified accordingly.

The best-known formalist view-by many persons considered the only
form of formalism-is that of Hilbert.! His basic idea was that the trans
finite notions of mathematics were ideal constructions of the human mind.
He admitted that there were certain "finitary" intuitive reasonings which
had a priori absolute certainty; the transfinite notions, which went beyond
these, he considered mental creations bearing a relation to the finitary in
tuitive processes similar to that which imaginary numbers have to the reals.
We can form such ideal creations fre~y, subject to only one basic limitation,
namely, that we be consistent. He proposed to establish this consistency
for ordinary mathematics by examining the language in which this mathe
matics is expressed. This language was to be formulated so completely and
so precisely that its reasonings could be regarded as derivations according to
precisely stated rules-rules which were mechanical in the sense that the
correctness of their application could be seen by inspection of the symbols
themselves as concrete physical objects, without regard to any meaning
which they might or might not have. These so formalized reasonings were
to be the subject of a new mathematical investigatioll which he called meta
mathematics. In metamathematics he admitted only the finitary, absolutely
certain methods of reasoning. His program was to establish the consistency
of ordinary mathematics by this means. Its realization would then guar
antee the absolute safety of mathematics for all time.

This program received a severe setback when, in 1931, Gadel2 showed that
the consistency of a sufficiently powerful theory could not be established by
means which could be formalized in the theory itself. Thus either the theory
is inconsistent or it is inadequate to formalize any proof of its own con
sistency. This circumstance has led to a difference of opinion among modern
formalists, or rather, it strengthened a difference of opinion which already
existed. Some think that the consistency of mathematics cannot be estab
lished on a priori grounds alone and that mathematics must be justified some
other way. Others maintain that there are forms of reasoning which are a
priori and constructive in a wider sense and that in terms of these the Hil
bert program can be carried out. Still others regard the Gadel argument as
showing that the whole formalistic position, at least in its extreme form, is
untenable. There is also a large group of logicians who argue that formalism
must be supplemented by "semantical" considerations of platonistic charac
ter.3

2. Examples. In order to illustrate these notions I shall treat here two
concepts of mathematics from several points of view. It will not be feasible
to discuss all points of view in connection with each, but the discussion of
certain typical ones will help to illuminate the above discussion.

a. The Natural Numbers. From a certain platonist standpoint the natural

1 David Hilbert (1862-1943), German mathematician, professor at Gbttingen, consid
ered by many to be the greatest mathematician of his time.

2 Kurt Godel (1906- ), Austrian mathematician (born in Czechoslovakia), professor
at the Institute for Advanced Study, Princeton, N. J. For references and discussion sec
Sees. 3Alh and 3S1.

3 For references supporting this paragraph see Sec. S4b.



12 INTRODUCTION [CHAP. 1

numbers are defined as classes of mutually equivalent classes. Here two
classes are equivalent just when there is a one-to-one mapping of one of
them in the other. The number 1 is the class of all classes such that there is
an element having the property that membership in the class is interdeduc
ible with being equal to that element.! Given a number n, the number
n + 1 is the class of classes such that by removing an element we form a
class belonging to the class n. In this sense all the natural numbers are
uniquely defined,2 except for two considerations. In the first place the
paradoxes force the platonist to define natural numbers of different "types,"
and in the second place he is worried about the possibility that there may be
no classes with n elements3 if 11, is sufficiently large, and he feels obliged to
postulate an "axiom of infinity" to the effect that this is not the case.4

The intuitionists regard the natural numbers as objects of pure thought
which are generated by the primordial intuition. This is sometimes ex
plained as follows. We take some object of perception, abstract from its
nature, and so form the idea of a unit. We conceive that this unit can
divide in two, and so spawn a new unit; this new unit may in turn divide,
and so on indefinitely. rrhe natural numbers in their totality do not form a
class.

A formalist would not speak of "the natural numbers" but of a set or
system of natural numbers. Any system of objects, no matter what, which
is generated from a certain initial object by a certain unary operation in
such a way that each newly generated object is distinct from all those pre
viously formed and that the process can be continued indefinitely, will do as
a set of natural numbers. He may, and usually does, objectify this process
by representing the numbers in terms of symbols; he chooses some symbol,
let us say a vertical stroke 'I', for the initial object, and regards the opera
tion as the affixing of another 'I' to the right of the given expression. But
he realizes there are other interpretations; in particular, if one accepts the
platonist or intuitionist metaphysics, their systems will do perfectly well.

Certain platonists5 object to the formalist conception in that it does not
give any explanation of the process of counting, Le., that it gives no explana
tion of a statement saying that such and such a class has n objects. To this
a formalist-and probably also an intuitionist-would retort that it is easy
to give such an explanation, viz., that the class has n elements precisely

1 This is frequently expressed in symbols, thus:

IX £ I ~ (r[x)(Vy)(y £ IX V) Y = x)

2 The theory so far presented is essentially that of the Gennan logician Gottlob Frege
(1848-1925), as presented in his [GGA]. Frege had an extraordinarily keen and subtle
mind, and the marks of his genius are still left deep in the heart of our subject. Unfor
tunately, he had a caustic disposition, and was said to have been scathing in his criti
cism of his contemporaries. Perhaps on that account he was slow in getting recognition.
He was just beginning to be recognized when Russell wrote that Frege's system admitted
the Russell paradox. The second volume of [GGA] was then about to appear. The re
marks with which it closes have a tragic touch. Although he was then only fifty-five
and lived for over twenty years more, he published nothing further of major logical
interest. (See Church [BSL, item 49] and the biography by Church in Runes [DPh].)

3 That is, belonging to the class n.
4 Cf. Sec. D below.
5 For example, Russell [PMt2, p. vi] and Ramsey [FMt] (in his [FML], p. 2).
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when it is in one-to-one correspondence with the class formed by cutting off
the number series at the number n (or n - 1, if 0 is included).

b. The Axiom of Choice. This is the axiom of set theory to the effect that,
given a class of mutually exclusive nonempty classes, there is a class containing
one and only one element from each of the member classes. From the platonist
point of view this is a question of fact, and the platonists are, indeed, divided
into opposing camps, in which some accept the axiom of choice, others deny
it) and still others accept it under certain restrictions. (The last two groups
may, of course, be reckoned among the critical contensivists.) An in
tuitionist cannot even formulate the question and pretends he does not
understand it. A formalist would say, perhaps, this: "I can formulate sys
tems in which an analogue of the axiom of choice holds, with or without
various restrictions; I can also formulate systems in which it is not assumed,
and also, under certain restrictions, systems in which the axiom fails. As to
which of these is the most useful system, that is a question for you to decide,
possibly with reference to the purpose for which you want to use it; but
they are all mathematics, and should be considered as such."

3. Critical remarks. The discussion in Sec. 1 was intended to set forth
the facts concerning the various current views as to the nature of mathe
matics. Here I shall make some critical comments which are more matters
of opinion.

All forms of contensivism are open to two basic objections, viz., that the
criterion of rigor is vague at best, and that it rests on metaphysical assump
tions of dubious character. These two objections are interrelated. It will
be convenient to discuss them first in regard to intuitionism, then in regard
to platonism.

Let us recall the five properties of the primordial intuition which were
listed in Sec. 1. According to the third of these properties it is impossible to
give an exact description of a rigorous proof. A construction is valid when
it is a finite series of steps each of which is directly evident to the mind. If
two minds do not agree as to what is directly evident, there is no objective
criterion by which their difference can be resolved. This shows that the
criterion of rigorous proof is vague. As to its metaphysical character, it
suffices to note that, from certain philosophical standpoints, the five charac
teristics are unacceptable, at least in conjunction. An empiricist, for ex
ample, would maintain that there is no a priori knowledge, and therefore no
a priori intuition which can be used as a criterion of truth. Likewise, some
thinkers have defended the thesis that there is no thought without language.
Finally, even if we were to grant the existence of an intuition having the
first four characteristics, it seems very doubtful if it would have the fifth,
and without that fifth characteristic intuitionist mathematics is not an
objective science at all. Thus the intuitionist requires the existence of an
a priori intuition which is objective and prelinguistic, and although this
ontological assumption is agreeable to certain types of philosophy, yet it is
an assumption for all that, and one which from other philosophical view
points is highly dubious and metaphysical.!

In regard to platonism, it hardly needs saying that to ascribe reality to all
the infinitistic notions of mathematics is a metaphysical assumption which is

1 Cf. [OFP], p. 6.
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highly repugnant to certain types of minds-including those of the intui
tionists. Thus the situation in regard to metaphysical character is rather
worse for platonism than it is for intuitionism. In regard to the criterion
of rigor, however, the situation is rather better, because most platonists
admit the possibility of formalization (in a sense to be explained presently).
Indeed, nlost platonistic theories have no other criterion of rigor than that
derived from the formalization, and the criterion is precise insofar as the
formalization is strict and thorough.

The detailed study of a certain species of formalism will concern us in the
next chapter. There we shall see that formalism can give a conception of
rigorous proof which is objective and precise and that this conception is free
from metaphysical assumptions of the sort just discussed for platonism and
intuitionism. Since it is desirable to conceive of mathematics as an objec
tive science free from metaphysical assumptions, a formalist point of view is
adopted in this volume.

It is, however, necessary to make some further remarks in order to clarify
the position. Naturally, these renlarks may need further clarification later.

In the first place, the inconlpleteness theorems of Godel, mentioned at the
end of Sec. 1, show that no single formal theory can exhaust mathematics.
Accordingly, formalism is not to be identified with the view that such a
theory exists. Rather, the species of formalism here adopted maintains
that the essence of mathematics lies in the formal method as such, and that
it admits all sorts of formal theories as well as general and comparative dis
cussions regarding the relations of formal theories to one another and to
other doctrines. In this sense mathematics is the science of formal methods.

A formalist theory contains by definition certain unspecified elements or
parameters, or, as already said, elements which can be changed. If these
elements are determined in a particular contensive way, then the inter
preted theory becomes a contensive theory. Let us call such a theory a
formalized Qontensive theory. Furthermore, if the true statements of this
formalized theory are acceptable from a certain contensive viewpoint, let us
say that the formal theory is compatible with that viewpoint. Thus we
may have formal theories which are compatible with platonism; others which
are compatible with intuitionism. Now there is a fundamental difference
between such a formalized contensive theory and a contensive theory which is
primary. For a proof or other argument arrived at in the formal theory
remains valid regardless of the interpretation. If rigor is defined by the formal
theory-as it is for many forms of platonism-that rigor remains an objective
fact whether one accepts the presuppositions of the contensive theory or not.
Moreover, formalisms which differ in these respects may be considered simul
taneously. Thus formalism is not a doctrine which excludes or denies the
doctrines of this or that sort of contensivism; it is equally independent of, and
compatible with, any reasonable form of contensivism.

It follows from this that what was said above in criticism of the meta
physical assumptions of various forms of contensivism does not refute the
positions of those doctrines. It was not intended to. It was simply main
tained that a definition of mathematical truth ought not to depend on such
metaphysical assumptions. Those who accept these assumptions will natu
rally prefer formal theories which are compatible with them. In any event
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such formal theories show what follows from adopting the assunlptions in
question. Since formal systems compatible with different points of view
can be considered simultaneously, it is conceivable that one might adopt
different theories for different purposes. Thus platonistically oriented for
malizations for mathematics appear to be simpler and more in agreement
with ordinary mathematical procedures, and thus more suitable for ordinary
theoretical purposes, whereas intuitionistically oriented ones are appropriate
where the actual carrying out of operations is important, as for example in
recursive arithmetic and in operational theories of physics. Formalism does
not prejudge such questions; it admits the possibility of various kinds of
mathematics existing side by side.

It was said above that intuitionism had two aspects, its metaphysical as
pect and its constructivism. The latter is independent of the former. The
notion of constructibility is of great importance for mathematics. The in
tuitionists are quite right in emphasizing this importance, and they have
certainly had a hand in developing it. However, they are not solely respon
sible for it.l The conception of finitary construction which is basic to Hil
bert's metamathematics is actually more stringent. This is shown by the
following circumstances. About 1930 Heyting gave a formalization of
arithmetic which was conlpatible with intuitionism; somewhat later Gadel2

showed that classical arithmetic could be interpreted in intuitionistic arith
lnetic; this gives an intuitionistic proof of the consistency of classical arith
metic, whereas a strictly finitary proof would contradict one of Gadel's
incompleteness theorems. Thus there is, from the finitary standpoint, a
nonconstructive element in the intuitionistic arithmetic; just where this
enters I do not know. Modern improvements of the constructivity notion
have been made by persons who are primarily formalists. Thus the develop
ment of the notion of constructibility is due to an interaction between
intuitionists, formalists, and possibly others, in which all parties have played
a part.

Many of the theses advanced by the intuitionists, when stripped of their
metaphysical accompaniment, are acceptable to formalism. That this is
true for constructivism was the theme of the preceding paragraph. As for
the notion that the concept of intuitively valid proof cannot be exhausted by
any single formalization, we have noted already that the Gadel theorem
shows just this, and thus that mathematical proof is precisely that sort of
growing thing which the intuitionists have postulated for certain infinite
sets. We can admit also that intuition of some sort enters into nlathematics,
provided that we are allowed to consider this intuition as essentially one of
linguistic nature, or a natural development of experience without regard to
a priori truth. Only the thesis that mathematics with another sort of
motivation is necessarily worthless is not acceptable.

Again, it is not claimed that formalism is absolutely free from all assump
tions which might be called nletaphysical. In the theory presented here,
one may conceive such assumptions as entering in certain abstractions.
The first of these is involved in the use of such terms as 'symbol' and 'expres
sion'; these denote, not individual marks on paper or the blackboard-\\rhich

1 For a claim on their behalf see Brouwer [IBF].
2 In his [IAZ].
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are called inscriptions-but classes of such inscriptions which are "equi
form." Thus the same expression may have several "occurrences." The
doctrine that only concrete individuals can be taken as objects is known as
nominalism. It is probable that a nominalistic account of formalism can be
given, but that is not attempted here. The second abstraction is \\'ith re
spect to the limitations of time and space. We assume that any process is
constructive for \\'hich the number of operations is finite, even though there
nlight not be space enough in the universe or time enough in the cosmic
order to actually do so. Thus \\re have an idealization of experience such
as we have in almost all branches of science. A third abstraction, by virtue
of which infinitely many acts may be conceived of as completed, is charac
teristic of a nonconstructive point of view. This abstraction enters in
modern "semantical" discussions about formal theories. Although such
mixtures of formalism and platonism play an important role in modern logic,
yet in this volume, which is devoted to the foundations of mathematical
logic, they are not considered.

Finally, we take up the question of to what extent absolute certainty
attaches to mathematics. The search for absolute certainty was evidently a
principal motivation for both Brouwer and Hilbert. But does mathematics
need absolute certainty for its justification? In particular, why do we need
to be sure that a theory is consistent, or that it can be derived by an ab
solutely certain intuition of pure time, before we use it? In no other science
do we make such demands. In physics all theories are hypothetical; we
adopt a theory so long as it makes useful predictions and modify or discard
it as soon as it does not. This is what has happened to mathematical theo
ries in the past, where the discovery of contradictions has led to modifica
tions in the mathematical doctrines accepted up to the time of that discovery.
\Vhy should we not do the same in the future? Using formalistic concep
tions to explain what a theory is, we accept a theory as long as it is useful,
satisfies such conditions of naturalness and simplicity as are reasonable at
that time, and is not known to lead us into error. We must keep our theories
under surveillance to see that these conditions are fulfilled and to get all
the presumptive evidence of adequacy that we can. The Godel theorem sug
gests that this is all we can do; an empirical philosophy of science suggests
it is all \\Te should do. Moreover, since usefulness is relative to a purpose,
differently constituted theories may be accepted for different purposes, so
that an intuitionistic and a classical mathematics may stand side by side.

D. MATHEMATICS AND LOGIC

A reader with some acquaintance with the recent expository literature on
the foundations of mathematics will perhaps be surprised at the absence of
any mention of "logicism"l in the foregoing discussion. J~ogicism, which is
reputed to be the view that mathematics is reducible to "pure logic," has
been frequently taken, along with formalism and intuitionism, as one of the
three leading schools of thought in regard to the nature of mathematics.2

On closer examination, however, one sees that it is vague, inasmuch as the

1 Also called "logisticism." The accompanying adjective used here will be 'logicistic'.
2 Especially duhng the thirties; see, for example, Hardy [MPr].
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term "pure logic" is undefined.! In fact, logicism is not a unified view as to
the nature of mathematics at all, but a special thesis as to the relation of
logic to mathematics. That thesis merits some discus~ion; this will bring us
back to the theme of Sec. A.

First let us be clear in regard to the historical facts in regard to the term
'logicism'. The term was originally applied to the systems of Frege and
Russell. Those authors perceived the fact (which we have already noticed
in Sec. CI) that a mathematical theorem in an axiomatic system can be
regarded as a staternent of logical consequence. They observed, however,
that besides the terms which function as bound variables in such a statement,
there are also constants; e.g., the word 'two' in "a quadratic equation has
two roots" has a fixed meaning. They advanced the thesis that all the con
stants occurring in mathematics could be defined in terms of certain' 'logical
constants"; in particular, the natural numbers were defined as properties of
classes as explained in the discussion of the first example in Sec. C2. In this
way any mathematical theorem could be explained as a statement of "logic."
The logic in terms of which this explaining was to be done was definitely
platonistic, and thus their theories are to be so classified. 2 In the course of
time the term 'logicism' came to be applied to the work of other persons who
drew their inspiration from them, such as Ramsey, Wittgenstein, Lewis,
Carnap, and Quine. The theories of the later authors in this list are dis
tinctly formalistic. Thus 'logicism' is the name for a group of theories which
are historically connected, rather than for a type of vie",~ parallel to those
considered in Sec. C. There are, moreover, certain syste·ms whose status as
related to logicisnl is doubtful, and it is not clear that different writers using
this term include under it exactly the same doctrines.

The various theories just mentioned do, however, have certain features in
common. The logic to which mathematics reduces is not philosophical logic
in the sense of Sec. A, but a special kind of mathematical system. They
accept the definition of natural number it la Frege; in this respect they con
trast with systems which take the natural numbers as primitives (e.g., Hil
bert's), as well as with those which define them in other ways (e.g., set
theory,3 cOlnbinatory logic4). Again the logic is essentially classical; i.e., it
is based on two-valued propositional algebra and avoids the paradoxes by
denying significance to certain constructions violating a "theory of types"
or some modification of it. :Finally, most of them have the conviction that
logic is, in principle, unique. These will be taken here as characteristic
traits of logicism.5

1 We have already noticed a similar point at the beginning of the discussion of formalism
in Sec. Cl.

2 In regard to Frege, this is the prevailing view. For a dissenting opinion, see Bergman
[FHN]. In regard to Russell this iH very clear, e g., in the introduction to the second
edition of his rPMt].

3 In abstract set theory (cf. Hec. H4b), one can define 0 as the null set and n + 1 as
either the set whose only element is the number n (Zermelo) or the set consisting of all
natural numbers ::;n (Von Netunann). The latter has the advantage that the set repre
senting n has always exactly n elements. Usage seems to vary as to whether abstract
set theory is regarded as logicistic.

4 Cf. [CLg], pp. 6ff. and 174, and the references cited in th~ former placf'; the subject is
to be treated more extensively in volume I I of [CLg].

5 This removes some, but not all. of thf' \"aguPlwss noted at th~ f'ne! of the preceding
paragraph.
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Early objections to logicisln were that it required-at least in Russell's
version-axioms which it was not natural to classify as "logical." A no
table example was the "axiom of infinity," which asserts that there are in
finitely many "individuals," i.e., objects of lowest type. l Later the theorem
of Godel showed that no single formalized system of logic could be adequate
for mathematics, so that, if the thesis of logicism is to be upheld at all, it
must be with respect to some sort of a hierarchy of logics rather than to a
single one. Finally, one can significantly consider systems which differ
from the classical ones in that they can be so interpreted that certain laws
of the classical logic are invalid; the interpretation of these from the stand
point of logicism is, to say the least, highly unnatural.

Now, from the standpoint of formalism-and incidentally from some other
points of view as well-one can characterize a mathematical system objec
tively without presupposing anything which it would be natural to call
"logic." This will, indeed, be the business of the next chapter. It is this
fact which makes mathematical logic possible, since otherwise it would be
circular to apply mathematics for the purposes mentioned in Sec. A. The
systems proposed by the logicists (at least if they are made sufficiently pre
cise) are special cases of such mathematical systems. Thus what may well
be regarded as a part of the logicist thesis-viz., that mathematics can be
significantly applied to logic, and thus that certain mathematical systems
are logical in nature-is in agreement with the position taken here. Whether
one should go further and identify mathematics and logic is a matter of how
the latter subject is to be defined. The position of this book is that the
somewhat vague statements made in Sec. A are sufficient for a working
definition, and from that point of view mathematics and logic are not to be
identified.

The related question of how mathematical logic is to be characterized
within mathematics can be answered best after we have finished our work.2

Clearly, one necessary characteristic of a logical system is that it be so ex
plicitly formulated that it does not take logic for granted; how this may be
done we shall learn in due course. Ordinary mathematics may be based on
some logic which it does take for granted, and there may, conceivably, be
different such logics for different purposes. The task of mathematical logic
should be to investigate these logics and their relations to one another; in
particular, to develop techniques which the mathematician can use with
confidence and with awareness of the special nature of the logic that is the
basis (e.g., whether an axiom of choice is involved). This is one way in
which mathematical logic can contribute to the progress of mathematics as
a whole.

1 The term 'individual' means here an object which, so far as the system is concerned, is
not a set; the totality of these constitutes the lowest type. In abstract set theory there
is also an "axiom of infinity," but it has a different significance. As that theory is
ordinarily presented, there are no individuals, let alone infinitely many; there are in
finitely many sets, and the axiom of infinity says that a certain infinite totality of such
sets constitutes a set. In either case the axiom affirms the existence of sets (or classes)
with infinitely many elements.

2 Various attempts have been made to characterize more precisely those mathematical
systems which are logical, but none of these has met with sufficiently general acceptance
t.o be adopted here.
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The following indications are intended to assist the reader in finding
material in the current literature", hich sUpple111ents this book. ]{eferences
are made to the Bibliography at the end of the book according to the ex
planations made there. I t will be convenient to classify the citations under
the following heads: (1) systematic general treatments of mathematical logic
which are still of current interest; (2) bibliographic aids, including journals,
sources of reviews, bibliographies, etc., (3) historical material, including clas
sics and material not now current, although there may still be much to be
learned fronl them; (4) material related to special parts of mathematical
logic which are not treated in this book and often are not treated in the
general works cited in Sec. 1; (5) source 111aterial for this book in general and
alternative or amplifying treatments of the same subject matter; and (6)
material related specifically to this chapter. The reader should bear in mind
the natural limitations of a list of this kind, and should supplement it by
reference to general sources of bibliographic information. The citations given
here pertain to this book as a whole or to this chapter; references pertaining
solely to one of the later chapters will be given with that chapter.

1. General systematic works. These will be presented under several
subheads, as follows:

a. The following are the more important general treatises, each of which
is a standard presentation of some viewpoint: Church [IML 2J; Hilbert and
Bernays [GLM]; Kleene [IMM]; Lorenzen [EOL]; Quine [MLg]; Schutte
[BTh]. In the same list should be included works by Carnap, but to get a
complete outline of his more strictly logical contributions, one would need
several titles, viz., [LSS], [ISm], [FLg], [MNc]. The monumental work of
Whitehead and Russell [PMt] belongs now under Sec. :3. Some itelns here
classed under Secs. band e may also belong in this group.

b. Somewhat more elementary and textbooklike, but still containing
original work, are Fitch rSLg]; Ladriere [LIF] (an extensive survey), Prior
[FLg]; Quine [MeL]; H,osenbloom [EML]; Rosser [LMt].

c. There are certain elementary works, chiefly remarkahle for their ex
pository achievements, which nevertheless present some features of interest
for advanced students. Those available in English (solne of them appeared
originally in or have been transfated into other languages) are Carnap [ISL];
Goodstein [MLg]; Hilbert and Ackermann [PML]; Leblanc [IDL]; Nagel and
Newman [GPr]; Quine [:B~Lg], [MeL]; Rosenbloom [EML]; Suppes [ILg];
Tarski [ILM]; Wilder [IFM]. In German there are Carnap [ESL], Hilbert
and Ackermann [GZT]; Lorenzen [~'Lg]; Scholz [VGZ] (rather more volu
minons). In other languages there are Blanche [ILe], Feys [Lgs], Mosto",'
ski [LMt], Novikov [EML]. Tarski [ILM] is an expansion of a work ,vhich
appeared originally in J>olish; it has been translated into several languages.
This list does not exhaust the class of elementary texts, but is a selection of
,vhat seem to me the most appropriate itenls. I have not listed items about
which I have inadequate information.

d. The followiug are shorter surveys or summarieH. Hennes r(~Ll\l], Hermes
and Markwald [(}LMJ, Hennes and Hcholz [MLg], Schnlidt [MGL], Mosto\v
ski Il>SI]. The first four of th~se are in (~erman; the last is available in
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English, German, Polish, and Russian. There are articles by competent re
porters in the Encyclopaedia Britannica (see review in J. Symb. Logic, 23:
22-29), Encyclopedia Americana (see review in J. Symb. Logic, 23:207-209),
and (mostly by A. Church) in Runes [DPh]. Bochenski's [PLM], now avail
able in English, French, and German, is a handbook of formulas and defini
tions, with references.

e. In the nature of critical reviews, or m<;>re inclined to a philosophical
viewpoint, are the following: Beth [FMt] , Black [NMt] , Dubislav [PMG],
Fraenkel and Bar-Hillel [FST], Ladriere [LIF], Strawson [ILT] , Waisman
[EMD], Weyl [PMN], Wilder [IFM]. Some of these may well have been in
cluded under Sec. a. The work of Wilder is intended for mathematical
students at the level of an American baccalaureate major.

2. Bibliographic aids. There are at the present time six journals
primarily devoted to publishing original articles and reviews in the field of
mathematical logic, viz., the following: Archiv fur mathematische Logik und
Grundlagenforschung, West Germany; Journal of Symbolic Logic, United
States ; Logique et analyse, Belgium; Notre Dame Journal of Formal Logic,United
States; Studia Logica, Poland; Zeitschrift fur mathematische Logik und
Grundlagen der Mathematik, East Germany. A great variety of other mathe
matical and philosophical journals also publi~h work in the field; there are
publications of one sort or another in over twenty languages.

The Journal of Symbolic Logic also publishes reviews of practically all the
current literature. The reviews are indexed by authors every two years
and by subjects every five years. Reviews of the more mathematical items
are also published in Mathematical Reviews and Zentralblatt fur Mathematik
und ihre Grenzgebiete. The reviews in the Journal of Symbolic Logic are apt
to be more critical and fuller, but they often appear later, and related fields
of mathematics are not always adequately covered. Reviews, mostly in the
Polish language, are also published by Studia Logica. There is a review
journal Referativny Zhurnal Matematika published in the Soviet Union.

Book reviews, of course, appear in a number of mathematical, philosoph
ical, and scientific journals.

An extensive bibliography compiled by A. Church [BSL] appeared in
1936. With supplements published later, it is virtually complete from 1666
to the end of 1935. The review section of the Journal of Symbolic Logic
keeps this bibliography up to date. Other extensive bibliographies are
found in Fraenkel [EMLa], [AST]; Fraenkel and Bar-Hillel [FST]; Ladriere
[LIF]. An older bibliography which may possibly be still useful is in Lewis
[SSL]. More selective and classified bibliographies appear in Beth [SLG],
Bochenski [PLM], Church [BBF], Hermes and Scholz [MLg], Leblanc [IDL],
Schmidt [MGL].

3. Historical material. It will be convenient to consider separately
the recent history and that before, let us say, 1920. In the former case one
must consult recent writers who have published incidental accounts of it;
in the latter case enough time has elapsed so that systematic historical
works exist. Naturally there is no sharp line of demarcation between
these two.

a. l'here is a great deal of historical information of a semisystematical
sort in Beth [FMt]. This relates particularly to the work of various schools,
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their interactions with one another and with philosophical ideas. Some
what the same thing can be said for writings of Fraenkel, especially Fraen
kel and Bar-Hillel [FST] , but the general tenor is more mathematical and
the bibliographies are very nearly exhaustive. In a different sense Church
[IML2] is a rich source of information, largely in the form of very extensive
footnotes and remarks relating to the original contributors of mathematical
ideas. Scholz [MJL], discussing the work of £ukasiewicz, also gives inciden
tally a lot of information of this kind. One may also mention Kotarbinski
[LPO] (for developments in Poland); Yanovskaya [OMM] , [MLO] (for develop
ments in Russia). See also the general surveys mentioned in Sec. Ie.

b. For the older period there are several general treatments of the history
of logic. Those which I have found most interesting are Bochenski [FLg],
[AFL]; Jorgensen [TFL]; Lewis [SSL] (for the period from Leibniz to 1918);
Moody [TCM]; Boehner [MLg] (the last two for the Middle Ages). A brief
bibliography of works on the history of logic is given in Church [BBF] and
in Hermes and Scholz [MI.Jg]; a more extensive one in Bochenski [FLg].

c. Selected lists of important works which are too old to be included in
Sec. 1 are found in Beth [FMth], [SLG]; Church [BBF]; Hermes and Scholz
[MLg]; Leblanc [IDL]. In Church [BSL] a small number of works which
the compiler thought particularly important are marked with a star. Some
of these classics have been made more accessible by recent publication of
editions of Frege's works in German and English, and by that of the second
and third volumes of the works of Peano, containing most of his early
writings on logic.

4. Special topics. In order to give an idea of the place of the subject of
this book in mathematical logic as a whole, I shall mention here some of
the ways in which mathematical logic goes beyond the foundations. The
discussion and references given are, in general, intended to give an approxi
mate idea of the direction of the investigation, and not a full and technically
correct account of achievement; furthermore, not every possible direction
has been reported.

This book relates to the first-order "predicate calculus," in which we con
sider propositional functions ranging over a fixed range of "individuals,"
such that no proposition or propositional function is ever considered as itself
belonging to the range; furthermore, the methods used are strictly construc
tive and limited as to their complexity. One can go beyond this in two
directions. On the one hand, one can introduce calculuses of higher order,
in which propositions or propositional functions (and therefore sets, etc.)
can appear as arguments to other functions. On the other hand, one can
use methods which go beyond those used here. In some ways intermediate
between these are systems in which numbers are explicitly introduced into
the domain of arguments. In Secs. a to c below I shall discuss briefly the
three principal varieties of higher-order logicistic calculus; in Sec. d the direc
tion in which natural numbers are taken as primitives; and in Sec. e some
miscellaneous matters. The discussion of higher methods will be deferred
to Sec. 3S3.

a. Theory of Types. The basic principle of this theory is that the logical
notions (individuals, propositions, propositional functions) are classified into
a hierarchy of "types" and that a function can take as arguments
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only notions which precede it in the hierarchy. There are many different
forms.

The classic in this direction is "Principia mathematica" by Whitehead
and Russell; it was preceded by a number of writings (see Church, [BSL,
under Russell], also, for an anticipation, Schroder [VAL] and Church [SAS]),
and was based on the work of Frege and Peano. For an elementary exposi
tion of its underlying philosophy see Russell [IMP]. The form of the theory
proposed in Whitehead and Russell [PMt] is knowI1 as the "ramified" theory
of types; Ramsey [FMt] proposed to reduce it to the "simplified" theory, and
this idea has been followed in most later theories. There has been no com
prehensive treatise since 'Vhitehead and Russell lPMt]. For critical re
views see Fraenkel and Bar-Hillel [FST] and Beth [FMt]; a brief sketch is
given in Hilbert and Ackerman [GZT] and in Wang [SAT, pp. 11-15].1
Church [FST] gives an exact formulation of one part of it. Henkin [CTT]
made a study of completeness. In some forms of the theory the hierarchy
may be transfinite.

There have been several recent variants. To be reckoned as such, even
though they have departed considerably from the original position, are
those of Lorenzen [EOL], Wang [FMt], and Schutte (see, for example, his
[BTh], chap. 9); even the theories of Quine, although here classified sepa
rately (see Sec. c), were motivated by it. The Japanese mathematician
G. rrakeuti has proposed a Gentzen-like formulation of the theory which he
calls the GI.JC (general logical calculus). His "fundamental conjecture" is
to the effect that the elimination theorem (i.e., the theorem on the elimi
nability of cuts, Sec. 5D) holds for this calculus. Somewhat similar ideas
have been advanced by Kuroda. This is an area in which research at the
present time is very active. In view of Godel's theorem, one would not
expect to establish the fundamental conjecture by constructive methods.

b. Axiomatic Set Theory. The basic characteristics of this theory are as
follows: (1) propositional functions are taken extensionally, i.e., they are
identified when they have always the same truth values for the same argu
ments; (2) propositional functions of more than one argument can be reduced
to functions of one argument, i.e., to classes; (3) there is a class, whose ele
ments are called sets, such that a class can be an element of another class if
and only if the former is a set; (4) sets are characterized genetically, according
to their construction, in such a way that classes which are too extensive,
e.g., the class of all sets, cannot (assuming consistency) be shown to be sets.
Typical axioms are the power axiom, to the effect that the class of all subsets
of a set is a set, and the selection axiom (A ussonderungsaxiom), to the effect
that, given any set, any subclass of that set is a set.

Axiomatic set theory appears to go back to the naive set theory which
Cantor developed in the last decades of the nineteenth century, just as the
theory of types appears to go back to Frege-both the work of Cantor and
that of Frege admitted inconsistencies. Cantor's principal papers have
been collected and published (see Cantor [GAb]). The first axiomatic theory
'was proposed in Zermelo [UGL]. rrhis was later extended, improved, and
modified by Fraenkel, Skolem, von Neumann, 13ernays, Godel, Ackermann,
and Azriel Levy. For a brief summary of this development see Wang

1 There is also some elaboration of a forrn of the theory in Carnap [IHLJ.
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[SAT]; for a full historical and critical account see Fraenkel and Bar-Hillel
[FST], cf. also Beth [FMt, chap. 14]; for the latest forms of the theory see
Gadel [CAC], Bernays and Fraenkel [AST], and various publications of Levy;
for a textbook see Suppes [AST]. For the higher technical developments of
the theory without regard to the axiomatic foundations, including the theory
of transfinite numbers, see Hausdorff [GZM] (the first edition contains ma
terial which was left out of the revisions); Kamke [MLh]; Sierpinski [LNT],
[CON]; Bachmann [TZh]. A large part of the current discussion in the theory
is concerned with the role of the axiom of choice, the continuum hypoth
esis, and assumptions relating to the existence of very large numbers; the rela
tive consistency of the first two assumptions was the theme of Gadel's [CAC].

c. Quine's Theories. The third sort of higher calculus is that proposed by
Quine. This may be regarded as a synthesis of the theory of types and
axiomatic set theory. After making a study of the theory of types (see,
for example, his [SLgJ) and of set theory (in a series of papers in the Journal
of Symbolic Logic) he made a fundamental suggestion in his [NFM]. This
was that in the most essential axiom scheme of set theory, the selection
axiom, we replace the principal requirement, viz., that the class to be shown
to be a set be a subclass of a preexisting set, by the requirement that its
defining property satisfy the restrictions of the theory of types for some
possible assignment of types to its constituents. Quine calls a property
satisfying this requirement a "stratified" property; then his form of the
selection axiom is', roughly, to the effect that every stratified property deter
111ines a set. Quine did not develop the theory proposed in his [NFM] in
detail; this was only done much later in Rosser [LMt]. Quine himself ad
joined further assumptions, and on this basis developed his treatise [MLg].
The first edition of this work was found to be inconsistent by Lyndon and
Rosser (see Rosser [BFPJ); but it was found possible to repair this, and the
second edition is not known to be inconsistent.

The Quine systems have a number of strange features. lTnlike any of the
systems of axiomatic set theory, the systems contain a universal set, and
the complement of any set is also a set. On the other hand, we are saved from
the Cantor paradox (Sec. IB) by the fact that the class of all unit subsets of
a set cannot be shown to be a set which is in 1 = 1 correspondence with the
given set. Specker, a Swiss mathematician, has studied the system; in
particular, in his [ACQ], he disproved the axiom of choice for the system of
Quine [NFM].

d. Arithmetical Systems. In the preceding directions the natural numbers
and other arithmetical notions are usually defined in terms of sets (or some
equivalent notion). This is one of the characteristics of logicism as noted in
Sec. D. We shall now turn attention to a group of directions in which the
natural numbers, for one reason or another, are regarded as primitives.

The directions corresponding to this specification include some strange
bedfellows. On the one hand, the intuitionistic theories answer to the de
scription; so do the theories of Hilbert, leading to the system Z of Hilbert
and Bernays [GLM] and to its generalizations. For both of these direc
tions, in their present state, a report is deferred to Sec. 6. Here it will be
appropriate to make a brief report about background studies, which, al
though made at an early date, have still an appreciable effect on present-day
work in t,hp. fOllnrlRotions of mathematics.
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The principal background study referred to is that of Dedekind [WSW].
rrhis is the grandfather of present-day recursive arithmetic (see Sec. 3S3).
Peano, in his "Arithmetices principia," developed a symbolic theory of the
natural numbers; in this he acknowledged indebtedness to Dedekind and also
to a work of H. Grassman which appeared in 1861. The postulates stated
by Peano in his [APN] and [CNm] have become a part of mathematical
tradition under the name of "Peano postulates." These postulates form the
basis, for instance, of the development of arithmetic for the purposes of
ordinary mathematics (without formalizing the logic) which is contained in
Landau [GLA]. Hilbert's system Z is essentially the addition of these pos
tulates, together with recursive definitions of the sum and product, to the
first-order predicate calculus (with equality).

After Peano the next important step was Skolem [BEA]. This paper
introduced the idea that constructive arithmetic could be developed without
quantification. From this idea modern recursive arithmetic took its start
(cf. Sec. 3S3).

The work of Lorenzen and Schutte, mentioned under Sec. a because they
use types, or "Schichten," may also be considered as belonging to the present
direction.

e. Other Directions. Not all the directions of higher logical investigation
can be made to fit under the preceding heads. Indeed, we have just noticed
that the work of Loren~en and Schutte can be included under type theory
only with some forcing. Here we shall be concerned with some theories
which are even more difficult to classify.

Combinatory logic is one of these theories. It is, in fact, a comparative
treatment of fundamental matters pertaining to all directions. Church's
theory of Aconversion is regarded in this book as a part of combinatory logic.
For a brief description and references see Sees. 3D4 and 3D5.

Behmann, in his [WLM], proposed an explanation of the paradoxes as
resulting from definitions which could not be eliminated. A system based on
this idea appeared only years later, in his [PKL]. In spite of apparent dif
ferences, this seems closely related to Church's A conversion. In the mean
time, Ackermann and Schutte proposed systems of type-free logic which
appeared to have been influenced, initially at least, by Behmann. For a
report on these see Schutte [BTh] and references there given.

Another system of type-free logic is the "basic logic" of Fitch. The
latest publications on this system are his [QCF] and [EVE]. These refer to
previous publications.

The Polish logician Lesniewski (1886-1930) developed a system which was
evidently one of great subtlety. It seems to have had a nominalistic tend
ency. This system, however, is very difficult of access. The only acces
sible publication of I.Jesniewski (his [GZNJ) is scarcely intelligible. No one
except those who have had direct contact with the author professes to under
stand his work, and a presentation of the views of the master which satisfies
all his pupils has not yet been made. For such information as is available,
see Slupecki [SLP], [SLC], [GML]; Grzegorczyk [SLR]. Kotarbinski [LPG]
gives a general report on Polish logic, with emphasis on the philosophical
Ride and with almost no technical details. See also Jordan rDML].

Mathematical logic is beginning to be applied directly in several fields.
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The application to linguistics will be mentioned later (Sec. 2S 1) in the dis
cussion of semiotics. There are also applications to the design of electrical
circuit networks, automata, cybernetics, etc.

5. Source material. This book is based on a lecture course at the
Pennsylvania State University. The part of it which concerns the Gentzen
methods is a revision of [TFD]; the purely algebraic part is based on [LLA];
and the part relating to formal methods in general on [CLg], chaps. 1 and 2.
These works contain references to sources; so far as formal methods are con
cerned, a rather full statement of source materials was given in [CLg], sec.
lSI. I shall therefore confine myself to the most inlportant sources, to
material too recent to be included in the previous bibliographies, and to
important sources of collateral information (see also Sec. 5S1).

In regard to formal methods in general, one should consult Smullyan
[TFS] and Lorenzen [EOL]. The ideas given here may also be compared
with the definition of a "Kodifikat" in Schmidt [VAL]. The articles [CFS],
[IFI], [DFS] contain discussion of special points which will be cited in the
proper place.

In regard to the inferential methods, the ultimate source is Gentzen [ULS].
This has recently been translated into French with brief notes by Feys and
Ladriere. A bibliography and brief historical statement are given in [IAL].
Works containing important information about it are Kleene [IMM, chap.
15 and to a lesser extent, chaps. 4-8]; Kleene [PIG]; Quine [MeL], [NDd].
Bernays [LC I] gives a brief informal presentation of the T rules. Fitch
[SLg] uses a technique of similar nature. Beth's semantic tableaux con
stitute, in some respects, a refinement of the Gentzen rules. They are de
scribed in his [FMt], chaps, 8, 11, and 15; for the sources see his [SEF], [SCI].
The German writers tend to shy away from the Gentzen technique and to
devise ways of modifying the ordinary formulations so as to obtain its ad
vantages without its formal machinery. This is much the same as if one
attempted to develop group theory without introducing the abstract group
operation, on the ground that in any practical case the group operation
could be defined in terms of the other operations of the system with which
one is dealing. In other words, they insist on interpreting what are here, and
in Gentzen, taken as primitives, and they must, of course, have separate
interpretations for the classical and nonclassical theories. With this under
standing the works of SchUtte (see his [SVS], [SWK]) and H. A. Schmidt (see
his [VAL]) are references on the Gentzen methods and make some contribu
tions even to the abstract theory. Connection with Gentzen methods can
be seen in Schutte [BTh] but is less obvious. The work of Lorenzen, al
though he hardly mentions Gentzen's work and appears not to be well ac
quainted with it, is suggestive. Church [IMI~2] devotes only a few exercises
to inferential methods.

In regard to the more conventional deductive treatment of propositional
algebra and predicate calculus, see especially Church [IML], Hilbert and
Bernays [GLM], Kleene [IMM], Schmidt [VAL]. The first of these treats
one form of deductive development and is rich in historical and critical com
ment about other developments down to 1951. The second and third are
concerned with what are here (from Chap. 5 on) called H systems; Hilbert
and Bernays [GI.JM] is, indeed, a primary source for much of their theory,
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but contains relatively few references; Kleene contains some modern improve
ments, showing the influence of Gentzen, and pays attention to demonstrability
in an intuitionistic system. - Schmidt [VAL] is a rather encyclopedic treatment
of the propositional algebra (a second volume is to treat the predicate calculus);
it is perhaps too much concerned about being readable without the use of
pencil and scratch paper and is rather meager in its historical material, but
it contains a lot of information and detailed proofs which are not easily avail
able elsewhere. Quine treats propositional calcul?s from the standpoint of
tautologies, and his [MeL] is a standard reference for that approach; his quan
tification theory has peculiar features which will come up for consideration later
(Chap. 7). For the standard epitheorems of predicate calculus see Church
[IML 2], Kleene [IMM], Hilbert and Bernays [GLM]; they are treated also from
a little more elementary point of view in Hilbert and Ackermann [GZT].

6. References for this chapter. The discussion of Sec. A has been used
for years as an introduction to the course mentioned in Sec. 5; it appears
also at the head of [LLA].

The literature in regard to the paradoxes is enormous. For general and
comprehensive discussions, see Beth [FMt, chap. 17], Fraenkel and Bar
Hillel [FST, chap. 1]. The latter gives (pp. 16-18) an almost exhaustive
and classified bibliography. Of the critical literature I have found Stenius
[PLA] and Specker [AML] especially stimulating. }(leene [IMM, sec. 11]
discusses a few paradoxes with some insight. There is also a brief discus
sion, with emphasis on the liar paradox, in Church lPLg]. Kempner [PCS]
gives a semipopular treatment. Wilder [IFJ.\tI] discusses the Russell paradox
and its significance for mathematics; this is interesting because the author
is not primarily a logician. For the liar paradox, in particular, se~ Beth
[~"'Mt, p. 485]; Fraenkel and Bar-Hillel [FS'T, p. 11]; Church [PLg]; Taf~ki

[SCT], [WBF]; Bochenski [FLg, secs. 23, 25]; Prior [ECr]; Kleene [IMM p.
39]; Weyl [PMN, p. 228].

For the discussion of the nature of mathematics in general see [OFPJ,
Kleene [IMM, chap. 3], Weyl [PMN], Beth [FMt, parts V and IX], Fraenkel
and Bar-Hillel [FST], Wilder [IFM, part II], Black [NMt].

For the platonistic conception of n1athematics, Russell [IMP] is an elemen
tary exposition; for further details see the references in Sec. 4a. For critical
comment see also Bernays [PMt]; Godel [RML], [WIC].

For intuitionism the authoritative recent work is Heyting [Int.] This is,
however, chiefly an exposition of intuitionist mathematics, with little regard
to either the deeper intuitionist philosophy or its history. To supplement it
see Heyting [CIL], [FMI] (gives history and references and includes discus
sion of the predecessors of intuitionism, including Kronecker, Poincare,
Borel, etc.); Brouwer [HBP]; Beth [FMt, chap. 15]; Fraenkel and Bar-Hillel
[FST, chap. 4]. Wilder [IFM] gives a good account of intuitionist mathe
matics from the viewpoint of an outsider. For the deeper philosophy it is
probably necessary to read Dutch; thus the notion of a time intuition is
explicit in Brouv/er [GLW], but appears not to be mentioned in versions in
English and German. (See, however, Brolnver [CPM] and the quotation
from it in Beth [FMt, p. 618].) See also 'Veyl [PMN]; his position is inter
mediate between intuitionism and Hilbertism, and he had a profound under
standing of both schools.
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For brief summaries of the work and position of Hilbert see Bernays
[HGG], Weyl [DHM, pp. 635-645]; cf. also Heyting [FMI, pp. 37-60]. The
standard work, completed by Bernays, is Hilbert and Bernays [GLM].
Some of Hilbert's logical papers have been reprinted in the third volume of
Hilbert [GAb] and also in his [GLG7]; in some cases passages have been de
leted in the prooess of reprinting. Schutte [BTh] may be regarded as a con
tinuation of Hilbert's program in one of the several possible directions. See
also Kreisel [HPr].

Somewhat divergent views of formalism are taken in Goodstein [CFr],
[NMS]; Lorenzen [EOL], [LRF].

For the Godel theorem, and the semantic developments mentioned at the
end of Sec. C, see Sec. 3S1.

The discussion of the three levels of abstraction at the end of Sec. C3 is
based on Shanin [LPA]. For nominalistic views see Beth [FMt, chap. 16]
and the references cited there; also Gilmore [AST].

The account of the relations between mathematics and logic in Sec. D is a
revision of that in [OFP], chap. 12. Collateral references are Russell [PMt,
especially the introduction to the second edition]. For the possibility of
alternative logics see, for example, Church [I~EM], I.Jewis [ASL].

The term 'finitary', used in Sec. Cl in describing constructive methods,
was introduced by Kleene [IMM, p. 63] as translation of German 'finit'.



Chapter 2

FORMAL SYSTEMS

In the preceding chapter the discussion was intended to be intuitive.
Accordingly, such terms as 'formal theory', 'mathematical system', 'accept
able', etc., ,vere used in nontechnical senses which were expected to be self
explanatory. In this chapter formalism is considered more technically.
These and other terms will be given technical meanings. With few excep
tions (as stated later), they will be used in these technical senses from
now on.

We shall begin, in Sec. A, ,vith general considerations of a preliminary
nature. In Sec. B we shall define a "theory" as a class of statements and dis
cuss some matters related to this notion in its most general form. In Sec. C
we define a system as a theory whose elementary statements concern certain
"formal objects" in a specified way. Specialization of these notions will
concern us in Sec. D. Finally, in Sec. E, there will be a discussion of the
notion of algorithm due to Markov; this will enable us to make more precise
certain notions introduced in Sec. A and for that purpose is more suitable,
from the present point of view, than other notions which are equivalent to it.

A. PRELIMINARIES

In this section "\\Te shall be concerned with certain matters concerning the
use of language and "\\,ith the explanation of technical terminology which
"\\rill be used throughout the rest of the work. Some of these terms have
already been used in nontechnical senses which do not always agree exactly
with the technical senses. The latter are to be regarded as a refinement of
the former. ()ther terms, such as 'theory', 'system', will be refined later.

1. The U language. Every investigation, including the present one, has
to be communicated from one person to another by means of language. It
is expedient to begin our study by calling attention to this obvious fact, by
giving a name to the language being used, and by being explicit about a few
of its features. We shall call the language being used the U language.

It is impossible to describe this U language exhaustively. All we can say
is that it contains the totality of linguistic conventions which, at the moment,
we understand. This may seenl vague, but in that vagueness we are no
worse off than in any other field of study. Every investigation, in any sub
ject whatsoever, must presuppose that same datum. Thus there would be
no point in calling attention to it, if it were not for the fact that language is

28
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more intimately related to our job than to most others. We do not postu
late that thought is possible without language, and therefore we are obliged
to pay some attention to the U language from the very beginning. But
since we cannot describe it exhaustively, we can only notice certain of its
features and be explicit concerning usages about which there is danger of
misunderstanding.

The U language has the following features: (1) It is specific. If we were to
speak about several different U languages, then at most one of these would
be used, and this one is the U language; the others are only talked about,
and therefore none of them is the U language. (2) It contains the technical
terminology and other linguistic devices-such as the use of letters for vari
ables-which are generally understood by mathematicians of an appropriate
degree of maturity. (3) It is not immutable, but is continually in process of
growth: from time to time we may introduce new technical terms and new
symbolism; likewise we may agree to use old terms in new senses, or to aban
don them altogether. In this way the use of the language becomes more
precise as we proceed. (4) Although it is necessarily rather vague to begin
with, yet by careful use we can attain any reasonable degree of precision,
just as ,ve can measure to millionths of an inch using tools which are ulti
mately the creation of human hands and brains. Absolute precision is not
attainable in the field of measurement; there is no need to suppose that it
can be reached in the use of the U language either.

The presentation of the paradoxes in Sec. IB, which was made in the U
language, has led many persons to assert that the U language is inconsis
tent. So it is, if carelessly used, and carelessness would be expected to cause
trouble in any kind of activity. The discussion of platonism in Sec. ICI
shows that the paradoxes can be avoided if certain precautions are used
with the word 'statement'. The exact nature of these precautions will con
cern us later. For the present, suffice it to say that vIe use the U language
for describing certain more or less concrete activities and for drawing certain
conclusions from these descriptions by finitary constructive processes, such
as those admitted by Hilbert. The intuitive evidence that no contradic
tions can enter in this way is very strong indeed; the ques.tion of whether
this evidence amounts to absolute certainty will be left to the reader's philos
ophy.l

2. Languages and expressions. In recent years a certain school of
thinkers has nlaintained that many problems can be solved, or at least illu
minated, by examining critically the language in which they are expressed.
This has led to a whole science of symbolism which has been called
semiotics. Certain terminology arising from (or suggested by) that disci
pline will be introduced here for use in what follows. Further terminology
of this kind will he introduced later; here attention "rill be confined to some
items which will be useful at once.

The basic concept of semiotics is that of a language. A language, in iis
most general sense, is defined by two sorts of conventions. First, there is
specified an alphabet, Le., a certain stock of objects, called symbols (or letters),
which can be produced in unlimited quantity like the letters of ordinary print

1 Cf. the remarks at. the end of Sec. IC3.
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or the phonemes of speech. Secondly, there are rules specifying how cer
tain combinations, called expressions, or words,l can be formed from the
letters. Generally the expressions are arbitrary linear series of letters in
which repetitions may occur; in that case the language will be called a linea,r
language. Thus in the linear language whose alphabet consists of t.he three
letters

a,b,c

the following are exampIes of expressions:

a, abcba, bcccaa, abcbabcccaa

In this semiotical concept of a language it is irrelevant whether or not the
language is used for human communication; if it is so used, ,ve call it a com
municative language. A language in the sense of linguistics will be called a
natural language.

The terms 'letter', 'symbol', and 'expression' make sense for any lan
guage, natural or not. In particular, they make sense for the U language.
For these and other semiotical terms we shall use the letter 'U' to indicate
reference to the U language; thus we can have U symbols and U expressions.
Evidently, the U language is a communicative language which is mutually
understood by author and reader; it is the one which is actually used.

It is evident from the above discussion that expressions (including sym
bols) are not single concrete physical objects, but types or kinds of such ob
jects, such as apples, trees, men, which may occur in numerous instances.
The individual marks on paper which constitute the instances of expressions
will be called inscriptions.2 In a more nominalistic account, the notion of
inscription would be fundamental and we should spea.k of equiform inscrip
tions instead of inscriptions which are instances of the same expression.
But it is more convenient to introduce expressions and to speak of sameness
of expressions, instead of equiformity of inscriptions. We are thus making
the first of the two abstractions mentioned in Sec. le3; we are also making
the second abstraction, since we suppose that expressions can be of any length.
Presumably it would not be difficult to transform what is said here into a
manner of speech which does not use these abstractions, but we shall not
attempt it here.

Sometimes we wish to talk about expressions as objects. For such pur
poses we need names for the expressions. Of course, one could use the
expression itself as its own name; this practice, which is known as the autony
mous mode of speech, is particularly suitable when the expression mentioned
is not used in the U language, as when one says that the Greek word (J~p,rJ.

means a sign. On the other hand, if this is not the case, there is some dan
ger of confusion between mention of an expression and its ordinary use.
Thus from the sentences

John is a redheaded man

John is a name with four letters

1 In certain contexts 'word' will be used instead of 'expression'. However this cannot
always be done, as 'word' has nontechnical uses which sometimes conflict.

2 The term has primary reference to written languages, but could be used with Rome
awkwardness for spoken ones.
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one might be tenlpted to conclude that a certain name with four letters is
redheaded. In the first sentence, a common given name is used to refer to a
man who was baptized with it, whereas in the second that same name is men
tioned. To avoid this danger it is customary to use a specimen of an ex
pression enclosed in quotation marks as a name for that expression. Since
this is a rather technical use of quotation marks, we reserve single quotes
for that purpose, using double quotes for all other uses of quotation marks in
the U language. With this understanding it is 'John', not John, which is a
name with four letters. This convention is of some help; it has been used
several times already in this work, and will be used generally in the future
when the context or other conventions of the U language do not make it
superfluous.1

The notation just described is not foolproof. 2 For the quoted expression
is an indivisible unit in the U language-a new symbol, if you will-and
substitutions ordinarily made for certain letters or expressions in the U
language cannot be made inside the quotes. Where such "quotation func
tions" are needed, further devices are required. This will sometimes occur
in connection with explanations of notation. Then the difficulty can gener
ally be avoided by using the idiom of the U language whereby, when we
wish to introduce the name 'John Doe' (which has not previously occurred
in the same context) for a man described in some way, we say "John Doe is
the man who ... ," rather than" 'John Doe' will be the name of the man
who ...." This brings the new name in without quotes, so that the usual
conventions of the U language in regard to variables will apply.3

Sometimes we wish to talk about one language L 1 within another language
L 2 • In such a case it is customary to call L 1 the object language; L 2 , the
metalanguage. It is not excluded that L 1 and L 2 may overlap. Ordinarily
the object language will be a certain portion of the U language which it. is
agreed to remove from it, while the metalanguage is the U language after
the removal. But sometimes we may wish to talk about languages L 1

and L 2 which are related to each other as object language and metalanguage,
respectively; in that case we use a third language, L 3 , customarily called the
metametalanguage. In this way we can continue to form hierarchies of lan
guages with any number of levels. However, no matter how many levels
there are, the U language will be the highest level: if there are two levels, it

I This will be the case, in particular, when the expression being mentioned is displayed
on a separate line. In certain instances, connected with verbs like 'call', I have made no
attempt to make the usage strictly uniform.

2 See Exercise 2 at the end of this section.
3 Cf. Quine's "quasi-quotation" [MLg, sec. 6]. Quine needed this device because he had

to mention expressions in his formal developments. Here this does not occur, and the
usage in the text is usually clear enough. For those rare cases where greater explicitneAR
is desired, we shall use the following form of speech:

expression of the form A, where aI' a 2, ... are ...

where 'A' is replaced by the name of some expression B, and 'aI', 'a 2', ••• , by names of
letters bl' b2, occurring in B. After the replacements, the speech form is to be construed
as designating the expressions obtained by substituting expressions satisfying the stat.ed
conditions for the letters bl' b2, ••• in B. Certain details and modifications can safely
be left to the reader's common sense.
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will be the metalanguage; if there are three levels, it will be the metameta
language; and so on. Thus the terms 'U language' and 'metalanguage'
must be kept distinct.!

3. Grammatics. If we study a communicative language from the stand
point of the meaning which is conveyed, the expressions of the language do
not form a natural class of symbol combinations. Of much more signif
icance is another class of combinations which form units in the rules for
deternlining how the sentences are constituted. We shall call the study of
the rules for determining the sentences of a language its grammatics, and the
symbol combinations which form the units in grammatics its phrases. Thus
in the sentence

John has both green and purple pajamas

the following are saluples of expressions:

has both

paj

hn has both gr

,,,hile the following are phrases:

John

both green and purple

both - - - and ...

where the dots and dashes in the last two examples indicate blanks to be
filled. The first set of examples shows that not all expressions are phrases;
the last example shows that not all phrases are expressions.

There are three main classes of phrases, viz., nouns, sentences, and func
tors. A noun names some object (real or imaginary); a sentence expresses
a statement; and a functor is a means of combining phrases to form other
phrases. We shall call nouns and sentences closed phrases to distinguish them
from functors. As to functors, the phrases combined by a functor we shall
call its arguments,. the result of the combination \ve shall call its value. Func
tors can evidently be classified according to the number and kind of the
arguments and the nature of the value. Thus if a certain functor combines
m arguments of types Xl' X 2' ... , X m' respectively, to form a value belong
ing to type Y, we shall say that it belongs to the type

FmXI · .. XmY

These "types," which are formed from the basic types such as n (noun) and
s (sentence) by the "functionality operators" Fn' will be called grammatical
categories.2

In order to attain complete generality we must admit functors with other
functors as arguments; there are numerous examples of such notions in lin
guistics. As to the value, note that

FIX(FIYZ), F3 UVW(F 2XYZ)

1 Cf. [LMF], sec II; also Sec. 84.
2 For examples of phrases from ordinary English and mathematics, see [LAG], sec. 6;

also [CLg], pp. 264 and 274, and [TFD], sec. 15.
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F2XYZ, FsUVWXYZ

and so on. We may therefore do either of the following: (1) require that
m = 1, but allow the value to be a functor, so that we in effect define all
Fm in terms of Ft , or (2) allow functors of any number of argunlents but
require the value to be closed, in which case we speak of the value as the
closure. The former procedure is usually followed in linguistics and is the
main idea back of the reduction to one operation discussed later (in Sec.
2D2); the latter is in the spirit of ordinary Inathematics and will be adopted
here. Accordingly, the value of a functor will be called henceforth its
closure, and the number of arguments, which is now uniquely determined,
will be called its degree. Functors of degree m will be called m-place or m
ary; for m = 1 and m = 2 these terms, as here used, are 'unary'l and 'binary',
respectively.

The foregoing account of grammatics is, of course, very sketchy. For an
adequate grammatical theory of a natural language we should undoubtedly
need several kinds of nouns and probably of sentences also. But the cate
gories of n (noun) and s (sentence) give us a basis which is adequate for most
purposes; refinements. if necessary, nlay be introduced later.

The principal kinds of functors which occur in our work are the following:
operators, which combine nouns to form other nouns; verbs, or predicators,
which combine nouns to form sentences; connectors, which combine sentences
to form other sentences; and subnectors, which form nouns out of sentences.
It is also convenient to have terms for referring to the meanings of these
phrases, and to say that such and such a phrase designates such and such a
meaning. The terms used for this purpose are shown in the following table.

Phrase

Phrase
Noun
Sentence
Clauset
Functor
Operator
Verb (predicator)

Connector
Subnector

Designatum

Designatum, element
Object,ob
Statement
Propositiont
Function, functive
Operation
Statement or verbalt
fUl'ction (predicate)

Connection
Rubnexus

The use of this dual terminology does not imply a commitment to a phi
losophy which postulates the existence of these meanings as esoteric entities
of a mysterious sort. Actually, one can regard the usage as purely rhetori
cal. One could, for exanlple, consider a statement as a class of sentences
which are mutually equivalent in some sense, just as expressions are classes
of equiform inscriptions. However, since I give no ,vay of judging when the
sentences are equivalent-in other words, no criterion for the identity of

1 Some authors prefer the term 'singulary'. For a statement of reasons for preferring
'unary' see [rev. Church, end of article] as corrected in [DFS], footnote 4.

t For these see Chap. 5.
t See Sec. 7A3.
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statements-the reader is free to interpret the designation relation in any
way he likes, in particular to make no distinction between a sentence and a
statement. The duplication of terms has the advantage that it does not
commit us to a particular type of philosophy; it introduces, so to speak, a
free parameter which one can adjust to suit different philosophical preju
dices. The vague indication which it gives of the level of abstraction
seems to be better than none at all, and thus is an aid to thinking.

It is a general convention of the U language that a phrase which is gram
matically not a noun may sometimes be used in a nominal context as name
for its designatum. This convention will be used occasionally in the sequel.

4. Technique for functors. Here there will be stated certain conven
tions of a rather special nature which are concerned with the handling of
functors. The discussion is technical and may be passed over until it is re
quired.

There is need for a notation for mentioning functors which is as efficient
as quotation marks are for mentioning expressions. Since functors are by
definition modes of combination, the specification of a functor is not com
plete until it is shown how the closure is obtained from the arguments. This
requires that there be blanks or similar devices to indicate where the argu
ments are to be put, and also some method of indicating the order in which
the blanks are to be filled. Dashes with numerical subscripts will be used
for this purpose. Parentheses to indicate the extent of the arguments must
be considered a part of the functor. Thus a complete notation for the addi
tion operator would be '(--1) + (--2)'.

However, this is more elaborate than is necessary for most purposes.
Many functors are of one or the other of the following three types: prefixes,
which are written before the arguments; infixes, which are binary functors
written between the arguments; and suffixes, which are written after the
arguments. Prefixes and suffixes can have any degree, and it has been
shown that parentheses are not necessary when either kind is used exclusively
with functors of known degree.! Infixes require parentheses; the rules for
these parentheses, including the omission of superfluous ones according to
standard practice, will be regarded as known. Accordingly, it is sufficient
to consider functors of these three types as simple symbols. Such a simple
symbol will be called an affix. When this affix is used as a noun without
quotation marks, it is to be understood as a name for the function; with
quotation marks it is, of course, a name for the functor itself.

Another case where abbreviated notation is appropriate is the case of an
ordinary mathematical function. Here the full notation would be an expres
sion of the form '/(--1' --2' ... ,--n)', where 'I' is a letter (or word
acting as a letter) . Unless there is danger of confusion (due to special cir
cumstances), it will suffice to use the function letter (i.e., what replaces the

1 This is a result of J. Lukasiewicz, a Polish logician (1878-1956), for a long time pro
fessor of philosophy at the University of Warsaw. He is noted for his work on multiple
valued logics and on the history of logic. For an account of his work, see Mostowski
[OSJ]; also (less readable, but giving further details) Borkowski and Siupecki [LWJ],

Kotarbinski [JLW], Scholz [MJ:L], Soboci~ski [MJL]. A bibliography of his writings
also appears in Studia Logica, 5:9-11 and 8:63. For the origin of the notation see Bor
kowski and Slupecki [LWJ, p. 24]. The notation is discussed more fully later.
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'f') without quotes as a name for the function and in quotes as a name for
the functor. 1

Special Functors. The follow~ng table lists for reference some special
functors which will be used in technical senses. Here the first column lists
the affix; the second column, its meaning (or a translation scheme for its
closure); and the third column, the places later in this book where it is intro
duced or where further information can be found.

Binary infixed connectors

If --1' then --2 (or --I only if --2)

+t --I if and only if --2

or

&

--l or --2

--land--2

§3A2

§3A2

Binary infixed verbs

- --1 is the same (by definition) as --2

--1 equals --2

:::;; --I precedes --2

--1 is included in --2

Unary verbs

§3C3

§2BI

I
1

-- is asserted
-- is refuted

§2DI
§6A3

Binary infixed operators

v

A

--IPlY--2

(--1 :::> --2) A (--2 :::> --1)

--lad--2

(implication operation)

(equivalence operation)

(union)

(meet, or conjunction)

§4CI

§4D3

§4AI

§4AI

Unary operation

I
o

(negation operation)

(necessity operation)

§6A3

§8A2

Dot Notation. When complex phrases are built up by iterated applica
tion of such functors, there may be so many parentheses that the resulting
expression is difficult to read. Various devices-of ,vhich we have already
noticed the elimination of superfluous parentheses-have been proposed to
aid in such reading. One such device, known as the dot notation, which is
in rather common use, is explained as follows.

The principle of this device is that one replaces parentheses by groups of

1 This convention and the analogous one at the end of the preceding paragraph are
special cases of the general convention at the end of Sec. 3.

2 This infix is used in connection with algorithms (Sec. 2E) in a different sense.
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dots in such a way that the more inclusive parentheses have a, larger number
of dots and that one distinguishes between left and right parentheses by their
position relative to their associated affixes. One can then see at a glance
where the main breaks occur, and the structure of the phrase can be more
readily perceived. Unfortunately, when one attempts to state precisely the
rules for such a notation, one finds that it is rather a complicated business,
and on this account many writers avoid the notation altogether.! How
ever, it does have certain advantages, and consequently it is used, somewhat
sparingly, in the more technical portions of this book.

It is advisable to modify the technique so as to include the standard rules
for omission of parentheses and to be consistent with common sense. The
modified conventions are as follows.

A group of dots on either side of a binary infix and on the right of a unary
prefix will be called a point,. we include the possibility that the number of
dots may be zero. A point on the right of an affix will be known as a right
(-facing) point,. one on the left as a left(-facing) point,. the beginning and the
end of the entire expression will also be right and left points, respectively.
These points ·will be ranked in order of seniority according to rules to be
given presently. Then a point indicates that the argument on that side of
the affix is to extend from that point in the indicated direction until the first
senior point facing in the opposite direction. The expression so determined
will be called the scope of the point. The relation of seniority is to be a
transitive relation generated by the following rules, it being understood that
a rule stated earlier in the list takes precedence over one stated later: (1)
the beginning or end of the entire expression is senior to any point in its
interior; (2) a point attached to a connector is senior to one attached to a
verb; (3) a point attached to a verb is senior to one attached to an operator;
(4) a point with a larger number of dots is senior to one with a smaller num
ber; (5) a point attached to a functor appearing earlier in the table of Sec. 3
is senior to one appearing later; (6) a left point is senior to a right point (rule
of association to the left).

In applying these rules in cases where parentheses are present, the paren
thesized expressions are to be treated as units. Given a pair of correspond
ing parentheses, the expression bet\\Teen them is the "entire expression" for
any point within it, and the scope of a point outside of such a pair of paren
theses includes either the entire unit or none of it.

These conventions are stated under the assumption that no point will con
tain within its scope a senior point facing in the same direction. 2 It would
be possible to state more complicated conventions allowing this possibility,
but the convenience of the dot notation would be lost. In practice, we ob
tain maximum perspicuity by using more dots than are strictly necessary

1 The Lukasiewicz notation (see footnote, p. 34) is much easier to describe and to treat
theoretically, but it is by no means perspicuous and requires some practice before one can
read it. Dots could be used to increase perspicuousness in connection with that nota
tion, but this has not been done (cf., however, the use of spacing in Bochenski [NLL]).

2 However, the rules do admit the possibility that there may be a point of the same
seniority. Thus we can interpret

for any value of n.
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and combining dots judiciously with explicit parentheses, so that the senior
point in a formula can be seen at a glance.

It is easy to modify the rules so as to include the case ,vhere simple juxta
position is used as a binary functor, as in the case of multiplication in ordi
nary algebra. There is then no affix. We can suppose, however, that a
fictitious affix is supplied and that the points on either side of it have the
same number of dots; then the affix and one of the points can be removed.
The remaining point has to be considered as both a left and a right point
simultaneously.

5. Processes and classes. Besides the more or less symbolic conven
tions which we have just discussed, it is necessary to be clear about certain
terms in the more discursive part of the U language. These are terms with
which the reader is already familiar; the purpose of this discussion is not to
define them formally, but to sharpen their use. We shall discuss the notion
of effective process, of definite question, and of a class or totality.

Effective Process. Suppose that we have certain transformations which
can actually be carried out on certain elements. Suppose th8tt we have
specifications determining a sequence of transformations to be applied suc
cessively to an element. These specifications will be said to define an effec
tive process for attaining a certain goal relative to an element if, given that
element, the specifications determine uniquely a sequence of transformations
such that the goal is reached after a finite number of steps. There must
never be any ambiguity whose solution requires examination of an infinite
number of possibilities. Thus the notion of an effective process is akin to
that of a construction as understood by an intuitionist, but it has all the
stringency of Hilbert's finitary standpoint, and it does not depend on any
idealistic intuition, temporal or otherwise.

Ordinarily, the specifications define an effective process sinlultaneously
for many elements; i.e., the process is defined in general terms involving
parameters. In such cases the elements for which the transformations are
defined will be called the admissible elernents. Then the description of the
process must be such that we know without equivocation the following: (1)
whether a given element is admissible; (2) given an admissible element,
exactly what transformation is to be applied and what its result will be; (3)
when the goal is attained. Then, given an admissible element, the process
will be effective for that element just when we know in addition that a finite
number of steps will actually reach the goal. In such cases we shall say that
the specifications define an effective process and that the process is applicable
to those elements for which it actually is effective in the sense of the preced
ing paragraph.

Examples of such processes are the l\larkov algorithms, which we shall
study in Sec. 2E. Here the admissible elements are the expressions in a
language with a finite alphabet; these evidently satisfy condition (1). Fi
nally, the attainment of the goal is signalized by the carrying out of one of
certain specially indicated transformations, or, in some cases, by reaching an
element for which no further transformation is defined. Very general sorts
of effective processes can be specified by such algorithms; there is heuristic
evidence to the effect that every effective process can be.

In the foregoing we have tacitly supposed that a "transformation" was a
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function of one argument. The notion of effective process may be extended
to the case where two or more elements determine the result of a transforma
tion. In fact, this case can be reduced to the foregoing by the device of
taking ordered sequences of elements as new elements.

Definite Questions. A question will be said to be definite if it can be an
swered yes or no and there is an effective process for finding the answer.
Thus the question is as to the truth of a certain statement, this statement
being then the element 'with which the process begins.

This notion can be extended to simultaneous consideration of admissible
statements, just as in the case of effective process. We have to do with
effective processes for which the admissible elements are certain statements
and the goal a judgment of their truth or falsity. The question is definite if
there is such an effective process which is applicable to every admissible
statement. If there is an effective process which is applicable whenever
the admissible statement is true, then the question is called semidefinite.l

It will be seen that there seems to be a certain circularity about these
definitions. We shall return to discuss this point later. However, we note
in passing that the question of whether an effective process is applicable to
a given adlnissible element is always semidefinite and mayor may not be
definite.

Conceptual Classes. We shall often have to formulate, by means of the
U 1f',1nguage , properties (or relations) which define, in a strictly intuitive (or
contensive) way, a totality of elements or notions. In order to distinguish
such intuitive totalities from the "sets" or "classes" formed later2 (and con
ceived rather as objects of some theoretical study than as intuitive notions),
we shall call them conceptual classes (or relations). The elements eligible
for consideration for membership in such classes will be called admissible
elements.

A conceptual class will be said to be definite just when the question of
whether an admissible element belongs to the class is definite. Similarly,
we shall speak of a conceptual class as semidefinite if the corresponding
question concerning membership is semidefinite.

An inductive class is a conceptual class which is generated from certain
initial elements by certain specified modes of combination.3 More pre
cisely, this means the following. Let ~ be the class in question. Then ~

is defined by two sorts of specifications, called the initial specifications (I)
and the generating specifications (II). The initial specifications define the
initial elements,. the latter constitute a definite class, say ~, often called the
basis of~. The generating specifications define a definite-usually, but not
necessarily, finite-class, say IDl, of modes of combination; with each such
mode p, there is associated a fixed number called its degree; it is then under
stood that the application of any such p" of degree n, to a sequence of n

1 For example, if ex is a recursive set of natural numbers, then the question of whether
a natural number n belongs to ex is a definite question; if ex is a recursively enumerable
class, the same question is semidefinite. The admissible elements ar.e statements to
th~ effect that an explicitly given number is a member of ex.

2 In the higher parts of logic, for example, set theory, but not in this book.
3 The term 'mode of combination' is intended to suggest that we have to do with

functions of any number of arguments. The possibility that there may be only one
argument is not excluded.
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arguments, each an element of X, produces an element of X; further, that the
question of whether an element is so produced from the given arguments is
definite. I t is further understood that every element of X can be reached by
an effective process (in the generalized sense) which starts with certain
initial elements and at each later step applies a mode of combination of 9J1
to arguments already constructed; this requirement, often called the closure
specification, is to be understood as part of the definition of an inductive
class, and it is therefore not necessary to state it explicitly in the definition
of a particular X.

The definition of an inductive class X is sometimes expressed by saying
that X is the class defined by the following three properties: (1) X incIudes
the basis; (2) X is closed under the modes of combination; (3) X is included
in every class which satisfies properties 1 and 2. This definition does not
spell out the fact that X is the totality of all elements which can be reached
from the initial elements by iterated application of the modes of combina
tion. It therefore has a platonistic character, which is objectionable from
our point of view.

Nothing in the foregoing requires that there be at nlost one element pro
duced by a mode of combination from given arguments Y1 , ..• ,Yn- This
condition is, however, fulfilled in many interesting cases. Just in case a
mode of combination satisfies this condition, it will be called determinative.

The notion of inductive class may apply in either of the following t\\'O cases
(and perhaps in others): (1) the elements are objects, and the Inodes of conl
bination are operations; (2) the elements are statements, and the modes of
combination are connections.

Under the restrictions made it will appear later (in Sec. 6) that an induc
tive class is semidefinite. Under special circumstances it is definite, but
there are many interesting cases in which it is not.

For some purposes (e.g., where it is not necessary to retain a strictly con
structive viewpoint), it may be advantageous to relax somewhat the definite
ness requirements in the definition of an inductive class. In that case we
may speak of a "generalized inductive class," or perhaps a "semi-inductive
class."

It remains to comment on the apparent circularity in the above discussion.
This arises since in condition (1) for an effective process we have in effect said
that the admissible elements form a definite (conceptual) class, \vhereas the
notion of definite class depends on that of effective process. This brings us
back to the remark that these terms are not being formally defined. We
nlust, in fact, begin with some initial class of admissible elements whose def
initeness is not open to doubt. As such a class we may take, for example,
the expressions of some language with a finite alphabet, let us say, for example,
the U language or some portion of it. (Note that, in view of the remarks in
Sec. 3, one may identify a concept or notion with the U expression which
designates it.) In terms of these elements we may generate effective proc
esses, other definite classes, etc. If we accept Markov's (or Church's)
thesis (Sec. E 1), one Inay define the notion of effective process with a high
degree of precision.

6. Constructions. A process for reaching an element X of an inductive
class X by iterated application of the modes of combination will be called a
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construction of X (relative to X). We shall here study some technical mat
ters connected with such constructions. It will be convenient to treat
primarily the first of the two cases mentioned toward the close of Sec. 5, viz.,
that in which the elements are objects and the modes of combination are
operations. Appropriate changes of terminology, such as replacements of
'name of an element' by 'sentence designating a statenlent', will then auto
matically extend our conclusions to other cases. However, we shall con
tinue to use '/1,' and '9)1' as in Sec. 5.

In connection with such constructions we consider certain diagrams called
tree diagrams. A tree diagram 1) will consist of nodes joined together in the
following way. There v.rill be a unique bottom node; every node other than
the bottom node will be joined to a unique node below it, and there will be
no other junctions; further, an operation p, of 9)1 will be assigned to each
node not a top node, and the number of nodes joined to that node from
above will be precisely equal to the degree of p,. Let <.t be a construction of
X. Then a tree diagram 1) will be said to be associated with <.t just when
there is a one-to-one correspondence between the nodes of1) and the occurrences of
elements of X appearing in <.t, so that the following conditions are satisfied: the
bottom node corresponds to X; and if Y is formed in <.t by applying an opera
tion p, to arguments Yt , Y 2' ••• , Y n' in that order, then the node corre
sponding to Y has that same operation p, assigned to it, and the nodes joined
to it from above, in order from left to right, are precisely those corresponding
to Y 1 , Y 2' ... , Y n. In such a case the top nodes of 1) will correspond to
initial elements. We shall say that a tree diagram 1) is labeled (relative to a
construction <.t) just when each node of 1) is marked with a name of the cor
responding element in <.t. In practice we can realize such a labeled 1) as
follows. We take as nodes instances of the names of the various elelnents of
X to which they correspond; over each node not a top node we draw a hori
zontal line, with the name of the operation used in forming that node at the
extreme right; above this line we write in order the nodes corresponding to
the arguments to which that operation was applied. Thus, if \ve take addi
tion, multiplication, and squaring as operations and use the notation of
elenlentary algebra, the labeled tree diagram for a2b + ac would be as fol
lows:

a
~sqb a c

~x~x

a2b + ac +

Here 'sq' is used for the name of the squaring operation; the other names are
self-explanatory.

It is clear that an element belongs to an inductive class X just when there
exists a construction of it. Since the question of \vhether a tree diagram cor
responds to a construction of a given X is a definite question, an inductive
class is always semidefinite.

Constructions, tree diagrams, and labeled tree diagrams are like expres
sions in that they may have innunlerable instances. Given two instances
of a construction, we say that they are instances of the same construction
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just when they have the same associated tree diagram and the same ele
ments corresponding to the same nodes, i.e., the same labeled tree diagram.
(If the element produced by an operation from given arguments is unique, it
would be sufficient to have, in addition to identity of the tree diagrams, the
same initial elements at all the top nodes.) Generally, the same element X
may have several different constructions. Just when this construction is
unique for any X in X, we shall say that the inductive class X is monotec
tonic l ,. when there may be more than one construction, we shall say that it is
polytectonic. We shall meet examples of both kinds later.

"Ve now consider a notion related to a construction, viz., that of a con
struction sequence. This is a sequence of elements such that each term either
is an initial element or is constructed from some of its predecessors by an
operation. Evidently, a construction sequence may be formed from a con
struction in various ways. The sole requirement is that X must precede Y
in the sequence whenever Y is below X in the associated tree diagram, i.e.,
whenever, starting from X,2 we can reach Y by a succession of steps each of
which carries us from a node to the one joined to it from below. The se
quence may even contain extraneous elements, i.e., ones not needed in the
construction. One particular such sequence, the normal construction se
quence of G:, is the one obtained from the labeled tree diagram by enumerat
ing the nodes from the top down and from left to right; more precisely, it is
the unique construction sequence which satisfies the follo,ving additional
conditions: (1) its elements are precisely the elements of G:, with repetitions
taken as they occur as if they were distinct elements; (2) if X and Yare used
as arguments in the formation of any element (i.e., if the nodes for X and Y
are both joined from above to the same node immediately below) and X is
to the left of Y, then X precedes Y and also precedes any Z such that Y is
below Z. For example, the sequences

a, b, c, a2, ac, a2b, a2b + ac

a,b,c, ~a2,b~ac,ad,a2b,abc,a2b + ac

a, a2, b, a2b, a, c, ac, a2b + ac

are construction sequences for the above construction of a2b + ac; the last
of the three sequences is the normal construction sequence.

Evidently X will be in X just when it is the last term in a construction
sequence. But in order to reestablish the construction from the construc
tion sequence, it is necessary to give sonle additional information, viz., the
operation and the arguments used in forming any term. This additional
information may be called an analysis3 of the construction sequence. In
order to make it a definite question whether an arbitrary sequence of ele
ments is or is not a construction sequence, we must strengthen somewhat the

1 This is the same as the term 't(~ctonic' in reFS]. It was introduced in [LAG] because
the term 'polytectonic' is useful for the opposite property. If there is an effective pro
cess for obtaining the construction for admissible X, then X is effectively monotectonic.
In this book, 'effectively' in this context will generally be understood.

2 Strictly speaking, the node corresponding to X. For the purpose of this discussion
it is permissible to identify the elements with their names.

3 This term is due to Kleene [IMM, p. 87].
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definiteness requirements with regard to operations; viz., it must be definite,
not only whether-given Y1, ••• , Yn , X, and f-l-X is obtained from Y1, ••• ,

Yn by f-l, but also whether-given Yl' ... , Yn , X-X is obtained by some
JL from some subsequence of Yl' ... ; Yn't and if so, the number of possibilities
is finite.

Further techniques related to constructions will be taken up in Sec. 3B I.
7. Natural numbers. That we have to use notions connected with

natural number in the U language is already evident from the fact that we
have had to speak of the degree of a functor as the number of its arguments.
It is therefore appropriate to pause to consider just what is involved in this
intuitive usage of numerical notions.

We use numbers as counters. The essence of this process has already
been set forth in Sec. IC2a. We can select certain words forming a sequence
in the U language; from these \ve can form standard (conceptual) classes
corresponding to each number; and a class has n menlbers just when there
is a pairing (one-to-one correspondence) between its members and those of
the appropriate standard class. More than this we have not needed.

Later on we may formalize the notion of number in ways which will be
explained in due course. Then we can introduce further arithmetical ideas
and use these in our study. This will concern us in Sec. D and Chap. 3.

In no case is it necessary that any sort of idealistic meaning-platonistic,
based on temporal intuition, or what not-be associated with the number.
Neither is it necessary that numbers be introduced as formal prinlitives, so
that a formalized arithmetic is not necessarily prior to any other sort of logical
study.

EXERCISES

1. Suppose we agree that the U language is to be ordinary English, except that we
can form names of expressions in either the U language or the Greek language by
single quotes as above explained, that'a' is a U noun designating the first letter of the
Greek alphabet, and that autonymous usage is not permitted. Consider the expres
sions written on the following line.

a, ex, alpha, &;~4>ex, 'a', 'ex', 'alpha', '&;'4>ex', "a", "ex"

Write down all true U sentences formed by substituting these expressions for the
blank(s) in the following:

a. -- is a U expression.
b. -- is a Greek expression.
c. -- is a letter.
d. -- is a word of more than one letter.
e. --1 designates --2·

f. --1 is a part of--2·

g. -- contains quotation marks.
h. -- is an expression of ordinary English.
i. -- contains Greek letters.

2. The following statements appear-with some slight changes-in reputable
logical publications of the last thirty years. Bearing in mind that in all cases except

t Cf. Church [IML2, footnote 121].
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case e the authors were intending to state general principles in which substitutions
could be made for the letters, criticize the use of quotation marks in these statements.

(a) Consider two statements, 'p' and 'Q', of symbolic logic which are translations of
the English sentences 'A' and 'B'. Then '(P & Q)' is the statement which is a
translation of 'A and B'.

(b) A statement such as "If x and yare numbers, then x + y = y + x" violates
the rule about using names of things when speaking of those things. It should prop
erly be written as "If 'x' and 'y' are numbers, then 'x + y' = 'y + x'."

(c) If 'P' is a translation of a statement, then the negation of the statement is
translated'IP'.

(d) If'A' and 'B' are true, then 'A & B' is true.
(e) If we wanted to state that Chicago lies between New York and Denver, we

might well use G for Chicago and D for Denver, but to nse NY for New York would be
confusing.

(f) The conjunctive proposition 'p and q' will be symbolized by 'p . q'. The dot
expresses that both propositions are asserted together. Hence 'p . q' may be read
'both p and q'.

(g) For 'not-p' we shall write 'IP'.
3. Assuming that the basic grammatical categories are n (noun) and s (sentence)

and the other categories are formed by the F1&' determine the grammatical categories
of the following phrases:

'--1 like --2' in
'--1 give --2--3' in
'--'s' in
'that--'
'too--'
'much--'

in
in
in

'Horses like oats'.
'Dogs give their masters much affection'.
'John is Henry's brother'.
'I know that Anne is happy'
'Edward's shirt is too large'.
'Edward's shirt is much too large'.

(Cf. [CLg], pp. 274-275.)
4. Assuming that the basic categories are N (number) and S (statement or proposi

tion) and that one takes a naive set-theoretic point of view (whereby sets, relations,
functions are conceived as objects), determine the categories of the following:

(a) 2
(b) The factorial function
(c) Primeness, Le., the property of being prime
(d) Divisibility of one number by another
(e) The greatest common divisor
(f) The minimum value of a unary numerical function
(g) The monotonic property of a numerical function
(h) The finite difference operation
(i) Finiteness of a set of numbers
(j) Dominance of one function by another

(Cf. [CLg], pp. 264-265.)
5. If 'n' and's' abbreviate 'noun' and 'sentence', respectively, give examples from

ordinary or mathematical language of the following:
(a) F2nnn
(b) F1ss
(c) Fr~n

(d) F~ss

(e) F1(F2nns)(F2nns)
(Cf. references to Exercises 3 and 4.)

6. Assuming that 'I' is a unary prefix, and that ':::>', 'A', 'V' are binary infixes,
express the following unambiguously without parentheses, using the conventions
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regarding dots described in Sec. 4, the binary infixes being senior to the prefix and
the order of seniority among the infixes being '::::>', 'V', 'A'.

(a) (A ::::> (B ::::> 0)) ::::> ((A::::> B) ::::> (A ::::> G))

(b) (A ::::> B) ::::> ((A::::> 0) ::::> (A ::::> (B A 0)))

(c) A ::::> (B ::::> (A A B))

(d) (A ::::> 0) ::::> ((B ::::> C) ::::> ((A V B) ::::> 0))

(e) (A A (BVe)) ::::> ((A A B) V (A A 0))

(f) (A ::::> (B ::::> G)) ::::> (I(A ::::> 0) ::::> I (A ::::> B))

(g) (AI::::> B l ) ::::> ((A 2 ::::> B 2 ) ::::> (••• ::::> (An::::> B n) ...))

(h) ~I(I(I(IA)) ::::> (I(IB))) ~ ~ A ::::> B

('~' defined as in Sec. 4). (For (a) to (d), see [TFD], p. 43; for (g), cf. [UDB], (3).
For further such exercises, see Rosser [LMt, p. 23, example 112.1].)

7. Express the following in the ordinary notation of elementary algebra (the slant
'I' is used for division):

(a) a -. b + c :-: a + c .-. b + c
(b) a - b ./. a + b :-: a + b ./. a - b = -. 2ab/. a2 - b2

(c) al +. 1/. a2 +. 1/.... +. 1/. an

(Cf. Rosser [LMt, p. 23, example 112.2].)
8. Show that if we start with a finite alphabet, the words in that alphabet form an

inductive class; further give an argument to support the thesis that that class is
definite by exhibiting an effective process for deciding the question of being such a
word.

9. Let X be the class of words in the infinite alphabet

defined by the inductive specifications (in the autonymous mode of speech):
(a) aI' a2 , ••• are all in X.
(b) If X and Yare in X, so are NX and GXY.
Show that X is a definite class. (This is a special case of the Lukasiewicz notation

mentioned in Sec. 4. Several solutions have been published; see, for example, [CFS1,
sec. 6; [LLA], appendix sec. 2; Rosenbloom [EML, sec. IV 1 and the references
given there on p. 205]. Cf. below, Exercise E5.)

10. Write a labeled tree diagram and the corresponding normal construction
sequence for the construction by the operations of addition, subtraction, and divi
sion of the formula A of elementary algebra defined as follows:

a2 - b2 a2 + b2

a2 + b2 - a2 - b2

A == -a-+-b--a---b.....

a-b+a+b

(Adopt and use suitable abbreviations for the various component phrases.)
11. Suppose a sequence is given, together with the information that it is a construc

tion sequence. What further information is necessary in order to determine the
construction uniquely1

12. Show that the following conditions are sufficient so that every element X of
an inductive class X has a unique construction· (a) an element obtained by an opera
tion is distinct from every atom; (b) elements obtained by distinct operations, or by
the same operation from different arguments, are always distinct. Further discuss
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the analogy between these two properties, the specifications I, II, and the extremal
clause, on the one hand, and the Peano postulates for natural numbers, on the
other hand. ([CLg], sec. 2E7.)

B. THEORIES

In this section a theory will be defined as a class of statements. We shall
consider here the formulation of this definition, and consequences following
from it that do not require any assumptions concerning the objects which
the statements of the theory refer to.

1. Theories in general. We begin by postulating a certain nonvoid,
definite class (f of statements, which we call elementary statements. As ex
plained in Sec. A5, this means that the question of whether a given U ex
pression does or does not express a statement of (f is definite. The statements
of (f are called elementary statements to distinguish them from other state
ments which we may form from them or about them in the U language;
later on we shall call some of these latter statements "epistatements," but
for the moment we do not need this term.

A theory (over (f) is defined as a conceptual class of these elementary state
ments. Let 1: be such a theory. Then the elementary statements which
belong to 1: we shall call the elementary theorems of 1:; we also say that these
elementary statements are true for 1:. Thus, given ~, an elementary theorem
is an elementary statement which is true. A theory is thus a way of picking
out from the statements of (f a certain subclass of true statements. '\\'e
shall then say that the statements of (f constitute the elementary statements
for (or of) the theory 1:. t

The terminology which has just been used implies that the elementary
statements are not such that their truth and falsity are known to us without
reference to 1:. The U sentences ,vhich express them must therefore con
tain some undetermined constituents or parameters whose meaning is not
fixed until 1: is defined. In other words, they are formal statements, and
they stand, in this respect, in contrast to the contensive statements whose
truth and falsity are known to us completely beforehand. Of course, one
may argue that this is improper usage; that the elements of (f are not state
ments until the meaning of these undetermined constituents is fixed; and
that therefore we must postulate a separate (f for each 1:. This is, however,
a matter of usage of terms. There are two arguments in favor of the usage
here adopted. In the first place, it is convenient, in that it enables us to
speak of two or more theories with the same (f. In the second place, it
agrees with the ordinary usage of the word 'sentence'l; for the English expres
sion

he is a jackass

is certainly a sentence, and one which my readers must have heard, yet it is
not possible to judge of it as true or false until it is embedded in a context
'which "'ill tell us what 'he' stands for and in which particular sense the
word 'jackass' is intended. Later on we shall consider ways in which these

t It is not excluded that we may have theories with different classes (f.

1 It will be recalled that 'sentence' and 'statement' may be identified.
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constituents may enter; for the present we are concerned with matters which
do not require such specification.

Although this notion of theory is very general, yet certain notions relating
to theories can be defined in terms of it. In the first place, we can define a
theory 1:1 to be a subtheory of another theory 1:2, or 1:2 to be an extension (or
supertheory) of 1:1, which relationships we can express by the notation (bor
rowed from set theory)

1:1 ~ 1:2

just when every elementary theorem of 1:1 is also one of 1:2 , t Again we can
define a consistent theory as one which does not exhaust the whole of (f, and
a decidable theory as one which is a definite class.

The definition of consistency may seem a bit strange. It is motivated as
follows. 1 In theories based on the ordinary predicate calculus, the elemen
tary statements are of the form

~p (1)

where P is a "formula" and '~' designates a unary predicate of assertibility.
There is in that calculus a negation operation. Such a theory would be
considered inconsistent if both a formula and its negation were assertible,
and from such a "contradiction" it follows by the principles of the calculus
that every formula is assertible. Hence a theory containing a contradiction
would be inconsistent according to the definition given here. Conversely, if
such a theory were inconsistent according to the present definition, then any
formula P and its negation \vould both be assertible, and so there would be
a contradiction. Thus, for such a theory, the two definitions would be
equivalent. The present definition, ho,vever, applies under much more
general conditions. It has the same damning connotation, for whether nega
tion is present or not, an inconsistent theory is useless.

The term 'primitive frame', introduced later (in Sec. Cl) for systems,
makes sense for theories and may, on occasion, be so applied.

2. Deductive theories. A theory 1: is called deductive just when 1: is an
inductive class (of elementary statements, of course). From the definitions
in Secs. A5 and 1, this implies that the initial elements constitute a decid
able theory~. The elements of ~ will be called axiomatic statements, or
axioms.2 The modes of combination are then a set, say, 9l, of deductive
rules, or rules of inference; each of these produces an elementary theorem
when a suitable number of elementary theorems are given as premises. The
rules are called determinative (cf. Sec. A5) when the elementary statement
produced is uniquely determined by the premises. Sometimes it is con
venient to use the term 'postulates' for the rules and axioms together.

A construction under these conditions is called a (formal)3 demonstration.

t In this it is supposed that Zl and Z2 have the same (f, but it may be extended to the
case where they have different ones, (fl and (f2' such that

(fl ~ (f2

1 This argument is given in Post [lOT].
2 For the present we shall use the shorter term, but later, when we have to talk of

axiomatic formulas, the longer term will be useful.
3 The term 'formal' will be used when there is a possibility of confusion with other

uses of 'demonstration'. The terms 'deduction', 'proof', 'derivation' will be used as
synonyms for 'demonstration' when there is no conflict with other uses of these 'Words
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The elementary theorems are precisely those elementary statements for
\vhich a denl0nstration exists.

Sometimes one considers theories in which one has rules with premises
which are not elementary, but are nevertheless such that the conclusion can
be regarded as obtained constructively. We cannot take account of such
theories until ,ve develop the notion of epitheory later. However, such
theories have many of the characteristics of deductive theories as defined
here. We shall say that they are deductive in a generalized sense.! Much
of what we say will apply to them.

Another generalization of a deducti~ theory arises if we relax the restric
tions on definiteness so that 1: is a semi-inductive class. Such a theory will
be called semideductive. In a semideductive theory the notion of demonstra
tion may not be effective.

For a deductive theory-and also for some of its generalizations-we can
define a concept of cornpleteness as follows. A deductive theory 1: is complete
just when the adjunction to its axioms, leaving the rules unchanged, of an
elementary statement which is not an elementary theorem makes the theory
inconsistent-in other words, when the theory is incapable of a consistent
proper axiomatic extension. (This definition makes an inconsistent theory
conlplete; there is some difference of usage on that point.) This kind of
conlpleteness is called Post completeness. 2 It is a rather strong property and
fails for most systems of any importance, but it holds for the classical t\VO
valued propositional calculus when it is formulated with a substitution rule.

3. Consequence relations. Let 1: be a fixed (semi)deductive theory
with axionls ~{ and rules 9t A semideductive theory formed by adj oining
additional axioms to ~{, leaving the rules and <ft unchanged, is called an
axiornatic extension of 1:. rrhis will be a deductive theory if the additional
axioms constitute a decidable theory and if the definiteness of the rules is
not disturbed by the extension. T'his definition makes sense even when
~{, and hence :t (i.e., the class of elementary theorems), is void.

Suppose the additional axioms form a theory~. Then the axiomatic
extension of 1: will be called the (deductive) closure of ~ and designated
Cn(~).t :F'urther, a statement X will be said to be a consequence of ~ rela
tive to 1: just when X is in Cn(~).

The operation of passing from ~ to Cn(~) is a closure operation in the
sense in which it is ordinarily understood in mathematics. It has the follow
ing properties:

I

II

III

Cn(Cn(~)) S; Cn(~)

1 The more restricted kind of deductive theory can then be called an elementary deduc-
tive theory. Cf. Sec. 2D3.

2 It was introduced by Post [lOT].
t The new aXiOlTIS Inust then belong to the original (t.

t 'Cn' here is an abbreviation of 'consequence'. For its introduction see Tarski and
vVoodger [LSM, p. 63]. (This is a translation from Tarski [FBM].)
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These characterize a closure relation in general. The deductive closure has
the following further property:

IV If X is in Cn(~), then there is a finite subtheory (£: of ~ such that X is
in Cn(£:).

The further study of this closure operation belongs to the part of our sub
ject known as epitheory, which will be considered in Chap. 3. But it is
mentioned here because certain logical doctrines take the consequence rela
tion, rather than the notion of deductive theory, as fundamental. From
that point of view the rules 9t establish a relation of direct consequence; then
Cn(~) is, essentially, the least class containing (~ and) ~, which is closed
with respect to the direct consequence (Le., with respect to 9t). In view of
the discussion of Sec. A5, this is essentially the same as that here given. It
is clear that Cn(~) coincides with 1: if ~ is void.

In terms of the consequence relation, one can characterize Post complete
ness (Sec. 2) as follows. 1: is complete just when every statement of (f is a
consequence (relative to 1:) of any statement X not in 1:.

4. Interpretation of theories. Up to the present we have been studying
a theory purely as a conceptual class of statements, without regard to its
relation to other notions. Evidently a theory, conceived of as a class of
statements which may be defined in any conceivable way, is of interest to us
only in so far as there is some relation between the theory and some conten
sive subject matter, Le., some subject matter which is known to us inde
pendently of the theory. A theory is useful to us in so far as it enables us
to make predictions concerning the subject matter.

Such a relationship between a theory and a contensive subject matter \vill
exist when there is a many-to-one correspondence between certain elemen
tary statements of the theory and certain contensive statements related to
the subject matter. In such a case we say we have an interpretation of the
theory in the subject matter. This interpretation will be said to be full if
there is such a contensive correspondent to every elementary statement;
otherwise it will be partial. The correspondent contensive statement will
also be said to be the interpretant of the original elementary statement; when
it is not necessary to be too exact we shall call it the interpretation also.
Thus an elementary statement of a physical theory may have as interpretant
some statement which can be subjected to an experimental test; most physi
cal theories contain statements which are not capable of direct experimental
test, so that the interpretation is only partial.

An interpretation is valid just when the interpretant of every elementary
theorem (i.e., of every true elementary statement) is true. It is adequate
(or relatively complete) if every elementary statement whose interpretant
is true is a theorem. These terms are thus the analogues of consistency and
completeness of an uninterpreted theory. They are relative to the inter
pretation, and hence to the subject matter, but when the latter is understood,
they may also be applied to the theory. If the subject matter is empirical,
these notions are empirical too.

As already said, we generally study a theory because we wish t.o use it for
some purpose. Just when the theory is suitable for that use we say it is
acceptable for that purpose. Acceptability thus may involve all the informa
tion which we have on hand in regard to validity; but of two theories equally
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valid, so far as known, one may be more acceptable because it is simpler,
more natural, more aesthetically or philosophically satisfying, etc. Ac
ceptability is relative to our knowledge at a given moment as well as to
the purpose or intended use; a theory may be acceptable today and unac
ceptable tomorrow, or it may be acceptable for one purpose but not for
another.

As here conceived, interpretation is a correspondence between statements,
each of the two corresponding members being an actual statement with its
o\vn criterion of truth. This seems a preferable mode of speech to that in
,vhich \\'e think of the same statement as having two kinds of truth, formal
and contensive. Likewise, interpretation does not involve assigning "mean
ing" to certain constituents in the elementary statement and determining
the truth from their meanings. We have an interpretation ,vhenever ,,,e
have a correspondence, no matter how the correspondence is set up.!

EXERCISES

In the following it is supposed that ~, [, etc, are extensions of a fixed theory X.
The ~ymholH '=', 'S;', 'U', 'n' are uspd in their ordinary set-th~oretic senRes, viz.,
as denoting set equality, inclusion, union, and intersection, respectively. The cita
tions beginning with 'Th.' are to theorems in Tarski [FBM], where a great variety of
more complex such statements may be found.

1. Show that the deductive closure has the properties I to IV. (Cf. Th. I.)
2. ~how that

Cn(~) U Cn([) S; Cn(~ U [) = Cn(~ U Cn([))

= Cn(Cn(~) U Cn([))
(Th. 2)

3. Let ~ he called deductiv~ly c1os~d just when

Cn(~) = ~

Show that if ~ and [ are deductively closed, so also is ~ n [, but in g~neral ~ U [
is not.

4. Let ~ be called axiomatizahl~2 jUHt when it haR the Harne deductive c1osur~ aR
Hom~ finite [ s;~. Show that the union of any finitp numb~r ofaxiomatizahle
thpori~s is axiomatizable (Cf Th. 20 )

5. Let a theory ~ be called independent when no one of its statements is a con
sequence of the rest. Formulate this condition in terms of the Cn operation; further
show that each of the following conditions is necessary and sufficient for it:

for all [ S; ~

for all [1' [2

~ n Cn([) S; [

[1 U [2 S; ~ & Cn([I) = Cn([2) ~ [1 = [2

(a)

(b)
(Th 31.)

6. Show that the properties in the preceding exercises follow abstractly from I to
IV-i e , they hold if a theory is regarded as a subset of some set of objects (f, not
neceHsarily elementary statements-and that en is a unary operation on such subsets
Huch that I to IV hold. What role, if any, does IV play in this proof? Sho\\T further
that if thp ~1 in III iR restricted to be finite, III hecom~s the converse of IV, and that
with thiH converse (i.~ , with IV as an equivalenc~, and I, II), III is sup~rfluouR.

(Th. 1 )

1 In thiR re~pect usage differH from that of Carnap [IRIn].
2 Thp word 'axiomatizable' haR othpr spnRPR in thp lit('rafurp. In Rll('h ('aR('R on(' l1R(,~

'finitply axiOJnatizable' for the prPRPnf, Ren~('.
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C. SYSTEMS

It was pointed out in Sec. BI that the elementary statements on which a
theory is based necessarily contain certain unspecified constituents or param
eters; Le., they are formal statements. We were not concerned there with
the way in which these parameters were introduced. We shall now specify
that the parameters enter as unspecified objects about which the elementary
statements assert that they have certain properties or that certain relations
hold. A theory whose statements are formed in this way will be called a
system. We shall consider two main sorts of systems and discuss their na
tures and relations to one another.

1. Systems in general. As explained in the introduction to this section,
we here postulate a certain conceptual class of objects. called the formal
objects, and a conceptual class of predicates, called the basic predicates, each
of the latter having associated with it a natural number called its degree.
The elementary statements are then precisely all those statements which
assert that a basic predicate holds of an ordered sequence of formal objects
in number equal to its degree. We can, for the moment, symbolize such a
statement by an expression of the form

(I)

where 'aI" ... , 'an' are abbreviations for names of specific formal objects,
'<I>' is an abbreviation for an n-argument verb designating a basic predicate
of degree n, and the parentheses and commas indicate in the usual fashion
the fact that <I> is to apply to the arguments aI' ... ,an. Under the assump
tion that the formal objects form a definite class, and the basic predicates
do likewise (with the determination of degree being understood to be definite
also), it is clear that the elementary statements form a definite (conceptual)
class.

There are, as we shall see in Secs. 2 and 3, two principal variants of the
notion of system which differ in regard to the nature of the formal objects.
Before discussing these, it is expedient to take up here certain preliminary
matters which apply to both types of system.

In order to present such a system in the U language, it is necessary to
decide on a notation for naming the formal objects and designating the basic
predicates, and also on devices for combining these to form the U sentences
expressing the elementary statements. This notation, in its totality, forms
a language in the semiotical sense; this language is here called the A language.
Its nouns, the names of the formal objects, \vill be called A nouns,. its verbs,
which designate the basic predicates, will be called A verbs, and each will be
said to have the same degree as the predicate it designates; and its sentences,
which express the elementary statements, will be called A sentences. Thus
the A language contains those linguistic devices which suffice for the expres
sion of the elementary statements.

It cannot, however, be too strongly emphasized that the A language is not
a language being talked about; it is adjoined to the U language to be used
therein. The A nouns are a special kind of U noun; the A verbs a special
kind of U verb; and the A sentences a special kind of U sentence. The ad
junction of this new terminology to the U language does not differ in any
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essential point from any other procedure where we introduce technical ex
pressions into the U language.

In the following it will be convenient to have a certain standard termi
nology for use in the A language of a system (or family of systems) whenever
particular conditions do not make some other usage desirable. For each
n = 1, 2, 3, ... , let the system contain mn basic predicates of degree n.
If mn > 0, then for k = 1, 2, ... , mn , let the kth predicate of degree n be
4>~,1 and its closure for arguments Xl' ... , X n be

If mn = 0, there is no predicate 4>: for any k. 2

The considerations relating to the formal objects and elementary state
ments are conveniently referred to as the morphology of the system. This
contrasts with the theory proper, which relates to the theory built upon that
morphology. The notion of system is to be understood as admitting the
possibility that there may be no basic predicates, in which case we speak of
it as a pure morphology. The conventions defining a system will be called its
primitive frame.

2. Syntactical systems. The first of our two kinds of system is the
syntactical system. In such a system the formal objects are taken to be
the expressions of some object language. Let us call this language the 0
language. Then there is a certain stock of 0 symbols, or letters, constituting
the 0 alphabet,. the formal objects are the finite strings of these letters.

One way of conceiving the forInal objects as an inductive class is to visu
alize them as fornled, one letter at a time, from left to right. If the void
expression is admissible, it can be taken as the single initial element; other
wise we must have an initial element for each letter. As operations, we
must have one for each letter, viz., affixing it on the right. Then the expres
sions form an inductive class; indeed, a monotectonic one. A syntactical
system conceived in this \\'ay will be called an affixative system. It is not
usually satisfactory, as we shall see.

A second way is to conceive the expressions as an inductive class in which
the letters are the initial elements and there is a single binary operation called
concatenation. "Te sometimes symbolize this in the A language (hence in
the IT language) by 'A' used as a binary infix (i.e., placed between its argu
ment like' +' in elementary algebra), sometimes by simple juxtaposition (like
multiplication in algebra). Its meaning is as follows. If X and Yare ex
pressions, X A Y is formed by writing Y immediately after (to the right of)
X. Thus if 'ex', 'fJ' are letters, X is 'exexfJ', Y is 'fJfJex', then X A Y is 'exexfJfJfJex'.

1 For some purposes it is preferable to have a single sequence of preciicates c/>J.. and to
let the degree of c/>Ic be n k ,

2 ~ote that we are here using the idiom of the U language lnentioned in connection
with "quotation functions" in Sec. A3. In the more explicit language of the footnote
we should say: "The A verbs will be prefixes of the form 'c/>~', where In' and 'k' ar~ num~r
als, of which 'n' designates the degree and 'k' is the index in an enulneration of thos~, if
any, of that degree; the A sentences are of the form 'c/>~.XIX2 •.. ...Y. n ', where 'n' and 'k'
are aR before and 'Xl', . .. , ' ...Y. n ' are A nouns." Note that the ellipRe8 and the indi
l'ation of toh£' argllm£'nt8 hav~ Rtill to be l('ft to common RPnR~.
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It is clear that the expressions are now an inductive class; but since concate
nation is associative, it is polytectonic. Thus 'rxfJrx' has the two construc
tions

'rx' 'fJ'

~
'rxfJrx '

,rx'
'fJ' 'rx'

'rx' ~
,rxfJrx'

AXIOMS.

rrhis kind of syntactical system will be called concatenative.
Let us now look at two examples. In both of these we shall suppose the

alphabet consists of three letters a, b, ct (where 'a' is the name of 'rx', 'b' of
'fJ', etc.), and we shall indicate concatenation by simple juxtaposition in the
A language.

The letters 'X', '}"". 'Z' are used as "U variables" (Sec. 3Dl), Le., as pro
nouns for unspecified 0 expressions.

Exalnple 1. (Sams, first form.)
ELEl\lE~TARY STATEMENTS. Three unary predicates:

-- is a sam.
-- is a tettle.
-- is a tantet.
a is a sam.
aca is a tantet.

RULES. X is a sam ~ Xb is a sam.
X is a sam, and Y is a sam ~ Xc Y is a tettle.
Xc Y is a tantet ~ Xbc Yb is a tantet.

Exalnple 2. (Sams, second form.)
~~LEMEXTARY STATEMENTS. One binary, one unary predicate:

-- is a sam.

AXIOi\n;;;. a is a sam.
a = a.

RrLES. X is a sam ~ Xb is a sam.
X = Y ~ Xb = Yb.

Remarks on These Examples. One can easily convince oneself that the
sanlS in both examples are the expressions in the list

a (that is, 'rx')
ab (that is, 'rxfJ')
abb (that is, 'rxfJfJ')

and that X = Y in Example 2 exactly when XcY is a tantet in Example 1,
viz., when X and Yare the same sam.

The systen18 have been formulated as concatenative systems. If we were
to attempt to formulate them as affixative systems, there would be no diffi
culty about Example 2; but there would be serious difficulty about Example
1, for we could not state the rules without bringing in the concatenation
operation (see belo",', Sec. D3).

t Example 2 does not use c.
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An at present widely accepted form of syntactical system,! often knov.n
as a calculus, has the following characteristics. The formal objects are taken
in the concatenative sense. The deductive theory based on this contains
two sorts of rules, called formation rules and transformation rules, respectively.
The formation rules state what are the sentences in the 0 language, so that
the formation rules involve having the notion of being an 0 sentence as a
basic predicate. The transformation rules define a consequence relation
among the 0 sentences which is analogous to that described for the elenlen
tary statements (or U sentences) in Sec. 2B3. As the discussion given there
shows, this is equivalent to defining a family of systems depending on a class
of initial sentences, the axiomatic 0 sentences, as a parameter; in each of
these the main basic predicate is being an 0 theorem. Some authors do not
insist on the definiteness restrictions insisted on here, so that their systenlS
are only semideductive.

The system of Example 1 is a calculus in this sense if we regard the tett les
as 0 sentences and the tantets as 0 theorems. As this exanlpie sho\"s, one
may need additional (sometimes called "auxiliary") basic predicates, such
as that of being a sam, in order to formulate the systenl Systen1s like
Example 2, with a binary basic predicate, are not admitted as calculuses
(although such predicates may doubtless occur as auxiliaries). The Church
theory of A conversion, in the form in which he himself presents it, is a less
trivial example of a system with a binary basic predicate,2 it has nothing
analogous, at least directly, to notions like 0 sentence and 0 theorem.

In connection with such calculuses one should guard against confusing the
meaning of 'sentence' as it occurs in '0 sentence' and 'IT sentence'. In the
latter case the word 'sentence' is itself part of the U language, and is supposed
to be understood as such. In the former case it denotes si rn ply an inductive
class of expressions conceived as shapes. Whether or not these expressions
are actually sentences as ordinarily understood is just as irrelevant as "hether
they are associated in someone's mind with monkeys in a zoo. For pre
cisely this reason I have translated these terms into the Hungarian language,
where 'sam' (i.e., 'szam') nleans 'number', 'tettle' (i.e., 'tPtfl') n1eans 'sentence',
and 'tantet' ('tantet') means 'theorem'. By so doing I hope to strip off the
semantical (i.e., meaning-related) connotation ,vhich is frequently sneaked
in by the use of the word 'sentence'. At the same tinl~ I hope it "'ill bring
out more clearly the fundamental distinction between those notions ,vhich ,,'e
express in the A language-and hence in the U language--hy verbs and
sentences, and those which we simply name.

Again, even though we say we are talking about an () language, it is not
necessary to trot such a language out explicitly. ()ne can nlake renlarks
about the President of the United States without having that dignitary
actually present. If one does exhibit the 0 language, it is for illustrative
purposes only. Not only that, but the precise nature of the () letters is
entirely irrelevant. Thus, I have said above that thE' () letters for t he sys
tem of sams consisted of the Greek letters a and b (i.e., '(1.' and 'If), but

1 For example, in Carnap [LSL]. A calculus in the senRe of 1...01'('11/'('11 IEOL ll~ slightl,\
different. Cf [CFS].

2 For a modified and strict formulation as a calculus in thp s('nSf' of LOI'('n/,('I1, :';('(' r(,F~],

example 7.
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actually, it is irrelevant whether a and b are Greek letters, Egyptian hiero
glyphs, two distinguishable and reproducible kinds of bricks, or two kinds of
noises. All we need to exhibit are the A names of those letters; all that we
need to know about those letters is that they act like links of different
kinds which can be forged into chains. In what follows, the 0 language is
not exhibited; the symbols which appear when we are talking about 0 letters
are the A nouns which name them.

As a standard terminology, to be used when something else is not suitable,
we agree that the 0 letters shall be ao, al' ... , and that concatenation shall
be indicated, as above, by juxtaposition or by an infixed 'A'. There may
be any number of letters, but the number of letters can always be reduced
to two, since we can replace the original letters by sams.

We shall use the sams as natural numbers in the fashion described in Sec.
A7. rrhe natural notation

0, 1,2, ...
will be preferred to

a, ab, abb, ...

for such use, and the successor function will be denoted by priming.
3. Ob systems. In the second type of deductive system, here called an

ob system, the formal objects form a monotectonic inductive class. The ele
ments of this inductive class are called obs, its initial elements atoms, and its
modes of combination (primitive)! operations. Every ob is thus the result
of a construction from the atoms by the primitive operations; by the mono
tectonic property this construction is unique. Thus an ob can be identified
with such a construction, objectified, if you will, by means of a tree diagram
(or a normal construction sequence); in this respect it stands in contrast to
an 0 expression which can be objectified as a linear series. Beyond this
specification it is irrelevant what the obs are; this colorless word 'ob' has
been deliberately chosen to emphasize this irrelevance.

rrhe system of Example 2, and indeed any affixative syntactical system, is
an example of an ob system. This follows at once from the above remark
that in these systems the formal objects are monotectonic.

Other examples of ob systems are found in those syntactical systems in
which there is a special conceptual class of "well-formed expressions," here
called we/s,2 such that this class is monotectonic and exhausts all the expres
sions which play any actual role in the system. Practically all the systems
considered in modern mathematical logic and mathematics are of this charac
ter.

We shall now look at some other examples of ob systems.
Example 3. (Generalized sams.)
ATOMS. One, namely, a.
OPERATIONS. n unary operations: the application of the kth one to the

argument X is Xb k • One binary operation: its application to arguments X,
Y in that order is (X A Y).

1 The term 'primitive' will be used when it is desired to distinguish the operations
Rpecified in the primitive frame from others introduced, e.g., by definitionR; otherwise it,
may be omitted.

2 The usual term is 'wff' (for 'well-formed formula'), but 'wef' has the advantage of
being pronounceable.
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ELEMENTARY STATEMENTS. One binary predicate, equality, giving rise to
elCluentary statements of the form

X=Y

AXIOMS. If X, Y, Z are obs, the following are axiomatic statements:

X Aa = X
X A Yb k = (X A Y)b k

RULES

1. rf X = Y, then Y = X.
2. If X = Y and Y = Z, then X = Z.
3. If X = Y, then Xb k = Yb k (k = 1,2, ... , n).
4. If X = Yand U = V, then X A U = Y A V.t
In this example there are infinitely many axioms, for each separate deter

mination of X and Y gives rise to an axiom. l Such a formulation of a whole
infinity of axioms, using U variables like'X', 'Y', is called an axiom scheme.
It would probably be instructive for the reader, at this stage, to show that
the binary operation is associative.2

The following example is a variant of Example 3.
Example 4. (Associative system.)
ATOMS. bl , b2 , ••• , bn •

OPERATIONS. A single binary one, like the last one in Exan1ple 3.
ELEMENTARY STATEMENTS. Same as in Example :l.
AXIOMS. If X, Y, Z are any obs,

(1)
(2)

X=X
(X A (Y A Z)) = ((X A Y) A Z)

2 cr. Exercise 2.

RULES. Same as Rules 1, 2, 4 in Example 3.
Examples 3 and 4 may be regarded as formulating a syntactical system as
an ob system (cf. Secs. 5 and 6).

Example 5. (Propositional algebra.)
ATOMS. An infinite sequence PI' P2' ....
OPERATIONS. One unary, one binary. The closures of these for argument

X and arguments X, Y, respectively, are

IX (X::> Y)

(The latter should be read "X ply Y" since ::> is an operation and 'PI ::> P2',
for instance, is a noun.)

t This rule, as stated, is determinative. If determinativenesR did not. interest us, 'we
could split this rule into the simpler ruleR:

If X = Y, then X A Z = Y A Z.

If X = Y, then Z A X = Z A Y.

But to Inake these determinative we should need a promiRe 8\1e'h fiR "Z -= Z"; then the
rules would be no simpler than the above Rule 4.

1 The' following are axioms of Example 3:

ab2b1 A a = ab'}.1J 1

nb 2b1 A nb 21J3bs = (nb 2bl A nbiJ3)b5
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ELEMENTARY STATEMENTS. One unary basic predicate forming elementary
statements of the form

~X

where X is an ob.

AXIOMS. If X, Y, Z are any obs

~(X:::> (Y:::> X))

~ ((X:::> (Y :::> Z)) :::> ((X:::> Y) :::> (X :::> Z)))

~ ((I Y :::> I X) :::> (X :::> Y))

RULES. If ~ (X :::> Y) and ~ X, then ~ Y.
In this example there is an inL£iite sequence of different atoms, the "prop

ositional variables." No properties of these atoms are used except that
they form an infinite sequence. Consequently we could get a system of
strictly finite morphology by taking the sams themselves in the role of
propositional variables, as follows.

Example 6. (Finite form of propositional algebra.)
ATOMS. One, namely, a.
OPERATIONS. ~\\ro unary, one binary, with closures (for arguments X, Y)

Xb, IX, (X:::> Y)

ELEMENTARY STATEMEKTS. Three unary predicates giving rise to ele-
l11entary statements of the following form:

S(X) (X is a sam)
P(X) (X is a proposition)
~ X (X is asserted)

AXIOMS. S(a).

RULES
If S(X), then S(Xb).

If S(X), then P(X).

If P(X), then P( I X).

If P(X) and P( Y), then P(X :::> Y).

If P(X), P( Y), then ~ (X :::> (Y :::> X)).

If P(X), P( Y), P(Z), then ~ ((X:::> (Y :::> Z)) :::> ((X:::> Y) :::> (X :::> Z))).

If P(X), P( Y), then ~ (( I Y :::> I X) :::> (X :::> Y)).

If ~ (X :::> Y) and ~ X, then ~ Y.

In order to define an 0 b system we must, of course, choose some systematic
way of assigning an A noun to each ob. A particular way of doing this will
be called a presentation of the system. The following standard presentation
for an arbitrary formal system will be adopted, like that of Sees. 1 and 2, for
use ""hen some special consideration does not dictate otherwise: the atoms
will be ao, aI' a 2 , ••• , forming a finite or infinite sequence; the kth operation
of degree n will be ()~k), and its closure for arguments Xl' ... , X n will be

(')(~) Xl · .. "'Y n t
t Compare the explanation of the 4>~ in HpC'. 1. X ote that I aIn explaining th(' u~e of a

symbol in the U language by saying what th(' deHignat\lln is, and in doing so, th(' Rymbol
is used, not mentioned. This idiom is more natural than the circumlocution uRed in S('(' 1.
As in Sec. 1 it is also sometimes convenient to enumerate the operationR in a singlp RP
quence, the kth operation being Wk and its degree n k .
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Parentheses are then unnecessary; in fact, the notation can be shown to be
monotectonic in the sense that every construction is uniquely described.
The presentation will be called the Lukasiewicz standard presentation. A
presentation which differs from it in the choice of symbols, but preserves its
fundamental idea of using prefixed functions of fixed degree without paren
theses, will also be called aLukasiewicz presentation (but not the standard one).

The concept of an ob formal system is to be understood as including cer
tain degenerate cases. Thus we may have a pure ob morphology with no
basic predicates, and hence no overlying theory; we may consider ob systems
without any operators; etc. For some purposes it is expedient to regard
the atoms as operations of degree O.

4. Representation of a system. It has been stressed that the exact
nature of the formal objects of a formal system of either type is irrelevant.
Any way of regarding the formal objects as specified objects given from
experience will be called a representation of the system, provided the con
tensive objects retain the structure of the formal objects. l'hus, ,vhen we
said, in Example 1, that a was 'ex.' and b was 'f3', and nlade the convention
that concatenation of A nouns was to indicate concatenation of the desig
nated 0 expressions, we were making a representation of the system.

The restriction that the contensive objects retain the structure of the for
mal objects is important. It means that there is a separate contensive
object for each formal object, and in the case of an ob system, this means a
separate object for each construction. It nleans further that the operations
must be reflected in some way as lllodes of combination of the contensive
objects. In technical terms there must be a one-to-one correspondence, iso
morphic with respect to the operations and modes of combination, bet,veen
the formal objects (or their names, the A nouns) and the contensive objects
of the representation.

A representation is not to be confused with an interpretation. As defined
in Sec. B4, an interpretation is a correspondence bet\veen elenlentary state
ments and certain contensive statements, and it is defined for a theory
whether or not that theory is a system; a representation is a correspondence
between fornlal objects and contensive objects, and it is defined for a pure
morphology without regard to the theory which is built upon it; nloreover,
the truth of the elementary statenlents is entirely unaffected by it. \Ve
shall discuss this point further in Sec. 5.

The contensive objects of the representation nlay be chosen in various
ways. For those who are that \\'ay inclined, abstract ideas or platonistic
concepts may be taken, or the contensive objects may be chosen as objects
of a more concrete nature. But the choice of representation is irrelevant
for the proofs of the theorems.

We shall now discuss certain particular modes of representation of a rela
tively concrete kind.

In the first place, the A nouns themselves, since they provide a unique
name for every formal object and nlust reflect their structure, constitute a
representation by definition. This representation is called the a'lltonyntOU8
representation.

In the second place, any forrnal systenl of either type has a syntactical
representation. 1"'his is trivial because the autonymous representation is
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syntactical, but we can get further syntactical representations from the
autonymous one if we replace its letters by new ones, possibly making other
changes in the operators. l In particular we can use a Lukasiewicz presen
tation, standard or otherwise, as a representation even when we do not use
it in the A language. Such a representation we shall call a lJukasiewicz
representation,. when it is standard we have the standard Lukasiewicz represen
tation.

In connection with a syntactical representation it is worthwhile to remark
that the expressions which correspond to the obs cannot constitute all the
expressions of the appropriate 0 language in the concatenative sense, for
the latter are polytectonic. If we call the expressions which actually do
appear wefs (Le., well-formed expressions),2 then the obs are the wefs and
the wefs form a monotectonic inductive class of expressions. Such a system
might be called eutactic, as opposed to the pantactic system, in which all
possible expressions may occur.3

By the device of enumerating the letters, and then replacing the numbers
by the corresponding sams, we can reduce such a representation to one in
the expressions in the alphabet {a, b}.4

Finally, it is possible to find a syntactical representation in which the 0
language has only one symbol. Since the words in a language with only one
symbol are distinguishable only in the number of occurrences of that symbol,
this amounts to representing the system in terms of natural numbers. Such
a representation is called a Godel representation, and the numerical represent
ative of a formal object is its Godel number. We can conveniently use
ordinary arithmetical notation in connection with it. There are various
ways of bringing it about.5 For a syntactical system one of the simplest is
to assign the prime numbers to the letters and then to assign to the sequence

Xl X 2 • •• X n

the Gadel number
2g1 • 3gs • • • • • p~n

where Pk is the kth prime and gk is the Gadel number of X k • For an ob sys
tem, we can assign to the ob

the number
2n • 3k • 5g1 ••••• P~"-:2

This procedure can be modified in innumerable ways. For cases in which
only a finite number of constituents appear, very much simpler assignments
are possible (using ordered n-tuples or k-adic expansions instead of prime
factor decompositions, etc. ).6

It is possible to present a system without having any specific representa
tion in mind. Such a system is called abstract. It is clear from what has
been said that an abstract system can be of either type.

I The discussion of [CFS], Sec. 4, suggests ways of getting such representations.
2 Cf. remarks just before Example 3 ~ Sec. 3.
3 For instance, the systems of Examples 1 and 2 are eutactic, the sams constituting the

wefs.
4 See below, Sec. D2.
5 Cf. [CFS], example 6, pp. 256ff.
G Cf. [CFS].
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5. Interpretation of a system. The notion of interpretation has been
defined in Sec. B4 in relation to a theory. Here we shall consider speciali
zations of this idea when we are dealing with systems.

For this purpose we first define a notion of correspondence similar to a
representation except that the same contensive object may be assigned to
two or more different formal objects. Let us call such a correspondence a
valuation; this will be relative to a conceptual class 58 consisting of the con
tensive objects, called values, which are assigned to the formal objects. For
instance, we can form a valuation for Example 5 over the class 58 consisting
of 0 and 1 by assigning arbitrarily One of these values to each atom, and
allowing other obs to take the values determined by the usual truth tables,
with 1 in the role of truth. Again, consider Example 3. Let the values
here be the words, including the empty word, in the alphabet Cl' c2, ••• , Cn.

Let a be assigned the empty word, and if X, Yare assigned the words X',
y', respectively, let Xb k be assigned the word X'ck and X A Y the word
X' Y' . Neither of these valuations can be a representation: in the first case,
because infinitely many obs will be assigned the same value; in the second
case, because obs giving different constructions of the same word will be
assigned the same value, even though they are distinet obs.

In the examples considered in the preceding paragraph the valuation was
defined by giving values to the atoms and determining the values of the
other obs by contensive operations. Cases like Example 6 require slight
generalization. One would begin, in this case, by assigning values to the
sams, and from that point on the procedure would be the same as for Ex
ample 5. The sams constitute what are called later (Sec. 3D2) quasi atoms.

Given a valuation, we may define an interpretation by associating with
each basic predicate as its interpretant a predicate defined over the values.
An interpretation defined in this way will be called a direct interpretation.
Thus we get a direct interpretation of Example 5 by taking as interpretant
of ~ the property of being 1; and in Example 3 by taking as interpretant of
equality the relation of having the same value. The interpretations in either
case are valid; in the second case it is adequate also.!

We get another kind of interpretation by returning to Example 5. Let
us say that an ob X is a tautology just when it has the value 1 in every valu
ation of the relevant sort with standard truth tables. rrhen take as inter
pretant for the elementary statement

~X

the statement that X (or the associated function over the values) is a tau
tology. That this interpretation is valid is easily seen by an inductive
argument;2 that it is adequate, by a standard (epi)theorem of the classical
propositional algebra. Yet it is not a direct interpretation, at least in a
finitary sense.3 This is typical of systems involving obs ·which are called

1 See Exercise 3 at the end of this section.
2 See Exercise 8.
a One could say that in this case the obs become certain truth functions defined over all

assignments of truth values to the atoms and that we really have a valuation in which the
values are truth functions. But such a value is not a finite array. H~nce it is a valllc
only in a generalizcd sense.
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variables, for these are not assigned a single contensive value, but are
allowed to vary over a range.

Interpretations of the last-mentioned sort are closely akin to what are
commonly called models. This concept is defined for systems based on the
first-order predicate calculus. As such it involves more machinery than we
have here at our disposal. But the central idea is that there is a family of
valuations over a certain range of values; a contensive statement function
over such evaluations is assigned to each elementary statement; and the
interpretant is the statement that this statement function is true for all
valuations. This is a semimodel,. a semimodel is a model just when it is
valid.

6. Comparison of syntactical and ob systems. The interrelationships
of the two types of system have been the subject of comment at various points
in the foregoing. It will be expedient to bring together these more or less
scattered remarks and to add to them some others, so as to have a more sys
tematic view of the nature of these systems.!

In the first place, neither type of system necessarily commits one to the
view that the essential subject matter of mathematics is symbols. Both
types of system can be represented in terms of expressions, in fact in the
expressions of any alphabet having two or more symbols and, in a generalized
sense, in terms of an alphabet with only one symbol, i.e., in terms of numbers.
But in neither case is one committed to a particular choice of this alphabet.
The properties which one takes into account have nothing to do with the
nature of the symbols themselves; one never says, for example, that 'x' is
made by two crossed lines. I t would be more accurate to say that in mathe
matics we are concerned with structures which can form artifacts of rec
ognizably different kinds hy various modes of combination, and further,
that one is interested in those properties which are not changed when one
changes the elements or replaces the modes of com bination by others homol
ogous to then1. ~'hese structures are such as one can objectify by chains of
different kinds of links in the case of a syntactical system, or by treelike
constructions in the case of an 0 b system.

In the second place, either of the two types of system can be reduced to
the other. rrhus the possibility of syntactical representation, discussed in
Sec. 4, shows that an ob system can be reduced to a eutactic syntactical
one. The converse reduction, for an unrestricted syntactical system, is
shown in principle by Examples 3 and 4. In the case of the systems ordi
narily used for logical purposes, one can go even further. For these systems
are eutactic and monotectonic, and such a system, as it stands, belongs to
both types simultaneously.

From a certain point of view an ob system is a Inore rigorous concept than
a concatenative system. In the latter the associativity of the concatenation
operation has to be taken for granted. Thus a proof in a concatenative
system is like a proof of a geometric theorenl by drawing a figure. It is
perhaps true that one cannot banish such intuitive evidence entirely (since
one needs some of it in checking a construction), but there is ,less of it in an
ob system.

Again, the notion of ob system puts less emphasis on linguistic accidents.
1 See also Sees. 83 and S4.
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For example, suppose one were to take Example 6 with an autonymous
representation; one would then have a concatenative system whose alphabet
consisted of the letters

a, b, (,), I, :::>

If one were to replace these by other letters, say,

cx., {3. [,], """', >

anyone would agree that we had merely another representation of the same
concatenative system. But if one were to pass to the standard Lukasiewicz
representation, the resulting concatenative system would be so different as
to be a distinct system, whereas from the standpoint of ob systems, it is still
only another representation of the same system. Thus an ob system is in
variant of a wider class of changes in representation than is a concatenative
system. Consequently it agrees with the tendency in mathematics to seek
intrinsic, invariant formulations, such as vectors, projective geometries,
topological spaces, etc.

Up to this point we have been discussing uninterpreted formal systems.
But such systems, at least the primary ones,! do not come to us originally in
pure form, an interpretation being added later; rather we have first some
contensive discipline, from which a formal system is then created by a proc
ess of formalization. In the next five paragraphs we shall discuss formali
zation in more detail.

The first stage in formalization is the formulation of the discipline as a
deductive theory, with such exactness that the correctness of its basic in
ferences can be judged objectively by examining the language in which they
are expressed. We have then, in principle, what was called in Sec. IC a
formalized contensive theory. 2 Let L be the language in which its elemen
tary statements are expressed.

From this point on there are two distinct directions of formalization. The
first direction is that in which we take L as the 0 language of a syntactical
system; we shall call the method metasemiosis and a system so formed a
metasystem relative to the original discipline (or to L)# The second direction
is that in which we continue to use L in the U language, but change or "ab
stract from" its meaning, so that it becomes the A language of a formal
system; we shall call this second method abstraction. The new formal sys
tem may be either a syntactical system or an ob system; it may be abstract,
or we may prefer to have in mind a representation or an alternative inter
pretation. Intermediates between these two directions are conceivable, and
the distinction between them tends to break down, as we shall see, if one
allows modifications of L before one begins.

If one adopts the metasemiotic method, he is obliged to invent a new A
language, call it M, for referring to L. For this there are several alter
natives. One may, as Hilbert did, use L autonymously; the discussion of

1 N oneuclirlean geometry, for exarnple, did not arise by formalization from physical
geometry, but by analogy from euclidean geonletry. Systems so formed by analogy
may well be called secondary As t his ~xample showH, th~y may still be of great impor
tance in the methodology of science

2 This stage was reached by Frege and Russell. One can of course distinguish a lot of
earlier stages, but these do not concern us.
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Sec. A2 shows that there are some dangers to this method. Again one may
use for M an entirely different symbolism, e.g., when we used 'a' as name of
'rx' in Sec. 2. In that case the strangeness of the new notation may increase
considerably the difficulties of comprehension. (Did the reader experience
no shock at the remark, toward the end of Sec. 2, that the 0 letters for
Example 1 were the Greek letters a and b?) The presently favored method
of using nouns formed by quotation marks, although it has some advantages,
nevertheless has dangers of its own, which are nearly as serious as those of
the autonymous method (see Exercise A2); and even when it is used with
care, as by Quine and Carnap, there is still a considerable amount of strange
symbolism.

In contrast to this, if one applies the method of abstraction, one continues
to use the familiar L in ways which are at least analogous to its original
sense. The chief danger then is that one may be misled by associations
which no longer hold. However, this is a sort of difficulty to which mathe
maticians are accustomed; it occurs not only in logic, but whenever one
generalizes. Various devices can be used to avoid the pitfalls: we can keep
in mind alternative representations or interpretations, including the autony
mous one; and we can make judicious changes in L.

Again we have included under abstraction cases in which we arrive at a
formal system of either kind. If the system is syntactical, this amounts,
in principle,l to changing L to a suitable 0 language and then applying
metasemiosis. Such cases therefore have affinities with both directions; in
particular, the Hilbert type of metasystem, with autonymous representa
tion, belongs to both. But these forms of abstraction are rather artificial.
If abstraction proceeds naturally-Le., preserving at least the essential
grammatics of L and ignoring the designation of the nouns of L or replacing
them by others-one is led, in practically all cases of logical interest, to an
ob system.

So much for the process of formalization. Our discussion of it has brought
out the following points bearing on our theme of comparing the two types
of system. An ob system is what we arrive at if we carry out the process
of abstraction in a natural manner. The concatenative structure, when it
exists, only arises from excessive attention to the symbolism. It is for this
reason that practically all the syntactical systems which arise by formaliza
tion are eutactic and monotectonic, and there is no need whatever, except
possibly for establishing the monotectonic property of the wefs, to consider
words which are not well formed. Thus an ob system is closer to actual
thought. It lends itself more readily to the possibility of a representation
or interpretation in terms of a contensive subject matter. Furthermore, one
is naturally led to use symbolism in ways which involve less departure from
familiar usage. The difficulties in such a procedure are of the same charac
ter as crop up in other branches of modern abstract mathematics, and can
be met by familiar means.

On the other hand, the notion of syntactical system has some advantages
of concreteness. As Hilbert remarked,2 our thinking is only sure when it is
based on operations with concrete objects of which we are immediately

1 Exceptions may conceivably occur, but do not interest us.
2 See the quotation in Sec. 83.
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aware. In order to characterize an effective process in Sec. A5, we had to
presuppose certain admissible elements which can be perceived as such
directly. Now all thought is communicated by language, and therefore it
is natural to take the words in a finite alphabet as the most definite such
admissible elements imaginable. The definition of a formal system requires
choice of an A language whose nouns (in the fundamental cases) are such
words. Thus, in investigations of the nature of an effective process (and in
other matters of a similar nature), we need syntactical considerations, espe
cially that part of semiotics, called tectonics, which is concerned with the
relation of linguistic expressions to constructions.

The upshot of this is that one needs both points of view, and needs to be
aware of their relations to each other. In the study of ob systems one must
know that a syntactical representation is possible and that the A nouns
form a monotectonic linguistic structure. In the study of a syntactical
logic, the first thing one does, whether he is aware of it or not, is to put it in
the form of an ob system.! Thus a system, to be useful as a logic, must (so
far as present knowledge goes) belong to both.

EXERCISES

Some of these exercises involve epitheoretical methods which are not discussed
systematically until Chap. 3. Terms defined there technically are to be taken here
as self-explanatory.

1. Give in full the formal demonstration of the following elementary theorems of
Example 3:
(a) ab1b2ba = ab1 A ab2ba
(b) (a A ab2b1) A (ab1ba A ab2 ) = ab 2b1b1 A abab2

2. Show that the concatenation operation of Example 3 is associative. (Exhibit
an effective process for demonstrating any instance of the theorem scheme

X A (Y A Z) = (X A Y) A Z

Cf. the proof of the associative law of addition in elementary arithmetic, e.g., in
Dedekind [WSW] or Landau [GLAJ.)

3. Show that the direct interpretation of Example 3 which is described in Sec. 5
is valid and adequate.

4. Show that Example 4 has a direct interpretation in the nonvoid words of the
alphabet {c1, . . . , cn}, with equality interpreted as identity, and that this
interpretation is valid and adequate.

5. Show that Example 4 has a representation in a subset of the obs of Example 3
and that this representation is also a valid and adequate direct interpretation. What
can you say of the converse correspondence1 Would you say that Examples 3 and
4 are equivalent, and if so, in just what sense1

6. Show that if X, Y, Z are any ohs of Example 5, the following are elementary
theorems:

(a) ~ Y=> Z.=>:X=> Y.=>.X=> Z
(b) ~ X =>. Y => Z .=>: Y =>. X => Z

(c) ~ X => Y =>. X :::> Z :=>: X =>. Y => Z

(d) ~ X => Y.=>. IY => IX
(e) ~ X => IX => IX

1 This may be true even in linguistics. Cf. [LAG].
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(Schmidt [VAL, sees. 80-82]; cf. also below, Chaps. 5 and 6. For the dot notation
see Sec. A4.)

7. Give an effective process for representing an arbitrary ob system in the words of
an 0 language with an alphabet consisting of two symbols. ([CFS], example 5.)

8. Check the statements made in Sec. 5 about the truth. table interpretations of
Example 5.

9. Show that Example 5 has a representation in those obs X of Example 6 for which
l>(X) holds, and that if the I- of Example 5 i~ interpreted as the I- of Example ()~

the interpretation is again valid and adequate.
10. Ruppo~e that X, Y, (J, V are obs of Example 3 (or Example 4) and that

XA[]=YAV

Show there is an ob Z such that either X = Y 1\ Z and V = Z 1\ U or Y = X 1\ Z
and U = Z 1\ V.

11. Show that if one changes the standard truth tables so that IX has always the
value 1, then the resulting tautology interpretation for Example 5 is invalid, but is
valid if the third axiom scheme is omitted, or is replaced by schemes d and e of
Exercise 6 What can he inf~rred about the independence of th~ third axiom scheme
of the example 2 Show that the other two axiom ~chemes are independent in the
same sense. (Rchmidt [VAL], sec 8:3.)

12. A group is ordinarily defined as a class G of elements such that the following
postulates are satisfied

Ql. Corresponding to any two elements, a, b of G, there is a unique element a 0 b of o.
G2. For all elements a, b, c of G,

a 0 (b 0 c) = (a 0 b) 0 c

03. There exists an element i of G such that for all elements a of G

a 0 i = a

04. Given an ~l€'m€'nt a of G, th~re exists another el~ment a' of G such that
, .

(loa = 1,

Let an equation involving variahlt's for arbitrary el~mcnh; of (J be called an ele
mentary group identity ju:-;t \\ hen it is ohtained from 01 to 04 by the usual rules for
equality and suhstitution for variabl~s. Formulate an ob system 0* with atoms
el , e2, e3, •• and primitive predicate =, such that the elementary theorems of G*
ar€' precisely thos€' equations whiC'h bt'come elementary group identities when e1 is
evaluated as i and ('2' ('3' ... as uIlHpeeified elements of U ([APMl, p. 226; ITFD1, p H;
fLLA J, pr. 33-3f> )

D. SPECIAL FORMS OF SYSTEMS

We shall consider here certain special forms to which systems can be
reduced.

1. Predicational types. A systenl in which there is a single basic predi
cate, and that a binary relation, is called a (binary) relational system. If the
theory of the system is such that the relation is reflexive and transitive, then
the system will be called (jua8i-ordpred, if the relation has the properties of
equality, the systeln \vill be called an equational systern. Thus the systelns
of ordinary nlathematics are, for t he most part, equational.

A second type of system is one in which there is a single basic predicate
and this one is unary. The basic predicate picks out a class of formal ob
jects; it is in agreement \vith the usual vie\vpoint, in \vhich the formal ob
jects are () sentences, to call these 0 theorems, or assertions. Thus this type
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of system may be called the assertional type,. another name, which is suitable
because of the prevalence of this type in fundamental logical studies, is the
logistic l type. For the single predicate we shall use the prefix '~', so that
the elementary statements are of the form

~X (1)

where X is a formal object. The sign '~' is called the assertion sign. Fre
quently the predicate is expressed in words, such as '-- is provable' (Hil
bert) or '-- is in T' (Huntington).

An arbitrary system can be reduced to one of assertional type. In what
sense this is true may be seen from the following account of how it may be
accomplished. Referring to the standard notation at the end of Sec. C1,
let us associate to each basic predicate ~~~) a new operation 7T~~). Then let
us replace every elementary statement of the form

~~k)Xl X 2 ••• X n (2)

by the corresponding elementary statement

~ 7T~k)Xl X 2 ••• X n (3)

\Ve shall then have a new assertional system which is equivalent to the old,
in the sense that the elementary statements of either systenl can be trans
lated, preserving truth, into those of the other.

There is one reservation to be made about this reduction. In the presen
tation of the systenl, and in particular in the statelnent of its rules, it may
be expedient to use predicates in the U language which we do not care to
list explicitly among the basic predicates. In other words, we want to treat
these predicates informally. Thus the property of being an ob or 0 expres
sion, more generally of being a formal object, since it holds for all formal
objects which enter into the discussion at all, may be left unmentioned.
However, the adjunction of new operations may enlarge the domain of for
mal objects, and there Inay conceivably be an upset in regard to the rules
if the U variables referring to formal objects are not restricted to the forInal
objects in the original sense. '1'0 be sure of avoiding difficulty in this re
spect it is necessary to introduce such predicates explicitly before applying
the above reduction.

As an example, consider the reduction of Example 2 of Sec. C2. Let us
use '0' as a binary infix for the operation which is to replace equality, and
let'a(--)' be used as a functor for the unary operation which is to replace
'-- is a sam'. Then the postulates for Example 2 become

~a(a)

~a D a
If ~ a(X), then r a(Xb)

If r a(X), r a( Y), r X 0 Y, then r Xb 0 Yb

In this case the introduction of a does not affect the equations (i.e., the ele
mentary theorems of the form

rXD Y

1 See Sec. S 1.
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would not be different if the first and third postulates and the premises in
volving G in the fourth postulate were omitted). But this is not true gener
ally (see Exercises 1 and 2 at the end of this section).

In an assertional system an ambiguity arises in regard to the axioms. Up
to the present an axiom has been an elementary statement; it is expressed
by a sentence in the U language. 'rhus the statement

(4)

is an axiom of the system of Example 5. But it is natural to apply the term
'axiom' to the ob which is asserted rather than to the statement of assertion,
and many persons do just this. From that point of view, instead of (4),
the ob

(5)

is regarded as an axiom. Thus an axiom is something which is named rather
than something which is stated. For most purposes it is permissible to use
the word 'axiom' ambiguously in these two senses, the distinction being
made by the context; but when the distinction is important we shall refer
to (4) as an axiomatic statement, whereas (5) will be an axiornatic ob. Where,
as in Example 5, it seems appropriate to call the obs "propositions," we shall
speak of (5) as an "axiomatic proposition."

The assertion sign is frequently used in statements of the form

Xl' ... , X m I- Y (6)

to indicate that if Xl' ... , X m are adjoined to the system as new axiomatic
obs, Y is an assertion in the extended system. rrhus (6) represents the (for
mal) consequence relation corresponding to (1). This usage is not inconsis
tent with (1 )-since, for m = 0, the two coincide-but is an extension of it.
In that sense 'I-' can be read "entails" or "yields."

For some rather special purposes it is convenient to retain two or more
unary predicates. Such a system might be called multiassertional. Ex
amples 1 and 6 are examples. However, this is merely a question of ex
pediency, for the above reduction can always be carried out in principle.

Modern logical systems are almost universally presented in assertional
form. This type seems, indeed, to be intrinsically simpler and therefore to
have certain advantages in questions of ultimate foundations. But rela
tional systems are more like those used in ordinary mathelnatics. The
earliest of the modern logical systems, the algebra of Boole,l was equational.
Recently certain analogies between logic and algebra have led to a revival
of relational logical systems2 which promises to be fruitful. Since a rela
tional system can be reduced to an assertional one by the procedure we have
just used, and the converse reduction can be nlade by taking a formal object
1 and defining (1) as

I=X

1 George Boole (1815-1864), English mathematician, professor of mathematics at
Queens College, Cork, 1849 to 1864. For listing of his logical works see Church [BSL].
Modern mathematical logic may be said to have begun with his principal works published
in 1847 and 1854. He was also active in the theory of differential and difference eqlla
tionR, and he proved one of the early theorems on algebraic invariants.

2 See, for example, Halmos [BCA] and Tarski's work on cylindrical algebras (Sec. 7~2).
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it is evident that the two forms are in principle equivalent. In this work,
because of its emphasis on foundational questions, the assertional type will
play the principal role, but both types will occur.

This is, perhaps, the place to comment on the differences between an al
gebra as formulated in ordinary mathematics and an equational ob system
as formulated here. In the former case one thinks of a class of "elements"
as existing beforehand and the operations as establishing correspondences
between them. Thus, given an n-tuple of elements, an operation of degree
n "assigns" to it some preexisting element as its value. Moreover, equality
is taken for granted, and equal elements are identified, even though they
may be assigned as values by different operations, or by the same operation
to different n-tuples. In an ob system, however, only the atoms and the
operations are given beforehand; an operation does not assign an element
but creates a new one; the obs are generated from the atoms by the opera
tions, and the monotectonic property requires that different constructions
give different results; equality is a relation holding between these obs under
circumstances specified explicitly by the conventions of the system. l

2. Simplifications of the formal objects. The preceding section dealt
with transformations affecting the basic predicates. Here we shall make a
few observations concerning the formal objects. The reductions considered
here are rather technical, and are used only for rather special purposes. It
is, however, important for foundational questions to realize that they are
possible.

The first observation is that in an ob system we can get along with a single
binary operation. For this purpose we assign to each operation a new atom;
we can then replace a closure of the original operation by a series of steps,
the kth step of which is the closure of a binary operation combining the
result of the (k - l)st step (or the new atom in the case of the first step) with
the kth argument. The new operation is called application,. its closure is
symbolized by simple juxtaposition, with parentheses omitted according to
the principle of association to the left. Thus if g is the atom replacing an
n-place operation co, then we replace any ob COXI X 2 • •• X n by (gX I X 2 ••• X n ),

where the latter is formed by first applying g to Xl' then the result to X 2'

and so on. Suppose we think of such a new ob g as a function of degree n;
then the interpretation of application is that it combines a function of degree
n with an ob X to form that function of degree n - 1 which is obtained from
the first function by putting X in its first argument place. For example, if
A is the addition function, (A 1) would be the function which converts x into
1 + x, and (A12), that is, ((Al)2) would be 1 + 2, that is, 3. Of course,
this transformation introduces new obs into the system, and some of these,
such as (AA), would be nonsensical in the above interpretation; these diffi
culties can be taken care of by the sanle modifications of the predicational
structure that were discussed in Sec. 1.

The second observation relates to the possibility, already mentioned several
times, that there may be infinitely many letters or atoms. For a system of
really fundanlental nature, this is unsatisfactory, for the only way in which we
can conceive an infinite class constructively is to think of it as an inductive

1 Cf. [CLg], p. 17. It can be shown that the point of view of an abstract algebra can
be subsumed under the other as an interpretation (see Exercise C12; also Sec. 5A4).
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class of some kind. Thus such an infinite class of initial elements makes
sense only when the system is founded on some other more basic one. For
fundamental purposes, however, we can use the sams of Examples 1 and 2
of Sec. C. In the case of a syntactical system we can enumerate the letters
and replace them, in the order of the enumeration, by the sams themselves.
'fhe result is that we shall have a new 0 language based on the two letters a
and b; since the a's indicate the separations between letters, there will be no
ambiguity about the restoration of the original letters. In the case of an
ob systenl, we can replace the atoms by sams; the latter can be regarded as
generated from a by an operation indicated by postfixing b. If the opera
tion of application is present, we can have just one atom and generate all
obs by successive applications of that one atom to itself. Modifications of
this procedure to take care of two or more separate sequences, doubly in
finite sequences, etc., will not cause any difficulty of principle'! Naturally,
some of these reductions will be artificial, and there is no point in making
the most extreme reductions if the number of elements is finite and not too
large.

All this discussion assumes that the number of elements concerned is
enumerable. Frorrl the constructive viewpoint, however, there are no non
enumerable infinities. Considerations involving such infinities either must
involve platonistic assumptions, or else they must be based on a formalized
set theory which can be developed only at a much later stage.

3. Elementary systems. The simplification now to be considered con
cerns the deductive rules of the system. It may not always be possible to
carry it out, but it is a special restriction defining a class of systems.

Suppose that the rules are of the form

~l" •• '~m -+ ~

'where the U sentences ~l' ••• '~m' ~ are constructed from A nouns and
certain U variables Xl' ... , X n solely by means of the operators uesignating
the operations of the system and the verbs expressing its basic predicates
in other words, where ~l' ••• ,'lIm' ~ are elementary statements in the
extension of the given system formed by adjoining Xl' ... , X n to it as addi
tional atoms. The instances of the rules are then obtained by specializing
the Xl' ... , X n to be particular expressions or obs. A rule of that character
will be called an elementary rule, and a system containing only such rules
will be called an elementary system.

In an assertional ob system, an elementary rule would have the form

Xl" .. ,Xm ~ y
where Xl' X 2' ..• ,Xm , Yare obs formed from the atoms and the Xv .•. ,

X n by the operations of the system; if the system were concatenative, the
same would be true except that Xl' ... , X m , Y would be expressions formed
from the letters and Xl' ... 'X n by concatenation. All the systems in Ex
amples 1 to 6 of Sec. C are elementary, provided Examples 1 and 2 are taken
as concatenative.

To get an example of a nonelementary rule \\'e can take the last rule of
Example 1 if that system is taken as affixative, viz.,

If Xc Y is a tantet, then Xbc Yb is a tantet
I ~ee, for exalnple, [CLg], pp. 30-32; [DTC], p. 17, footnote :l.
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Here X and Yare analogous to Xl' ... ,Xn • But neither Xc Y nor Xbc Yb
can be formed by the operations of the system even if X and Y were admitted
as letters; for affixation of Y is not one of the operations of the system. In
order to state such a rule one would have to introduce an operation, viz.,
concatenation (or something similar) which was not used in the formation
of the formal objects. Such operations are called auxiliary.

Another example is the rule of substitution. For the system of Example
!), for example, this rule would be stated in the form

p ~ p*

where P is an ob, and p* is obtained from P by substitutions. Let us con
sider this in the special case where the substitution is that of an ob M for
P2' Then to get p* you must take a construction of P, replace P2 at every
top node, and complete the construction so altered. An equivalent way of
stating this is to use the recursive definition:

P: == M
pi == Pi for i =1= 2

(IQ)* == IQ*

(P :::> Q)* == P* :::> Q*

Thus substitution is an exceedingly complex auxiliary operation, and rules
involving it are not elementary.l

If such a substitution rule were formulated as a rule of deduction, it would
not be necessary to have axiom schemes in Example 5. In fact, the axiom
schemes of Example 5 could be replaced by single axioms, leading to the
following example.

Example 7. Like Example 5, except that there is a rule of substitution
as above formulated and the axiom schemes are replaced by the following
three individual axioms:

~ PI :::> (p 2 :::> PI)

~ (PI:::> (P2 :::> Pa)) :::> ((PI:::> P2) :::> (PI:::> Pa))

~ (IP2 :::> IPI) :::> (PI:::> P2)

This example would have exactly the same elementary theorems as Ex
ample 5 (cf. Sec. 3A3).

Although we have to admit nonelementary rules in certain cases, yet it is
always a desideratum to remove them. This demand eliminates possibilities
like the affixative formulation of Example 1.

EXERCISES

1. Verify that in the assertional form (Sec. 1) of Example 2 (Sec. C2), there are
ohs which are not sams (i.e., not ohs of Example 2 itself), but that the introduction
of (J does not affect the equations.

2. Formulate an assertional form for Example 3 (Sec. C2) and show that in this
case a predicate analogous to (J is necessary; however, restrictions on the X and Y in
the axiom schemes are sufficient.

3. Give a relational form of Example 5.
1 For some generalizations, multiple substitution, etc., see [DSR].
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4. Prove constructively (that is, by an effective process) that if one identifies simi
larly designated obs in the two systems, then Examples 5 and 7 have the same elemen
tary theorems. (Sec.3D3.)

E. ALGORITHMS

In Sec. A5 we were concerned with the notion of effective process. We
consider here ways of specifying such an effective process which can lend
greater explicitness to discussions of rules, generating principles, and cor
respondences such as those involved in representations, valuations, inter
pretations, etc.

An algorithm is generally understood as a, specification describing an effec
tive process. Here we shall impose the additional restriction that the admis
sible elements for the process be formal objects of some system; however,
we shall not require that all the formal objects of the system be admissible.

1. Markov algorithms. The algorithms described below are due to
Markov. He calls them "normal algorithms," but since 'normal' has many
different uses, and since these algorithms are a characteristic contribution
of Markov and are the only ones he considers at any length, it is appropriate
to call them Markov algorithms. In the future we shall often refer to them
without any qualifying adjective; thus an algorithm is a Markov algorithm
unless there is some indication to the contrary. There is very strong heuris
tic evidence that any effective process on the formal objects of a system can
be specified by such an algorithm'!

We first suppose that we have to do with an object language with a cer
tain alphabet~. We form an alphabet ~ over ~ by adjoining to it certain
additional letters, called auxiliary letters. The algorithm then consists of a
series of specifications of the form

Ai ~ Bi i = 1, 2, ... , n (1)

with or without a dot following the arrow. Here AI' ... , An' Bl' ... , Bn
are fixed expressions, possibly void, in the alphabet ~, and the '--+' has a
special meaning, which is not to be confused with that assigned to the same
symbol in Sec. 2A4. Each of the lines of the algorithm of the form (1) will
be called a command of the algorithm; those with a dot will be called stop
commands, the others nonstop com'mands,. and the ~ words appearing on the
left and right in (1) will be called the antecedent and consequent of the command,
respectively.

Let E be an expression in the alphabet~. The kth command in the
algorithm (1) is said to be applicable to E just when there is an occurrence
of A k in E. In that case the execution of the kth command for E will con
sist in the replacement of the first (i.e., left-hand-most) occurrence of A k

by Bk .2

1 This is Markov's thesis. It is related to Church's thesis (Kleene [IMM], sec. 62), which
makes the same assertion concerning another kind of effective process defined in terms of
recursive functions and Godel representation. The two sorts of effective process have
been shown to be equivalent (cf. Exercise 12); therefore Church's thesjs and Markov's
thesis are equivalent also.

2 The different occurrences can be distinguished by specifying the segments of E lying
to the left of them. Thus the term 'occurrence' can be given an objective meaning.
Cf. Sec. 3B1.
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The process specified by the algorithm (1), applied to such an E, is now
the following. We search for the first command which is applicable to E.
If there is no such command, the process stops with E. Otherwise we
execute the first command which is applicable to E, converting E to E'. If
this command is a stop command, the process stops with E'. If not, w·e
start all over again with E' in the place of E. The process continues until
we reach either a stop command or an expression to which no comnland is
applicable; in the latter case we shall say that the algorithm, or process, is
blocked. The algorithm is said to be applicable to E just when the process
stops without being blocked.!

In this description there was no mention of auxiliary letters. Actually,
the description would make sense if there were none, in which case ~ would
be the same as ~ and the algorithm would be said to be in~. But in the
practically interesting cases E is required to be a word in ~ and the auxiliary
letters are introduced by the execution of certain commands. In that case
the algorithm is said to be over~. If an algorithm L is applicable to E,
then the word which remains when the process stops will be called L(E), or
the result of applying L to E.

We shall now consider some examples of algorithm~. In these examples
the letters 'x', 'y', 'z', etc., will be used for unspecified letters of the alphabet
~, and a command involving these variables will be understood as a whole
series of commands in which all possible substitutions of ~ letters for these
variables are made in a lexicographic order. As names of auxiliary letters,
lower-case Greek letters will be used.

Let us first devise an algorithm for copying an expression, i.e., for con
verting an expression E into EE. Such an algorithm will be called a dupli
cation algorithrn.

Suppose first that we have an rJ. before E, i.e., that we have converted E
into rxE; how this is done we shall see later. Then by a series of commands
of the form

rJ.x ~ x{JxrJ. (2)

we make a copy of the initial letter x and "mark" the copy with an auxiliary
{J. The rJ. can now form a combination with the letter next on its right, and
then with the letter next to the right of that, and so on until rJ. is at the end of
the expression. At that point, if the original expression was, say,

we should have

Xl{3XlX2{JX2xa{Jxa ••• xn{JxnrJ.

By a series of commands of the form

{Jxy ~ y{Jx (3)

the marked copies of the letters will be moved to the right of the unmarked
ones without change in order, so that we should have eventually

X1X2 • •• xn{JX1fJx2 • • • {JxnrJ.

1 Occasionally one may wish to include this last possibility also. In such a case that
circumstance will be explicitly mentioned.
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We can now drop out the {3's and the ex by commands:

{J--. (4)

(5)

These commands will transform exE into EE provided that they are arranged
in a proper order. The order of (21 and (3) is immaterial, but (4) must
follow them in order to prevent premature dropping out of {J, and (5) must
follow (4) in order that the process may run to completion.

To complete the construction of the algorithm we must put the initial ex
before E. This can be acconlplished by a conlmand

(6)

called the starting command,l appearing at the end of the list of commands.
For since the left sides of (2) to (5) all contain auxiliary letters and there are
no auxiliary letters in E, none of those commands will be applicable to E;
on the other hand, since the void word occurs at the beginning of any word,
the command (6) will be applicable and will have the desired effect. After
the ex is once admitted, however, some one of the other commands will always
be applicable until we reach (5), in which case the process stops. This de
vice for starting an algorithm can be used in all cases where blocking of the
rest of the algorithm is not permitted (and in some other cases in which repe
tition of the algorithm is allowed).

For the case where ~ consists of the two letters a and b, the complete
algorithm is as follows:

rJ..a ~ af3arJ..
rJ..b ~ bf3b(J..

f3aa ~ af3a
f3ab ~ bf3a
f3ba ~ af3b
f3bb ~ bf3b
f3~

It is instructive to see how this algorithm can be modified to have the
copy made in reverse order. For this it is sufficient to have the marked
copy to the right of the ex and shifted to the right immediately, and to pro
vide that when there are no longer any adjacent pairs exx or {Jx the ex cleans
out the {J's and disappears. The algorithm would be as follows:

exx --. xex{Jx

{Jxy --. y{Jx

ex{Jx --. xex

1 :\fore generally, any command with a void left side will be called a starting command.
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Here again the order of the first two commands is immaterial but the others
must follow them in the order given.

As another example, suppose that, given two algorithms L 1 and L 2 , we
wish to construct an algorithm La which carries out the process of L1 until
it stops, and then carries out the process of L 2 on the result. Suppose that
the algorithms L1 and L 2 are in ~{, so that all auxiliary letters we use are
introduced as extras in La. rrhen the construction of La can be carried out
in four stages as follows:

10. I.Jet L~ be obtained from L1 by replacing commands of the forms

A --+ B A --+. B (7)
respectively, by

A--+B A --+ rxB (8)

(i.e., by replacing every dot by a symbol for a new auxiliary letter)! and then
adding (6) at the end. We put L~ at the end of La. If the commands pre
ceding L~ in La contain auxiliary letters on the left, then La, up to the time
the rx appears, will have the same effect on any 'H word E as L1 does, and if
L1(E) = F, the result will be an F' obtained by inserting an rx into F. The
comnland (6) takes care of the possibility that L1 is blocked.

2°. For each ~1 \\-'ord, E, let EI' be obtained from E by adding a y at the
beginning and after every '}{ letter, so that if E is void, EY is y, and if E is,
for example, a1a 2aa, EI' is ya1ya2yaaY. Let L~ be obtained from L 2 by re
placing the commands of the form (7), respectively, by

AY --+. BII (9)

the dot being retained just when it was originally present. Then the con
ditions

G = L 2(F) GY = L~(FY) (10)

are equivalent. Let L~ be obtained from L~ by a transformation analogous
to that in stage 10, except that 0 replaces rx, and the command

y--+o

replaces (6). We put L~ in La immediately before L~. Then, if the com
mands of La before L~ all contain on the left at least one auxiliary letter
other than y, the effect of La (up to the introduction of 0) on any FY for which
(10) holds is to transform it into a G' formed by inserting a 0 into GY.

3°. Next, we put at the head of La commands which will transform a
word F', obtained as in stage 1°, into the corresponding word FY. This can
be done by the following commands:

1 In the future I shall describe this change by saying that the dot is replaced by ex.
Actually this is incorrect, for the dot is a U symbol; ex is an auxiliary letter, hence an 0
Rymbol; 'ex' is a U symbol Rtanding for an unspecified 0 symbol; and what replaces the dot
is neither ex nor 'ex' but the name of ex, whatever that may be. But the briefer idiom iR
hardly likely to be miRunderstood.
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Here the first command moves the rJ. to the beginning; the second, which is
applicable only when rJ. has reached the beginning, changes rJ. to fJ; and the
third and fourth complete the transformation to FY.

4°. Finally, as soon as ~ appears, we clean out the y's and close the algo
rithm by commands, which must precede L~ but may appear either before
or after those in stage 30, thus:

€yx ----+ x€

€y ----+.

The complete algorithm is as follows:

x: :;x 1 stage 30
fJx ----+ yxfJ

fJ----+y

yx~ ----+ ~YXl
~ ----+ €

stage 4°
€yx ----+ x€

€y ----+. J
L~ stage 2°

L~ stage 1°

This algorithm can be seen to have all the properties required for La.
As we have seen in the foregoing examples, the order of the commands in

the statement of the algorithm may be essential. But if we have two com
mands r 1 and r 2 such that they will never be simultaneously applicable, then
it does not make any difference in what relative order r l and r 2 appear.
This will occur in particular if there are two letters rJ.1 and rJ. 2' such that at
most one of these letters can occur in any word which the algorithm reaches,
and such that rJ.l appears on the left in r l and rJ. 2 on the left in r 2. t On the
other hand, if r 1 and r 2 are such that the left side of r I is a proper initial
segment of the left side of r 2' then r 2 will never be executed if it comes after
r l , and therefore r 2 is superfluous unless it appears before r l .

2. Shuttle algorithms. We now discuss certain specializations of a
Markov algorithm which have some advantages in the technique. These
specializations will be introduced in two stages. In both stages we suppose
that there is a special class of auxiliary letters called shuttles, such that every
word being operated on contains at most one of these shuttles, and these
shuttles control, in a sense to be presently explained, the course of the cal
culation. We shall use lower-case Greek letters for shuttles; for other auxil
iary letters, which will be seen to function as place markers, punctuation
marks and arbitrary signs will be used.

In the first stage we impose simply the following conditions: (1) there is a
unique command, appearing at the end of the algorithm, such that the left
side is void and the right side is a shuttle; (2) every other command has

t This condition is fulfilled if r 1 is in stage 3° and r 2 in stage 4° of the La of the pre
ceding paragraph.
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exactly one shuttle on the left; (3) every command which is not a stop com
mand has exactly one shuttle on the right; (4) a stop command has no shuttle
on the right. The command appearing in condition 1 will be called, as in
Sec. 1, the starting command, and the shuttle which appears in it the starting
shuttle. An algorithm for which the conditions 1 to 4 are satisfied will be
called a semishuttle algorithm.

If we have an algorithm satisfying these conditions and start with a word
E containing no shuttles, then the only applicable command will be the start
ing command. Thereafter we shall have a word with exactly one shuttle
unless we reach a stop command, in which case the process stops and the
shuttles disappear.! Thus the conditions for interchangeability mentioned
at the end of Sec. 1 are fulfilled for commands with different shuttles on the
left. Commands with the same shuttle on the left will be said to belong to
the same phase. The algorithm may be so stated that all commands belong
ing to the same phase may be brought together, and the phases themselves
may be arranged in any order. It is natural to expect that the different
phases correspond to significant subprocesses in the process defined by the
algorithm. If, further, every phase has at its end a command with that
shuttle alone on the left, it will be impossible for the algorithm to be blocked.

Before going further let us stop to examine ho,v the above duplication
algorithm can be formulated as a semishuttle algorithm. rrhere are two
main stages in the duplication process, viz., making copies of the letters and
moving the copies to the right. With these two stages we associated the
letters rJ. and {J, but although rJ. functions as a shuttle, {3 does not. Suppose
now we replace the {J in (2) by a place marker +. When rJ. reaches the ex
treme right of the expression, let it turn into a shuttle y which moves to the
left until it meets one of these place markers, and then converts it to a {J,
thus:

xy -+ yx

+y -+ {J

Then the command (3) would move the {Jx (Le., the x previously marked
with a preceding +) to the right. If on its arriving there, the {3 changed
into y, then the process would repeat, and it would continue until the y
reached the beginning of the word. But in such a case the copy we should
have would be reversed. To prevent the reversal there are two alternatives.
The first alternative would be to let the {J restore the place marker thus:

(11)

Then it would be necessary to have commands to clear out these markers,
thus:

(12)

1 Because one shuttle is brought in by the starting command, t.he nonstop cOlnmands
do not change the pnmber of shuttle8, and the stop commands decrease it by one.
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The second alternative would be to have rx replaced by y + and to replace
(11) by

fJx+ --+ y+x
Then we could close with

c5+ --+.

This would have the advantage that if we wished the + to remain in the
result as a separation-which is often convenient-we could omit the c5
phase altogether. The entire algorithm would then be

rxx --+ x+xrx (13)

rx --+ y+

fJxy --+ yfJx

fJx+ --+ y+x (14)

xy --+ yx

+y --+ fJ (15)

Y --+.

--+ rx

As will be seen from this example, the new algorithm has more commands.
But the semishuttle algorithm has the advantage that the composition of
algorithms is simplified and systematized. Consider, for example, the
formation of La from L1 and L 2 (at the end of Sec. 1). All that it is neces
sary to dol is to replace the dot in the stop commands of L1 by a shuttle rx,2
not conflicting with any already present, such that rx moves to the beginning
and then turns into the starting shuttle of L 2 •t Let us call this process the
substitution of L 2 in the outputs of L 1• More complex forms of composition
can also be constructed. Thus if L 1 has several outputs (i.e., stop commands),
we can substitute different L 2's in the different outputs; moreover, some of
the L 2's may be the same as Ll't thus giving rise to an iterative process.
Again, if we replace certain shuttles in an algorit.hm by a shuttle and a marker,
and then use the new shuttle to trigger some other process, returning to
the marker when that process finishes, we can interpolate processes in other
processes (for example, counting the steps so as to take some action de
pending on the number of steps). One can thus make a great variety of
complex compositions rather simply.

Using the fact just established, we can show that, given an arbitrary
Markov algorithm L, a semishuttle algorithm L' can be found which has the
same effect on every word E in ~.

Consider first the case where L consists of the single command

A --+.B (16)
where

B == b1b2 ••• bn

1 We must suppose, to begin with, that the shuttles in £1 and £2 are so chosen that
there is no conflict between a command in £1 and one in £2' This is always possible
since shuttles are auxiliary letters and can be changed arbitrarily.

2 Compare footnote to the corresponding construction in Sec. 1.
t The starting command of £2 is, of course, omitted.
: There will be no conflict between the shuttles of the two £1'S, since £1 is to be re

peated.
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I.Jet (X be the starting shuttle for L'. If m = 0, then the commands

r:x --.. B (output 1) (17)

will do for L'. For m > 0, let r:x go through the initial word E searching
for av thus:

r:xX --. Xr:x

r:x --.. (output 2)

Let PI' P2' ... ,Pm be new shuttles not conflicting with any other letters.!
For i < m, let Pi check whether the letter next to its right is the same as
a i 1-1' and change into y if it is not, thus:

i = 1, 2, .. ~ , m - 1

Pi --. Y

If Pm appears, it indicates that a first occurrence of A has been found. Then
we can erase A and substitute B by the commands

(output 1) (18)

If y appears, it indicates failure to find an occurrence of A, and the appro
priate action is given by the commands

xy --. yx

These commands constitute the desired L'. Note that we come out on out
put 1 if (16) is applicable and on output 2 if it is not.

Now consider the case where L consists of the commands

j = 1,2, ... ,p (19)

Let Lj be the algorithm, as just constructed, for the jth command. Fronl
these we fonn L' by the composition technique of the third preceding para
graph. From output 1 of Lj we stop if the jth command (19) is a stop
command, and go to Li if it is not; fronl output 2 of Lj we go to Lj+l if j ~
p - 1, and stop (indicating blocking) if j = p. Thus L' is determined, and
therefore a semishuttle algorithlll is not less general than a Markov algorithm.

This completes the treatment of the first stage of specialization. In the
second stage \ve have the following additional condition: (f» the left and
right sides of any conllnand contain at most one letter which is not a shuttle;
on the left this letter appears always on the same side of the shuttle in all
cOlllnlands of the Hanle phaRe. Thus a shuttle operates on a single letter

1 ft is neCf'sHary to have tn distinct Hhutth.'s (unless wo USf> markers) ev{'n though
s('\ eral of thp (l z 111UY bp thp ~ame letter.
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appearing always either on its right or on its left; in the former case the
shuttle is called a right-facing shuttle, in the latter a left-facing shuttle. A
semishuttle algorithm which satisfies the condition 5 will be called a shuttle
algorithm.

The commands of the semishuttle algorithm L' just shown to be equiv
alent to a given Markov algorithm L all satisfy condition 5 except (17) and
(18). But by introducing new shuttles bl' b2 , ••• , on' command (17) can be
executed as follows:

ex ~ b1

bk ~ bkbk +1

bn~·

k = 1,2, ... ,n - 1

Command (18) can be executed similarly. Thus a shuttle algorithm is also
not less general than a Markov algorithm. But it may require more shuttles
than a semishuttle algorithm.

Let us return to the duplication algorithm. It follows from what we have
just proved that this can be achieved by a shuttle algorithm. It is expedient
to get this shuttle algorithm directly rather than as an instance of the gen
eral theory. Suppose for each letter X t in ~{ we have a shuttle ~i; then fJx i

can be replaced by ~i. If we do this, all commands of the semishuttle du
plication algorithm satisfy condition 5 except (13), (14), and (15). To do
the work of (13), we appear to need a second set of shuttles ~'; then (13)
could be replaced by

€X ~ xex

but we save one of these shuttles if we change (13) to

exx ~ xx+ex

which in turn can be replaced by

Then for (14) we can take

~+ ~()x

()~y+

whereas for (15) we can have (since fJ has not been used)

(20)

and one or the other of
+y ~fJ

fJX ~ ~

xfJ ~ ~

[if we use (13)]

[if we use (20)]
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The entire algorithm, if we change (13) to (20), is

(Xx -+ x~'

(X-+y+

~' -+ x~

~ -+ +(X

xy -+ yx

+y -+ fJ
y -+.

xfJ -+ E
~y -+ y~

~+ -+ ()x

() -+y+

ALGORITHMS 79

Although the transition from a Markov algorithm to a semishuttle algo
rithm has advantages from the standpoint of constructing an algorithm to
do a given job, the insistence on a shuttle algorithm is rather a handicap from
that point of view. Its chief significance is that it facilitates comparison
with other forms of effective process. It is possible, for example, to sho\\'
directly that a shuttle algorithm is equivalent to a certain type of Turing
machine, and thus to show, by an argument of some complexity but quite
elementary in principle, that the notion as a criterion of constructiveness
is equivalent to other accepted ones.!

3. Generalizations. The concept of algorithm may be generalized in
various ways. We shall consider some of these generalizations here, and
along with them the question of how algorithms are related to other sorts
of formal notions.

The notion of Markov algorithm presupposes that the specified process is
to operate on an 0 expression in some finite 0 alphabet. But it is not diffi
cult to modify it so as to apply to the obs of an ob systenl. In such a case
we have auxiliary atoms and auxiliary operations in the place of auxiliary
letters. The A p B i will be obs. The execution of the kth cOlnmand can
be explained, using the idea of labeled tree diagranl, as follows. Consider
that instance of A k which occurs first in the normal construction sequence;
one replaces the part of the tree which gives a construction of this A k by a
construction of B k and mB,kes corresponding changes in the labels of the nodes
below. We shall consider such replacements more fully later.2 If one uses
the A language proposed at the end of Sec. C3 and the autonymous repre
sentation, this replacement is a special case of that for expressions.

The notion of algorithm can evidently be modified in various other ways.
For example, a simple modification is to admit explicitly cOlnmands which
can be executed only once. Then a command, such as (6), so marked, can
occur in its natural place at the beginning of the algorithnl. Still another

1 See Exercise 12 at the end of this section. For the other definition~of con8trncti\'e
ness see Kleene [IMM, especially sec. 62].

2 See Secs. 3B and 3C.
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nl0dification \"hich has been suggested is to require that after a command
has been executed, the comnlands previous to it be excluded for later use.
I do not kno\", \"hat the effect of some of these nl0difications 'would be.

If \"e \"ere to abandon the feature by \vhich the command to be executed
at any stage, and the particular occurrence of the antecedent to be replaced,
are uniquely determined, then the commands (1) for an algorithnl can be
regarded as the deductive rules for an assertional concatenative systen1.
These commands are replacements; they are equivalent to the deductive
rules

i = 1, ~, ... , n (21)

\vhere ....Y. and Yare unspecified words (in the sense that'X' and' Y' occupy
places 'where the nanle of an arbitrary word lnay be substituted), and A z

and B t are fixed \vords. Such a fornlal systern is one of the kinds "'hich
Post1 Introduced; this particular kind is knovdl as a bilateral Post system
without axion1. Since the systenl has no axionl, it has no elernentary
theorerns, but the rules define a consequence relation as explained in Sec.
B:~. The systenl obtained by applying this systenl to a \vord E is that forllled
by adjoining rE as sole axioln.

It hC!.s been proposed2 to call a deril'ational forutal systeut one in \vhich a
special subclass of deductions is singled out as drrivations. This is under
stood to he such that it is a definite question 'whether or not a deduction is a
derivation. An alyorithut Inay then be definpd as a derivational forInal
systeln satisfying the follo\ving conditions: (1) t here is no aXiOll1; (2) the
system is assertional; (3) the rules are one-place, eleluentary (Hee. l);l) rules;
(4) the rules, at least in so far as they can be applied in a derivation, are
deterministic; (.» in a derivation there is not 1110re than one rule which can
be applied to a given prenlise; (6) t here are conditions determining '" hen a
derivation ternlinates, and it is ah\ ays a definite question \\ hether these
conditions are fulfilled. The application of sueh an algdritlun to a formal
object E is the systeln obtained by adjoining E as sole aXiOlll. If L is the
algorithn1. IJ(E) is the fOrIllal object asserted in the eoncluding statplnent of
a terminated derivation.

A l\'larkov algorithnl is thus an algorithlll according to this definition.
There are, ho\\'ever. other kinds. One of the nlost interesting is the Post
algorithm, \\ hich is based on a unilateral Post systenl, Le., one in \\ hich the
rules, instead of being of the fonn (21), are of the fonn

A ...Y.rXB

These have been shown to be pquivalent to Markov algorithnls.:l

EXERCISES

(22)

1. Construct an algorithrn for tranHfornling a flnitt, sequence of lpttprs into the
sf'quen('e formed by \\ riting the same lpttprs in the rev('rsf'd order.

2. Construct a shuttl(~ dupli('ution algorithm llsing only one ~('t of o.;huttles corre-
sponding to the lettf'rs of ~l (in addition to o.;huttlC's ind('}>pndellt of ~().

1 Post [FHG1; cf Portp [:--;PA].
2 Spe Porte P"PAJ
3 :--;ce Asser [XPA].
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3. For each integer nand ea<>h letter a, let an he the word conRisting of n consecu
tive occurrences of a. Let 'l{ be the alphabet {L *}. Show that there are algorithms
L l , L 2, L 3 such that

4. Let

L1(lm * In) = IS
L 2 (lm * In) = Ip
L 3(lm * In) = Iq * IT

where 8 = m + n
where p = mn

where m = qn + r (r ~ n)

i = 1,2, ... ,r; j = 1,2, ... , n i

be r finite sets of commands. Devise an algorithm L which has the same effect as one
in which the command to be applied to any E has i and j determined as follows. i is
the least number such that for some j there iH an occurrence of At] in E, and j is the
least number such that there is an occurrence of A Ii beginning at least as far to the
left as any A lk (for k =1= j).

5. Given an ob system with a finite number of atomR and a finite number of
operators. Devise an algorithm over the alphabet of the standard Lukasiewicz rep
resentation which converts a word of the alphabet into the auxiliary letter t if that
word is well formed and into the auxiliary Jetter f in case it is not. (lTEAL cf. lCFS],
sec. 6.)

6. Devise an algorithm, applicable to words in the alphabet {a, b, I, ~ (,)} of
Example 6, for testing whether a word in that alphabet is a tautology according to
the ordinary binary truth tables. Let the algorithm convert the initial word into t
if it is a tautology, into f if it is well formed and not a tautology, and into n if it is
not well formed. (Here n, t, f are auxiliary lett€'rs) ([TEA J.)

7. Let L 1, L 2 , •.. , L m be tn algorithms, and let '1{ be the unIon of their alphabets.
Let L

l
convert a word X into Y i L€'t * be not in '1t. Then show that there is an

algorithm L o such that Lo converts X into

Yl*Y2*···*Ym

and is not applicable to any ~y. to which not all the L l , ... , L m are applicable.
8. Let L l and L 2 be two algorithms. Let Ll(X) be the result obtaIned by apply

ing L l to X, and let L2(~Y.) be defined similarly. Devise an algorithm L 3 such that
(a) if L 1(X) closes in m steps, and L 2 ( ...Y.) doeR not close in f€'wer than rn steps,
then L 3(X) = Ll(X); (b) if L 2(X) closes in rn Rteps but Ll(X) does not, th€'n
L 3(X) = L 2(X); (c) if neither Ll(X) nor L 2(X) closes, L 3(X) does not closp

9. (Theorem of Nagornii.) If'l{ iR a nonvoid alphabet. show that any algorithm
L ov€'r '1{ is equivalent, so far as words E in '2{ aI'€' cOllcprned, to an algorithrn L'
in an alphabet formed by joining a Hingle auxiliary letter to'll (Nagornii [UTPj,
cf. Chernyavskii [KNA I. Let (Xl' ••• , (Xn be the auxiliary letters for L, a a letter of
'1(, f3 a new auxiliary letter, ak a sequence of k successive a's; then replace (Xk by
fJf3af3a k f:3af3f3. )

10. (Universal algorithnL) If L is an algorithm (1) in the fixed alphabet '2(, and
+, *, :, ! are letters not in'll, then the word

pL Al + 0 B l : A 2 + 0 B 2 ••• An + 0 B n

where '0' is to be r€'placed by 'I' if the corresponding eommand (1) is a stop command
and is to be omitted otherwise, is called the program of L. Show that there iH an
algorithm U over the alphabet 'l{ U{+, *, :, I} such that for any Ruch L and any word
E in '1{

U(PL * E) = L(E)

it being understood that the €'xistence of either side €'ntails that of thp othpl'. (Mar
kov lTAl 2 ] A shuttle algorithm for doing this is giv€'n explicitly in Chernyavskii
[KNA 1; it contains 122 commands)
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11. (Impossibility theorem.) Let ~ be the alphabet of Exercise 10. Show that
there is no Markov algorithm L over ~ which is applicable to a word in ~ just when
it is the program of an algorithm in ~ which is not applicable (in ~) to its own pro
gram. (Markov [TAI2, chap. 5]; the rest of the book gives many other examples
of problems which are unsolvable by means of algorithms.)

12. (Theorem of Detlovs.) Let ~ be the alphabet of Exercise 3. A numerical
function !(xI , ... , x n ) is said to be algorithmic just when there is an algorithm L
over ~ such that

y = !(xI , ... , xn )~ L{jXl * IXI * .·· *IXn ) = III
where '~' is defined as in Sec. A4. The ,function is said to be completely algorithmic
just when for arbitrary numbers Xl' ... , x n there is a y such that the two sides of the
above equivalence are both true. Show that a necessary and sufficient condition
that f be algorithmic is that it be partial recursive, and that it is completely algo
rithmic just when it is general recursive. (Detlovs [NAR]. Asser [TMM] proves
directly the equivalence of being algorithmic with Turing calculability; this is done
more simply, using shuttle algorithms, in Chernyavskii [KNA]. Cf. below, Sec. 3C.)

S. SUPPLEMENTARY TOPICS

1. Historical and bibliographical comment. For general references
on Secs. A to D of this chapter see Sec. IS5 and the references on formalism
in Sec. IS6. The following references supplement those.

For surveys of semiotics in general, see Morris [FTS] and Carnap [FLM];
for more comprehensive treatments see Morris [SLB]; Carnap [LSS], [ISm],
[FLg], [MNc]; Martin [TDn], [SPr]; Kemeny [NAS]; Stegmiiller [WPI].
rfhe subject blends into the philosophy and psychology of language and into
linguistics. The following are examples of more philosophically or psy
chologically oriented works: Brown [WTh], Ogden and Richards [MMn],
Quine [WOb]. On the linguistic side those to which lowe most are cited in
[LAG]. The American Mathematical Society symposium [SLM], in which
[LAG] appeared, contains several other papers of interest in connection with
the interrelations of language and mathematics. Further references are
given in [CLg], p. 37, in the bibliographies to the above-cited works, and in
connection with special topics below. See also Secs. 3 and 4.

The notion of U language was first presented in an address to the rrenth
International Congress of Philosophy in 1948. The abstract of this address,
prepared some months before, is [LFS]; the actual text of the address is
[LMF]. See also [TFD], sec. 14; [CLg], sec. ID3.

On the use of quotation marks see Quine [MLg 2 , pp. 23ff.]; Leblanc [IDL,
pp. 2ff.]; Suppes [ILg, chap. 6]; Exner and Rosskopf [LEM, secs. 1.3 and 1.4,
especially the exercises on pp. 15-16]. The first logician to use quotation
marks in this way was Frege, but linguists had previously used them for the
same purpose at least as far back as 1765 (see [TFD], p. 12, footnote 16).

The term 'grammatics' was proposed in [MSL] and again in [LFS]. For
an account of it see [LAG] (which was prepared from [LSG]) and the papers
there cited; also (for a previous edition) [TFD], sec. 15. The functionality
operators Fn are studied in the theory of functionality in combinatory logic
([CLg], chaps. 8-10); examples of functors belonging to various categories
are given in [CLg], pp. 264 and 274.

The explanation of the dot notation is taken over from [CLg], sec. 2R5a.
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For the history and collateral references the reader is referred there or to
[TFD], p. 43, footnote 15.

The notion of inductive class was formulated by Kleene [IMM, pp. 20,
258ff.]. There are some minor variations in detail. He calls the conven
tions by which an inductive class is defined an "inductive definition"; the
initial specifications he calls the "basic clauses," and the generating specifica
tions he calls the "inductive clauses"; these together constitute the "direct
clauses," in contrast to the closure specifications, which he calls the "ex
tremal clauses."

The discussion of constructions and notions connected with them is taken
with some modifications from [CLg], sec. 2B, which in turn is based on [DSR].
The idea of exhibiting a proof as a tree construction has, of course, been
known for a long time; it plays a prominent role in Gentzen's [ULS] and in
the work of Hertz (see his [ASB] or earlier papers cited in Church [BSLJ),
which preceded it, and was used explicitly in proof theory by several mem
bers of the Hilbert school (see, for example, Hilbert and Bernays [GLM.I,
pp. 221, 426]); I do not kIloW the origin.

In regard to Sec. B, the distinction here made between a theory and a
system is a departure from the usage of my previous publications; for the
motivation see Sec. 2. (One should observe that a system is a special kind
of theory, so that the use of the term 'theory' for what is actually a system
is not incorrect.) The reference for Post consistency and completeness is
Post [IGT]. Tarski [FBM] derives an extensive list of theorems about
formal theories (in the present sense-he calls them "sets of sentences" and
uses the term 'system' for such a set which is deductively closed) in general;
he uses methods which we shall consider in the next chapter. The work of
Hertz (cited in the preceding paragraph) can also be regarded as having to
do with theories. Otherwise there is relatively little literature regarding
theories per se; one has to abstract the purely theoretical considerations
from treatments of systems.

The inclusion of both syntactical and ob systems under the term 'forInal
system' is again an innovation of the present book (see Sec. 2). Ob systems
correspond to what I previously called formal systems. For them, and
particularly their relations to syntactical systems, [CFS], [DFS], and [IFI]
contain some minor changes relative to the works cited in Sec. 185. The
discussion of Sec. C contains a continuation of these changes. Ob systems
have otherwise been little considered in the literature; cf., however, Her
brand [RTD, pp. 54ff.].

The systems elsewhere considered in mathematical logic are usually syn
tactical, and formulations of them can be found in most of the general works
on mathematical logic (Secs. lSI, IS:l, and IS5). Especially careful formu
lations of them are found in Hermes [Smt]; Tarski [BBO], [WBF]; Schroter
[AKB], [WIM]; Henkin [AMS], [SAT]; Rosenbloom [EML]. These show,
in principle, how a syntactical system can be formulated as an ob system;
on this point cf. Examples 3 and 4 and [CFS]. Precise formulations going
in a slightly different direction are in Lorenzen [EOL] and Post [FRG].
The latter shows that an assertional concatenative system of a rather general
sort can be reduced to one with a single axiom and rules of the form of (22)
of Sec. E; this work is reported in Rosenbloom [EML, chap. 5]; also, less at
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length, in Porte [SPA, sec. 6], and Davis [CUn, chap. 6]. Since the algo
rithms of Sec. E have a syntactical basis, there is considerable detailed in
formation on syntactical matters, mostly in the Russian language, in the
literature cited for Sec. E.

The follo,ving remarks concern the examples in Sees. C to D. Example
1, complete with Hungarian names for the basic categories, was first pre
sented in [LSG] to an audience of humanists. ~~xample 2, here presented
as a modification of Example 1, is in reality the same as Example 1 of [OFP];
Example 1 is a modification of it rather than the reverse. Example 3 is a
trivial modification of Example 3 of [OFP], and is taken in principle from
Hermes [Smt]. Example 4 is an obvious modification of Example 3. Ex
ample 5 is, essentially, an abbreviation obtained by -:Lukasiewicz (see ~uka
siewicz and Tarski lUAK, p. 35, footnote 9]) of a set of axioms for the classical
propositional calculus due to Frege; for a development of it at some length
see Schmidt [VAL, sees. 79-R4]' ~~xamples 6 and 7 are modifications of
Example 5. For other examples of ob systems see [OFP], chap. 5.

In Sec. D the term 'assertional system' is introduced here for the first
time. I have used the term 'logistic system' heretofore, but that usage con
flicts with other uses of that term. ()therwise the section contains little
innovation over [CLg], sec. IE. The Post investigations, just mentioned,
are essentially additions to the subject Inatter of Sec. D.

The symbol 'I-' was introduced by Frege (see, for example, his [GGA],
pp. 9ff.), who gave separate interpretations to the horizontal and vertical
parts of it. Later it was adopted (but not the separate use of the horizontal
and vertical parts) in \Vhitehead and Russell [PMt]. It is, of course, a
natural modification of Frege and Whitehead and Russell [PMt] to use it as
a one-place verb. Its use for stating rules, as in (6) of Sec. D, is due to Rosser
([ML\', p. 130]; see also his [LMt], pp. !l6ff.). Rosser [LMt, p. 57] suggests
reading '1-' as 'yield' or 'yields' and calls '1-' a "turnstile."

Section E on algorithms is based primarily on the work of Markov. The
first 200 pages of his book [TA1 2 ] give an extremely detailed account of the
general properties discussed in Sec. El. His shorter account [TAll] is prob
ably adequate for a reader who is willing to work out details for himself;
an English translation has just appeared. At present I do not know of any
other systematic account, based upon direct knowledge of the Russian, in a
Western European language. Some information may be obtained from
Asser's two papers [TMM] and [NPA]; the fornler treats the equivalence, for
a numerical function, of being algorithmic (see :Exercise E 12) and being com
putable by a Turing machine; the latter treats the equivalence with "Post
algorithms," mentioned at the end of Sec. E:l. There is also a brief account
in Porte [SPA1; but Porte admits he is unable to read the Russian, and so
his treatment is based wholly on reviews.

The theory of algorithms appears to be related (as already stated) to
Post lFR(~]. Like Post and his folluwers, the Russians have been greatly
interested in unRolvability theorems. This has culminated in the proof of
unsolvabiJity of the "'ord problem of group theory in Novikov [ANP]. Nat
urally these considerations belong in Chap. :l.

Sonle of the further theorems about algorithms are included in the dis
cussion of Sees. t:2 and F~3 and in the exercises at the end of Sec. E. The
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discussion of Sec. E2 is based on Chernyavskii [KNA]. For one who knows
Russian, this paper gives a readable treatment which can be understood
without a detailed acquaintance with Markov's work. It includes an account
of the theorem of Nagornii (Exercise E9), of the universal algorithm (Exer
cise EI0), and a proof of the equivalence of a shuttle (and hence of a Markov)
algorithm with a Turing machine (cf. Exercise EI2).

The references for Sec. E3 are given in the text itself.
2. Notes on terminology. It has already been noted that the terminol

ogy used here involves some changes from my previous publications. Such
changes are necessary for progress. However, they introduce a danger of
confusion, particularly when the changes occur in the work of the same
author. For those readers who may have occasion to consult my previous
publications, the following explanation of circumstances connected with
these changes may help to avoid misunderstanding.

In [CLg] and lTFD] the term 'formal system' was restricted to what is
here called an ob system. This was the central notion in a series of papers
which are cited in [CLg], sec. IS 1. At first it was called an "abstract theory";
thereafter it was called indifferently a "theory" or a "system," and the
adjectives 'abstract' and 'formal' were attached to it, with an increasing
tendency toward the latter as time went on. In 1937 it was decided to fix
on the term 'formal system'. The change affected various papersl (cited
in [CLg], sec. lSI) published from 1939 to 1942.

In the meantime Kleene in his [IMM], p. 62, defined the term 'formal
system' so as to apply only to a syntactical system. Further on in the
same book he used the term 'generalized arithmetic' for a special kind of ob
system, viz., that in which there is only one operation of each degree; the
general case can of course be reduced to this one by taking new obs to repre
sent the operations (cf. Sec. D2) and then replacing the closure of an opera
tion of degree n by the closure of the Kleene operation of degree n + 1,
using as first argument the new ob representing the original operation.
Kleene's definition gives the impression (no doubt unintentionally) that his
definition of 'formal system' is a true representation of Hilbert's conception.
But Hilbert was interested in just one system, that for mathematics (or a
significant portion of it) as a whole, and his papers contain no reference to
the notion of a formal system in general; moreover, he ,vas inclined to call
his method "axiomatic" rather than "formal."

Now the resemblances between these two forms of formal system are much
more important than their differences. Moreover, from the general viewpoint
of Sec. lC they are both formal. It therefore seeIns the best policy to use
the term 'formal system' so as to apply to both of them, and to use the more
specific terms 'syntactical system' and 'ob system' when it is necessary to
distinguish them. The term is beginning to appear in other contexts in
senses which are consistent with this.

1 Of these the first to reach print was [RDN]. This was to have appeared in the
Journal of Unzfied Science in the Proceedings of the International Congress for the Unity of
Scienre held at Haf\'ard UnivprHity in Heptember, 1939, but all copips excppt some thr~('

hundred distributpd to registrants at the Congress were destroyed in the bombing of
Rotterdam. The reprint which appeared mysteriously in Dialertira in 19f>4 appears to
have been made frOln a ('arbon ('opy which was spnt to Gonseth on .Junp 22, 19:19.
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The reader should note that not all persons who have written about formal
systems have understood the term in the sense in which it was intended.
Thus Church's review of the reprint of [RDN] is based on a misunderstand
ing.

This crystallization of the term 'formal system' frees the terms 'abstract'
and 'theory' for other uses. Hence these terms are used here in technical
senses which are explained in the proper places. The usage of 'theory' is
new here; that of 'abstract' extends back at least to [CLg].

So much for 'formal system'. We shall now consider some other terms
concerning which changes have been made.

The formal objects of an ob system were at first called "entities." This
term was translated into German as 'Etwas'. The term 'entity' remained
in use in my papers in English until the change in 1937. At that time the
word 'term' was substituted for it, and with it the word 'token', which is the
English cognate of German 'Zeichen', was used for the atoms. But these
words have other uses in the U language, and it became evident that it was
confusing to use 'term' as a technical term. The change to 'ob' was made
in 1949, too late to affect [TFD], [STC], [PBP], but in time to affect [SFL],
[TCm], etc.

The replacement, in Sec. D 1, of 'logistic' by assertional has already been
commented on (see Sec. 1).

Another trio of terms concerning which there has been a variation in
usage is 'proposition', 'statement', and 'sentence'. The term 'proposition'
has a bad odor to many influential logicians because philosophers have used
it in such vague ways. But since these philosophical uses do not concern
us, the term is really free for us to define and use in any way we like. At
first I used it in the sense of 'statement'. But with the writing of [TFD] it
became desirable to indicate a distinction between what is stated in the
U language and what is only named therein. The word 'statement' is here
used for the former; 'proposition' for the latter. This is an important dis
tinction regardless of what views one may have as to the ontology of the
notions referred to. As for 'sentence', I use it as a grammatical term. There
is at present a tendency to use it in all three of the above senses, much like
the German word 'Satz'. This tends to make the discussion less, rather than
more, precise. The philosophy of this usage is discussed in [IFI]. The matter
will concern us further in Secs. 3 and 5A.

In regard to functors, it was proposed in [TFD] to call the two basic kinds
(with nominal and sentential values, respectively) "junctors" and "nectors."
(This was a suggestion obtained from reading a work by O. Jespersen.)
According to this usage, what is here called an "operator" would be called
an "adjunctor" or perhaps a "conjunctor." This proposal has never been
followed up. In the present context the term 'operator' seems more natural.
But if it is desired to apply these considerations in contexts where it is desired
to use 'operator' in some other sense, then it might still be considered.

3. Metamathematics. Anyone who looks at all seriously at formalistic
work of modern mathematical logic can hardly avoid noticing a great variety
of words beginning with the prefix 'meta-'. One meets 'metalanguage',
'metasystem', 'metatheorem', 'metalogic', 'metacalculus', 'metasemiosis' (Sec.
C6), and, in German, 'Metaaussagenkalkul'. All these terms are described
as in principle due to Hilbert. Actually the only one of them which Hilbert
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himself used is 'metamathematics'; the rest were invented by his followers
on the basis of some analogy. There is a danger that a student will lose
sight of what metamathematics actually was and on what principle these
analogies are based. In order to keep matters straight, I shall present here
some additional discussion concerning Hilbert's ideas and their relation to
the notions of this book. In doing so I shall use the terminology of the text,
even though it may be quite different from Hilbert's own. Furthermore,
I shall not attempt to describe the evolution of Hilbert's thought-for that
see the references in Sec. IS6-but shall describe the impression which one
gets from a series of papers appearing in the early 1920s.

Hilbert took as datum ordinary mathematics expressed in a certain sym
bolism. The precise nature of this symbolism does not concern us, but it
constituted a language L in the sense of Sec. C6. Hilbert's metamathe
matics was then a discipline in which one reasons intuitively about the
expressions of this L in a syntactical system. Thus L becomes a syntactical
o language.

In metamathematics we make statements; however, these statements are
no longer expressed by phrases of the 0 language, but are about them. These
statements must, of course, be expressed in some language. Hilbert did not
introduce any name for this language, but it is precisely what is here called
the U language.

Let us now examine the activity in metamathematics. We first have to
recognize the 0 symbols (Le., the symbols of the original mathematics) and
be able to say when a given symbol is one of them. We have to recognize
o expressions as strings of 0 symbols, and among the 0 expressions a cer
tain subclass, here called wefs (well formed expressions). Finally, we have
to recognize when a sequence of such wefs, with or without auxiliary indi
cations, constitutes a proof. A wef which is the final wef of a proof is called
a provable wef, or a thesis. The principal object which Hilbert aimed at
was to characterize the theses in objective terms, in particular to show that
certain kinds of wefs are not theses (consistency), and if possible to find ways
of deciding whether a given wef is a thesis (decision problem). All this
activity is syntactical in nature; the truth or falsity of a statement of meta
mathematics depends solely on the structure of the 0 expressions being
talked about. In the last analysis this depends on the equiformity (see Sec.
A2) of 0 inscriptions.

Now the U language must contain names for the 0 expressions, verbs for
making the above-mentioned statements about 0 expressions, as ,veIl as
additional linguistic devices for indicating proofs, constructions, general
statements for whole classes of 0 expressions, etc. For the names of the
o expressions Hilbert used these expressions themselves. As for the second
and third elements mentioned, although Hilbert recognized the need of
additional symbols, called "Mitteilungszeichen," to be used in the usual
mathematical way (mostly as U variables in the sense of Sec. 3D4), yet he
preferred to use the words of ordinary language wherever possible, and in
particular expressed the verbs by words such as

--ist ein Zeichen
--ist eine Formel
--ist beweisbar
--kommt in--vor
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Metamathematics thus contains all statements to the effect that such and
such an expression is provable. Let us call these the elementary statements
of metamathematics. Further, let the part of nletamathematics which is
confined to the elementary statements (together with the preliminaries neces
sary to formulate them) be called elementary metamathematics. Then,
clearly, elementary metamathematics is a metasystem, in the sense of Sec.
C6, with an autonymous representation. Further, the part of the U language
which contains the first two kinds of expressions listed in the preceding para
graph will constitute the A language of that system. On the basis of elemen
tary metamathematics, the rest of' metamathematics can be developed in
ways which we shall consider in the next chapter. Metamathematics is
thus a metasystem formed by metasemiosis from ordinary mathematics, but
since it is autonymous, it can equally well be regarded as formed by abstrac
tion (Sec. C6). In this way the Hilbert conception can be brought under the
present one.

The autonymous representation of Hilbert is-arguments to the con
trary notwithstanding-quite impeccable so long as we do not associate
any meaning with the 0 expressions (cf. Sec. 2A2). But we do want to
associate such meanings; moreover, the argumente of Godel, Tarski, and
others show that we enrich the content of our science by so doing. Con
sequently, it is worthwhile to avoid the autonymous representation. There
are two essentially distinct methods of bringing this about.

The first method, which is currently the one in general use, is to change
the A nouns. This gives the various alternatives considered under meta
semiosis in Sec. C6. I t has the disadvantages noted there.!

The second of these methods is to change the 0 language. Thus Scholz
[GZM.I, first edition, p. 26; second edition, p. 19] states, in effect, that his
o language is to be written in heavy ("fett" or "Blockschift") type and that
any such letter is to be denoted in the A language by the corresponding letter
in ordinary type. One can go further in this direction. It is a pity that
Scholz did not specify red ink for his 0 symbols, because then it would have
been obvious on even a casual inspection that there was practically no red
ink anywhere in Scholz's book except on the pages cited. In fact, as ~
noticed in Sec. C3, one does not need to specify the 0 language at all, but
can leave the reader to construct one to his fancy. In such a case one has an
abstract syntactical system. :Furthermore, since the wefs of Hilbert's 0

1 In support of the conclusion that the second method increases the difficulty of com
prehension, the following is an extreme example. I)efinition 13 of Tarski ([WBF, p. 296]
or [LSM, p. 179]) contains a technical error in that the five axioms given, which are sup
posed to characterize a Boolean algebra, are actually satisfied by the five-element non
Inodular lattice (see Chap. 4, Fig. 2d). The error arises in that the fifth of the axioms is an
incorrect transcription of the ninth axiom in one of the sets of Huntington [SIP]. Thl~

rnistake appeared in the Polish edition of tll(' work, which was publish~d in 193:3; passed
unnoticed through translations, first into G~rman and thpn into English; and was only
discovered by accident in 1956. As Tarski wrote on :l\1ar 8, 1957, "It seems strange that
so far neither I nor anybody else has noticed the mistake (though the paper has probably
been read by a nUlnher of people)." Of course, Tarski's conclusions are not affected by
the details of hIS formulation of Boolean algebra, and no 00(' had ever attC'rnptp<! the
SOlne\\ hat ard HOUS Inechanical task of ascertaining whetllPr the axiorns actually said what
they were supposed to If the axioms had be('n expressed in the usual sct-thC'off'tip
language, such a situation would be hardly conceivable.
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language are monotectonic, the resulting system is an ob system, and the
abstraction can be pushed further until one has an abstract ob system. In
this "'ay an abstract ob systenl can be reached from the Hilbert standpoint.
This conclusion is not affected by the fact that, at least as presented in lALS],
it ,VflS reached in a quite different \\ray from Whitehead and Russell LPMt]
as point of departure; nor by the fact (mentioned in Sec. 2) that Hilbert
did not entertain, at least not explicitly, the notion of formal system in
general.

Hilbert has, of course, definite reasons for preferring a syntactical repre
sentation, viz., the concreteness mentioned at the end of Sec. C6. His o'wn
statement is as follows (from his lNBM], pp. 162ff., ,vith onlission of a foot
note; cf. his [GLM], p. 1):

Wie wir sahen, hat sieh das abstrakte Operieren mit allgemeinen Begriffsumfangen
und Inhalten als unzulanglieh und unsieher herausgesteHt. Als Vorbedingung fiir
die Anwendung logiseher Sehliiss€' und die Betatigung logiseher Operationen muss
vielmehr schon etwas in d€'r Vorstellung gegeben sein: gewisse ausserlogische diskrete
Objekte, die ansehaulieh als unmittelbares Erlebnis VOl' aHem Denken da sind. Soil
das logisehe Sehliessen sieher sein, so miissen sich diese Objekte vollkommen in allen
Teilen iiberblieken lassen und ihre Aufweisung, ihre Unterseheidung, ihr Aufeinander
folgen ist mit den Objekten zugleieh unmittelbar ansehaulieh fiir uns da als etwas,
das sieh nieht noeh auf etwas anderes reduzieren lasst. Indem ieh diesen Stand
punkt einnehme, sind mir-im genauen Gegensatz zu Frege und Dedekind-die
Gegenstande del' Zahlentheorie die Z€'iehen selbst, deren Gestalt unabhangig von Ort
und Zeit und von den besonderen Bedingungen der Herstellung des Zeiehens sowie
von geringfiigigen lTntersehieden in der Ausfiihrung sieh von uns allgemein und sieher
wiedererkennen lasst. H ierin liegt die feste philosophisehe Einstdlung, die ieh zur
Begrundung der reinen Mathematik-wie iiberhaupt zu aHem wissensehaftliehen
Denken, Verstehen und Mitteilen-fiir erforderlieh halte. am Anfang-so heisst
es hier-ist das Zeichen.

This is a point well taken. But it simply argues that one must have the
possibility of a syntactical representation, not that one must actually exhibit
it. If one insists on doing SO, and the autonynl0us representation is intoler
able, then it would be better for most purposes to use the device of Scholz.
Furthermore, J see no reason why treelike artifacts, such as suggested in [APM]
as possible representation for an ob system, would not do equally well.

In all this I have not used the ternl 'metalanguage'. Neither did Hilbert,
although he spoke of "Mitteilungszeichen" and might very well have spoken
of a "Mitteilungssprache." According to Carnap (see his [LSL], p. 9; on
p. 4 he uses 'syntax language' for the language used), the general use of
'meta-' in analogy with 'metamathenlatics' is due to the "\Varsa"r logicians."
The term 'Metasprache' appears, in a generalized sense, in Tarski [BBO] and
rWBF], and 'metalanguage' in this general sense appears in Carnap [ISm].
The difficulty with this term is that the process of metasemiosis can be
iterated, and one forms a metametalanguage in ""hich he talks about the
metalanguage. But since metasemiosis can be applied only to a language of
formalized structure, this cannot be done if the metalanguage is identified
with the U language. I therefore propose to use 'metalanguage' in the sense
of A language of a metasystem. Then metasemiosis can be iterated as luany
times as ,,'e please, and the U language ,vill always be the top language.
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This is just as close an analogy to Hilbert's idea as the prevailing ambiguous
usage (cf. Sec. A2; the suggestion was made in [LMF]).

4. Semiotic systems. General references to semiotics were given in
Sec. 1. Here I shall sketch some of the further developments of semiotics,
and I shall make some critical remarks. The sources for the latter are
[MSL]; [LFS]; [LMF]; [CLg], sec. IS2.

A semiotic theory (or system) is a theory in which we talk about the sym
bols or expressions of some language or languages. This theory may not be
a formal system, but we shall think of it as being at least partially so, 00 that
it makes sense to talk about its A language. Such a system is necessarily
an interpreted system; in it we make definite understandable statements
about the language or languages concerned.

Morris and Carnap divide the field of semiotics into three parts, or "dimen
sions." 'Ihese are called syntactics, semantics, and pragmatics, respectively.
Suppose we have a theory 6 concerning a language L. Then G is said to
be syntactical (relative to L) just when the statements of G refer only to
the "syntax" of L, that is, the structure of its expressions as strings of sym
bols; 6 is semantical with respect to L if the meanings-i.e., designata-of
certain expressions of L are also taken into account; and it is pragmatical if
the relations between L and its users-psychological, physiological, practical,
or whatnot-are talked about as well. With pragmatics we shall not be con
cerned (it is the special subject of Martin [SPr]), but it will be necessary to
make some remarks about the other two. In spite of the apparent objectiv
ity of the above trichotomy, it is not always clear when a system is syntacti
cal and when it is semantical.

The difficulty may be illustrated by reference to Example 1. Suppose
that, as suggested in Sec. C3, a, b, and c are, respectively, 'ex', '{J', and 'y';
that L is the set of expressions in these three letters; and that G is the system
of Example 1. Then 6 is a semiotical system relative to L. If the sams
are the expressions formed by writing zero or more b's after an a, the tettles
are the expressions formed by writing a c between two sams, and the tantets
are those tettles in which the two sams flanking the c are alike, then we have
a valid interpretation of G, and G is syntactical relative to L. On the other
hand, if we know in addition that the tettles are sentences of L-i.e., that they
designate statements when L is used-then G is semantical. Under these
circumstances G is both syntactical and semantical. This is true a fortiori if
we know that the tantets are true sentences and the sams designate numbers.

A similar, but more complex, situation occurs in regard to Example 6.
Let L have the alphabet consisting of 'N', '0', and the infinite sequence (J

consisting of 'so', 'SI" 'S2" • • •• Let TT be the set of expressions obtained
from the members of (J by iterated use of 'N' as unary prefix and '0' as
binary prefix (a Lukasiewicz representation). Let a be 'so', and if X is a
member of (J, let Xb be the next succeeding member of (J. Further, if X
and Yare in TT, let I X be the result of writing 'N' before X, and X :::> Y
the result of writing first '0', then X, then Y. Let, T be the subclass of TT

consisting of tautologies, i.e., of those words which always have the value 1
in any valuation assigning values '0' and '1' to 'so', 'SI" ••• , the values of
I X and X :::> Y being obtained from the usual truth tables as in Sec. C5.
Then if X is any L word, there are effective processes for deciding whether
X is in (J, in TT, or in T. Let S(X), P(X), ~ X be interpreted as saying,
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respectively, that X is in (J, 7T, or T. Then we have a valid interpretation of
Example 6, and Example 6 so interpreted is a semiotical system over L.
Moreover, it is syntactical. If we adjoin the information that the expres
sions in 7T become sentences if arbitrary sentences from L are substituted for
the variables, then it becomes semantical, and it is a fortiori semantical if
we adjoin the information that any sentence obtained from those in T by
such substitution is a true sentence of L. But it does not cease to be syn
tactical on that account.

It is now clear that there is something vague about the definitions of
'syntactical' and 'semantical'. Let us attempt to be more accurate. We
shall define syntactical or semantical statements relative to L; the extension
to syntactical or semantical theories or systems can then be made in an
obvious manner. Let us assume that we are dealing with statements whose
truth can be determined on either syntactical grounds, i.e., considerations
concerning the structure of the L expressions as strings (or finite sequences)
of L symbols, or semantical grounds, i.e., knowledge of the L designata, or
both (thus excluding pragmatical considerations). Then a syntactical state
ment is one whose truth can be determined on syntactical grounds alone;
a semantical statement is one which gives information about the designata.
Then it is clear that a statement, and therefore a system, can be both syn
tactical and semantical at the same time. A semantical statement which is
not syntactical may be called strictly semantical,. one which has no semantical
information, purely syntactical. We might, of course, define the terms
differently, but these definitions appear to be the most useful. Statements
which are both syntactical and semantical simultaneously are of great impor
tance. We attempt to make our notions syntactical in order to have defi
niteness of proof; indeed, this is the purpose of deductive systems: we want
them to be semantical so that they can be applied. All the examples of
semantical notions in Carnap [ISm] are, from this point of view, also syntac
tical (cf. [LSF]). Strictly semantical notions occur in Tarski's theory of
truth (his [WBF]), where they are coupled with nonconstructive notions;
purely syntactical ones occur in the theory of algorithms, etc.

It should be noted, in passing, that the question of whether we have a
syntactical or a semantical situation is not a question of whether or not the
system is interpreted-it is interpreted, or can be, in either case-but of the
information available concerning the language L. A syntactical system in
the sense of Sec. C2 will be syntactical in the present sense-if an 0 language
is not given it can be supplied-but it is semantical only when the 0 language
is a language L for which the information is available.

The above examples illustrate also that the semantical information may
enter in several stages. With reference to the first example, we may dis
tinguish three stages and, corresponding to them, three subdivisions of seman
tics, as follows:

1°. We may know what expressions of L are sentences. This stage is
the gramrnatics of Sec. A3. It corresponds to Carnap's "rules of format.ion."
In Example 1 the sentences are the tettles.

2°. We may know what are the true sentences or assertions of L. This
stage was called aletheutics in [LFS]. It corresponds to Carnap's "rules of
truth." In Example 1 we know the aletheutics when we know that the true
sentences are the tantets.
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3°. We may know the designata of the remaining phrases of L. This is
the onomatic8 of [LFS] and [CLg], sec. 1S2. It corresponds to Carnap's
"rules of designation." Thus to get the onomatics of Example 1 we need to
know that a designates 0 (where '0' is a numeral in the U language) and
that the suffix 'b' designates the successor function among numbers.

Naturally one can, conceivably, subdivide each of these divisions. Of
these subdivisions I shall mention only tectonics (Sec. C6), whose concern is
with the ways in which processes of construction (Sec. A6) can be repre
sented by expressions. This may be regarded as a subdivision of gram
matics. (Suggestions made in [LFS] for division of onomatics have never
been followed up.)

For each of these divisions there is a corresponding adjective which can be
applied to 'statement' or 'system'. One can also apply these to 'language',
as when one interprets the statement that L is an aletheutical language as
meaning that we know which L expressions designate true sentences. Thus
the A language of any formal system is aletheutical, but if the system is
abstract, it is not onomatical.

There are certain subtleties to the foregoing definitions which deserve
some further discussion.

Suppose we were to set up an onomatical system 6 over an 0 language L.
Let M be the A language of 6. Then M must contain names for the expres
sions of L and ways of stating the syntactical relationships between them.
This part M l of M will constitute the A language of a syntactical system 6 1

over L; M l will hence be a metalanguage in the sense of Sec. 3. But
besides M l , M will have to contain means for referring to the designata of L;
thus M must contain a part M 2' which will have to be a translation of L
(perhaps L itself). In addition, M will have to contain at least a predicate
to express the designation relation. If 6 is formalized to a formal system
6 *, and if this formalization is by metasemiosis, then the A language of 6 *
may be still a third language N; but if the formalization is by abstraction,
then we may identify N with M, and 6* with 6 (i.e., we may suppose the
formalization made before we began).

The terms 'metasystem' and 'metalanguage' were defined in Secs. C3 and
S3 for syntactical systems. The question is how these terms can be extended
to more general semiotical theories, distinguishing the previous senses by the
additional adjective 'syntactical' . Now 6 1 is a syntactical metasystem and
M) is a syntactical metalanguage (relative to L), but we must remember
that M l itself is an aletheuticallanguage, so that we must distinguish between
the senses of our new adjectives as applied to 'language' and 'metalanguage'.
By analogy it would also be natural to say that 6 is an onomatical metasys
tern relative to L and that M is an onomatical metalanguage. But it would
be confusing to call 6* a metasystem of L, since N is a metametalanguage.
Thus the term 'semiotical system' is more suitable for the general situation
(this is a correction of [CLg], sec. 1S2).

These considerations show the complexities of the situation in regard to
semiotical systems. The terminology suggested here is not standard in the
current literature, and the student will have to observe for himself how, if
at all, the particular authors make these and related distinctions.



Chapter 3

EPITHEORY

The preceding chapter dealt with the nature of a formal system; in this
chapter we study the ways in which we develop our knowledge about such a
system. Such development does not consist solely in deriving elementary
theorems one after the other. Once the system has been defined, we can
take it as datum and formulate further statements about it in the U lan
guage. These further statements are called epistatements and, when true,
epitheorems,. and the prefix 'epi-' will be used generally to signalize notions
involving such going beyond particular applications of the deductive rules.
We shall treat in this chapter considerations about epitheoretic processes in
general. Certain conventions which will be important later will be formu
lated, and a few epitheorems which apply to rather general sorts of systems
will be stated and proved.

Henceforth we shall suppose the systems we are dealing with are ob systems.
It would not be difficult to make modifications to apply to other types, but
there seems to be little advantage in doing so.

The different sections of this chapter overlap with one another to such an
extent that it ia not possible to arrange the sections in order without antici
pating notions which are not rigorously defined until later. This is particu
larly true in Sec. A; likewise, the terms 'U variable' and 'indeterminate',
although not formally defined until Sec. D, are needed earlier. In such cases
the rather vague preliminary notion ,,'hich the reader has will suffice until a
more adequate treatment is reached later.

A. THE NATURE OF EPITHEORY

It is appropriate to begin the study of epitheory by listing some examples,
without being concerned with how we judge their truth. After that we
shall study the truth criteria for some of the simpler kinds of these epistate
ments. This will give an idea of the nature of epitheory. It ",ill pave the
way for the more detailed study of some involved types of epitheorems in
the later sections of this chapter and, indeed, throughout the hoole

1. Examples of epistatements. Some examples of epistatements and
epitheoretic properties were considered in Chap. 2. Here certain of these
examples, as well as some additional ones, are listed and classified. This
classification includes several important types, but it is not intended to be
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exhaustive. Numbers in brackets refer to the Examples 1 to 6 of Chap. 2.
In dealing with sams, the ordinary notation for numbers will be used.

a. Combinations of a finite number of elementary statements by the ordi
nary sentential connectives; e.g.,

(al) 0 = 0 & 1 = 2 [2]

(a2) 2 = 4 --+ 3 = 6 [21

(a3) 1 =1= 2 (Le., not 1 = 2) [2]

(a4) ~ PI :::> P 2 & ~ P 2 :::> Pa ~ ~ PI :::> Pa [5]

b. Statements involving extension of the system in one way or another.
Systems may be extended in any of the following ways: (1) by adding new
atoms, forming an atomic extension; (2) by adding new operations, forming
an operational extension,. (3) by adding new axioms, forming an axiomatic
extension,. and (4) by adjoining new rules, forming an inferential extension.
We may also have extensions in which there is a combination of these proc
esses; if the new elements are atoms and operations only, we speak of an
ob extension, whereas if new axioms or rules are involved, of a statement, or
theoretical extension,. we may also have combinations which involve both of
these. Thus the idea of axiomatic extension was involved in the definition
of

Xl' ... ,Xm ~ Y

for an assertional system in Sec. 2D1. Examples of epitheorems of this
type are the following.

(bl) In the extension formed by adjoining the axiom

2=4
we have

3=5 [2]

(b2) If in addition to the axiom of (bl) we adjoin the rule

If X = Yand Y = Z, then X = Z

then 3 = 7 [2]

(h3) PI :::> P2' P2 :::> Pa ~ PI :::> Pa [5]

c. Statements involving generalization with respect to the obs and remain
ing true in any extension. Examples, in which X, Y, Z are arbitrary obs,
are

(cl)

(c2)

~X:::> X

X = Y --+ Xbb = Ybb

[5]

[2]

d. Statements involving generalization with respect to the obs, but not
always unaffected by extension; e.g. (with X, Y, Z, as in Sec. c),

(dl)

(d2)

X=X
X A (Y A Z) = (X A Y) A Zt

[2]

[3]

e. Statenlents involving generalization with respect to the elementary

t Cf. Exercise 202.
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theorenls, and thus giving necessary conditions for being such a theorem;
e.g.,

(el) Every elementary theorem is of the form

x=x
where X is an ob (sam) [2]

(e2) (Deduction theorem.) For any obs X, Y

If X I- Y, then I- X ~ Y [5]

f. Properties of the system as a whole, such as consistency, (Post) complete
ness, decidability, etc.

g. Relations of a system to other systems, including possibly its own sub
systems or extensions (thus including Sec. b); mappings of one system on
another; etc. Thus, wherever we use numerical subscripts to indicate a
sequence, we are really forming a mapping from the obs of the sequence onto
sams. 'The relations pointed out in Sec. 2C between Examples 1 and 2,
between Examples 3 and 4, and bet",·een Examples 5 and 6 are further
illustrations; so also are the reductions to special form considered in Secs.
2DI and 2D2.

h. Relations to extraneous considerations, infinitistic assumptions, con
tensive interpretations. Matters of interpretation belong here if intuitive
assumptions are really involved, but interpretation of one formal system in
another belongs under g.

Under epitheorems we must also include theorems about formal systems
in general, or about systems satisfying broad general conditions or related to
other such systems in stated ways. Thus the equivalences mentioned under
Sec. g above hold for a wide variety of systems.

Epitheorems are extremely important in modern mathematical logic. The
following examples are a few of the more famous ones.

Perhaps the most famous of all is the Godel incompleteness theorem.
This has already been alluded to in Sec. IC. It says, to put it roughly, that
in any formal system which is consistent and sufficiently strong to be useful
for mathematical purposes, one can find constructively an elementary state
ment which can be neither proved nor formally disproved. For this it
follows-as we saw in Sec. IC-that it is hopeless to expect that a single
formal system will serve as formalization of all of mathematics, and it shows
that we must be able to prove epitheorems about a system which transcend,
contensively speaking, what can be expressed by elementary theorems.
Godel went on to conclude that no such system was capable of formalizing a
proof of its own consistency. The theorem was first proved for a certain
formalism based on Whitehead and Russell [PMt], and as an epitheorem of
that (or any other special) system, it comes under Sec.!, but the proof can
be extended to a broad class of systems.

Other examples of famous epitheorems are the Lowenheim-Skolem theo
rem and the Godel completeness theorems. These are epitheorems of the
ordinary "classical" predicate calculus; they are nonconstructive in nature,
so that they come under Sec. h. The first one states that if a "formula"
(or more generally, a set of formulas) of that calculus has a model, then it has
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a denumerable model. The second says that a formula which is valid in
every denumerable model is assertible.

2. Fundamental truth criteria. As explained at the beginning of Sec. A,
no attempt was made in Sec. I to discuss the truth criteria of the epistate
ments there listed. Let us now turn to this problem.

We shall consider in this book only a class of epitheorems which we call
constructive. These are characterized by the fact that we accept them as
true only when we have an effective process which will actually carry through
to a definite decision in any particular case arising under their formulation.

To grasp the significance of this restriction, let us consider the epistate
ment (a3). Now what does it mean to say that an elementary statement is
false 1 Well, what does it mean to say it is true1 The elementary theorems
form an inductive class, and an elementary statement is in the class just
when there is a construction of it, Le., a formal demonstration. In order
to show effectively that an elementary statement is false, we must show that
no formal demonstration of it is possible. This amounts to showing that
every demonstration leads to a conclusion which is different from the given
elementary statement, thus bringing the negation under Sec. Ie. In order
to establish constructively the falsity of an elementary statement, we must
therefore give an effective process which will show that any elementary
theorem has some definite structural characteristic which the given elemen
tary statement does not have. In the case of the epistatement (a3), this is
not difficult. Indeed, we shall see later that we can establish effectively the
epitheorem (el); from this \ve have (a-3), since the obs on opposite sides of the
equality have different constructions. But in general this cannot be done.
In fact, the Godel incompleteness theorem shows that there are systems in
which we are unable to establish effectively the falsity of a single elementary
statement. In such cases the negation of an elementary statement merely
describes a goal which we cannot attain.

This argument, which is quite similar to that advanced by the intuitionists
(but for a very different reason), shows that we cannot take the sentential
connectives too naively. I t is necessary to make a study of the properties
which these connectives have in the present context. This study, for the
complicated cases where the connectives are compounded freely, will occupy
a large part of the rest of the book. The remarks made here are preliminary
and, in principle, cover only the simplest case, viz., where elementary state
ments are being joined.

For conjunction and alternation the situation is relatively simple. In the
case of conjunction, if 'A' and' B' abbreviate sentences,! the expression

A&B

abbreviates a statement which is true just when A and B are both true; on
the other hand, the expression

A or B

abbreviates a statement which we regard as proved just when we have

1 The letters 'A I, 'B' (and later also '0') are to be understood as abbreviations of sen
tences; they are also used in the text as names for the same statement. This is an in
stance of the general convention in regard to the U language which was mentioned at the
end of Sec. 2A3.
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(1)A--+B

either a proof of A or a proof of B or both. In particular-for reasons which
were stated in Sec. lCl-\\'e do not admit the possibility that we can be
sure of A or B without knowing which.

The situation in the case of implication is more complex. The ordinary
truth-table (or material) implication involves negation. This can be applied
in cases, like (a2), where the underlying system is decidable, but in general
it is open to the objections already made for negation.

In a context where the constructive point of view is important, we shall
understand the statement

where 'A' and' B' are abbreviations for sentences, as being true just \vhen
there is an effective process for obtaining a proof that B holds from a proof
that A holds; we understand this as including the possibility that the effective
process may show that there is no proof that A holds. In this sense (a2)
is true. Another example is the following. Let X be an ob of Sec. 2C3,
Example 5, and let Y be obtained from X by substituting some ob Z for Pl.
If we make this same substitution throughout a proof that ~ X, we convert it
into a proof that ~ Y. Since this is an effective process, we have

~ X --+ ~ Y (2)

In the case where A is a conjunction of elementary statements AI' ... , Am
and B is an elementary stateluent, there is another way worth noting of
characterizing (1).1 Let us consider (1) as a rule to be adjoined to the given
system to form an inferential extension. Let us say that (1) is an admissible
rule if every elementary theorem in that inferential extension is also an
elementary theorem in the original system. Then if (1) is true as defined
in the preceding paragraph, (1) is an admissible rule. For consider any
demonstration in the extended system whose conclusion is C. t If (1) is not
used in that demonstration, then it is a demonstration in the original system.
Otherwise the first application of (1) can be eliminated, for in the tree dia
gram of the demonstration there must be a demonstration of each of AI' ... ,
A m above the first node \\,here (1) is applied, and from these ,ve can construct
a demonstration of B in the original system; this demonstration can replace
the demonstration using (1). Continuing in this way we eliminate appli
cations of (1), one by one, until ",oe have a demonstration of C in the original.
Whether constructive adnlissibility implies that (1) hold as defined in the
preceding paragraph is not clear. However, using a platonistic argument,
we can show that it does. For if there is no proof for A, then (1) holds;
otherwise a proof of A followed by an application of (1) to infer B would be
a derivation of B in the extended system; hence B must be derivable in the
original system.

Under the assumption of the last paragraph regarding A and B, the con
dition (1) will be fulfilled, in particular, if B is a theorem in the axiomatic
extension formed by adjoining A (or AI' ... , A m) to the axioms, for we
convert a proof that A holds into a proof that B holds merely by adjoining
the extra steps necessary to derive B from A. In such a case we say that
B is formally deducible from A. That this is a stronger relation than (1) is

1 The idea due to Lorenzen. See, for example, his [EOL].
t Note that C is constructively an elementary theorem only when a formal demonstra

tion is given.
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shown by the fact that neither (a2) of Sec. 11 nor, in general, (2) with X, Y
as there stated holds in the sense of formal deducibility. The relation

Xl' ... ,Xm ~ Y

defined for an assertional system in Sec. 2D 1, is the formal deducibility
analogue of

~ Xl & .. · & ~ X m --+ ~ Y

This discussion completes the study of the simple cases of the sentential
connectives which arose in the examples of Sec. Ia. The discussion has
also taken into account those in Sec. Ib involving only axiomatic extensions
[viz., (bI) and (b3)]. The generalization ideas inherent in Sees. Ic to Ie are
of such interest that it seems expedient to devote Sec. 3 to them.

3. Epitheoretic generalization. We now attack the problem, left to one
side in Sec. 2, of explaining the criteria of proof for epistatements, such as
those under Sees. Ie to Ie, which involve generalization with respect to obs
or elementary theorems. Since the obs and elementary theorems are induc
tive classes, the problem reduces itself to that of making constructive general
statements concerning the elements of an inductive class.

There are two main sources of such generalizations. On the one hand,
we may be given, as part of our data, statements involving U variables2 or
parameters which may be specialized to arbitrary elements of the class.
Thus the rules and axiom schemes of Example 5 (Sec. 2C3) hold in that
sense for arbitrary obs, and they will so hold by definition no matter how
the system is extended. Consequences derived from such data will hold for
all determinations of the parameters; in this way, as examples to be con
sidered presently will illustrate, the epitheorems of Sec. Ic are derived. This
kind of generalization will be called schematic generalization. On the other
hand, it may be necessary to deduce the general statement directly from the
definition of the class. In this case we speak of inductive generalization, or
generalization by induction.

To get an illustration of schematic generalization, let us work through a
proof of the epitheorem (cI). For this we indicate the first and second
axiom schemes of Example 5 by 'PK' and 'PS', respectively. Then the
derivation proceeds as follows, the steps being numbered on the left and
justified on the right. Here X, Yare arbitrary obs.

1. ~ (X :::> (Y :::> X)) :::> ((X:::> Y) :::> (X :::> X))

2. ~ X :::> (Y :::> X)

3. ~ (X :::> Y) :::> (X :::> X)

4. ~ (X :::> (X :::> X)) :::> (X :::> X)

5. ~X:::> (X:::> X)

6. ~X:::> X

by PS

by PK

by 1, 2, Rule

taking Y to be X :::> Xt
by PK

by 4,5, Rule

1 Thus if we adjoin I = 2 to Example 2 as an axiom, we get 1 = 2, 2 = 3, 3 = 4, etc.,
in the enlarged system, but without the rule of transitivity for =, we do not get 2 = 4.
Cf. Sec. 6A2.

2 See Sec. Dl.
t That is, we regard' Y' as an abbreviation for 'X :::> X'. We could have written

'X :::> X' for 'Y' in steps 1 to 3, but it is more convenient to leave 'Y' undefined until
step 4.
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This gives what we shall call a demonstration scheme (often called a "proof
scheme"); it becomes a demonstration if we determine X to be any partic
ular ob.

An alternative way of presenting such a demonstration scheme-gener
alized to the case of m U variables in an obvious way-is the following. Let
6 be a given system, and let 6' be an atomic extension of 6 formed by ad
joining new atoms Xl' ... , X m , without any new axioms, except that it is, of
course, understood that the U variables for arbitrary obs of 6 in the formu
laticn of the rules and axiom schemes of 6 become U variables for arbitrary
obs of 6'. Such additional obs are called (adjoined)l indeterminates. Now
any elementary theorem of 6' may be validly interpreted2 as that elementary
theorem scheme of 6 which one gets by substituting distinct variables for
arbitrary 6 obs for the adjoined indeterminates; indeed, a demonstration in
6' will become a demonstration scheme for 6 if such a substitution is made
throughout. Moreover, the most general demonstration scheme will be
obtained in just that way, for a demonstration scheme for 6 will also be one
for 6', and if one specializes the U variables to be the indeterminates, one
gets an 6' demonstration from which the original demonstration scheme can
be recovered by the indicated substitutions. Thus if we define an elemen
tary theorem scheme as one which can be obtained by a demonstration scheme,
then such a theorem scheme is essentially the same as an elementary theorem
in a suitable atomic extension. This brings such epitheorems under Sec. lb.

This argument applies not only to elementary theorems, but to schematic
forms of certain epitheorems considered in Sec. 2. For example, the epi
theorem (c2) is a schematic statement of formal deducibility. Its proof is
the following demonstration in the ob extension in which x and yare ad
joined indeterminates.

X = Y by hypothesis
xb = yb by the rule of Example 2

xbb = ybb by the same rule

The argument will apply to any form of epitheorem as long as it is truly
schematic.

In the case of a system like Example 5 (Sec. 2C3), it is not necessary to
adjoin indeterminates, for indeterminates have already been built into the
system. In that system we have an epitheorem of the type of Sec. Ie to
the effect that any ob can be substituted for one of the Pi.

We turn now to inductive generalizations. Suppose we have an inductive
class ~ with initial elements ~ and operations .0. In order to show that
every member X of ~ has a certain property P, It is sufficient to establish
the two following principles: (1) Every element of ~ has the property P;
(2) any element formed by applying an operation w of .0 to elements which
have the property P will also have the property P. For knowing these two
principles (constructively, of course), we can form an effective process for
converting a constructive proof that X is in ~ into a constructive proof that
X has P, as follows. We can know constructively that X is in ~ only when
we have actually given a construction (t terminating in X. With (t there is

1 We shall consider the possibility of other forms of indeterminates later.
2 See Sec. 2B4.
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associated a tree diagram 1). The elements of (£ corresponding to the top
nodes of 1) have property P by principle I. Then passing down the tree
from node to node-let us say, in the order of the normal construction se
quence-we can show by principle 2 that the other elements of [ in turn
have the property P. Thus in due time we show that X has the property P.

There are two forms of proof by induction corresponding to the two main
types of inductive classes, viz., the obs and the elementary theorems (or the
consequences of some basis). In the former case we shall speak of a proof by
structural induction,. in the latter, of one by deductive 'induction. Ordinary
mathematical induction is, from the present standpoint, a structural induc
tion on the system of sams; it occurs with such frequency, in connection
with sequences (cf. Sec. Ig), that it is \vorthwhile to name it as a third form,
natural induction. In any case the principles 1 and 2 are called the basic
step and the inductive step,1 respectively, of the proof by induction.

As an example of structural induction we prove the epitheorem (dl). The
basic step holds since

a=a

is the axiom of Example 2. The inductive step holds since

X = X --+ Xb = Xb

is an immediate application of the second rule.
The converse of the epitheorem (dl) is the epitheorem (el), which follows

by deductive induction. The basic step holds since the sole axiom has the
indicated form. The inductive step holds since the applicable rule converts
a statenlent of the indicated form into another statement of the indicated
form. Other exalnples of epitheorems of this type are the principle of sub
stitution for Example 5 (discussed in Sec. 2D3); this was used. in principle,
in the above discussion of demonstration schemes.

Proofs by structural or deductive induction may take several forms. Thus
in one form of proof by deductive induction we show explicitly that the
property holds for r if it is an axiom; also if r is obtained by a rule such that
the property holds for the premises. In another form we may suppose we
have a sequence r 1 , r 2' .•. , r n constituting a demonstration ~, and then
show that every r k has the property if all those (if any) preceding it do.
Again we may make a natural induction on n (Le., the length of ~). 1'hese
forms of proof are equivalent to one another, and the choice between them in
the sequel has often been dictated by extraneous factors. 2

4. Other epitheorems. The remaining, more complex, types of epitheo
rems will be discussed here more briefly. Many of them are of an advanced
character; since they thus concern the superstructure rather than the foun
dations of mathematical logic, they will not be treated extensively in this
book. So far as the epitheorems under Sec. If are concerned, consistency
was defined in Sec. 2BI, Post completeness in Sec. 2B2, decidability in Sec.
2B I. In view of the explanations made there and those already made here,
it seems clear what the criteria of truth for such epitheorems must be.

I These terms are due, in principle, to Kleene. In his [IMM], p. 22, he uses the terms
'basis' and 'induction step', respectively.

2 The reader may find it a good exercise to transform certain proofs from one form to the
other.
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A type of epitheoretic process coming under Sec. Ig is of sufficient impor
tance in the sequel to be mentioned at this point. A many-one mapping

a!""'oo.l a*

from the obs of a system G to the obs of a system G* is called a homomor
phism of G into G* just when the following conditions are fulfilled. To each
primitive operation Wi and primitive predicate 4>1 of 6, there corresponds an
operation wf and predicate cPf of G*, in each case of the same degree, such
that Wt(av ... , ami)* is the ob w;"(a*, ... , a:i ), and further

4>i(a1, ••• , an) -+ 4>;(ai, ... , a:
j

)

Evidently, a homomorphism is a valid direct interpretation of 6 in the obs
of 6*. Sufficient conditions that a valuation of the obs of 6 as obs of G*
be a homomorphism are that the condition on the operations be satisfied,
that the axioms of 6 be transformed into theorems of 6*, and the deductive
rules of 6 be transformed into admissible rules of 6*. An endomorphism
of 6 is a homomorphism of 6 into itself. These terms are most useful when
6 and 6* are interpreted systems, in which case further specializations can
be made (see Sec. 5A4), but they are sometimes useful under the general cir
cumstances here stated.

EXERCISES

The reader should prove or disprove as many of the epitheorems listed in Sec. 1
as he can. For other examples, see the exercises to Sees. 2C and 2D.

B. REPLACEMENT AND MONOTONE RELATIONS

This section is concerned with definitions and theorems connected with
the notion of replacement in an ob system and with properties of monotony
with respect to it. This entails some additional technical considerations
related to constructions. Some general theorems with respect to quasi
ordering and equivalence relations are proved; these theorems, although
relatively simple, are applicable to many existing systems.

1. Preliminary explanations. The notion of an inductive class of ele
ments X formed from initial elements ~( by generating principles .0 is familiar
to us from Sec. 2A5. Here it is supposed that X is a class of obs; that ~ is
also a class of obs, usually but not necessarily atoms or quasi atoms; and
that .0 is a class of operations for forming obs from obs. Under these circum
stances we call X the combinations of ~ by.o. A proper combination of ~ by
.0 is one which is not a combination of any proper subset of ~.

When ~ is the class of atoms and .0 is the class of primitive operations of
a system 6, then the combinations of ~ by .0 are precisely the obs of G.
Other possibilities are, however, admissible. Thus ~ need not include all
the atoms, and it may incI\Ide obs which are not atoms l ; likewise .0 need not
include all the primitive operations, and it may include operations which are
defined in some way.

1 They need not even be quasi atoms in the sense of Sec. D2.
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In the discussion of Sec. 2A6, certain technical terminology relating to
constructions and tree diagrams was omitted so as not to clutter up the
treatment with unnecessary technicalities. Since this terminology will be
useful later, it will now be explained. Note that, under the general circum
stances admitted here, a construction is not necessarily unique. Indeed, in
the system of sams, abbb, as a combination of a by the operations of affixing
b and of affixing bb, has three different constructions.

Let (t be a construction of an ob X of ~, and let 1) be its associated tree
diagram. Then we shall call X the terminus of (t. Further the data of (t

will be the obs in ~ which correspond to the top nodes of!). An ob Y will
be called a component of X just when it corresponds to some node in 1); a
proper component is one which corresponds to a node other than the bottom
node. A branch of 1) is a sequence of nodes such that the successor of any
node is joined to its predecessor from below; a branch which begins with a
top node and ends with the bottom node will be called a maximal branch. A
node Y is over a node Z (and Z is under Y) if Y and Z are on a common
branch and Z comes after Y in the sequence. These terms relating to 1)

may be extended by metonymy to (t; in fact, it is permissible to identify
nodes with the corresponding components. Moreover, if Y is a component,
those components which are above Y, together with Y itself, constitute a
construction terminating in Y; this construction is called the construction of
Y determined by (t, and the associated tree diagram, the subtree determined
by Y in 1). Finally, if Y is a component of X in (t, there will be a branch
which begins with the node associated with Y and ends with the bottom;
the corresponding sequence of components beginning with Y and ending
with X will be called the composition from Y to X in (t.

Let (t be a construction of X, and Y be a component in (t. Then there
will exist a composition from Y to X in (t. If Y occurs more than once as a
component, then there will be a separate composition for each occurrence.
Accordingly, we define an occurrence of Y in X (relative to [) as a composi
tion from Y to X (in (t). This corresponds to current practice with syntac
tical systems, where an occurrence is identified with the initial segment
which ends at the last letter of the occurrence. If the syntactical system is
taken in the affixative sense, that notion of occurrence can be considered a
special case of that considered here.

Such a composition can be characterized as a sequence U1, U 2' ••• , Un'
such that U1 ==: Y, Un == X, and

k = 1,2, ... ,n - 1

k = 1,2, ... ,n - 1

Then

where ~k is a unary operation obtained by fixing all but one of the arguments
of some operation co of .0. We shall sometimes call the ~k the component
operations of the composition.

Now let there be given an occurrence of Y in X. The ob X' arising from
X by replacement of this occurrence of Y by Y' is defined thus: Let the Uk'
~k be as above, and let

Ui.== Y'

Uk+1 == ~k( Uk)
x'==: U~
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We can extend this definition to replacement in an elementary theorem
simply by treating the predicate as if it were an operation.

2. The replacement theorem. Let an infixed 'R' indicate a relation
(Le., a binary predicate between obs), and let ~ be a unary operation con
verting an ob to an ob. Then ~ will be said to be directly monotone with
respect to R just when for all obs X, Y

X R Y --. ~X R ~Y

It will be said to be inversely monotone with respect to R just when for all
obs X, Y

X R Y --. ~ Y R ~X

Now let 1p(X) be derived from X by a sequence of operations ~l' ••• , ~n'

and let every ~k be either directly or inversely monotone with respect to
R. If the number of inversely monotone ~'s is even, then tp is directly
monotone with respect to R; if that number is odd, it is inversely monotone.
This is easily shown by natural induction on n. Any inversely monotone ~

changes R, so to speak, into its converse; an even number of such reversals
leaves R unchanged, whereas an odd number is equivalent to a single re
versal.

The replacement theorem, hereafter referred to as R p, is as follows.
Theort'm 1. Let U be a component of X, and let ~l' ••• , ~n be the component

operations of an occurrence of U in X. Let each ~k be directly or inversely
monotone with respect to R. Let replacement of this occurrence of U by V
convert X into Y. Then, if the number of inversely monotone ~k is even, we
have

URV--.XRY

whereas if that nurnber is odd,

URV--.YRX

Proof. This follows immediately from the preceding discussion.
Examples. In propositional algebra, let

~l(X) == Z ~ X

~2(X) == X ~ Z

~3(X) == I X

where Z is a fixed ob, and let R be such that

XRY~~X~Y

Then ~l is directly monotone with respect to R (for each fixed Z), whereas
~2 and ~3 are inversely monotone. (These facts are shown in elementary prop
ositional algebra.!) Thus, if for particular obs X, Y, Z, we have

~ X ~ (Y ~ Z)

~ X' ~ (Y' ~ Z')

and if

then

~X' ~ X, ~ Y' ~ Y, ~ Z ~ Z'

1 They will be established in Chap. 5.
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In case R is symmetric, there is no distinction between direct and inverse
monotony. Thus the rule for replacement of equivalents in propositional
algebra is a special case of Rp.

In certain later connections it will be convenient to interchange the roles
of R and ~, that is, to say that R is directly (inversely) monotone with
respect to ~, rather than that ~ is directly (inversely) monotone with respect
to R.

3. Monotone relations. A monotont:, relation is a relation R such that

(17") U R V ~ X R Y

whenever Y is obtained from X through replacement of an occurrence of a
component U of X by V. Then a necessary and sufficient condition that R
be monotone is that every primitive operation be directly monotone with respect
to each of its arguments (Le., with all arguments but the one in question fixed).
The sufficiency is shown by Rp; the necessity by specializing X to ~(U), with
~ any operation with all arguments but one held fixed. I t will be convenient
to call the property of monotony (17"), as indicated.

A monotone quasi ordering is a monotone relation which is also reflexive
and transitive; a monotone equivalence is a monotone quasi ordering which is
also symmetric. In an applicative system the characteristic properties of a
monotone equivalence are

(p) X RX

(0') X R Y ~ Y R X

(7) X R Y & Y R Z ~ X R Z

(p,) X R Y~ZXRZY

(v) X R Y ~XZ R YZ

Here (17") breaks into the two properties (p,) and (v).
4. Monotone quasi ordering generated by a given relation. Given a

relation R 0' the monotone quasi ordering generated by Ro is the relation R
defined by the postulates (p), (7), (17"), and

(€) X R o Y ~ X R Y

The monotone equivalence generated by R 0 is that defined by these same pos
tulates together with (0'). Here the word 'defined' is intended in the sense
that the true statements of the form

XRY (1)

form an inductive class having those which follow.by (p) or (€) as initial ele
ments, and (7), (17"), and (0'), if relevant, as generating rules; the rule (17") can
be replaced, by virtue of Theorem 1, by rules stating the directness of each
of the operations formed from those of D by fixing all but one of the argu
ments-in the case of an applicative system, this gives the rules (p,) and (v).

Theorem 2. Let R be the monotone quasi ordering generated by Ro. Then a
necessary and sufficient condition that (1) hold is that there exist a sequence
X o, Xl' ... , X n , (n ~ 0), such that X o == X, X n == Y, and, if n ~ 1, for
every k = 0, 1, ... , n - 1, X k+l is obtained from X k by replacement of
an occurrence of a component Uk by an ob V k such that

Uk R o V k (2)
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Proof ofSufficiency. Ifn = 0, then (1) holds by (p). If not, then we have,
for all k < n,

by (2) and (€)

by Rp

by (T)

Proof of ~Tece88ity. Let S be the relation described in the theorem. Then
what we have to show is that

X R Y ~X S Y (3)

To do this we show that S satisfies the postulates for R; then (3) follows by
deductive induction on the proof of the premise.

If n = 0 in the definition of S, then Y is the same as X, and so S satisfies
(p). If X R o Y, then the case of the definition of S where n = 1, VI == X,
VI == Y applies; so S satisfies (€). Further, S satisfies (T), since a series of
replacements carrying X into Y, followed by a series carrying Y into Z, will
give a series carrying X into Z. Finally, S satisfies (17'). For let Z S W,
where Z is a component of X and replacement of an occurrence of Z by W
carries X into Y. Let Zo, Zl' ... , Zn (Zo == Z, Zn == W) be the sequence
formed as in the theorem by replacement of the V k by the Vk' Let replace
ment of Z by Zk convert X into X k' Then V k is a component of X k' and
the replacement of the appropriate occurrence of V k by Vk will convert X k

into X k+l • Then X S Y, showing that S has (17'), and hence that S satisfies
all the postulates for R.

This completes the proof of Theorem 2.
Examples of such generated relations are: (a) if R o is the relation of parent

to child, R is that of ancestor to descendant (on this account R is often
called an ancestral relation, or the ancestral of R o); (b) in the system of na
tural numbers, if R o is the pair (0,1), R is the relation "less than or equal
to," and if R o is the pair (1,3), R is that same relation among the odd num
bers. Other examples will occur shortly. Thus, in Sec. 3C3, == is the mono
tone equivalence generated by D, whereas in Sec. 3D4, the relation of A
convertibility is the monotone equivalence generated by (ex) and (fJ). Various
reducibility relations are examples of monotone quasi orderings. Other ex
amples are in the diagrams of Sec. 4A2, item 8°.

EXERCISES

1. Among the natural numbers with '~' understood as 'less than or equal to',
what sort of monotony characterizes the following operations: addition, subtraction,
multiplication, division, greatest common divisor?

2. In the system of natural numbers, let R o be the two pairs (2,4) and (5,8).
Characterize exhaustively the pairs for which R holds as well as those for which R
does not hold.

3. Show that if Ro is symmetric, the monotone quasi ordering generated by R o is
an equivalence. ([CLg], corollary 2Dl.l.)

4. Show that the monotone equivalence generated by Ro is the same as the mono
tone quasi ordering generated by So, where

X So y ~ X R o Y or Y R o X
([CLg], theorem 2D2.)
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C. THE THEORY OF DEFINITION

One of the methods of developing our knowledge of a system is the intro
duction of new terms by definitions. We shall consider this process here in
some detail, bringing it into relation with the algorithms of Sec. 2E. The
definitions considered are those which are often called nominal definitions.
Other types of definitions, such as semantic definitions and real definitions,
are not considered.

1. Preliminaries. A definition is traditionally conceived as a convention
in regard to the use of language. By. such a convention we introduce a new
symbol or symbol combination called a definiendum, with the stipulation
that it is to stand for some other symbol combination, called the definiens,
whose meaning is already known on the basis of the data and previous
definitions. It is then expected that, by successive replacement of definienda
by their respective definientia, we can reduce any properly formed expres
sion containing primitive and defined symbols to one which is understood
in terms of the primitive symbols alone; this latter expression, here called
the ultimate definiens, is supposed to always exist and be unique. Thus
definitions are regarded essentially as abbreviative linguistic devices, which
are theoretically eliminable, but practically necessary in order to cut our
discussions down to manageable size

Now we frequently want to apply the term 'definition' to conventions of
a more complex nature than this. We define not only single combinations,
but whole schemes or families of them, and we do this by stipulations in
\vhich the new symbol may appear in some of the definientia. Thus if we
use 'D' as an infix separating the definiendum from the definiens (we can
read'D' as 'is defined to be'), the statement schemes

a + Y D Y

Xb + Y D X + Yb

relative to the system of sams (Sec. 2C2, Example 2), 'X' and' Y' being U
variables for arbitrary sams, would be considered as constituting a definition
of the operation of addition among sams. That they can indeed so function
is shown by the fact that' +' can be eliminated by successive replacements
of definienda by definientia. For example, starting with abb + ab, we have,
successively,

ab + abb

a + abbb

abbb

It is desirable to extend the notion of definition so as to include such con
ventions involving recurrence.

In the case where the definiendum is a noun denoting a formal object, the
definition process amounts to extending the A language to include some new
nouns. These new nouns are then alternative names for the same obs as
before. But it is evidently permissible, in view of the arbitrariness associ
ated with the word 'ob', to conceive the process of definition as one which
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forms new obs of which the new A nouns are representatives. The intro
duction of these defined obs is thus a form of extension, here called a defini
tional extension. The association of these new obs to the original basic obs
is then a valuation of this extension in the original system.

This notion of definitional extension will be adopted as a basis in what
follows.

2. Definitional reductions. Let us now describe the notion of defini
tional extension more formally. Let the original system be 6 0 ; we shall
use the adjective 'basic' in reference to 6 0 , its obs, operations, axioms, etc.
The extended system we call 61' and we use the adjective 'new' to indicate
constituents which appear in it but not in 6 0 • We use the letters 'A', 'B',
'0', with or without affixes, for basic obs, and'X', 'Y', 'Z', for arbitrary obs,
new or basic, of 6). Then 6 1 is a definitional extension of 6 0 just when the
following conditions are satisfied.

a. The obs of 6 1 are formed by adjoining to 6 0 certain new operations
and new atoms. It will be convenient to consider the new atoms as opera
tions of degree zero, so that the new primitive constituents of 6 1 are opera
tions in this extended sense.

b. There is a new binary predicate, expressed by 'D' used as an infix. The
new elementary statements are thus of the form

XDY

We call X the definiendum and Y the definiens of (1).
c. The new axioms of 6 1 consist of all statements

XDX

(1)

(2)

together with a certain set (f of defining axioms, each of which is of the form

(3)

where 4> is a new operation of degree m. This 4> will be called the principal
operation of (3). Note that the arguments of the principal operation must
be basic obs.

d. There is a rule of definitional reduction, called Rd, allowing inferences of
the form

X D Y -.X D Y'

where Y' is obtained from Y by replacing an occurrence of the definiendum
of a defining axiom by its definiens. An application of this rule ,,,ill be
called a contraction of the component replaced.

Let us call a demonstration from the new axioms by Rd a definitional
reduction. It must evidently start with an instance of (2) or a defining axiom,1
the replacements being made in the definiens. Consequently, we can rep
resent such a reduction by simply giving the sequence of definientia. Just
when we eventually reach a definiens which is basic, this definiens will be
called ail ultimate definiens of X.

It follows, since the arguments of the principal operations of the defining
axioms are basic obs, that the different components which can be replaced

1 This case can be reduced to the case where we start with (2). For we can take X to
be the definiendum of the axiom.
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in a given Yare nonoverlapping. They can therefore be contracted in any
order without change in the final effect. If we fix on an order, say, from
left to right, or according to a fixed order of the principal operations and
then from left to right for the operation whose turn it is, we call a standard
reduction one conforming to that order. Such a reduction is an essentially
unique process. Indeed, the only possible freedom left lies in the fact that if
there are two or more defining axioms with the same definiendum, we can
choose which one to apply. Furthermore, any reduction can be transformed
into a standard reduction without affecting the result.

Let us call a set of defining axioms, and also a definitional extension based
on it, proper just when this last possibility does not arise, Le., when there is
at most one defining axiom for any possible definiendum. In such a case
the reduction will proceed in a unique manner. It may go through to an
ultimate definiens, or it may terminate in a new ob containing a possible
definiendum for which there is no defining axiom (in which case we say it is
blocked), or it may continue indefinitely.

Even in case the defining axioms are an improper set, we may remove the
ambiguity by arranging the defining axioms in an order, and then agreeing
that in case of doubt the first axiom in the ordering shall be applied. Even
though the number of defining axioms be infinite, which it generally is, they
can be enumerated, and this gives an order which can be used for the purpose
mentioned. We shall suppose that such an order is fixed as part of the
definition of a standard reduction. We shall call a definitional extension
with such a definition of standard reduction a standardized definitional exten
sion.

A standard reduction, then, has many of the characteristics of a process
specified by an algorithm in which the defining axioms (with 'D' replaced
by '~') are the commands. It differs from such a process chiefly in that
the number of defining axioms is generally infinite. This possibility of an
infinite number of commands introduces an indefiniteness in that it may,
conceivably, not be a definite question whether the process has terminated
at a given stage. When this eventuality is taken account of, we have an
effective process. However, instead of investigating this question, we use a
different approach which applies to all cases of practical interest.

Let us call a definitional extension schematic just when the defining axioms
are given by means of a finite number of axiom schemes containing U vari
ables for arbitrary basic obs. The definitional extensions arising in the
formalization of ordinary definitions as considered in Sec. 1 are schematic.
A schematic extension can be standardized by specifying an order of the axiom
schemes and requiring that they be applied in that order. As in Sec. A3,
we can consider such an axiom scheme as an axiom in an atomic extension
6i of 6 1 in which these U variables are taken as indeterminates, and thus as
commands in an algorithm in which the U variables are auxiliary letters.
Now the application of such an axiom scheme consists in finding the first
occurrence of its principal operation such that the arguments are basic and
are obtained by substitution of basic obs for the variables in the axiom scheme,
ascertaining the obs to be substituted, putting the appropriate Z in the place
of the definiendum formed by that occurrence and its arguments, and effect
ing the substitution. All this can be done by a Markov algorithm over 6i
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formed by adding certain commands in an appropriate order to those ob
tained from the axiom schemes.!

It is expedient to define here certain terms for describing special kinds of
definitional extensions (d.e.). A complete d.e. is one such that for every new
ob X, there is at least one definitional reduction to an ultimate definiens. A
univalent d.e. is one in which there is at most one such ultimate definiens.
Then we have seen that a proper d.e. is necessarily univalent, but the ex
ample given later (in Sec. 3) shows that the converse is not true. Also, any
standardized d.e. is univalent. A partial recursive d.e. is a univalent sche
matic one. A recursive d.e. is a partial recursive one which is also complete.
These terms agree with the usual ones2 in case 6 0 is the system of sams (i.e.,
numbers). Also, an explicit definition of an operation ~ in terms of "PI' ... ,
"Pn is one in which ~ occurs only as principal operation in certain axioms, the
remaining axioms constituting a definition of "PI' ... , "Pn; if the "Pi are not
mentioned, it is understood that ~ is the only new operation.

3. Definitional identity. We shall use the infix '==' to designate the
relation, called definitional identity, which is the monotone equivalence
generated by the defining axioms. The following example shows that this
relation may have some strange properties if the definitional extension is
not proper.

Example 1. Let Go be the system of natural numbers (cf. Example 2 of
Sec. 2C). Let (f consist of the axiom and axiom scheme as follows:

,p(0) D 0

~(A) D ~(A')

These generate a partial recursive definitional extension of 6 0 ; in fact, ~(O)

has the ultimate definiens 0, while for any other A, the reduction of ~(A)

continues indefinitely. If we standardize the extension by taking the axiom
and axiom schemes in the order given, then we have exactly the same situa
tion; but if we reverse the order, then ~(A) is undefined for every A. Never
theless we have, in either case,

~(A) == 0
for every A.

On account of this example it is necessary to distinguish between the rela
tions D and ==, and some authors are careful, in making definitions, to use
a notation which suggests the asymmetry of D.3 However, in the impor
tant case of proper definitions, it is not difficult to show by a deductive induc
tion on the proof of

X==y

that if either X or Y has the ultimate definiens A, then they both do.4

In view of this result, it is not necessary to insist on the distinction between
D and ==, provided that we see to it that our definitional extensions are

I See Exercise 1 at the end of this section. It follows from the heuristic principle
mentioned in Sec. 2C, together with the fact that the process is effective, that such an
algorithm exists.

2 See Exercise 2.
3 Notably Church; see, for example, his [Dfn]. However, one should not hastily infer

that these authors were influenced by reasons similar to those advanced here.
4 See Exercise 3.
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proper. Accordingly, we shall use the symbol' ==' in making definitions
throughout this book.

These definitions are not always permanent. Even when we make defi
nitions which are to hold only in the immediate context, the sign '==' will
be used without thereby implying any commitment that the defining axiom
so made is to hold several lines farther on. Such temporary definitions
occur, for example, when we specify a temporary value for some U variable.

4. Sentential concepts. So far we have beenJconcerned solely with the
nouns in the A language. When defined predicates or other sentential con
cepts occur, we shall use the sign of equivalence '~' in making definitions.
Such definitions are much less formal-if we wished to be formal with them,
we should shift them into the ob structure by the process of reduction to asser
tional form used in Sec. 2DI; in connection with them we hardly pass beyond
the point of view of Sec. I. With this reservation what we have said in
regard to ob definitions applies to them also.

In the case of a definitional extension we shall understand that the axioms
and rules of 6 0 hold for new obs in 6 1 , just as they hold when those obs are
replaced by their ultimate definientia.

EXERCISES

1. Exhibit in detail the Markov algorithm for determining the ultimate definiens
of a schematic definitional extension as described in Sec. 2. ([TEA].)

2. Show that for numerical functions (which have operations, in the present sense,
over the system of Example 2 of Sec. 2C2), the definitions of recursive and partial
recursive functions given in Sec. 2 coincide with the usual ones (e.g., in Kleene
[IMM, pp. 266, 326]). Hence derive from Exercise I that part of the theorem of
Detlovs (Exercise 2E12) which says that every partial recursive numerical function
is algorithmic.

3. Suppose that we have a proper definitional extension and that == is defined as
in Sec. 3. Let

X==Y

Show that if either X or Y has an ultimate definiens, then they both do, and the two
ultimate definientia are the same. ([CLg], &ec. 2E3; cf. ibid., sec. 4B4.)

4. Let 6 1 be a definitional extension of 6 0, and let ~ be a set of new operations
of 6 1. Let (f2 consist of all statements of the form

1p(Cl , C2 , ••• ,Cp ) D Gp +l

where tp is any operation in ~, which are demonstrable in 6 1, Let <f; be a set of
defining axioms such that the principal operations are not in 6 1 and all other new
operations which are in 6 1 are also in~. Let 6 2 be the definitional extension whose
defining axioms consist of (f2 and (f;, and let 6 3 be that definitional extension
formed by adjoining (f~ to 6 1, Show that (I) holds in 6 2 if and only if it holds in
6 a. ([CLg], sec. 2E4, corollary 3.1. The extension 6 2 defines the operations of
6 2 "relative to"~. Some generalizations are also considered in [CLg], sec. 2E4.)

5. Let 6 0 have the standard Lukasiewicz representation. A set of defining axiom
schemes (with 'xl', 'x2', ... as U variables for basic obs) of the form

~(ai) D tp(ai ) i = I, 2, ...

~(W~xlx2 ••• xn) D X[x!, ... , Xn' ~(Xl)' ... , ~(xn)]

will be said to constitute a primitive recursion scheme for ~ in terms of tp and X (the
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latter being not necessarily new); this convention is understood to hold with the
obvious modifications in case ~ depends on additional parameters. Let 6 1 be a
definitional extension whose new operations, in a certain fixed order, are ~1' ~2' ••• ,

~m. Let the defining axioms for 6 1 be such that for every k = 1,2, ... ,m, ~k is
either (a) defined explicitly in terms of ~1' ~2' ••• , ~k-l or (b) defined by a primitive
recursion scheme in terms of ~i and ~j' where i < k, j < k. Show that 6 1 is partial
recursive; further, if the explicit definitions under (a) are complete, in particular if
they are of the form

~(Xl' ..• , xn ) D X
then 6 1 is recursive. (Cf. [CLg], theorem 2E6.)

6. State and prove a theorem giving a sufficient condition that an operation ~

defined by primitive recursion be monotone with respect to a relation R, which, in the
basic theory, is the monotone quasi ordering generated by R o. ([CLg], theorem
2E7.)
7*. Can an improper definition always be transformed constructively into an

equivalent proper one by omitting axioms1 (Cf. discussion in [CLg], sec. 2E2, foot
note 52.)
8*. Develop an analogue of the p, function, normal form theorem, etc., for (partial)

recursive definitions over an arbitrary 60.

D. VARIABLES

This section deals with various matters concerning the uses of the word
'variable'. Two different senses of the word are contrasted in Sec. 1. Then
various matters necessary to make the notions precise are taken up. The
section concludes with a brief sketch of combinatory logic, which eliminates
certain kinds of variables.

1. Classification of variables. We begin by distinguishing two different
senses of the word 'variable'.

On the one hand, the term is applied to certain phrases of the U language
whose meaning is not fixed. We shall call these phrases U variables in
contradistinction to the U constants, which have a fixed meaning. Thus the
letters 'X', 'y', 'Z', etc., have been used systematically throughout the fore
going for unspecified obs, and we needed these symbols in order to state
rules, axiom schemes, and general epitheorems. Evidently U variables of
some sort are necessary in order to lnake any general statements whatever;
without them we should not even be able to formulate our systems.

On the other hand, certain systems contain obs which are called "vari
ables," usually because certain substitutions can be made for them. For
instance, the PI' P2' ... of Sec. 2C3, Example 5, are often called "proposi
tional variables." Such variables we shall call formal variables. These
variables are not, except for the possibility of an autonymous representation,
U expressions; they may, of course, be expressions of an 0 language, but
from the point of view of the U language, they are objects, not symbols.

Since the formal variables are obs, they have names in the A language,
for example, 'PI" 'P2" etc., in Sec. 2C3. These names are proper nouns in
the U language, hence U constants. Since we rarely have occa~ion to use
these proper nouns, it will be convenient to suppose-unless otherwise
stated-that the formal variables are
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constituting a sequence e which is the set of all formal variables. This
leaves the letters 'x', 'y', 'z', etc., free for use as U variables referring to un
specified members of e. Thus el , x, y, z will be formal variables because they
are members of e; 'el ' is a U constant; 'x', 'y', 'z' are U variables because it is
not speoified which member of e they refer to.

There are three nlain types of formal variables; these are here called (a)
indeterminates, (b) substitutive variables, and (c) bound variables. In con
trast to bound variables, indeterminates and substitutive variables together
are called free variables. We shall discuss these l~ter in more detail; in the
meantime, brief definitions of them are as follows.

a. An indeterminate is an atom concerning which the primitive frame of
the system makes no specific statement beyond the fact that it is an atom;
the only restrictions on it are that obs involving it may be values of the U
variables for obs in general, which appear in the rules and axiom schemes.
Thus indeterminates may appear in axioms derived by substitution from an
axiom scheme, but not otherwise. The atoms of Sec. 2C3, Example 5, are
examples. Modifications of this definition will be considered in Sec. 2.

b. Substitutive variables are those obs for which substitutions are permit
ted in a rule of substitution explicitly formulated as a rule of deduction-as
in Sec. 2D3, Example 7-01' in some rule or axiom (scheme) in which sub
stitution is essential. l

c. Bound variables occur in a system with formal variables when there is
at least one operation one or more of whose arguments are restricted to for
mal variables, which variables are said to be bound by the operation, such
that substitutions involving the variables so bound are restricted. Bound
variables occur in ordinary mathematics. Thus in the statement

fX2 dX = 9 (1)

we say that the left side of this equation is an operation on four arguments,
namely, x, x2 , 0, and 3; the variable xt is bound, and it is not possible to
substitute anything for it except to change it to another variable. Again,
in the equation

f(xy )2 dx = 9y 2

we are restricted in the substitutions we can make for y; if we substitute
anything which involves x, the resulting equation is false. Bound variables
evidently bring in all the complications associated with substitutive variables,
and some more besides.

2. Indeterminates. An indeterminate was defined in Sec. 1 as an atom
on which the primitive frame of the system imposes no restriction except that
it be an ob. Such a notion is significant only when there are axiom schemes
stated with U variables for all obs, so that obs constructed with indeterminate
components can be substituted for these U variables and thus enter into the

1 An example is the axiom scheme (fJ) in the theory of ). conversion (see Sec. 4).
t Some persons would say that 'x' is bound. This would be appropriate if we thought

of statement (1) as an expression in some 0 language rather than, as here, in the Ulan
guage. It is perhaps worth noting that the statement (1), as usually interpretpd, does not
say anything about either x or 'x'.
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axioms. Otherwise, this notion of indeterminate would be vacuous, because
the premises of a rule would never be fulfilled for an 0 b with an indeter
minate cOlnponent. But there are systems, e.g., Sec. 2C3, Example 6,
which do not have axiom schemes of this sort. It is desirable to modify
the notion of indeterminate so as to be applicable to such a system.

One type of case where this situation arises is where the property of being
an ob is expressed by a basic predicate of the system. Let us call such a
predicate, if it exists, a universal predicate, or since it is a unary predicate, a
universal category. In such a case we say that an indeterminate is an ob
concerning which nothing is postulated except that it is an ob to which the
universal predicate applies. For example, in one type of combinatory logic
there is an ob E such that

I-EX (2)

is postulated as an axiom for all cases where X is an atonl; the system,
furthermore, is applicative, and there is a rule.

EX, EY I- E(XY) (3)

It then follows, by structural induction, that (2) holds wherever X is an ob.
The system does not contain any indeterminates, but the point is that one
cannot form an atomic extension of the system without postulating (2) for
the new atoms. When nothing else is postulated, they are indeterminates
according to the modified definition.

Again, it may happen that, although there is no basic predicate applying
to all obs, there is one which holds for all obs which we regard, in one sense
or another, as significant. In such a case it is still appropriate to call the
predicate universal, and to call the obs to which it applies proper obs. Thus,
in another form of combinatory logic, the scheme (2) does not hold for all
obs, but does for all those which enter into the formal deduction; hence it is
appropriate to call any atom, for which (2) and nothing else is postulated, an
indeterminate also. Although they are not ob systems, the concatenative
systems of ordinary mathematical logic are such that the expressions which
are not wefs do not play any role, and it would therefore be appropriate to
call any 0 symbol an indeterminate for which it was postulated only that it
was a wef.

A different, but analogous, situation occurs in the case of systems, like
Sec. 2C3, Example 6, which have been derived from other systems by the
process, described in Sec. 2D2, of reduction in the number of atoms. In
such a case let us take as proper obs those obs which represent the original
obs and call quasi atoms those representing the original atoms. If the original
system contained indeterminates (or other formal variables), they will not
in generaJ be atoms in the new system, but quasi atoms; our previous discus
sion still applies with suitable changes.

In all these cases the notion of indeterminate involves arbitrary conven
tions which have to be made separately in each case. But in principle, an
indeterminb. te is an atom or quasi atom concerning which nothing is pos
tulated except that it be admissible into the system as a (perhaps proper) ob.

Indeterminates are involved whenever we form an atomic extension.
The additional atoms adjoined in such an extension are indeterminates by
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definition. But evidently we cannot derive any theorems containing them
unless there are axiom schemes into which they can be substituted. Thus
we have the same situation with respect to atomic extensions that we had
with respect to indeterminates. We therefore extend the definition of
atomic extension so as to include all ob extensions in which the new atoms
are indeterminates. Indeterminates adjoined in this way we call adjoined
indeterminates, to distinguish them from indeterminates already present.1

3. Substitutive variables. Substitutive variables were defined in Sec. 1
as those obs for which substitutions were permitted by a rule of substitution.
Thus they are a class of obs which are formulated explicitly in the primitive
frame of the system2 (although they may not be called variables). For
example, in the modification of propositional algebra considered in Sec. 2D3,
Example 7, the substitutive variables are precisely the atoms.

The substitution rule referred to in the definition was formulated in Sec.
2D3 for a special case. In general, if there are no bound variables to restrict
the substitution, we define the result of substituting an ob M for x, sym
bolized as

[M/x]X (4)

as that ob X* whose construction is obtained from a construction of X by
replacing subconstructions leading to x by constructions of M. This defini
tion could be so phrased as to make sense even if x is not an atom, but there
is little point in this since, in the substitution rules we are actually interested
in, the substitutive variables are atoms (or at any rate quasi atoms, with X
proper). In that case, supposing that we have a standard presentation, the
definition can be given recursively as follows:

x* == M

y* == y for y any other (quasi) atom (5)

(W~Xl • •. X n )* == w~Xi · .. X:
We noted in Sec. 2D3 that Example 7 introduced there had the same ele

mentary theorems as Example 5 of Sec. 2C3. This is a general situation,
provided that the rules of deduction are invariant of substitution, i.e., that
if we make corresponding substitutions in premises and conclusion of an
instance of a rule, we get another instance of the same rule. Let us call this
condition the invariance condition. We then have the following theorem:
Theorem 1. Let 6 1 be a system with axiom schemes and indeterminates. Let

6 2 be a system having the same morphology as 6 1 , Let the axioms of 6 2 be
obtained by having the distinct U variables of the axiom schemes of 6 1 denote
distinct indeterminates. Let the rules of 6 2 be the rules of 6 1 and in addition
a rule of substitution in which the indeterminates of 6 1 are taken as substitutive
variables. Let the invariance condition hold. Then 6 1 and 6 2 have the
same elementary theorems.
Proof. Every axionl of 6 1 is derived by substitution from an axiom of

6 2 and hence is true in 6 2, Since the rules of 6 1 are valid in 6 2, it follows
by deductive induction that every theorem of 6 1 is true in 6 2•

1 Cf. Sec. A3.
2 In this they differ from indeterminates which may have no special role assigned in the

primitive frame.
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Next, we shall see that if we take the indeterminates of 6 1 as substitutive
variables, the rule of substitution is admissible for 6 1 • In fact, we show by
deductive induction that every substitution instance of an (elementary)
theorem of 6 1 is again a theorem of 6 1. The basic step in this induction
holds since every substitution instance of an axiom is an axiom. (Note that
it is essential in this that the indeterminates do not occur except by giving
values to the U variables.) The inductive step holds by the invariance
condition.

From this it follows, by deductive induction, that every theorem of 6 2 is
a theorem of 6 1• In fact, every axiom of 6 2 is an axiom of 6 1 ; the inductive
step follows by the preceding paragraph.

Another way of proving the second half of this theorem is to show that in
a demonstration in 6 2 the substitutions can be pushed back to the axioms.
The axioms then become essentially axiom schemes. This method is called
by some German writers "Ruckverlegung der Einsetzungen."

The invariance condition certainly holds if the rules are elementary (Sec.
2D3). Whether there are other significant cases of it is not clear.

According to this theorem, indeterminates and substitutive variables have
much in common. The term 'free variable' will be used for any formal
variable which is not bound, hence for indeterminates and substitutive
variables together.

It will be convenient to extend the term 'substitutive variable' to cases
where the operation of substitution is necessary in the statement of some
rule or axiom scheme, but not necessarily of a rule of substitution in the
above sense. We shall meet examples in connection with the axiom scheme
(fJ) of Sec. 4.

4. Bound variables. The instances of bound variables which were
mentioned in the definition in Sec. 1 were all devices for making statements,
not about the variables themselves, but about certain functions. Thus state
ment (1) would ordinarily be considered not as a statement concerning four
objects, namely, x, x2, 0, 3, but about three objects, namely, the square
function, 0, 3. Since a function is a law of correspondence assigning a "func
tional value" to every admissible argument, one can only indicate a function
by a device which gives the functional value for an unspecified argument;
bound variables are such a device. The reader will speedily convince him
self that this is the case in all instances of bound variables with which he is
familiar. There is indeed reason to believe that all instances of bound
variables which arise under the definition in Sec. 1 are of similar character.
However, it is not necessary to demonstrate this; we can simply take it as a
revision of the definition. One can then conclude that if we had a means of
representing functions, all operations involving binding of variables could be
replaced by ordinary operations.

One such device for indicating functions is that used by Alonzo Church in
his calculusesl of A conversion. Let M be an ob formed from a free variable
x and other atoms; then

Ax(M) (6)

1 I take the liberty of changing Church's 'calculi' to 'calculuses' for the reason stated in
Fowler [DME, under 'calculus']. Cf. [rev Church].
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will be the function whose value for any argument is obtained by substituting
that argument for x in M. The operation of forming (6) from x and M will
be called the A operation, or functional abstraction. It is not required here
that M actually contain x. t We call the ob M the base of (6) and x the
bound variable. A dot before the name of the base will avoid the necessity
of enclosing the latter in parentheses. Thus AX.X2 , that is, AX(X2 ), will be the
square function; moreover, if we define

fM dx "'" J(AxoM,a,b)

then (I) can be written
J(Ax.x2 ,O,3) = 9

The natural extension of (6) for functions of several variables is

AnXl ••• xn.M (7)

Using the idea back of the reduction of operations to application in Sec.
2D2, this can be defined recursively in terms of (6) thus:

A1X.M == Ax.M
An+1XYl' .. Yn.M == AX.(AnYl ... Yn.M) (8)

Various operations involving bound variables which are of some impor
tance in modern logic can be defined in terms of functional abstraction and
ordinary operations; e.g.,

(Vx)X == TI(AX.X)
(~X)X == ~(AX.X)

X::>x Y== 3(AX.X, AX.Y)

X for all x
X for some x

Y for all x such that X
(9)

Here the interpretations, written briefly at the right, are, strictly speaking,
the interpretations of the sentences which occur when the cnrresponding
obs are asserted. Here TI, ~, E are ordinary operations; in an applicative
system they can be taken as obs. For the rest of this section it will be sup
posed that all operations involving binding of variables are similarly defined
in terms of the A operation and ordinary operations. Then the functional
abstraction is the only operation which binds variables.

The formulation of substitution in a system with bound variables involves
considerable complexity. We have seen in Sec. 1 that if we substitute for
a free variable an ob in which the bound variable occurs, we get something
intuitively absurd. This phenomenon is known as confusion of bound vari
ables. To avoid it we must regard [Mjy] (AX.X) as undefined whenever x is
free in M. But the relation between x and M expressed here by 'x is free
in M' has itself to be defined by recursion, viz.: (a) x is free in itself but not
in any other formal variable; (b) x is free in the closure of an ordinary opera
tion just when it is free in one or more of the arguments; (c) x is free in 'Az.N
just when it is distinct from z and free in N. With this understanding, we
can add to (5)

(Ax.X)* == AX.X
('Ay.X)* == Ay.X* if Y is not free in M and is distinct from x

t In this respect the notation differs from that of Church.
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This gives a partial recursive definition of (4). To make the definition re
cursive, we should need to change the y, let us say to the first Z in e which is
distinct from x and not free in M or X, replacing the last clause by

(Ay.X)* == AZ([Z/y]X*)

This definition is complex and difficult to deal with.!
If the only operations in the system are application and the A operation,

the latter will have the following properties:

(<<)
(fJ)

Ax.X = Ay.[y/X]X
(Ax.X)M = [M/x]X

if y is not free in X

provided the right sides exist. Here' =' is taken intuitively as designating
identity in meaning. But (<<) and (fJ) can be taken as axiom schemes in a
system in which '=' is taken as designating a basic predicate with the prop
erties of equality, Le., as the monotone equivalence generated by (at) and
(fJ). That would give us a formalization of a calculus of A conversion.

5. Combinatory logic. Systems involving formal variables have the
peculiarity that their statements appear to be about certain objects called
variables-and this, from the formal point of view, is what they are-but
when the system is interpreted in a natural manner, there are no contensive
objects corresponding to these variables. In other words, such a system
does not have a natural2 direct interpretation. Statements involving formal
variables are interpreted as statements about the functions obtained from
those statements by some contensive analogue of functional abstraction. If
we could find a way of defining functional abstraction in terms of ordinary
operations alone, then formal variables would not be needed in the formula
tion of systems. They would be useful only for epitheoretic purposes.

Such a definition has been given in combinatory logic. One form of this
is an applicative system containing no bound variables, such, however, that
in an appropriate atomic extension a functional abstraction

[x]X (10)

can be defined having the formal properties of the A operation. Without
going into details we shall see how, in principle, such a definition is possible.

Suppose, then, we have such an applicative system ~ and that there is an
equality relation in ~ with the usual properties. If X is an ob in an atomic
extension of ~ in which x is one of the adjoined indeterminates, then (10) will
have to be a combination, formed by application, of those atoms of that ex
tension which are distinct from x. Suppose these atoms belong to an ex
tension ~' of ~ which does not include x, and let ~'(x) be the extension
formed by adjoining x to ~'; then the prefix [x] will associate to each ob X
of ~'(x) an ob X of~' such that-this is a special case of (fJ) where M == x-

Xx=X (11)

Let us use German letters for obs of ~'(x) and italic letters for obs of ~'.

Then in order to define (10) recursively for every X in ~'(x), it is sufficient to

1 See [CLg], sec. 3E.
2 They may, conceivably, have an artificial one. Cf. Sec. 2C5.
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(12)

where

define it (a) when ~ == x, (b) when ~ == U, where U is an ob of ~', and (c)
when ~ == ~3, where the functional abstracts Y, Z of~, 3, respectively, are
known. Let I, K, S be three fixed obs of .D and define

[x].x == I
[x].U == K [I

[x].~3 == SYZ

y == [x]~ Z == [x]3

(13)

Then (11) will hold provided we have!

Ix = x

Kxy = x

Sxyz = xz(yz)

Here the 'x', 'y', 'z' indicate that these equations are to hold schematically
(Le., as formal consequences of the assumption that x, y, z are obs), and thus
when x, y, z are any adjoined indetermil}ates, the x not necessarily the same
as the variable in (10).

The functional abstract (10) so defined will be a combination of I, K, S
and the atoms other than x in~. It can be shown to have the properties
analogous to the (ex) and (fJ) of Sec. 4 [the property (fJ) follows from (11) by
the epitheorem which allows substitution for an indeterminate]. The com
binations will be very long and complex.

The obs I, K, S, as well as combinations formed from them alone, are called
combinators. Among these combinators certain ones, called B, B', C, I', K',
Kcu , W, will be mentioned from time to time in this book because they form
simple combinations. They have "reduction rules," analogous to (13), as
follows:

Bxyz = x(yz)

B'xyz = y(xz)

Cxyz = xzy

I'xy = yx

K'xy = Y

KU)xyz = xy
Wxy = xyy

They may be defined in terms of I, K, S thus:

B == S(KS)K

B' == CB

C == S(BBS)(KK)

I' == CI (= B(SI) K)

K' == CK or KI

Kcu == BK

W == SSK'

(14)

1 Recall that, since ~ is applicative, we are using the principle of association to the left
(Sec.2D2).
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Combinatory logic is the branch of mathematical logic which deals with com
binators and their properties. One form of it has been sketched here; there
are various other forms and modifications. Combinators, or operators
analogous to them, can be defined in terms of A conversion, and therefore
the various calculuses of A conversion are considered as belonging to com
binatory logic.

The obs X which satisfy (11) for given ~ are not unique. In fact, there
exist combinators X and Y such that

Xx = Yx (15)
but not

X=Y (16)

Examples are SKS and KI K. However, if about six particular axioms, for
example,

SK = KI

are adjoined to the system, then (16) will hold whenever (15) does. The new
axioms are called the "combinatory axioms."

The indicated form of combinatory logic is a system of an exceedingly
fundamental sort. It is assertional, applicative, elementary, and com
pletely finite in structure; Le., there is a relatively small finite number of
atoms, axioms, and elementary rules. The system contains no formal
variables, yet it is adequate to form a foundation for doing anything which
can be done with variables in the more usual systems. Moreover, the reason
ing is so fine that an elementary demonstration of even a comparatively simple
theorem would contain a very large number of steps; the epitheoretic method
is necessary in order to develop it profitably.

In this book we shall not be concerned further with combinatory logic,
but will pass on to the development of systems more nearly like those ordi
narily considered.

EXERCISES

1. Show that the substitution prefix [M/x]X has the following properties:

(a) [x/x]X == X
(b) If x does not occur in X, then [M/x]X == X.
(c) If either y does not occur in M or x does not occur in X,

[M/x][N/y]X == [N* /y][M/x]X
where

N* == [M/x]N
([CLg], sees. 6D, 3E; [DSR].)

2. As definition of simultaneous substitution, let it be specified that

[M1/x1, M 2/x2, ••• ,Mn/xn]X

is the X* defined recursively by

xt == M i i = 1,2, ... ,n
y* == y for y any other (quasi) atom

(W~Xl . • . X m )* == w~ xt ... X:
Show that

[M1/x1, M 2/x2, ••• ,Mn/xn]X == [M1/z1][M2/Z 2] • • • [Mn/zn][zl/x1]·· • [zn/xn]X
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where ZI' ..• 'Zn are distinct variables which do not occur in M I' .•. , M n or X.
What is the distinction between this and

[MI/XI] [M 2/x2] •• • [Mn/xn]X

3. Express the following by means of functional abstraction in combination with
suitable ordinary operations:

(a) The ob X is assertible if some (unspecified) ob is substituted for x in X.
(b) The derivative of x2 is 2x.
(c) The ob E, applied to an X which is a function of x, gives the function which is

obtained from X by substituting x + 1 for x.
4. If P is an operation on functions, show that there are two possible interpre

tations to
Pf(x + I)

Distinguish these by the use of the A. notation. Show that the two are distinct if
f(x) = x2 and

(

fl(O)
Pf(x) = f(x) -/(0)

if x = 0

if x =1= 0

([CLg], p. 81.)
5. Under what circumstances is 'D' a suitable notation for the differentiation

operator in the differential calculus?
6. By means of the combinators 5, K, I, construct combinators 52' <I>, Z2 such

that
5r yzu = xu(yu)(zu)

<I>xyzu =;: x(yu) (zu)

ZrY = x(xy)

([CLg], sees. 6A3, 5EI, 5BI, 5E5; for the general technique see [CLg], sees. 5B, 6A3.)

S. SUPPLEMENTARY TOPICS

1. Historical and bibliographical comment. This chapter is a
revision of [CLg], chap. 2. General references relating to the chapter as a
whole may be found there and in Sec. IS5. AEZ in Chap. 2, the references
given here supplement the general ones.

The notion of epitheory is an outgrowth of Hilbert's metamathematics.
As remarked in Sec. 2S3, the elementary statements of metamathematics
are only statements to the effect that particular wefs are demonstrable;
these would be of no interest if it were not for the fact that the subject can
be developed by epitheoretical methods. The whole purpose of metamathe
matics was to provide a basis whereby the proofs of certain sorts of epi
theorems might be made objectively intelligible.

On this ground it would be natural to use the term 'metatheory' rather
than 'epitheory'. Before [TFD], e.g., in [APM], [OFP], I did just that.
The new term was introduced in [TFD] on account of the pressure of certain
criticisms. I shall return to this point in Sec. 2.

A list of further examples of epitheorems, together with some discussion
of philosophy, may be found in [OFP], chap. 9.

The incompleteness theorem of Godel appeared for the first time in his
[FUS]; a little later he revised and generalized it in his [UPF]. An impor
tant extension occurred in Rosser [ETG]. The literature, technical and
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nontechnical, growing out of this theorem is huge; I can only mention a
few items which I have found particularly interesting. For an excellent
popular exposition see Nagel and Newman [GPr]; somewhat more technical
is Mostowski [SUF] (contains a full, but concise treatment with some innova
tions). Other treatments of some interest are Smullyan [TFS] (contains
very modern and essential simplifications); Fraenkel and Bar-Hillel [FST]
(history and comment, with numerous references); Myhill [PIM] (discusses
philosophical implications); Findlay [GSN] (favorably cited by Myhill);
Ladriere [LIF] (an encyclopedic report on limitative-Le., incompleteness
theorems and everything connected with them); Rosser [IEP]. Other un
decidability theorems, which one may regard as inspired by it, are Church
[UPE] (undecidability of A. conversion) and [NEP] (unsolvability of decision
problem); Tarski et ale [UDT] (three short papers on undecidability of sys
tems based on predicate calculus). See also Sec. 3.

For a discussion of the Lowenheim-Skolem theorem, with references to
sources and other expositions, see Fraenkel and Bar-Hillel [FST, pp. 105ff.],
Skolem [PTL], Church [IML2, secs. 45 and 49]. A philosophical discussion
appears in Berry and Myhill [OSL]. For some recent work see Quine [ISC]
(cf. also his [CQTJ); Beth [CTL], [TPT]; Rasiowa and Sikorski [PSJ.J]; Vaught
[ALS]. See also the next paragraph.

The Godel completeness theorem appeared in his [VAL]. There have
been many other proofs and an extension by Malcev. For references to
these see Fraenkel and Bar-Hillel [FST, pp. 105 and 289], Beth [FMt, sec.
186], Mostowski [PSI], Robinson [OIM.II], Rasiowa and Sikorski [Grrh].
The proof given later (in Chap. 7) is similar to the last-named one of Rasiowa
and SikorskL The theorem as stated here includes the Lowenheim-Skolem
theorem.

For the higher types of epitheorems in general see Sec. 3.
The discussion of Sec. B is a revision of that in [CLg], secs. 2B and 2C. The

replacement theorem appeared, essentially as here formulated, in MacLane
[ABL]; a similar theorem, under somewhat more special assumptions, is in
Herbrand [RTD, p. 21]. The replacement theorem for an equivalence
relation appeared already in Post [IGT].

The present treatment of definitions is a revision of that which appeared
in [CLg], sec. 2E; a previous revision appeared in [DFS]. This was based
not so much on previous work on the philosophy of definitions as on the ob
servation that Kleene's theory of recursive definitions, as presented in his
[IMM] (and originally in his [GRFJ), lends itself naturally to an extension
to definitions over an arbitrary inductive class. The following is a sample
of the extensive literature on definitions in general: Church [Dfn] , [IML 2];

Dopp [VSD]; Dubislav [Dfn]; Ajdukiewicz [TCD]; Suppes [ILg, chap. 8].
Definitions should not be confused with definability theorems; the latter
have significance only in systems with a formal equality relation.

The account of variables in Sec. D is based on [CLg], sec. 2D. Additional
information about A. conversion in Sec. D4 is from [CLg], chap. 3. The
authoritative treatment of A. conversion is Church [CLC]. The sketch of
combinatory logic in Sec. D5 is, of course, an epitome of [CLg], especially
chaps. 5 and 6. For a shorter treatment of the subject see Cogan [FTS].
An extremely condensed summary is also given in [DTC], sec. 2. There is
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an independent analysis of variables due to Menger. His papers to 1956
are cited in [CLg]; his more recent ones are listed in the present bibliography.

2. Terminological note. In Sec. 1 we noticed that it would be appro
priate to call the subject of this chapter metatheory and that this was my
own usage before 1947. However, there was some criticism of this usage,
e.g., in Kleene [rev. C]. The upshot of this criticism was that the prefix
'meta-' connoted that abstraction was made by metasemiosis, and that it was
confusing to use this term in contexts where there was no explicit commit
ment to metasemiosis. Accordingly, the new term 'epitheory' was intro
duced in [TFD]. In this book the prefix 'meta-' is reserved for situations
where some sort of metasemiosis is explicitly postulated. The prefix 'epi-'
is noncommittal; it neither excludes the metasemiotic point of view nor inl
plies any commitment to it. It may well be argued that this is the original
Hilbert intention regarding 'meta-'; we have seen (Sec. 2S3) that metanlathe
matics is just as compatible with formalization by abstraction as with
metasemiosis. Be that as it may, influential persons since that time
notably Tarski and Carnap-have given it a distinctly semiotic flavor. I
respect this influence by using a new term.

Since we have a new term, some comment on other aspects of it is appro
priate.

'Epitheory' does connote that we have considerations going beyond the
elementary stage. We have seen that there are elementary statements in
metamathematics (although they are scarcely interesting), but an elemen
tary epitheorem, at least in the technical sense of 'elementary', would be a
contradiction in terms. If we want a term to include elementary theorems
and epitheorems under one head, we can say simply "theorem." Again, the

prefix 'epi-' comes from a Greek preposition '~1T~-', meaning "upon," or "on
top of," whereas 'meta-', from 'P,€T~', means "beyond," or "after." One
therefore thinks of a metatheorem as something which lies on the far side of
a boundary; an epitheorem as something which rests upon something else
as a support. This difference in etymology comes into play when one uses
figurative speech; the figures which naturally come to mind are different in
the two cases.

Finally, it conforms to the usage of Sees. 2S3 and 2S4 to use 'metatheory'
as a common noun; one can form a metatheory over a language L. There
has, as yet, been little occasion to use 'epitheory' in an analogous sense.
Confusion between this individual use and the collective one could occur for
either term, but it has not done so (cf. the situation in regard to 'logic' in
Sec. lA). If the need should arise, we could use 'metatheoretics' and 'epi
theoretics' in the collective senses.

3. Higher epitheory. The discussion has now reached the proper point
for completing the program of Sec. IS4. As promised there, I shall give here
a sketch of the epitheoretical methods which go beyond the scope of this
book. These methods may be, and often are, nonconstructive; but there
are constructive topics, like the Godel theorem, which involve considerations
going beyond our domain in other respects. Since this is a continuation of
Sec. IS4, the general remarks made there will apply here.

The first step in this direction may be said to be the theory of recursive
numerical functions. This may be regarded as the epitheory, along the lines
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of Sec. 3C, of the system of natural numbers, which in turn can be taken as
Example 2 of Sec. 2C3, regarded as an affixative system. The theory has
been traced back to Dedekind [WSW] and even further, but in one sense
may be said to have begun with Skolem [BEA] (cf. Sec. IS4d). It received
a great impetus from the work of Hilbert, and several sections of Hilbert
and Bernays [GLM] are devoted to it. Godel in his [FUS] used it essen
tially. So far only what have since been called "primitive recursions" were
taken into account. In his [UPF], Godel proposed the definition which is
the basis of the modern theory of general recursive functions (he credits the
basic idea to a verbal suggestion of J. Herbrand). The latter theory was
developed principally by Kleene, starting with his [GRF]; his [IMM] is thus
the authoritative treatise on the subject. R. Peter, in Budapest, studied
the subject independently; her book [RFn] is easier to read than Kleene's,
but treats a lot of special problems which have not attracted widespread
interest. She is the principal authority on recursions intermediate between
primitive and general recursion. Goodstein in his [RNT] studied primitive
recursion from a somewhat different viewpoint. The notion of general
recursiveness has been shown to be equivalent, in principle, to several other
notions of effectiveness, e.g., computability by an idealized machine (Turing
[CNAJ), definability in combinatory logic, Markov algorithms (Sec. 2E,
especially Detlovs' theorem in Exercises C2 and 2E 12). This thesis that
general recursiveness and effective calculability are to be identified is known
as Church's thesis; see Kleene [IMM, sec. 62]. By the theorem of Detlovs
this is equivalent to Markov's thesis (cf. Sec. 2E 1). The thesis has important
consequences. For one thing, the Godel numbers of the assertions of an
assertional formal system can then be enumerated by a recursive function,
and consequently a formal system can be identified with a "recursively
enumerable set" (r.e. set). On the other hand, one would expect close
contact with intuitionistic mathematics, and this contact has been (and, I
think, still is being) exploited. There are also contacts with more practical
problems such as the design and operation of computing automata. These
investigations have usually been made quite constructively. But the higher
parts of the theory, leading to "recursive hierarchies" of various sorts, de
part considerably from the constructive viewpoint. The whole subject has
become a major specialty in itself, and one which is presently very active.
For works of introductory character see, besides those already cited, the
following: Post [RES] (the pathmaking work on r.e. sets); Davis [CUn];
Rogers [TRF]; Myhill-Dekker [RET] (types of r.e. sets invariant with respect
to recursive transformations).

Another direction of inquiry has arisen from the attention to symbolic
structures. On this see Sec. 2S3. The development shows plainly the
influence of Hilbert's metamathematics, but there is also evidence of influence
from several other sources (Frege, C. S. Peirce, E. Husserl, etc.).

The incompleteness theorem of Godel [FUS] may be regarded as a com
bination of the last two directions. Godel showed that the formulas of a
system could be represented as numbers (see the "Godel representation"
of Sec. 2C4) and that in terms of this translation a formula could be con
structed which asserted its own nonprovability. Thus the liar paradox could
be set up in the system. On the basis of reasonable assumptions, one can
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show that the formula so constructed is neither provable nor disprovable.
The catastrophic effect of this theorem on mathematical logic has already
been discussed in Sec. 1, and also in Secs. IC and 3Al.

The Godel incompleteness theorem, as well as many other such theorenls,
uses methods which are strictly constructive. But, as Tarski early pointed
out, one gets results of great significance by using nonconstructive semantical
methods. One develops a metatheory about a certain object language using
a certain metalanguage; one is then free to reason more or less platonistically
in the metalanguage. The Lowenheim-Skolem and Godel completeness
theorems (Secs. 1 and 3AI) are examples of theorems which can be so regarded.
Tarski has been the leader in a series of investigations of this sort. This is
at present an extremely important development, with a large and rapidly
growing literature. I can list only a few suggestive papers. For summaries
see Mostowski [PSI], Beth [FMt, especially parts IV and VII]. Tarski's
fundamental paper is his [WBF]; this and some of his other early papers
have been collected and translated into English in Tarski and Woodger
[LSM]. Among his later papers, [NMB] and [Grrp] indicate the general
direction. See also rrarski et ale [UTh]. The algebraic applications which
Abraham Robinson developed in his [MMA], [CTh] are closely related. The
field is at present being actively developed by Tarski and his group on the
Pacific coast of the United States, as well as by some of his former colleagues
in Poland.

Another direction of growth in epitheory is the search for methods which
may be called constructive in an extended sense, but not in the strict sense
in which that term is intended here. The most famous of these is Gentzen's
proof of the consistency of arithmetic (Gentzen [NFW], originally in his
[WFR]; discussed, for example, in Bernays [Ql\IA]), which admits as non
constructive principle that a descending sequence of ordinal numbers begin
ning with any ordinal up to EO (the first Cantor E number) can have only a
finite number of terms. For other extensions of the notion of constructivity,
see Bernays [BSB], Godel [BNB], Kreisel [INF].

Further remarks on the significance of constructive and nonconstructive
methods may be found in Goodstein [NMS], Kreisel [HPr], Lorenzen [LRF],
Mostowski [OUM], Myhill [PIM], Shanin [LPA], Skolem [CRF]. See also
Heyting [CMt] , which contains a series of papers on various aspects of con
structiveness presented at a conference in Amsterdam in 1957.



Chapter 4

RELATIONAL LOGICAL ALGEBRA

In this chapter we shall consider certain systems of algebraic character
which have some importance for modern mathematical logic. The algebraic
character of these systems consists in the fact that they contain no bound
variables; furthermore, they are relational (Sec. 2D1), the basic relation being
either a quasi ordering or an equality (Sec. 3B), and their operations have
certain analogies with the operations of ordinary algebra. These systems are
considered here, not because one is obligated to begin with them by the fact
that they are inherently fundamental (in the sense that one has to introduce
them before one can proceed with the development of the elementary theorems
of a system), but because they are rather simple systems which have interpre
tations in other systems, 80 that they are important in the comparative
epitheoretic study of systems in general. Attention will be confined to those
properties, generally rather simple, which are of logical interest.

The treatment will begin in Sec. A with a preliminary discussion of logical
algebras in general; this will include a statement of the notational conven
tions which apply to the chapter as a whole. Then in Sec. B we shall pro
ceed to the study of lattices, in which there are at most two operations,
called join and meet, which have properties analogous to the algebraic sum
and product. The last two sections (Sees. C and D) will be devoted to
systems in which operations of subtraction and implication, which are analo
gous in some ways to the inverse operations of ordinary algebra, are adjoined
to the lattice operations. The discussion will terminate, at the end of Sec.
D, with a discussion of Boolean rings and their duals.

The following topics, which also have an algebraic character, are not treated
in this chapter. All matters relating to negation, including Boolean alge
bras, are postponed to Chap. 6. Although there are important algebraic
theories related to quantification, they are beyond the scope of this book and
are barely mentioned in Chap. 7. Finally, everything concerning modal
operations is postponed to Chap. 8.

A. LOG~CAL ALGEBRAS IN GENERAL

This section will include, in Sec. 1, a general characterization of logical
algebras as quasi-ordered or equational algebras with certain idempotent
operations, together with a statement of notational conventions for the chapter
as a whole. Then, in Sec. 2, there will be described a number of different
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interpretations of such algebras; these will be referred to from time to time in
what follows.

1. Preliminary conventions. The term 'algebra' is used in this book
as a name for a system with free variables but no bound variables. Thus
the system of Example 5 (Sec. 2C3) is an algebra and is aptly called prop
ositional algebra. In contradistinction the term 'calculus' will, as a rule,
be used to describe a system with bound variables, so that it is suitable to
speak of a calculus of A conversion, a predicate calculus, etc. These terms
agree with ordinary mathematical usage, where the distinguishing charac
teristic of the infinitesimal calculus, as opposed to elementary algebra, is the
presence of bound variables in the former.l

The algebras considered in this chapter are relational (Sec. 2DI). There
is one basic predicate, a binary relation which is either a quasi ordering or an
equality. This relation will be designated by the infix '~' in the quasi
ordered case and by the infix '=' in the case of equality. Even in the quasi
ordered case an equality relation is present, defined thus:

x=y~x~y&y:::;:x (I)

where 'x' and 'y' are U variables for arbitrary obs. Such a quasi-ordered
system, when interpreted so as to have a contensive e4.uality, is called par
tially ordered when, in the interpretation, the relation of equality defined by
(I) coincides with that contensive equality; but the distinction between
partial order and quasi order is not relevant to an uninterpreted system.
However, it will be expedient to describe a quasi-ordered sy.stem as partially
ordered when only partially ordered interpretations are intended.

The principal operations considered in this chapter-and the only ones
admitted until we come to Sec. C-are two binary ones called meet and join
and indicated, respectively, by the infixes 'A' and 'y'. The obs are then
constructions from the atoms by these two operations. The operations will
turn out to be commutative and associative, and they mayor may not have
certain properties analogous to the distributive law of ordinary algebra.
What is peculiar about these algebras, however, is that the operations will be
idempotent; Le., we shall have

aA a = a a Ya = a (2)

for all obs a. These laws hold for most algebras which have logical interest,
and therefore they may be regarded as characterizing logical algebras in the
sense of Sec. IA.

As already exemplified in the discussion of (I) and (2), it will be expedient
to abandon the convention whereby capital italic letters are used as U
variables and lower-case italics are reserved for U constants. This conven
tion served its purpose throughout Chaps. 2 and 3. In this chapter we use
'0' and 'I' as U constants, and we also, in agreement with Sec.3DI, reserve
the letters 'e1 ', 'e 2', ••• for that purpose (although we scarcely need them);
all other lower-case italic letters are U variables for unspecified obs. This
is the usage of ordinary algebra, and it is expedient to follow it. We shall
revert to a notation resembling the earlier one in Chap. 5.

1 Systems like combinatory logic (Sec. 3D5) which contain no variables do not come
under either term.
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In what follows, various species of logical algebras will be defined. In
these definitions it is understood that a system which satisfies the postulates
of a species belongs to that species regardless of whether or not it satisfies
additional postulates, Le., whether it also belongs to a more restricted species.
On the other hand, when we speak of a general system of such and such a
species, we mean that nothing else is postulated beyond the postulates
defining the species. The general system of a species is then a particular
formal system whose elementary theorems are those statements which are
derivable from the postulates of the species. rrhis is closely related to what
is often called a free system, with the elements of e as generators.

Since the basic relation is of the sort considered in Sec. 3B, we may use
the conventions explained and the results established there. Thus (p) and
(T), which are, respectively, the reflexive and transitive properties of the
basic relation, apply by definition to both ~ and =; and (0'), the symmetric
property, applies to =. The monotonic property (17") will be established as
an epitheorem for lattices, and the replacement theorem, Rp, will be shown
to hold in all the algebras here considered. In connection with proofs, a
notation such as

a ~ b by X

~ c by Y

where 'X' and' Y' are replaced by citations of sources, is to be understood
as meaning

a ~ b by X

b ~ c by Y
rrherefore a ~ c by (7)

2. Interpretations of logical algebras. Before we enter on the formal
developments, let us look at some examples of interpretations of these sys
tems.! (For further exanlples and discussion, see Sec. C5.)

10. Class I nterpretation. This is the oldest of the interpretations. Ac
cording to this interpretation, the (interpreted) obs are classes and the basic
relation ~ is inclusion. The meet of two classes is their intersection, Le.,
the class of those elements which belong to both. The join, or union, is
the class of elements which belong to one or the other or both.

2°. Relation Interpretation. The obs are relations. Let R, S be such
relations. rrhen we interpret R ~ S as saying that whenever x stands in
the relation R to y, x stands also in the relation S to y; R A S is the relation
which holds between x and y just when both of the relations R, S so hold;
and R V S is the relation which holds between x and y just when either one
or both of R, S so hold. Since relations can be construed as classes of
ordered pairs, this is a special case of the preceding.

3°. Propositional Interpretation. According to this the obs are proposi
tions. Views as to the nature of propositions vary, and we shall have to
postpone discussion of this question until later. Suffice it to say that prop
ositions are objects which we talk about but are interested in interpreting

1 The examples 10 to 70 are presented by describing a mode of valuation, which can be
made more precise in various ways, together with an interpretant for the basic relation;
it is then understood that the interpretant of an elementary statement affirms that the
indicated relation holds for all valuations admitted by the mode.
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as statements; we might, for example, regard them as sentences in an 0
language, which we mention but do not use in the A language. Then ~ is
the relation of implication which holds between two propositions just when
the conditional connection (Le., the 'if --1' then --2' connection, sym
bolized by '--+' in Sec. 3A2, but not necessarily with a constructive connota
tion) between the corresponding interpreted statements is true; A is the

conjunction operation which forms from
the propositions a third one whose cor
responding statement is true just when
those corresponding to the two oper
ands are both true; and V is similarly
related to the 'or' connection between
statements.

4°. Order Interpretation. The obs
are elements of some ordered or par
tially ordered set, say, real numbers;
~ is the relation of either preceding in
the order (which we interpret as the
relation of less to greater) or being the
same; a A b is the greatest lower bound,
and a V b the least upper bound, of
a, b. We may also use this interpre
tation when the obs are functions from
some range to the ordered set.! Thus
iff and g are two real functions defined

for real numbers x, 0 ~ x ~ 1, fAg would be the function whose value for
any x is the smaller of f(x) and g(x); thus if f(x) is x and g(x) is 1 - x, fAg
is the function h(x), namely,

h(x) = ! - Ix - il

In Fig. 1 the graph of f(x) is the straight line OA, that of g(x) is the line Be,
that of h(x) is the broken line ODC.

5°. Divisibility Interpretation. The obs are natural numbers; ~ is the
relation of divisibility; a A b is the greatest common divisor of a and b, and
a V b is their least common multiple. (This is a special case of interpretation
4°.)

6°. Closure Interpretations. Let K be a class of sets, and let ~ be the
relation of inclusion between the elements of K. Suppose there is a "closure
operation" which assigns to every element x of K an element x* called its
closure, such that for all x in K,

(cl) x~x*

(c2) (x*)* ~ x*

(c3) x ~ Y --+ x* ~ y*

We call an element a of K closed just when a* ~ a. Then a* is the least closed
set which contains a. We now can form an interpretation in which the obs
are the closed sets of K, ~ is set inclusion as before, A is set intersection, and

1 This sort of generalization can be applied also to the other interpretations (cf_ Sec. C5).
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v is the operation which assigns to a -pair of closed sets a, b the least closed
set which contains them both. The following are examples of this sort of
interpretation (it suffices to specify the closed sets in each case):

a. Closed sets in the sense of ordinary point-set topology.
b. Linear spaces (points, lines, planes, etc.) in any number of dimensions.

Such a linear space can be characterized as one containing all points which
are on the same straight line with any two of its points. This example
leads to projective- geometry and some generalizatio.ls of it.

c. Convex sets, Le., sets which contain, with any two points, all points on
the line segment connecting them.

d. The subgroups of a mathematical group and, more generally, the sub
algebras of an algebra.

e. Deductive theories (cf. Sec. 2B3).
7°. Open-set Interpretations. These are obtained from those considered

in interpretation 6° by interchanging A and v, ~ and its converse. The name
is derived from the fact that in ordinary point-set topology, corresponding
to interpretation 6°a, this gives rise to open sets.

8°. Artificial Interpretations. This includes interpretations set up by
means of tables, diagrams, and the like. These are often deliberately de
signed to be invalid for some axiom scheme, and thus to furnish a proof that
that axiom scheme is not deducible from certain others.

Some samples of diagrams furnishing interpretations are given in Fig. 2.
Here the obs are the points indicated by small circles; a·line segment with
an arrow from a first point to a second indicates that the two points in that
order stand in a relation R o' and ~ is the quasi ordering generated by this
R o. Here in Fig. 2g and h the equality relation defined by (1) holds between
obs which are not identical, so that these cases are not partially ordered. Of
course, the interpretations of A, V have to be made by supplementary con
ventions.

Another way of making artificial interpretations is by tables. This is
most natural for assertional systems, but it can be used also for relational
ones. Thus one may be given a certain set V of values and regard the
operations as assigning to each pair of values from V for the arguments a
value from V as assigned value, these assignments being exhibited by a table
like the following pair, where V is 0, 1, 2, and the left-hand table gives the
values of x A y, the right hand those for x V y:

y
0 2

y
012

x x

0 0 2 0 000

1 112 1 o 1 1

2 222 2 012

One can have a similar table associated with ~ and agree that x ~ y holds
just when the value obtained from that table belongs to a subclass of "des
ignated" values of V. One can generalize this, as in the case of the tautolo
gies considered in Sec. 2C5, to the case where such a designated value is
taken not for just one assignment of values to the ei , but for all such assign
ments.
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These artificial interpretations do not always lead to logical algebras as
defined in Sec. 1. But when they have some analogy with such algebras,
they may be considered as logical algebras in an extended sense (cf. Sec. lA).

B. LATTICES

In this section we shall consider logical algebras which have no operations
other than the meet and join described in Sec. A. A species of algebra,
called a lattice, having both these operations, will be defined and studied in
Sec. 2. As a preliminary to this we shall study in Sec. 1 a species, called a
semilattice, in which only one operation is present. In Sec. 3 the notion of
lattice will be specialized by adjoining a postulate of distributivity. Dis
tributive lattices are the most important kind of lattices for logic, and hence
it is worthwhile to devote some space to them; in connection ,vith them we
shall note, but not develop, an intermediate kind of lattice, called a modular
lattice, which has important applications in other branches of mathematics.
Finally, in Sec. 4, some relatively trivial matters connected with special
elements 0 and 1 will be listed for the sake of completeness.

In accordance with the general policy of this chapter, only very simple
and elementary properties of lattices are considered here. When combined,
for example, with set-theoretic methods, the theory of lattices becomes a
rather extensive subject. These extensions go beyond the scope of this
book.

1. Semilattices. We begin this discussion by consideration of systems
in which only one of the operations is postulated. We take this to be the
operation A. The important species of this type is the semilattice. This is
defined in the next paragraph; the definition \vill be followed by some theo
rems about it.

A semilattice is a partially ordered algebra with a single binary operation,
which we indicate by 'A' used as infix, such that the follo,ving postulates
hold:

AK

AK'

AS

a A b ~ a

a A b ~ b

c ~a &c ~b~c ~aAb

Here a, b, c are arbitrary obs. The expressions' AK', etc., written at the
left, are used as names for the corresponding postulates.! Note that AK
and AK' are axiom schemes, whereas AS is a rule. Since the system is
quasi-ordered, the rule (7) and the axiom scheme (p) are also postulated.
The postulates may be summed up by saying that a A b is the greatest lower
bound of a, b with respect to ~ as quasi ordering; it is a lower bound by AK
and AK', and it is the greatest lower bound by AS.

1 These names are suggested by analogies with the combinators denoted by corre
sponding letters in Sec. 3D5. However, these analogies are not relevant here. The
names can be taken as arbitrary; as such, they are no worse than others which might be
proposed.
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Theorem 1. I n any semilattice, the following hold for any obs a, b:

AW a ~aAa
AC a A b ~ b A a

AB a ~ b ~ c A a < cAb
AB' a ~ b ~ a A c ~ b A c

Conversely, if (5 is a relational system with relation ~ and a binary operation
A such that (7), AK, AC, AW, and either AB or AB' tl'l'e satisfied, then (5

i8 a semilattice.
Proof. Suppose, first, that G is a semilattice with basic relation ~ and

operation A. Then, by (p),

by AK'
by AK
by AS

which is AW.

a ~ a

Hence, by AS, taking band c both identical to a, we have

a ~ a A a

Further, we have

a A b ~ b
a A b ~ a
aAb ~bAa

so that we have AC. To prove AB, assume the premise, viz.,

a ~ b

The desired conclusion follows by AS from

cAa ~c cAa ~b

Of these, the first follows by AK; the second, since

c A a ~ a by AK'
~ b by hypothesis

Thus AB holds. There is a similar proof of AB', or we may note that, in
the presence of (7) and AC, either one of AB, AB' entails the other.

Conversely, suppose (7), AK, AC, AW, and either AB or All' hold for
G. Then

so that (p) holds.
have

a ~ a A a by AW
~ a by AK

The postulate AK holds by hypothesis. Further, we

a A b ~ b A a by AC
~ b by AK

so that AK' holds. It remains to prove AS. To do this we note first that,
according to a remark made in the previous paragraph, we have both AB
and AB'. Then, assuming the premises of AS, viz.,

c~a c~b

we have
c ~ cAe
~ a A c

~ a A b

This completes the proof.

by AW
by first premise and AB'

by second premise and AB
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Note that AB and AB' together give the property (17") of Sec. 3B3. Thus
we can use the replacement theorem Rp in connection with a semilattice.

Theorem 2. A necessary and sufficient condition that

a ::;: b (I)

hold in a general semilattice is that every atom which occurs as component in
b occur also at least once as a component of a.
Proof. The necessity of the condition follows by deductive induction.

For every axiom (viz., every instance of (p), AK, AK') has the property, and
each of the rules (T) and AS leads from premises having the property to a
conclusion having the property.

It remains, therefore, only to prove the sufficiency. We suppose that the
condition is fulfilled and show that (I) holds.

Suppose first that b is an atom. Then it is a component of a, 'and hence
there is a composition (Sec. 3BI) from b to a. Let the steps of this composi
tion be ao, ai' ... , an' where ao - b, an == a. By (p), a o ::;: b, and if ak ::;: b,
then ak+1 ::;: b by AK or AK'. Hence, by induction on k, it holds for all k
and hence for k = n.

This argument shows that
a ::;: c

holds for every atomic component c of b. By structural induction and AS,
it holds for every component and hence for b itself. This completes the
proof.
COROLLARY 2.1. The operation of a semilattice is associative; i.e.,

a A (b A c) = (a A b) A c
holds for all obs a, b, c.
For some purposes it is advantageous to conceive a semilattice as an equa

tional system. The following theorem is concerned with this.
Theorem 3. If equality is defined in a semilattice by

a = b~ a ::;: b & b ::;: a, (2)

then equality is a monotone equivalence such that for all obs a, b, c,

(i) a A a = a
(ii) a A b = b A a

(iii) a A (b A c) = (a A b) A c

and

(iv) a ::;: b~ a = a A b

Conversely, if (5 is an algebra W1· th an operation A and basic relation =

satisfying (0'), (T), (17") and (i), (ii), (iii), then (5 is a semilattice with the relation
defined by (iv) as basic relation; moreover, (2) holds.
Proof. Let G be a semilattice and let = be defined by (2). Then (i),

(ii), (iii) hold by Theorem 2. As for (iv), we have

a ::;: b --+ a ::;: a & a ::;: b by (p)

--+ a ::;: a A b by AS
--+ a = a A b by AK
--+ a ::;: a A b by (2)

--+ a ::;: b by AK'
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The monotonic character of = follows from that of~. Thus 6 has all the
required properties.

Conversely, let (5 be an equational system as stated in the theorem. Then
the new relation defined by (iv) is reflexive by (i); it is transitive, since

a=aAb&b=bAc

--+ a = a A (b A c) = (a A b) A c = a A c

It has AK, AK', since

a A b = (a A a) A b = fL A (a A b) = (a A b) A a

a A b = a A (b A b) = (a A b) A b

It satisfies AS, since
c=cAa&c=cAb

--+ c = cAb = (c A a) A b = C A (a A b)

Finally, we have (2) since

a =aAb &b =bAa--+a =aAb =bAa =b
and

a =b--+a =aAa =aAb&b =bAb =bAa

a ~ a V b

b ~ a V b

a ~c&b ~c--+aVb ~c

VK'

VS

This completes the proof.
2. Lattices in general. A lattice is a partially ordered algebra with two

operations A and v, such that AK, AK', and AS hold, and also the pos
tulates
VK

In other words, a lattice is an algebra which is a semilattice both with respect
to ~ and A and with respect to ~ (converse of ~) and V. Thus for every
pair a, b there is a greatest lower bound a A b and a least upper bound a V b.

All the examples 10 to 70 in Sec. A2 are lattices; those in Fig. 2a to e are
also lattices, but those of Fig. 2g and h are not lattices because they are not
partially ordered.

The following theorem, called the principle of duality, follows by deductive
induction and examination of the postulates.
Theorem 4. Given any theorem concerning a lattice, one obtains another by

interchanging ~ and ~, A and V.

The duals of the theorems of Sec. 1 thus hold in a lattice. The duals of
AB, AB', AC, AW will be called VB, VB', VC, VW, respectively.

Special interest attaches to the equational form of a lattice. The equa
tional postulates of the follo\\ring theorem are those given by Birkhoff [LTh].

Theorem 5. I n a lattice with equality defined by (2), the relations

LI a A a = a a V a = a

L2 a A b = b A a a V b = b V a

L3 a A (b A c) = (a A b) A C a V (b V c) = (a V b) V c

L4 a A (a V b) = a a V (a A b) = 0,

a = a A b ~ b = a V b (3)
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hold for all obs,. moreover, either side of (3) is equivalent to a ~ b. Con
versely, if L2 and L3, and either L4 or both Ll and (3) hold in an equational
algebra with operations A, V and monotone equality, and if either side of (3)
is taken as definition of a ~ b, then the algebra is a lattice with respect to
~, A, and v, and (2) holds as an equivalence.
Proof. Ll to L3 are all true in a lattice by Theorem 3 and its dual, and

by Theorem 3, a ~ b is equivalent to the left side of (3). The following
argument shows that. the left side of L4 also holds:

aA(a/Vb)~a byAK (4)

a ~ a by (p)

a ~ a V b by VK
a~aA(aVb) by AS (5)

From (4) and (5) we have the left side of L4 by (2). The rest of L4 and (3)
follows by duality.

Next, we show that in an equational system, with operations A, V and mono
tone equality, Ll and (3) are consequences of L2, L3, and L4. By duality
(in combination with L2), it suffices to show the left half of Ll and the im
plication from right to left in (3). This can be done as follows:

a A a = a A (a V (a A b)) by L4, Rp

= a by L4

which takes care of Ll. Also assuming a V b = b,

a = a A (a V b) by L4

= a A b by hypothesis
which establishes (3).

Finally, we show that an equational system satisfying Ll to L3 and (3)
is a lattice for which (2) is a valid equivalence. In fact, by Theorem 3, ~
being defined by the left half of (3), we have a semilattice with respect to ~,

A; likewise, if ~ is defined by

a ~b~a =aVb

we have a semilattice with respect to ~,V. Since these relations ~, ~ are
converses of one another by virtue of (3), we have a lattice. This completes
the proof.

The laws Ll to L4 are known, respectively, as the idempotent laws, the
commutative laws, the associative laws, and the laws of absorption.

The following theorem concerns relations of distributivity which are valid
in every lattice.

Theorem 6. For all obs a, b, c, in any lattice,

(a A b) V (a A c) ~ a A (b V c) (6)

a V (b A c) ~ (a V b) A (a V c) (7)

Proof. Since (6) and (7) are dual to one another, it will suffice to prove
(6). This is done as follows:

a A b ~ a A (b V c) by VK, Rp

a A c ~ a A (b V c) by VK', Rp

From these, (6) follows by VS. This completes the proof.
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3. Distributive lattices. The converses of the relations (6) and (7) do
not hold in a general lattice. For example, in the interpretation 6°b of Sec.
A2, if band c are points and a is a point on b V c (i.e., the line bc) distinct
from band c, then a A (b V c) is the point a, whereas (a A b) V (a A c) is null.
These converses also fail in the interpretation 6°c of Sec. Al and in Fig. 2d
and e.
DEFINITION. A distributive lattice is a lattice in which the converses of (6)

and (7), and hence
a A (b v c) = (a A b) V (a A c)

(a V b) A (a V c) = a V (b A c)

(8)

(9)
hold.

Theorem 7. A necessary and sufficient condition that a lattice L be distribu
tive is that

a A (b V c) ~ (a A b) V c (10)

hold for all obs a, b, c of L.
Proof. Suppose first that (8) holds in a lattice L. Then we have

a A (b V c) ~ (a A b) V (a A c) by (8)

~(aAb)Vc byAK',Rp

Conversely, if (10) holds, we have

a A (b V c) ~ a by AK
aA(bVc) ~aA((aAb)Vc) by (10) and AS

~ a A (c V (a A b)) by VC, Rp
~ (a A c) V (a A b) by (10)

~ (a A b) V (a A c) by VC

Thus (8) and (10) are deducible from each other.
Next we note that (8) and (9) are dual to one another. On the other hand,

jf we dualize (10), we have

(a V b) A c ~ a V (b A c)

By AC, VC (and of course Rp), this is equivalent to

cA(bVa) ~(cAb)Va

This is obtained from (10) by interchanging a and c. Since 'a' and 'c' are
U variables for arbitrary obs, this shows that (10) is self-dual. Then the
dual of the argument of the preceding paragraph shows that (10) is also
equivalent to (9).

Thus if (10) holds, so do (8) and (9), and if either (8) or (9) holds, and a
fortiori if they both hold, so does (10), Q.E.D.
COROLLARY 7.1. Either (8) or (9) implies the other.

In a distributive lattice we can calculate with the operations A, V just as
we do with the sum and product in ordinary algebra; the only differences
are (a) that we can take either of the operations as the sum, the other as the
product, and (b) that, on account of the laws of idempotency, we have no
need of exponents or numerical coefficients. Hence every ob can be proved
equal to one which is a meet of joins of the atoms, also to one which is a join
of meets, and either of these "normal forms" is essentially unique.
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From this remark we can deduce a decision procedure for a general dis
tributive lattice. Let

a ~ b

be a given elementary statement. Let

a = al V a 2 ••• V am

b = bl A b2 ••• A bn

(11)

where each at is a meet of atoms, each bj is a join of atoms, and a and bare
obtained by multiplying out as described in the preceding paragraph. Then
a necessary and sufficient condition that (11) hold is that

hold for all i = 1, 2, ... , m, and j = 1,2, ... ,n. Now each of the state
ments (12) is of the form

u1 A u 2 • • • A u p ~ VI V V 2 • • • V Vq (13)

where each of u1 , ... , up, VI' ••• , vq is an atom. A sufficient condition for
(13) is that some atom occur on both sides.! That this condition is also
necessary may be shown by considering valuations over the ring consisting
of 0 and 1. By this we mean, in agreement with Sec 2CS, valuations formed
by assigning values 0 and 1 to the formal variables (ev e2 , ••• ) in an arbi
trary manner and interpreting A as the product and V as the maximum. 2

Then ~ can be interpreted as the predicate such that (11) is true for a given
valuation whenever a is 0 or b is 1 (or both) and is false \\7hen a is 1 and b is
6. Then it follows by deductive induction that the interpretant of every
denlonstrable statement (11) is true for every valuation, whereas if no vari
able occurs on both sides of (13), the latter can be made false if we give all
variables on the left the value 1 and all those on the right the value o. This
argument proves the following:
Theorem 8. The general distributive lattice is decidable.

Although distributive lattices are a very specialized kind of lattice, and
modern algebra, and mathematics generally, is full of examples of lattices
which are not distributive, most of the lattices which conle up in logic
are distributive for reasons which will appear later. It is therefore expedient
to consider a few other properties. The following theorem and corollary
represent one of the most interesting of the simpler properties.

Theorem 9. A necessary and sufficient condition that a lattice L be distribu
tive is that for all obs a, b, c of L,

aAb ~c&a ~bVc-+a ~c

I This can be shown by (p), AK, AK', VK, VK', (1T).
2 The tables for A, V, and ~ are, explicitly,

(14)

o

0110 0
1110 1

o

H~ ~

o

o II T - T
I1 F T
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Proof of Necessity. Suppose that (10) holds schematically and that the
premises of (14) hold for particular a, b, c. Then

a :s;: a A (b Vc) by AW, Hp, Rp
:s;:(aAb)Vc by (10)

:s;: c by Hp, Rp, VW

Proof of Sufficiency. Suppose that (14) holds schematically. Let

p-::=aA(bVc) q-::=(aAb)Vc
Then

P A b = a A (b V c) A b = a A b :s;: q
b V q = b V (a A b) Vc = b Vc ~ p

Thus

Hence by (14)
pAb :s;:q&p :s;:bVq

p :s;: q

(15)

which is (10), Q.E.D.
COROLLARY 9.1. In order that L be distributive it is necessary and sufficient

that
aAc :s;:bAc&aVc :s;:bVc~a:s;:b (16)

Proof. The premises of (16) imply those of (14), with band c interchanged,
by AK, VK, VC; the converse implication holds by AS, VS, AK~ \TK', ve.
COROLLARY 9.2. In any distributive lattice

a A c = b A c & a Vc = b Vc ~ a = b (17)

Proof. One has only to apply Corollary 9.1 twice, once with the pre
dicate :s;: and once with ~.

Some other properties of distributive lattices are contained in the exercises.
In mathematical applications the class of lattices in which (10) holds under

the restriction that c :s;: a is of great inlportance. Such lattices are called
modular lattices. Thus the lattice of linear spaces (interpretation 6° of Sec.
2) is modular, so also is the lattice of normal subgroups of a group; on the
other hand, the lattice of Fig. 2d is nonmodular. A closely related group of
lattices are of some interest in certain investigations of abstract linear de
pendence. Various suggestions have been made for using such lattices in
logic, particularly in connection with quantum mechanics. However, such
suggestions have not yet borne fruit. From the standpoint of logic, modular
and other nondistributive lattices do not yet have the importance that they
have in mathematics as a whole.

4. Special elements. We are now concerned with obs 0 and 1 such that

o :s;: a a ~ 1 (18)

hold, respectively, for all obs a. An ob 0 satisfying the left-hand half of
(18) will be called a zero element; an ob 1 satisfying the right-hand half, a
unit element.

From (18) it follows that the notions of zero and unit element are dual to
one another. In the following theorem, items in the separate columns apply
if the corresponding half of (18) is postulated.
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are equal. Further, if (18) holds in a semilattice, then

aAO=O aAl=a (19)

holds for all obs a; if (18) holds in a lattice, then we have in addition

a V 0 = a a V 1 = 1 (20)

Proof. The proof of uniqueness is immediate by (18); that of (19) follows
by (18) and part (iv) of Theorem 3; whereas (20) follows from (19) by duality.

EXERCISES

1. Give the complete formal demonstration of the following elementary theorems
of a semilattice:

(a) e1 A (e2 A ea) ~ e2 A (ea A e1)

(b) e1 A e2 ~ (e 2 A e1) A e2

(c) e1 A (e 2 A ea) ~ e2 A e1

2. Show that the schemes (ii) and (iii) of Theorem 3 are equivalent to the single
scheme

(a 1\ b) 1\ c = (b 1\ c) 1\ a

(Byrne [TBF]; Dilworth [ARL].)
3. A partially ordered set is called a chain if, for any a, b, either a ~ b or b ~ a.

Show that a chain is always a distributive lattice.
4. Show that example 6°a of Sec. A2 is a distributive lattice. (Sec. C5, below.)
5. Show that example 6°b of Sec. A2 is a modular lattice.
6. Show that example 6°c of Sec. A2 is a nonmodular lattice.
7. Show that the following are elementary theorem schemes of a general lattice:

(a)

(b)

(a" b) V (c A d) ~ (a V c) A (b V d)

(a A b) V (b A c) V (c A a) ~ (a V b) A (b V c) A (c Va)

8. Show that a necessary and sufficient condition that a lattice be distributive is
that

(a V b) A (b V c) A (c V a) ~ (a A b) V (b A c) V (c A a)

9. Construct a Markov algorithm for reducing an ob of a general distributive lattice
to a join of meets of atoms.

10. Show that every lattice which is nonmodular contains a five-element non
modular sublattice with the same structure as Fig. 2d.

11. Construct the lattice diagram for the free modular lattice generated by e1, e2,

ea. Show that it contains 28 elements and that 5 of these form a sublattice with the
structure of Fig. 2e.

12. Show the converse of Corollary 9.2 (use Exercise 11).

C. SKOLEM LATTICES

We shall now consider lattices in which, in addition to the operations A

and V, there is a third operation, symbolized by the infix ':::>', called the ply
operation. This will have properties such that in the propositional inter
pretation, where a and bare propositions-Le., obs with which there are
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associated, in some manner, certain statements A and B-a :::> b is an ob to
which there is associated in the same interpretation the statement formed
from A and B by the conditional connective 'if --1' then --2'. This
interpretation motivates the postulates PI and P 2 chosen in Sec. 1. From
then on we shall study the consequences of those postulates and properties
of the lattice, called an implicative lattice, formed by adjoining them. We
shall find, among other things, that any such lattice is necessarily distributive;
that conversely, any finite distributive lattice (and any distributive complete
lattice) is implicative; that such a lattice has certain topological interpreta
tions; and that certain properties ordinarily associated with classical impli
cation fail to hold in it.

We shall also study the dual situation. In this case the lattice will be
called a subtractive lattice. The term 'Skolem lattice' seems to be the best
available term for a lattice which is either implicative or subtractive. l Sko
lem lattices which satisfy no other postulates than those considered in this
section will be called absolute, to distinguish them from the "classical" ones
considered in Sec. D (the reason for these terms will become apparent in
Chap. 5).

The postulates PI and P 2 and their motivation will concern us in Sec. 1;
their adjunction to a semilattice, in Sec. 2; and their adjunction to a lattice,
to form an implicative lattice, in Sec. 3. The dual situation will be studied
in Sec. 4. Finally, matters connected with interpretations will be discussed
for both kinds of Skolem lattices siInultaneously in Sec. 5.

From now on it will be convenient to drop the infix 'A' and to express the
meet operation by simple juxtaposition. In discussions concerned with
interpretation, we shall suppose that A is propositional conjunction, whereas
the join operation V is propositional alternation.

1. Postulates for the ply operation. If the ply operation is to be a
formalization, in the indicated sense, of the conditional connective, we must
postulate for it an analogue of the characteristic property of the connective,
viz., the rule of modus ponens. Such an analogue is given by the postulate

a(a :::> b) ~ b

Accordingly, we adopt PI as one of the postulates for an implicative lattice.
Now PI says that a :::> b is a solution for x of the relation

ax ~ b (1)

r~rhere may be many solutions of (1); one of these is b itself, and any x such
that x ~ b is also a solution. The totality of all solutions is a conceptual
class X such that

y is in X & x ~ y ~ x is in X (2)

Such a class we call an ideal.2 Now we have met such ideals before. In
fact, the set of all x such that

x~a&x~b

I On the reasons for this see Sec. S2.
2 This is the usual definition of ideal in a partially ordered set.
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is an ideal, and the postulates AK, AK' assert that a A b is a member of it.
In that case we completed our postulates by AS, which said, in effect, that
a A b is maximal in the ideal. This suggests what to do here. We adopt as
second postulate for the ply operation that a :::> b shall be maximal among
the solutions of (I); viz.,

ac~b-+c~a:::>b

This merely has the effect of making a :::> b unique. Note that PI and P 2

together give
ac ~ b~ c ~ a :::> b (3)

The ply operation is thus a kind of inverse to the meet operation. If we
think of the latter as multiplication, the former is analogous to division.
However, the logical interpretation has suggested an interchange of the argu
ments compared with that which is customary in algebra; thus a :::> b is a
quotient of b by a, not of a by b. Where the algebraic aspect is dominant,
notations more in agreement with tradition have been used. Thus Skolem
[UAK] used bja; Dilworth [ARL], b:a.

2. Irr~plicative semilattices. The postulates PI and P 2 do not require
the presence of any operation other than meet. Accordingly, it makes sense
to define an implicative semilattice as a system formed by adjoining a ply
operation satisfying PI and P 2 to a semilattice with relation ~ and opera
tion A. Some properties of such a system will now be derived.
Theorem 1. In an implicative semilattice, the operation :::> is inversely

monotone with respect to its left argument and directly monotone with respect
to its right argument. The semilattice has a unit 1 such that

a ~ 1

Further, the following conditions hold for all obs a, b, c:

(i)

(ii)

(iii)

(iv)

(v)

(vi)

b ~ a :::> b

a :::> (b :::> c) = ab :::> c = b :::> (a :::> c)

a :::> (b :::> c) ~ (a :::> b) :::> (a :::> c)

a :::> be = (a :::> b) (a :::> c)

a=l:::>a

a~b~l~a:::>b

(4)

by AB', PI

by P 2, Q.E.D.b:::>c~a:::>c

Proof of Left Monotony. Assume

a ~ b

a(b :::> c) ~ b(b :::> c) ~ c

Hence

Then

Proof of Right Monotony. Again assuming (4), we have

Then

c(c :::> a) ~ a ~ b

c:::>a~c:::>b

In vie,,- of these two properties, we can use Rp in an implicative semilattice.
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Then since

we have

Proof of Unit Property. Define

l==el:::>~

~a ~ el by AK

a ~ 1 by P2' Q.E.D..

Proof of (i)

(5)

Hence

Proof of (ii)

ab ~ b

b ~ a :::> b

by AK'

by P 2' Q.E.D.

by AW, AC

by PI' Rp

by PI

a(a :::> (b :::> c)) ~ b :::> e by PI

Hence ab(a :::> (b :::> e)) ~ b(b :::> e) ~ e by Rp, PI

Then a :::> (b :::> e) ~ ab :::> e by P 2

This proves the first half of the left equation. Conversely,

ab(ab :::> e) ~ e by PI

a(ab :::> e) ~ b :::> e by P 2

ab:::>e~a:::>(b:::>e) byP2

This proves the left equation. The right equation follows by interchanging
a and b and using AC and Rp.

Proof of (iii). We have

a(a :::> b) (a :::> (b :::> e))

~ a(a :::> b)a(a :::> (b :::> e))

~ b(b :::> c)

~e

Hence
(a :::> b)(a :::> (b :::> e)) ~ a :::> e

a :::> (b :::> e) ~ (a :::> b) :::> (a :::> c)

Proof of (iv)

by P 2

by P 2' Q.E.D.

a :::> be ~ a :::> b by AK, Rp

a :::> be ~ a :::> c by AK', Rp
Hence

a :::> be ~ (a :::> b)(a :::> e) by AS
Conversely

a(a :::> b)(a :::> e) ~ be by PIt
Hence

(a :::> b)(a :::> e) ~ a :::> be by P 2

Proof of (v)

a ~ 1 :::> a by (i)

Conversely 1 :::> a = 1(1 :::> a) by Theorem BIO

S.a by PI

t With AW as in the proof of (iii).



Then

SEC. 0]

Proof of (vi). Suppose

a ~ b

la ~ b
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Hence

Conversely, assume

Then

Hence

I ~ a -:=J b

I ~ a -:=J b

al ~ b

a ~ b

by PI
by Theorem BIO

by PI
by AK

by AS

by P 2

by (i) of Theorem I, (7)

Hence

This completes the proof of Theorem I.
The following theorem shows that an implicative semilattice can be charac

terized in a certain sense by axiom schemes.

Theorem 2. Let L be a semilattice with operation A, and let -:=J be a binary
operation in L which is monotone with respect to equality. T hen a necessary
and sufficient condition for L to be an implicative semilattice with -:=J as ply
operation is that PI and the following properties hold:

(i) b ~ a -:=J ab

(ii) a -:=J bc ~ a -:=J b

Proof of Necessity

a(a -:=J b) ~ b

a(a -:=J b) ~ a

a(a -:=J b) ~ ab

a-:=Jb~a-:=Jab

b~a-:=Jab

This proves (i). As for (ii), it follows immediately from (iv) of Theorem
and AK.

Proof of Sufficiency. It suffices to derive P 2 from (i) and (ii). Suppose
then that

ac s b

Then by Theorem B3,

ac = acb = b(ac)

c ~ a -:=J ac by (i)

~ a -:=J b(ac) by Rp

~ a -:=J b by (ii), Q.E.D.

3. Implicative lattices. An implicative lattice is a lattice with relation
~ and operations A, v, to which is adjoined an operation -:=J satisfying the
postulates PI and P 2.

Naturally, all the properties derived in Sec. 2 apply to an implicative lat
tice; in addition, we have the following:

Theorem 3. An implicative lattice is distributive. Furthermore, the fol
lowing holds for all obs a, b, c.

(a V b) -:=J C = (a -:=J c)(b -:=J c) (6)
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Proof of the Distributive Law (Skolem). We have

ab ~ ab V ac by VK

b ~ a :::> (ab Vac) by P 2

c ~ a :::> (ab V ac) similarly, using VK'

b V c ~ a :::> (ab vac) by VS

a(b V c) ~ ab V ac by PI' Q.E.D.
Proof of (6). By Rp (Theorem 1) and AS,

(a V b) :::> c ~ (a :::> c)(b :::> c) (7)

On the other hand, using the distributive law, we have

(a V b)(a :::> c)(b :::> c)

~ a(a :::> c)(b :::> c) V b(a :::> c)(b :::> c)
~ c(b :::> c) V c(a :::> c) by PI

~c by AK, VW
Henoo

(a :::> c)(b :::> c) ~ (a V b) :::> c by P 2

From this and (7) we have (6), Q.E.D.
Thus every lattice in which the class of x satisfying (1) has a maximum is

distributive. The great importance in logic of distributive lattices, as
opposed to other kinds of lattices, stems from the fact that every reasonable
implication operation yet considered in logic satisfies PI and P 2.

Conversely, given any distributive lattice L, we can define a :::> b as the
1.u.b. (least upper bound) of the class of all x satisfying (1). Then P 2 is
equivalent to the existence of a :::> b. If in addition we have

a{Uz{x I B(x)} ~ Ua:{ax IB(x)} (8)

where Ua:{A(x) IB(x)} is, for any ob function A(x) and condition B(x), the
l.u.b. of all obs of the form A(x) for x such that B(x), then PI will also hold.
In fact, if

then
ac ~ Ua:{ax Iax ~ b} by (8)

~b

The condition (8) is a generalized distributive law. It reduces to the ordi
nary distributive law in case the lattice is finite. Hence we have:

Theorem 4. Every finite distributive lattice is implicative, a:::> b being
defined as the join of all x satisfying (1).
4. Subtractive lattices. Let us now consider the situation dual to that

treated in Secs. 1 to 3.
The operation dual to ply will be a kind of subtraction. We use the infix

'-' for it, the argument being written, however, in the order which is cus
tomary in algebra, so that a - b is the dual of b :::> a. The postulates for it
will be

(-h a ~ b V (a - b)
(-)2 a ~ b V c --+ a - c ~ b

A lattice with such an operation will be called subtractive.
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by (p), (-h, AS

by (10) of Sec. B

by AK, (i), VS~a

Theorem 5. A subtractive lattice is distributive and has e1 - e1 as a zero
element. The subtractive operation is directly monotone with respect to its
left argument, inversely monotone with respect to its right argument. Further
more, the following hold:

(i) a - b ~ a

(ii) a - (b V c) = (a - b) - c = (a - c) - b

(iii) (a - c) - (b - c) ~ (a - b) - c

(iv) (a - c) V (b - c) = (a V b) - c

(v) a = a - 0

(vi) a ~ b~ a - b = 0

(vii) a - bc = (a - b) V (a - c)

(viii) a = ab V a - b

Proof. All except (\Tiii) follow by duality from Theorems 1 and 3. The
proof of (viii) is as follows

a ~ a(b V (a - b))

~ ab V (a - b)

This completes the proof.
Remark. The dual of (viii) of Theorem 5 is

(a V b)(a :::> b) = b (9)

This, although true for an implicative lattice, is not of much interest, whereas
(viii) is constantly used in Sec. D.

5. Examples. Let us now examine some of the interpreted lattices ex
hibited in Sec. A2 with reference to their character as implicative or subtrac
tive lattices or both. We shall also consider some other illustrations similar
to those there given.

Interpretations 1° to 3° are illustrations of stronger systems considered
later. However, one can see intuitively (with formal verification, if desired,
postponed until later) that if a' is the complement or negative of a, then
a' V b has the properties of a :::> b, and ab' those of a-b. These lattices
are thus both implicative and subtractive.

With reference to interpretation 4°, we may observe that it may be gener
alized to functions from an arbitrary set or space X to a partially ordered
set Y. If for two such functions f, g we define

f ~ g
as equivalent to

f(x) ~ g(x) for all x in X

then we have the partially ordered set which is commonly written Yx.
This will be a lattice provided Y is a lattice. Suppose, then, that Y is a
linearly ordered set.! If Y has a unit 1, then given f, g in y x , the function
h such that

h(x) = {I
g(x)

if f(x) ~ g(x)

otherwise

1 That is, such that for any a, b, at least one of the statements a ~ b or b ~ a holds.
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will have the properties off:::> g. On the other hand, if Y has a zero, namely,
0,

h(x) = {O
f(x)

if f(x) ~ g(x)

otherwise

will have the properties of f - g. But if Y has no unit, then there will not
in general be any f :::> g, for the value of h(x) such that

fA h ~ g

is not bounded above if f(x) ~ g(x); similarly, there will in general be no
f - g if Y has no zero.

This example can, in a certain sense, be subsumed under a generalization
of interpretation 10

• For we can interpret f as the set of all pairs (x,y) in
which x is in X, y is in Y, and y ~ f(x). This is a generalization of inter
pretation lOin that the obs are not all possible subsets of a certain universal
set, but only certain special ones, forming a "ring of sets." According to a
theorem of Stone and Birkhoff, every distributive lattice can be so repre
sented.

Interpretation 50 can be subsumed under the generalized interpretation
40

• In fact, let

a = IIpimi b = IIpr i

be the expressions of a and b, respectively, as products of powers of the
prime numbers PI' P2' . . .. Then a and bare biuniquely correlated with
certain functions yx in which X are tne positive rational integers and Yare
the natural numbers (Le., rational integers ~ 0); further, a ~ b if and only
if mi ~ ni for all i (the first ' ~' denotes the divisibility relation, the second
the natural ordering of the natural numbers). Hence we have, by the argu
ment in the case of interpretation 40

, a subtractive lattice, while the divisors
of a fixed integer form a finite lattice which is both subtractive and implica
tive.

The illustration 6°a gives rise to a subtractive lattice, as follows. We
define a topological space as a system of sets with a closure operation satis
fying the schemes listed under interpretation 60 in Sec. A2 and in addition
the following:

(avb)* ~a*vb* (10)

In such a system the lattice union among closed sets is the same as the set
union. If now we define a - b as (a -=- b) *, where a -=- b is the ordinary
set-theoretic difference (Le., the set of points in a but not in b), then we have
for all sets a, b, c, closed or not,

a ~ b V (a -=- b) ~ b V (a - b)

a ~ b V c --+ a -=- b ~ (b V c) -=- b ~ c

--+ a - b ~ c*

Hence if a, b, c are closed sets, we have ( - hand (-)2' so that the lattice
of closed sets in a topological space is a subtractive lattice.

This gives a simple intuitive example of a subtractive lattice, viz., in
terms of the closed point sets of the ordinary euclidean plane. For example,
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FIGURE 3

s

if a and b are the closures of the inter
iors of two intersecting circles in the
plane, a - b is the closure of that part
of the interior of a which is exterior
to b (thus the crosshatched area in
Fig. 3).

By duality the open sets in a topo
logical spacel form an implicative lat
tice. Thus, in Fig. 3, if a and b are the
interiors of the two circles, a :::> b is the
interior of the open set formed by ad
joining to b the entire exterior of a.

Finally, by Theorem 4 and its dual, every finite distributive lattice is an
example of a lattice which is both subtractive and implicative. Especially
useful in this connection is the "free" distributive lattice generated by three
indeterminates (called generators) el' e2 , ea. The lattice diagram for this
lattice is given in Fig. 4.

These examples enable us to show that certain elementary statement
schemes are not universally true. Consider, for example, the schemes

and their duals

b(a - b) = 0

b ~ b - (a - b)

a V (a :::> b) = 1

(a :::> b) ::> a ~ a

(11)

(12)

(13)

(14)

In Fig. 3, b(a - b) is not void, but consists of the arc P RQ of the boundary
of b; hence (11) is false in that interpretation. Again, if the point M in a
were an isolated point of b, it would not be a point of b - (a - b), so that (12)
also does not hold. Thus (11) and (12) are not theorem schemes of an ab
solute subtractive lattice; and by duality, (13) and (14) are not theorem
schemes of an absolute implicative lattice.

EXERCISES

1. Show that the following hold in an implicative semilattice:

(i)

(ii)

(iii)

(iv)

(v)

(vi)

a~b-+e~a:::>b

a~a:::>b~a~b

a(a:::> b) = ab

a :::> b ~ ae :::> be

(a :::> b)(b :::> e) ~ (a :::> e)

a :::> ab = a :::> b = a :::> (a :::> b)

1 In topological works it is shown that a topological space is a self-dual concept; i.e.,
if interiors are suitably defined, the duals of the closure properties follow for the interior
properties and vice versa.



148 RELATIONAL LOGICAL ALGEBRA

o

FIGURE 4

[CHAP. 4

2. Show that the following hold in an implicative lattice:

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(a :::> b) V (a :::> c) ~ a :::> (b V c)

(a :::> c) V (b :::> c) ~ ab :::> c

c V (a :::> b) ~ (a V c) :::> (b V c)

(a V b)(a :::> b) = b

a V b ~ (a ::> b) :::> b

(a :::> b)(b :::> a) = (a Vb) :::> ab

3. Dualize the statements of Exercises 1 and 2 so as to get theorems for a sub
tractive lattice.

4. Show that a necessary and sufficient condition that a semilattice with a unit and
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an additional operation :::> be an implicative semilattice with :::> as ply operation is
that the two following conditions hold:

a~b~a:::>b==1

(a A b) :::> C = a :::> (b :::> c)

for all a, b, c. What is the dual situation for a subtractive lattice1 (Birkhoff [LTh1,

p. 128].)
5. Show directly that in a subtractive lattice the postulate (-)2 can be replaced

(assuming monotony) by the two postulates

a~b-+a-c~b-c

(a V b) - b ~ a

Discuss the relation of this to Theorem 2.
6. Find counterexamples for (13) and (14) in the lattice of interpretation 4° of

Sec. A2 ([LLA], p. 78).
7. Show that the following are not universally true in a general implicative lattice:

a :::> (b V c) ~ (a :::> b) V (a :::> c) [converse of (ii) of Exercise 2]

(a V c) :::> (b V c) ::;: c V (a :::> b) [converse of (iii)]

Investigate converses of other theorem schemes stated in terms of ~ but not =.
8. Show that an equational algebra with monotone operations A, V, :::> is an impli

cative lattice if and only if the following axiom schemes are satisfied:

Al a:::> a = b :::> b

A2 (a :::> b) A b = b

A3 a A (a :::> b) = a A b
A4 a :::> (b A c) = (a :::> b) A (a :::> c)

A5 (a V b) :::> C = (a :::> c) A (b :::> c)

Show further that these schemes are independent and that Al to A4 characterize in
the same wayan implicative semilattice. (Monteiro [AlA]. The complications he
gets into with the associative law can be avoided by use of Theorem B2.)

D. CLASSICAL SKOLEM LATTICES

In the preceding section we have seen that the schemes

a V (a :::> b) = 1 (1)

(a :::> b) :::> a ~ a (2)

are not elementary theorem schemes of an absolute implicative lattice, and
their duals,

b(a - b) = 0

b ::;: b - (a - b)

(3)

(4)

are not theorem schemes of an absolute subtractive lattice. A lattice formed
by strengthening the postulates for an implicative lattice so that (1) and (2)
hold will be called a classical implicative lattice; dually, a classical subtractive
lattice is a subtractive lattice such that (3) and (4) hold.

In this section we shall study such lattices. We shall put here the pri
mary emphasis on the subtractive rather than the implicative form, because
that seems, at the moment, to have the more interesting applications. Vari
ous alternative postulate systems will be considered in Sec. 1. In Sec. 2 it
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will be shown that a classical subtractive lattice is equivalent to a Boolean
ring, Le., to a ring, in the sense of modern algebra, in which multiplication
is idempotent. Finally, in Sec. 3, there will be some remarks about the
duals of these properties.

1. Classical subtractive lattices. By definition, a classical subtractive
lattice is a subtractive lattice in which (3) and (4) are elementary theorems.
These properties are valid in the set interpretation (1 0 of Sec. A2), if a - b
is taken as the set of elements which are in a but not in b. We call this
interpreted operation the set difference. A family of sets which is closed
with respect to union, intersection, and set difference is called a "field of
sets"; any such field gives a valid interpetation of a classical subtractive
lattice.

We begin with a proof that the schemes (3) and (4) are equivalent to one
another and to

ab ~ a - (a - b)
In fact, if (4) holds, then

ab ~ ab - (a - ab)

~ a - (a - b)

by (4)

by AK, AK', Rp

(5)

where Rp holds by Theorem C5. Thus (5) is a consequence of (4). On the
other hand, if (5) holds, then

b(a - b) ~ (a - b) - ((a - b) - b)

= (a - b) - (a - b)

=0

by (5)

by (ii) of Theorem C5, VW, Rp

by (vi) of Theorem C5

by (3)

so that (3) is a consequence of (5). To show that (4) is a consequence of (3),
we have from (viii) of Theorenl C5, putting b for a and a - b for b,

b ~ b(a - b) V (b - (a - b))

~OVb-(a-b)

= b - (a - b), Q.E.D.

From this discussion we conclude the following:

Theorem 1. In order that a subtractive lattice be classical, it is necessary and
sufficient that anyone of the schemes (3) to (5) be a valid theorem scheme.
The characterization given by Theorem 1 has the disadvantage that it

contains the rather complex rule ( - )2' There is a certain interest in seeking
a formulation based on axiom schemes alone. We proceed with such a
search.

In the first place the scheme
a - b ~ a (6)

is valid in any subtractive lattice by (i) of Theorem C5. Further, the rule

a ~ b & ac = 0 ~ a ~ b - c (7)

is valid in the interpretation as set difference. We shall see that (-)2 is
derivable fronl (3), (6), (7), and ( - )1. In fact, assume the premise of (-)2'
namely,

a ~ b V c
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p==(a -b)-c

pc ~ 0 by (3)

pb ~ (a - b)b ~ 0 by (6), (3)

From these we conclude, by (7), that

SEC. D]

and let

Then

Then

Hence

b ~ (b V c) - p

c ~ (b V c) - P

b V c ~ (b V c) - p by VS

p(b V c) ~ 0 by (3)

On the other hand, by (6) and the premise of ( - )2'

P ~ (a - b) ~ a ~ b V c

Hence p = p(b V c) = 0

Therefore, by ( - h, we have

by AK', Rp

a -b ~cvp =c

This is a consequence of the premise of ( - )2' so that ( -)2 is established.
Next we note that (7) and ( - h are both consequences of

ab = abc V a(b - c)

In fact, taking b ==a in (8), we have

a = ac V a(a - c)

~ c V (a - c)

(8)

which gives us ( - h. Again, assuming the premises of (7), we have from (8)

a = ab = a(b - c)

Hence a ~ b - c

so that (7) holds.
On the other hand, we see that (8) is true in an arbitrary subtractive lat

tice as follows:

ab = a(bc V (b - c))

=abcVa(b -c)

by (viii) of Theorem C5

by the distributive law

Summing this up, we have the following:
Theorem 2. Let L be a lattice with a zero element and an extra operation of

subtraction indicated by the infix '-'. Then a necessary and sufficient
condition that L be a classical subtractive lattice is that (3), (6), and (8) be
theorem schemes,. another is that (- h, (3), (6), and (7) hold.
For use as lemmas in Sec. 2, we now show that the following are theorem

schemes of a classical subtractive lattice:

a(b - c) = ab - ac

a - (b V c) = (a - b) (a - c)

a - (b - c) = ac V (a - b)

(9)

(10)

(11)
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Proof of (9). From right to left we argue thus:

Hence

ab ~ a(c V (b - c))

~ ac Va(b - c)

ab - ac ~ a(b - c)

by (-)1

by (8) of Sec. B

by (-)2

To prove the converse, let

by VK, Rp

by VK', Rp

by AS

p ==a(b - c)

p ~ ab by (6), Rp

acp ~ c(b - c) by Sec. B

~ 0 by (3)

Hence p ~ ab - ac by (7), Q.E.D.

Proof of (10). From left to right we have

a - (b V c) ~ a - b

a - (b V c) ~ a - c

a - (b V c) ~ (a - b)(a - c)

Then

To prove (10) from right to left, let

by (3)

p == (a - b)(a - c)

by (6)

by (8) of Sec. B
p ~a

(b V c)p ~ bp V cp

~ b(a - b) V c(a - c)

~O

Then (10) follows by (7).
Proof of (11). From left to right we have

Then

a ~ b V (a - b)

~ c V (b - c) V (a - b)

a - (b - c) ~ c V (a - b)

a - (b - c) ~ a(c V (a - b))

~ ac V (a - b)

by (-h

by (-h, Rp

by (-)2

by (6), AS

by (10) of Sec. B

by AK, (6), VS

by (8) of Sec. B

by AK', (6)

by (3)

Conversely, let p == ac V (a - b).

Then p ~ a

p(b - c) ~ ac(b - c) V (a - b)(b - c)

~ c(b - c) V (a - b)b

~O

Hence (11) follows by (7).
This discussion is summed up in the following theorem:

Theorem 3. In every c"la8sical subtractive lattice the schemes (3) to (6) and
(8) to (11) are elementary theorem schemes and (7) holds for all a, b, c. Con
versely, every subtractive lattice in which anyone of the schemes (3) to (5)
holds is a classical subtractive lattice,. so also is every distributive lattice with
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subtraction operation and zero element which satisfies (-h and both (3)
and (6).1
2. Boolean rings. \\re now study the relation between a classical sub

tractive lattice and a ring in the sense of modern algebra.

DEFINITION 1. A ring is an equational algebra with a special element 0;
two binary operations, called the sum and product and indicated, re
spectively, by the infix '+' and simple juxtaposition; and a unary opera
tion indicated by the suffix '*', all these operations being monotone with
respect to equality, so that the following axiom schemes are satisfied:

Rl

R2

R3
R4

R5

R6

R7

a + (b + c) = (a + b) + c

a+O=a

a + a* = 0

a+b=b+a

a(bc) = (ab)c

a(b + c) = ab + ac

(a + b)c = ac + bc

DEFINITION 2. A Boolean ring is a ring in which multiplication is idem
potent; Le., for all obs a,

R8 aa = a

We proceed to show that the notions of Boolean ring and of classical
subtractive lattice are equivalent. In this discussion we shall revert to the
notation of Sec. B and use the infix 'A' for the lattice meet operation in
stating the definitions; but since the lattice meet and the ring multiplication
are the same, it is not necessary to make this distinction throughout.

Theorem 4. Let L be a classical subtractive lattice with relation ~, meet
operation A, join operation V, and subtraction - . Let the ring operations
be defined thus:

(i)

(ii)

(iii)

a +b:=(a -b)V(b -a)

ab == a A b

a* == a

Let 0 be the zero element of the lattice. Then with respect to this 0 and these
operations, L is a Boolean ring.
Proof. It follows from (ii) and Theorem ~2 that R5 and R8 are satisfied.

Further, R4t follows by (VC) and (i); also by (AC) and (ii), multiplication
is commutative, and hence, in particular, R7 is a consequence of R6. The
monotony of the ring operators follows from that of the lattice operators.
The proofs of the other properties are as follows.

Proof of R1. By (i),

a + (b + c) = (a - (b + c)) V ((b + c) - a)

1 The distributivity condition was unintentionally left out in [LLA], p. 90, definition 3.
See Exercise 3.

t R4 (and also commutativity of multiplication) will be proved redundant in Theorem 5.
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a - (b + c) = a - ((b - c) V (c - b))

= (a - (b - c)) A (a - (c - b))

= (ac V (a - b)) A (ab V (a - c))

by (i)

by (10)

by (11)

[CHAP. 4

Multiplying out by the distributive law and noting that by (3)

ab(a - b) = ac(a - c) = 0
we have

a - (b + c) = abc V (a - b)(a - c)
On the other hand,

(12)

by (i)

by (iv) of Theorem C5

by (ii) of Theorem C5

by (10)

by (v) of Theorem C5

by (vi) of Theorem C5

by (10) of Sec. B

by (9)

by (i), Q.E.D.

(b + c) - a = ((b - c) V (c - b)) - a

= ((b - c) - a) V ((c - b) - a)

= (b - (a V c)) V (c - (a V b))

= (b - a)(b - c) V (c - a)(c - b)

Combining this with (12), we have

a + (b + c) = abc V (a - b)(a - c) V (b - c)(b - a) V (c - a)(c - b) (13)

Since this is symmetric in a, b, c, and since addition is commutative, we have

a + (b + c) = c + (a + b) = (a + b) + c, Q.E.D.

Proof of R2

a + 0 = (a - 0) V (0 - a)

Now a - 0 = a

and 0 - a = 0

Hence a + 0 = a V 0 = a, Q.E.D.

Proof of R3. By (iii) and (i) and (vi) of Theorem C5,

a + a* = a + a = (a - a) V (a - a)

= 0 V 0 = 0, Q.E.D.
Proof of R6

a(b + c) = a((b - c) V (c - b))

= a(b - c) Va(c - b)

= (ab - ac) V (ac - ab)

=ab+ac

This completes the proof of Theorem 4.
The 0 b a + b defined by (1) is called by various names, such as the sym

metric difference, the exclusive, or disjunctive, sum, etc. In terms of sets,
a + b is the set of elements which are in one or the other of a, b but not in
both. In the propositional interpretation it represents the exclusive 'or'
It, rather than a V b, is properly called the disjunction of a and b.

Before proving the converse of Theorem 4 we shall derive some properties
of a Boolean ring. The first two of these properties are consequences of
Rl to R3 only (these constitute axiom schemes for a "group"); the third
follows from these and R6 only.
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Theorem 5. For a Boolean ring R4 is redundant,. furthermore, the following
are elementary theorem schemes:

O+a=a

a* + a = 0

aO = 0

ab = ba

a* = a

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Proof·

a+a=O

We prove first (ii), then (i) and (iii), as follows:

a* + a = (a* + a) + (a* + a**) by R2, R3

= a* + (a + a*) + a** by Rl

= a* + a** by R3, R2

= 0 by R3

o + a = (a + a*) + a by R3

= a + (a* + a) by Rl

= a by (ii), R2

aO = aO + ab + (ab)* by R2, R3, Rl

= a(O + b) + (ab)* by R6

= ab + (ab)* by (i)

= 0 by R3

Next, we expand (a + b)(c + d) in two ways, thus.

(a + b)(e + d) = (a + b)c + (a + b)d

= ac + bc + ad + bd

(a + b)(c + d) = a(c + d) + b(e + d)

=ae+ad+be+bd

by R6
by R7
by R7
by R6

Comparing these two and adding (ac)* on the left and (bd)* on the right to
both sides, we have

ad + be = bc + ad

the common value of both sides being

(ac)* + (a + b)(c + d) + (bd)*

(14)

(15)

All this is true in an arbitrary ring. In a Boolean ring we get R4 from
(14) at once by taking c == b, d == a. On the other hand, if we take c == a,
d ==. b, then (15) becomes

a* + a + b + b*

which is 0 by (ii) and R3; so that, since this is the same as either side of (14),

ab + ba = 0 (16)

Here if we take b == a, we have (vi) by R7. Then (v) follows by adding a*
to both sides.
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Finally, from (16), we have

ab = ab + 0 = ab + ab + ba = 0 + ba = ba by (vi), (i)

This completes the proof of Theorem 5.

Theorem 6. Let L be a Boolean ring. Let the lattice operations be defined
thus:

(i)

(ii)

(iii)

aVb=a+b+ab

aAb =ab

a-b=a+ab

by Theorem 5

Since

Let 0 be the ring 0. With respect to this 0 and to these operations, L is a
classical subtractive lattice.
Proof. In accordance with Theorem B5, we show that the properties

L2 to L4 hold. So far as the left halves of these postulates are concerned,
L2 is true by (iv) of Theorem 5, L3 by R5, and L4 thus:

a A (a V b) = a(a + b + ab) = aa + ab + ab = aa = a

On the right we have L2 thus:

aVb=a+b+ab

=b+a+ba
= b Va

As for L3, we have

a V (b V c) = a V (b + c + be)

= a + b + c + be + ab + ac + abc

Since this is symmetric and L2 holds,

a V (b V c) = c V (a V b) = (a V b) V c

Finally, for L4, we have

a V (a A b) = a V ab = a + ab + ab = a

Thus L is a lattice.
Let us now examine the properties of a-b.

abc V a(b - c) = abc V a(b + be)

= abc V (ab + abc)

= abc + ab + abc + abc + abc
= ab

by (iii)

by R6, R5
by (i), R6, Theorem 5

by (vi) of Theorem 5

we have (8). We also have (6) since

(a - b)a = a(a - b) = a(a + ab) = a + ab = a - b

Finally, we have (3) since

b(a - b) = b(a + ab) = ab + ab = 0

and 0 is a lattice 0 by (iii) and (iv) of Theorem 5. In view of Theorem 2,
this completes the proof.
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Note that we have shown that, in either Theorem 4 or 6, the lattice 0 and
the ring 0 coincide.

The following theorem shows, among other things, that the transforma
tions of Theorems 4 and 6 are inverse to one another, in the sense that if (i),
(ii), and (iii) of either theorem are taken as definitions, those of the other
theorem follow as theorem schemes.
Theorem 7. Let L be a Boolean ring which is also a lattice, with ring multi

plication as lattice meet and ring 0 as lattice O. Then L is a classical subtrac
tive lattice and

(i)

(ii)

(iii)

a V b = a + b + ab

a-b=a+ab

(a - b) V (b - a) = a + b

Proof of (i). Let c == a + b + abo Then

ac =a +ab +ab =a

Hence a ~ c, and similarly, b ~ C. It follows that

a V b ~ c

Conversely,
(a V b)c = (a V b)a + (a V b)b + (a V b)ab

= a -+ b + ab = c

Thus c ~ a V b, and hence (i) holds.
Proof of (ii). If a - b is defined by (ii), then, since (i) of Theorem 6 has just

been shown, and (ii) of Theorem 6 holds by hypothesis, L is a classical subtractive
lattice by Theorem 6.

Proof of (iii). Using (ii), we have

(a - b) V (b - a) = (a + ab) V (b + ab)

= a + ab + b + ab + (a + ab)(b + ab)

= a + b + ab + ab + ab + ab
= a + b, Q.E.D.

This completes the proof of Theorem 7.
By virtue of these theorenls a classical subtractive lattice is a Boolean

ring, and vice versa. In a Boolean ring we calculate, as with ordinary poly
nomials, modulo 2, \vith idempotent multiplication.

3. Classical implicative lattices. We close with a few remarks on the
duals of the above theorems. The duals of the properties (3) to (6) of Sec.
1 are, respectively, (1), (2),

(a :::> b) :::> b ~ a V b (17)

and (i) of Theorem Cl. A theorem dual to Theorem 1 evidently holds, but
it will not be stated here. The property (2) is a form of "Peirce's law."
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The dual of the construction in Sec. 2 is of some interest. l If we define

a V') b == (a :::> b) A (b :::> a)

a V' b == a V b

a* == a

then we have a Boolean ring with V') as addition and V' (or V) as multipli
cation. The operation V') corresponds to equivalence in the propositional
interpretation; in the class interpretation, a V') b consists of those elements
which are in both a and b or in neither.

Propositional calculus based on V') as a primitive operation has interested
a certain school of logicians, notably Lesnie,vski, and the Rumanians (e.g.,
Mihailescu). The interest probably stems from the attitude of Lesniewski
in regard to definitions. The dual Boolean ring shows the following prop
erties of obs constructed with V') alone:

1. In such an ob the terms can be permuted and associated arbitrarily.
2. A necessary and sufficient condition that a = 1 hold is that every atom

appear an even number of times.

EXERCISES

1. Show that in a Boolean ring

(a V b) + ab = a + b

(Birkhoff [LTh2 , p. 158, exercise 3].)
2. Show that if a distributive lattice with 0 has the property that for all a and

all b ~ a there is a e such that be = 0 and b V e = a, then the lattice is a classical
subtractive lattice (with suitable definition of a - b). (Birkhoff [LTh2, p. 155,
exercise 3].)

3. Exhibit a nondistributive lattice such that (- h, (3), and (6) hold. (A finite
projective plane geometry with seven points will do.)

4. In the proof of Theorem 6, show directly that (- hand (-)2 hold, without
involving Theorem 2.

S. SUPPLEMENTARY TOPICS

1. Historical and bibliographical comment. This chapter is a revi
sion of [LLA], chap. 3 and part of chap. 4.

For the chapter as a whole, the standard reference is Birkhoff [LTh2].

The encyclopedic character and condensed style of this work make it un
suitable for introductory purposes, but it has an immense amount of infor
mation, including copious references.

The algebra of logic, properly speaking, began with Boole in 1847, al
though there were some sporadic preliminary studies by Leibniz and even
earlier. Extensive improvements were made by W. S. Jevons, C. S. Peirce,
and E. Schroder. For brief accounts of this early history see Lewis and
Langford [SLg, chap. 1] and Whitehead [UAI, pp. 115ff.]; for more details
see Lewis [SSL, chap. 1] and J0rgensen [TFL, chap. 3]. These works and
those in Sec. IS3 should be consulted for citations of the early work.

1 These remarks are due to Feys. (See [LLA], p. 95.)
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The nineteenth-century form of this algebra reached a certain completion
in Schroder's [VAL]. In this treatment the positive operations were intro
duced first, so that practically all the present Sec. B is contained there (and
indeed in Peirce [ALgI]). Schroder's [VAL], however, is extremely long
winded. Couturat [ALg] is an admirable condensation and forms, in my
opinion, the best source of information about the "Boole-Schroder algebra."
It is still one of the best introductions to the subject matter of Sec. B.

After Schroder, the main logical interest shifted away from the algebraic
approach. Improvements in the Boole-Schroder algebra continued to be
made, e.g., in Whitehead [UAI] and Huntington [SIP]. But these develop
ments mostly involved considerations of negation and belong properly in
Chap. 6. We shall therefore pass over them and turn attention to lattices
of more general character.

The first such algebras appear to have been discovered by Schroder him
self. The question of the independence of the distributive law interested
him, and in appendices (Anhange) 4 and 5 of his [VAL], he produced what are
probably the first examples of nondistributive lattices. Other examples of
lattices in mathematics were found, notably by Dedekind, Noether, Skolem,
Fritz Klein, Bennett, Menger, and Birkhoff (for references, see Birkhoff
[LTh, at beginning of chap. 2], to which should be added Skolenl [VLt],
which gives a summary of the Norwegian paper of 1913 cited by Birkhoff).
From these the general conception of a lattice, as given in Secs. A and B,
evolved.

As general references on the theory of Secs. A and B, see, besides Birkhoff
fLTh], also Glivenko [TGS], Dubreil-Jacotin et ale [LTT], Hermes [EVT],
and the older encyclopedia report, Hermes and Kothe [TVr]. These con
sider matters which go far beyond the scope of this book; the shortest and
easiest of them, Glivenko [TGS], is more than ample for our purposes here.
For a very brief and elementary treatment see, for example, Bennett [SSO].

So much for Secs. A and B in general. There follow a few comments con
cerning special topics considered in these two sections.

For examples of lattices, in addition to those in Sec. A2, see Birkhoff
[LTh, beginning of chap. 2], Bennett [SSO], and Glivenko [TGS, sec. 3].

The following circumstance suggested that it was worthwhile to state and
prove Theorem Bl. In Whitehead and Russell [PMt] the theory of deduction
is presented as an assertional system with primitive operations denoted by the
unary prefix 'I' (actually '~') and the binary infix 'v'; the binary infix
, :::>' is defined thus:

p:::>q==IPVq
As axiom schemes (really axioms with a tacit substitution rule) the authors
give

Taut ~ (p V p) :::> P

Simp ~ p :::> (p V q)

Perm ~ (p V q) :::> (q V p)

Assoc ~ (p V (q V r)) :::> (q V (p V r))

Sum ~ (q :::> r) :::> ((p V q) :::> (p V r))

and the rule (modus ponens)
p, p :::> q ~ p
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Now suppose we introduce the definition schemes

p ~q--+rq:::>p pAq=::.pVq

Then Taut, Simp, Perm are, respectively, AW, AK, AC, whereas AB follows
easily from Sum. Moreover, from Sum, putting I p for p, we have (T).
Thus, if we omit Assoc, we have a semilattice by Theorem Bl. By Theorem
B2, Assoc is redundant. Now there is nothing in the proof of Theorems Bl
and B2 which is not already implicit in Peirce [ALgI]. Nevertheless, the
authors of Whitehead and Russell [PMt] , who supposedly based their system
on a combination of the Boole-Schroder algebra and the logistic method of
Frege and Peano, overlooked this fact, nor did anyone notice it until Ber
nays [ADA] (cf. [NAL]).

The postulates Lito L4 in Theorem B5 are those preferred by Birkhoff
fLTh].

Theorem B7 is part of Peirce's proof of the distributive law in Huntington
[SIP]. Actually, (10) of Sec. B is a lemma there, and (8) of Sec. B is derived
fronl it essentially as here. Since that time this theorem has been redis
covered by a number of other persons. Birkhoff ([LThl' p. 74, footnote];
cf. [LTh 2], p. 134, exercise 3) credits it to an unpublished work of J. Bowden
dated 1936; Dubreil-Jacotin et ale ([LTT, p. 75]) credit it to M. Molinaro.

At this point it is pertinent to interpolate a historical remark. In 1880,
in his paper [ALgI]' which deals with "syllogistic logic," Peirce stated that
the distributive laws could be "easily proved by (4) and (2), but the proof is
too tedious to give" (see Peirce [CP.c, sec. 3.200]). Here (4) turns out to be
AK, AK', VK, and VK', and (2) to be AS and VS. On this account Birkhoff
([LTh2, p. 133] or [LThl , p. 74]) states that Peirce "thought that every lattice
was distributive." Closer examination shows that Peirce's "syllogistic logic"
contained principles of negation which were apparently intended to be used
along with "(4) and (2)." When Peirce's original proof was finally published
in Huntington [SIP], it turned out to depend on Huntington's postulates 8
and 9; the proof shows, in effect, that any lattice with 0 and 1 is distributive
if complements (see Birkhoff, [LTh2 , p. 23]) exist such that, if c is any com
plement of b,

ab = 0 --+ a ~ c

This is quite correct (see Birkhoff [LTh 2, p. 171, exercise 6]). Peirce seems
to have been in error on two counts: first in that he was misleading about the
assumptions other than this "(4) and (2)," and second in that, when he
learned of Schroder's independence proof, he put a footnote in his [ALg 2]

(see his [CPC, sec. 3.384]) saying that Schroder had proved that it was im
possible to derive the distributive law in syllogistic logic, whereas Schroder
had done nothing of the kind. These facts hardly warrant the conclusion
that Peirce thought that every lattice was distributive. Indeed, it is more
likely that he did not, as Schroder did, formulate the idea of a lattice at all.

Theorem B9 has been taken from Lorenzen [ALU]. Dubreil-Jacotin et
ale give Corollary 9.1 as exercise to their chap. 6 and credit it (on p. 75) to
M. Molinaro.

For the logic of quantum mechanics see Birkhoff and Von Neumann
[LQM]. This has never been followed up. For other references on the
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same subject, see Fraenkel and Bar-Hillel [FST, p. 230, note 3] and the
papers by Rubin, Jordan, Fevrier, and Destouches in Henkin et ale [AMS].

The notions of implicative and subtractive lattice are clearly formulated
in Skolem [UAK]. I do not know of any earlier formulation. (Inverse
operations of subtraction and division were admitted by Boole; Peirce and
Schroder later dropped these out as being superfluous. Whether there is
any connection of Skolem's operations with these earlier ones I do not know.)
When I wrote [LLA], which forms the basis for the present treatment, I was
not aware of this work of Skolem, and consequently the only part of the
present treatment which is taken directly from Skolem is the distributivity
proof in Theorem C3. As stated in [LLA], p. 96, most of the theorems of
Sec. C were suggested by Tarski [GZS]. The topological applications have
been explored largely by Tarski, Stone, and their coworkers. Theorem C2,
in particular, is the dual of McKinsey and Tarski [CEC, Theorem 1.4]. For
further information see Birkhoff [LTh 2, pp. 147ff., 153ff., 176ff., 195, 204];
McKinsey and Tarski [CEC], [ATp], [TSC]; Stone [RBA]; and works there
cited. Such lattices are special cases of "residuated lattices" due to Ward
and Dilworth; for citations see Birkhoff [LTh2, pp. 201ff.]. For the termi
nology in connection with these lattices and some further details, see Sec. 2.

The theory of Boolean rings is due to Stone. The earlier part of Stone
[TRB], which contains most of the theorems presented here, is quite read
able; see also Stone [RBA]. For complete citations see Birkhoff [LTh 2,

pp. 153ff.]. Boolean algebras, which are Boolean rings with unit, will not
concern us until Chap. 6. Note that Stone's a + b also appeared in Boole,
whereas a V b ,vas introduced later by Jevons in 1864 and (apparently inde
pendently) by Peirce in 1867. There is, however, an important difference.
In Boole a + b was regarded as uninterpretable unless ab = 0, whereas in
Stone a + b is always interpretable; in Boole a + a is meaningless, whereas
in Stone a + a = O. There were some anticipations of Stone's idea, notably
by Zhegalkin (transliterated into French as "Gegalkine") [ASL]; these
are cited in Birkhoff [loco cit.] and Stone [RBA]. See also Herbrand [RTD,
chap. 1, sec. 6].

For references on the work on equivalence see Church [IML 2 , p. 159].
The dual form of Boolean ring is mentioned explicitly in Stone [NFL].

2. Notes on terminology. The term 'lattice' was introduced in Birkhoff
[CSA] and has taken hold in spite of conflict \vith a previous use of the same
term (which, I understand, is due to Minkowski). The term 'Verband',
used by F. Klein and introduced, according to Hermes [EVT, p. 1], by Dede
kind, has become the standard term in German. The accepted term in
French now seems to be 'treillis',. when [LLA] was written this term had not
become established.

The term 'semilattice' appeared in Birkhoff [LTh2, pp. 18, 25] after F,
Klein's 'Halbverband',. the term 'groupe logique', used in [LLA], is from
Moisil [RPI].

The names 'meet' and 'join' for the lattice operations are those of Birkhoff.
Other terms frequently used instead of 'meet' are 'product', 'intersection'
(' Durchschnitt'); like\vise one finds 'sum' or 'union' (' Vereinigung') instead
of 'join'. For the operational infixes Birkhoff [LTh] uses 'n' and 'u', and
Dubreil-Jacotin et ale and Hermes follow hint in this; other authors (e.g.,
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Glivenko, Schroder) prefer the notation of ordinary algebra, with some
form of multiplication infix, or even simple juxtaposition, for meets and
,+' for joins-this last, of course, conflicts with the use of ' +' for ring addi
tion, for which an infix '~' (symmetric difference) is sometimes used. Still
other authors (Ward, Dilworth, Ore, Menger) prefer to use parentheses and
brackets, for example, '(a,b)', '[a,b]', and in such cases, on account of duality,
it is often not clear which operation is which. For the infix ' ~' some authors
prefer 'c', but there is very general agreement on '='. The terms 'cap'
and 'cup' were suggested by H. Whitney (see note in Birkhoff [LTh, begin
ning of chap. 2] as readings for '(1' and 'u'; Dubreil-Jacotin et ai. suggest
reading 'A' as 'inter'.

The infix ':::>' was originally an inverted 'C'. As such it appears in Peano
[APN]. Gergonne (see quotation in Bochenski [FLg, sec. 40.12]) had pre
viously used it for a proper inclusion relation between classes. For further
details on the history see Church [BSL, subject index, under 'Sign :::> '].

The term 'Skolem lattice' for implicative and subtractive lattices together
is suggested here for the first time. The historical aptness of this term should
be clear from what was said in Sec. 1, but it has other advantages. I shall
discuss here its relations with 'Brouwer lattice', 'Heyting lattice', 'relatively
pseudocomplemented lattice', and 'residuated lattice', all of which have
been used in similar connections elsewhere.

The term 'Brouwer algebra' was used in McKinsey and Tarski [CEC] for
what is here called an absolute subtractive lattice. The reasons for attach
ing Brouwer's name to these lattices seem to have been as follows. On the
grounds of his intuitionistic philosophy of mathematics, Brouwer denied the
validity of -certain logical principles, e.g., the law of excluded middle. Up to
1930 only fragmentary treatments of logic which were supposedly more in
agreement with this intuitionistic philosophy had appeared (see, for example,
Brouwer [OLP], [IZM] 1925; Glivenko [LBr], [PLB]; possibly Kolmogorov
[PTN]; cf. Heyting [FMI]). In that year Heyting [FRI] presented a for
malization of a propositional algebra and predicate calculus for such a logic.
This was an assertional system of a sort which we shall consider in Chap. 5.
By methods which we shall learn in that chapter it can be put into a lattice
form; this was done, for example, in Ogasawara [RIL]. The lattices con
sidered in Tarski [GZS] are precisely of that kind. As we saw in Sec. C5,
the open sets in a topological space form such a lattice. But for topological
purposes it is more natural to deal with closed sets and closures than with
open sets and interiors. On this account the lattices obtained from the
Heyting system were dualized. The use of the term 'Brouwer logic' in
Birkhoff [LTh] is similar, the dualization being apparently motivated by
the desire to make 0 represent truth. If we accept these writings as fixing
the meaning of 'Brouwer lattice', then that term has two characteristics:
(1) it is related to an intuitionistic origin which is definitely nonclassical, and
(2) it arises in a nonsymmetric situation where the subtractive form is pre
ferred to the implicative.

If 'Brouwer lattice' is to be used in the way just described, it would be
appropriate to call an absolute implicative lattice, which is obtained from
Heyting's system without dualizing, a Heyting lattice. This term will then
have the connotation that the lattice is nonclassical and implicative.
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Monteiro [AlA] uses 'Brouwer algebra' in this sense, but later, in his [AHM],
prefers 'Heyting algebra'.

As the lattices were introduced in Skolem [UAK], the inverse operations
were brought in on formal grounds alone, without any commitment to an
intuitionistic or related interpretation. Moreover, the two kinds were intro
duced simultaneously, in parallel columns. On this account the term
'Skolem lattice' seems well adapted as a term for all the kinds of lattices of
Secs. C and D. Skolem lattices thus cross-classify in two ways: on the one
hand, into implicative or subtractive (or both); on the other hand, into ab
solute and classical (with possible intermediate kinds). But to speak of
classical Brouwer lattices, or even classical Heyting lattices, would seem
rather odd.

Relatively pseudocomplemented lattices are, in Birkhoff's terminology
(see his [LTh 2J), the same as absolute implicative lattices. The term seems
unnecessarily cumbrous. Moreover, it applies to that particular kind of
lattice only.

Residuated lattices, in the sense of Ward and Dilworth (see the citations
in Sec. 1), are obtained by adjoining "residuation" operations to "lattice
ordered semigroups," i.e., lattices with a third "multiplication" operation
having certain properties. Skolem lattices arise when the third operation is
identified with the appropriate lattice operation. Since Skolem lattices are
always distributive, and residuated lattices, as lattices, do not even have to
be modular, it would be confusing to use the term 'residuated lattice' in the
place of 'Skolem lattice'.

3. Further developments. It would take us too far afield to mention
all the ways in which the theory of lattices has been generalized, specialized,
and other-ized in modern mathematics. The extent of the impact of the
subject on other branches of mathematics can be glimpsed by looking at the
references already cited. Here I shall mention a few further branches which
have logical interest. I shall give few references; where they are given I
have included the latest publication known to me, as well as the one which
seems most comprehensive.

Some study has been made of partially ordered sets in general; also of
closure spaces, Le., spaces with a closure satisfying properties similar to
I to III of Sec. 2B3, of semigroups and related algebraic systems, etc. The
concerns of quantum mechanics (see Sec. 1) have led Jordan to study lattices
which are not commutative; see his [TSV]. Choudbury [BNr] has studied
rings in which the associative law may fail. Algebras related to multiple
valued logics in much the same way that Boolean algebra is related to clas
sicallogic have been called Post algebras or Moolean algebras; for them see,
for example, Rosenbloom [PAl] (also references in his [EMLJ) and Chang
[AAM]. R. L. Foster's 'ring logics' go off at a somewhat different angle in
the same general direction.

There are also algebraic systems which superpose on a lattice some addi
tional notions. Among these are the lattice-ordered groups and semigroups.
The oldest algebra of this kind is the algebra of relations. This was devel
oped largely by Peirce (the ideas are said to go back to DeMorgan); the
third volume of Schroder [VAL] is devoted to it. For a comprehensive
recent report see Chin and rrarski [DML]. Boolean algebras with extra
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operations are considered from a general point of view in Jonsson and Tarski
[BAa]. Probability considerations have led A. H. Copeland, Sr., to intro
duce implication operations of a different sort from those considered here;
see, for example, his [IBA], [POP]. For algebras involving modal opera
tions see Chap. 8; for those related to quantification see Chap. 7.

Finally, the application of higher epitheoretic methods to algebras of the
sort considered in this chapter leads to interesting results. In particular,
the Stone representation theorem (Stone [RBA]), to the effect that any
Boolean algebra can be represented as a field of sets, has led to many similar
studies for other types of algebra. Such theorems are beyond the scope of
this book.



Chapter 5

THE THEORY OF IMPLICATION

At this point we make a transition to systems which are assertional in
character. This form of system is particularly suitable when the obs are
taken as propositions (i.e., to be interpreted as statements). We shall be
concerned in this chapter with the simpler fornls of such assertional algebras,
which involve only the positive operations of Chap. 4. In these systems the
principal operation is the ply operation; although the other operations,
analogous to join and meet, also playa role, that role is rather minor. On
that account this chapter is called the theory of implication. The theory of
implicative lattices, considered in Secs. 4C and 4D3, belongs under that
heading; however, it is convenient to make the break at the point where we
transfer to the assertional form.

We shall start, in Sec. A, with discussion of certain preliminary nlatters,
viz., the nature of the propositional interpretation and of propositions, and
the relationship between relational systenls, in which the basic predicate is a
quasi ordering or an equality whose interpretants are, respectively, relations
of implication or equivalence, and the corresponding assertional systems. We
shall also consider the possibility of epitheoretic interpretation, in which the
propositions we are formalizing are themselves interpretable as elementary
statements, or simple forms of epistatements, relating to some nlore funda
mental formal system or theory, so that our systems formalize part of the
epitheory of that system. The interpretation of the operations on that basis
will lead to the formulation of certain inferential rules, here called T rules,
which are similar to the "natural" rules introduced by Gentzen and called by
him "N rules."

In Sec. B we shall embark on the formal development of the simplest
types of assertional system. There will be two forms of such system, a T
form, which is generated by the T rules directly, and a properly assertional
form, or H form, in which the only rule (modus ponens) is

A,A:::> B I-B

In contrast to these the lattice form of Chap. 4 will be called the E form.
In each form there will be two kinds, called, as in Chap. 4, the absolute and
classical kinds. The absolute system of the T form, called henceforth the
TA system, will be that generated by the T rules of Sec. A3 alone; it and the
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corresponding HA system will turn out to be equivalent to an absolute im
plicative lattice, or EA system. Systems 'rc and HC, analogous to the clas
sical implicative lattice, or EC system, will require some further assumptions,
just as was the case in Sec. 4D.

The later sections of this chapter will deal with a fourth, or L form,
corresponding to the L systems of Gentzen. This involves passing to a higher
stage of formalization. The elementary statements of the L systems are
abstracted from certain epistatements of demonstralJility by means of proof
trees in a T system. These L systems give the most profound analysis of
implication. The principal theorem (Gentzen's "Hauptsatz") concerning
these systems, here called the "elimination theorem," is one of the major
theorems of modern mathematical logic.

Throughout most of this chapter we shall be concerned with processes
which not only apply to the situation in this chapter, where we have only
the finite positive operations, but can be carried out with only minor varia
tions in the succeeding chapters. Consequently, there has been an attempt to
formulate these processes-particularly in the later sections-so that they
are capable of application under more general circumstances than those which
occur here.

In this chapter capital italic letters will be used for the obs. This contrasts
with the usage in Chap. 4, where small italic letters were used for that pur
pose in order to conform to standard practice in algebra. But when we reach
Chap. 7, it will be convenient to use capital letters for propositions and small
letters for individuals, and it is more advantageous to make the necessary
change at this point than it will be then.

A. GENERAL PRINCIPLES OF ASSERTIONAL LOGICAL ALGEBRA

In this section we discuss principles relating to assertionallogical algebras
in general. We begin with more formal considerations, such as the inter
relations of relational and assertional systems, and then treat matters of
interpretation, such as the nature of propositions and that of the operations
connecting them.

1. Relational and assertional logical algebras. In Sec. 2D1 we saw
that any formal system could be reduced to an assertional system. We
shall now study this situation more in detail for the case where the original
system is a relational algebra of the sort considered in Chap. 4.

Suppose that we have a quasi-ordered system 9t with basic relation :s;;:.
All the elementary theorems of 9t are thus of the form

A:s;;: B (1)

Let (5 be the assertional system, formed as in Sec. 2D1, \vhose predicate is
indicated by a prefixed '~'. Let the infix '~' indicate the operation which
replaces the predicate :::;. If G is so formed, then its elementary theorems
will all be of the form

and the equivalence

~A ~ B (2)

(3)
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expresses the fact that (2) holds in 6 when and only when (1) holds in 9t
Moreover, the following will be the translation in 6 of the (p) and (T) in 9t:

~A ~ A
A ~ B, B :::> C ~ A :::> C

(4)

(5)

In the foregoing we have supposed that 9t was given and that 6 was con
structed from it. But it is evident that if an assertional system 6 with a ply
operation is given such that all the elementary statements of 6 are of the
form (2), then we can construe (3) as definition of a relation ::;:, and this
relation will indeed be a quasi ordering if (4) and (5) hold. Thus 6 can be
transformed into a relational system 9t. Furthermore, the two transforma
tions-from 9t into 6 and from 6 into 9t-are reciprocal to one another in
the sense that each exactly undoes the work of the other.

None of this is disturbed in any way if the operation :::> already occurs in
9t, or in other words, if such an operation already occurs in the construction
of the A and Bin (1) and (2). For the instance of' ~'occurringin the middle
of (2) is the principal instance, in the sense that it indicates the operation
forming the bottom node in the construction of A :::> B. The transformations
in the preceding argument are still uniquely defined.

The situation is different, however, if we start with an assertional system
6 in which not all elementary statements are of the form (2). In that case
we proceed as follows. Suppose there is an ob 1 of 6 such that

A~I~A&I~A~A (6)

Let 6 1 be the elementary theorems of 6 which are of the form (2). Then
there will be a reciprocal relation, defined as before by (3), between 6 1 and
a relational system 9t, and every elementary theorem of 6 will be equide
ducible with one of 6 1. Moreover, if (3) holds between 9t and 6 1, we shall
have

(7)

in the sense that the left side is an elementary theorem of 6 if and only if the
right side is an elementary theorem of 9t. This establishes a correspondence
between 6 and that part 9tl of 9t consisting of statements (1) for which
A ==1.

A sufficient condition for the existence of such a 1 is that

A ~ B ~ A (8)

A, A :::> B ~ B (9)

be valid rules of 6 and that 1 be an ob [for instance, if (4) holds, the ob
E1 :::> E l ] such that

~ 1 (10)

For the left half of (6) follows from (8), and the right half from (9) and (10).
Then, in the system 9t, we have

B ::;: 1

A::;:B~I::;:A~B

from (10), (8~

by (6), (3)

(11)

(12)

Suppose now that 9t is a quasi-ordered system with an ob 1 and an opera
tion :::> such that (11) and (12) hold. Adopt (7) as definition of~. Then
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(10) holds immediately by (p). Likewise, we have (3) by (12) and (7).
From (3) we have (4) and (5) as before. We can derive (8) as follows:

~ A ~ 1 :s: A by (7)

~ B :s: 1 & 1 :::;: A by (11)

~ B :s: A by (T)

~ ~ B :::> A by (3)
Further, we have

~A&~A:::>B~I:::;:A&A:s:B

~1:s:B

~~B

by (7), (3)

by (T)

by (7)

SO that (9) holds. From this we have (6) as before.
The foregoing argument establishes that the notions of quasi-ordered sys

tem (with 1 and :::» satisfying (11) and (12) and of assertional system (also
with 1 and:::» satisfying (4), (5), (8), (9), (10) are equivalent in the sense that,
given a system of either type, there is an associated system of the other type,
such that either system can be validly interpreted in the other. There are
no objective grounds for regarding either type of system as necessarily prior
to the other.

It follows that any preference we may have for one type of system over
the other must be based on grounds such as utility, naturalness, suggesti
bility, or the like. But from such points of view both types of system have
their advantages. No doubt a unary predicate is a simpler notion than a
binary one, and on that account the assertional type has advantages from a
foundational standpoint. Also, it is more natural from the standpoint of
the propositional interpretation, to be discussed presently at more length.
On the other hand, the similarity of the relational approach to that of ordi
nary mathematics is suggest.ive. The fullest development of our science is
probably best to be achieved by considering both points of view. Further
more, the interpretation of a relational system in an assertional one seems
more natural than that of an assertional one in a relational one. In other
words, it is easier to apply the theorems of the relational system in develop
ing the assertional one than the reverse. On this account the relational
approach was taken up first in Chap. 4, the assertional approach being post
poned to the present chapter.

2. The propositional interpretation. From now on until further
notice the obs of the various systems being studied will be called proposi
tions. This agrees with the tradition according to which we use terms which
suggest the intended application-so that our formal discussions may not be
an unintelligible jargon-without being so closely tied to it as to contami
nate our formal reasoning with contensive considerations which obscure the
formal structure. In order to see how this terminology contributes to this
objective, a little preliminary discussion will be necessary.

The term 'proposition' is a controversial subject in modern mathematical
logic. Some logicians eschew it like poison; they insist on replacing it, in all
contexts where it had been used as a matter of course, by the word 'sentence';
others insist on using it, ostensibly on the ground that we need to postulate
entities which it can properly denote. The usage here adopted is neutral
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in regard to this metaphysical controversy. A proposition is simply an ob;
as the term suggests, a particular kind of interpretation is intended for it, but
no commitment as to the metaphysical nature of that interpretation is made.

Those who object to the term 'proposition' do so, in the main, for two
types of reason. On the one hand, it has metaphysical connotations which
they desire to avoid; on the other hand, it is a vague term, whereas 'sentence'
is relatively precise. It will be necessary to consider these objections
separately.

The first objection is evidently a matter of one's personal philosophy.
Philosophers do use the term in rather mysterious ways. I admit that I do
not understand what their discussion is about. But it is clear that the
discussion has nothing to do with formal structure. Therefore, so far as
that structure is concerned, the term 'proposition' as used there is literally
meaningless, and we are free to use it in any way we like. Mathenlaticians
can and do use, as technical terms, words which are commonly used for other
purposes in unrelated contexts. The use of the term 'proposition' in a
mathematical context does not commit one, unless he so chooses, to pos
tulating mysterious entities of an esoteric sort.

In regard to the vagueness, it is pertinent to remark that the term 'sen
tence' is vague too. Consider, for example, the following lines of type (not
including the numbers written at the extreme right):

2+3=5
The sum of 2 and 3 is 5.

The sum of 2 and 3 is 5.
The sum of 2 and 3 is 5.

The sum of 2 and 3 is 5.
Die Summe von 2 und 3 ist 5.

1)ie 6umme Don 2 unb 3 ist 5.

3+2=5
2+3=6

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

How many sentences are there1 Certain logicians would say there were 9n,
where n is the number of extant copies of this book; a typographer would
doubtless say eight, identifying (14) and (15); a grammarian would probably
go further and identify (14), (15), (16), (17) and also (18) and (19); while a
German logician, understanding 'sentence' as a translation of 'Satz', might
identify all the first seven. Prior to the advent of the logical usage, the
terln 'sentence' had primarily a granlmatical connotation, but that usage
has tended to change its meaning.

Because of this ambiguity in the current use of 'sentence', it seems ex
pedient to introduce five related terms, viz., 'inscription', 'sentence', 'state
nlent', 'proposition', and 'clause'. It will not be possible, at least here, to
make the distinction between these perfectly precise, but an approximate
explanation can be made as follows.

The term 'inscription' was introduced in Sec. 2A2 to designate a single
concrete instance of a linguistic expression. l Thus in the above table there

1 The term 'expression' is used throughout the present context rather loosely. It
would be more correct, according to Sec. 2A3, to use 'phrase'.
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are nine inscriptions in this particular copy of this book; if there are n copies
of the book extant, then there are 9n inscriptions in the corresponding spaces
of all the extant copies collectively. (The term is still a little vague, because
a part of an inscription is again an inscription; we might possibly speak of a
sentential inscription as one which is an instance of a sentence, or is separated
off by periods, etc., like the linguists' 'utterance'.)

The term 'sentence' is used in a grammatical sense. A sentence is an
expression (or other unit) of some communicative language which performs
a certain communicative function. Such a sentence is a class of inscriptions
which may be considered the instances of the sentence; different instances
of the same sentence are equiform. I cannot say precisely what the com
municative function in question is, and I know of no really satisfactory
definition; yet, given a communicative language, there seems to be little dis
agreement among the users of that language as to which of its expressions
are sentences.! Thus all the expressions (13) to (17) and (20) and (21) are
sentences of mathematical English; the expressions (13) and (18) to (21) are
sentences of mathematical German. Likewise, there is some vagueness
about the notion of equiformity. Certainly (14) and (15) are equiform, and
probably one should consider them both equiform to (16), but whether they
are equiform to (17) and whether (18) and (19) are equiform may depend on
circumstances.

The sense of the term 'statement' may be vaguely described as the meaning
of a sentence. One can associate with this description any metaphysical
notion which one pleases, but if one wishes to be objective, one can say that
a statement is a sentence considered ~without regard to certain linguistic
features which do not affect meaning. Thus a statement is a class of sentences
which are equisignificant. This relation of equisignificance is vague-even
more so than equiformity-but this vagueness does not concern us because
we do not have to count sentences-let alone statements-in logic. The
term 'statement' thus merely indicates in a rough way the level of abstraction.
Thus when we speak of "the statement (15)" we imply that what we have to
say will apply equally well to any of (13) to (19) and possibly to (20), but when
we say "the sentence (15)" we imply that we are including (14) and (16) and
possibly (17). We make the same sort of distinctions in ordinary life when
we speak of the same object as a fruit, an orange, or a valencia. Admittedly,
there are cases where it is not clear which of the two terms is the more appro
priate, and one may, if one prefers, identify 'statement' and 'sentence'.

A clause is a linguistic expression which names a statement or sentence as
the case may be. All the natural languages-at least the more developed
ones-have devices for doing this. None of the expressions (13) to (21) are
clauses, but the following are examples in our U language:

'The sum of 2 and 3 is 5' (22)

That the sum of 2 and 3 is 5 (23)

The equality of 2 + 3 and 5 (24)

2 + 3 D 5 (25)

1 There are certain exceptions. For instance, Chomsky maintains that 'sincerity
admires John' is not a grammatical English sentence, whereas I should be inclined to
the view that it is a perfectly grammatical sentence, although an absurd one.
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Here the quotation marks are an essential part of (22), and the infix' D' is
an operator which replaces equality. All of (22) to (25) are clauses; it is
natural to think of (22} as naming the sentence (15) and the others as naming
the statement. l

A proposition is the meaning of a clause in the same sense that a statement
is the meaning of a sentence; Le., it is a class of equisignificant clauses. One
may reify this notion in a variety of ways. One can indeed suppose that a
proposition is a platonistic abstraction, but one does not need to do this.
One can also say that a proposition is a sentence in an object language which is
being talked about but not used, but one does not need to do that either.
There is thus a certain latitude in what one considers a proposition to be.
The important point is that a proposition is an object (or fiction) being talked
about and that it is in some way related to a certain unique statement.

As stated, the obs of the systems we are about to develop will be called
propositions. This means that we have in mind their interpretation as
propositions in the sense just discussed. Using the term for the interpreta
tion does no harm and has the advantage mentioned at the beginning of this
article. There is some latitude in regard to propositions, and this latitude
may be extended to include the possibility of other sorts of interpretations
where the obs are classes, numbers, closed sets, etc., as in Sec. 4A. On the
other hand, if the term 'sentence' is used for the obs, certain cautions are
necessary. Such a usage is not strictly compatible with the usage just
described. For if the formal variables of the theory are interpreted as in
tuitive variables, they are variables for which nouns, not sentences, can be
substituted. Hence if the obs are taken as sentences, they must be sentences
which are named, not asserted; Le., they must be sentences of an 0 language.
The names of these sentences in the U language, not the sentences themselves,
are to be substituted for the A nouns. In the present discussion the term
'sentence' is confined in principle to expressions of a language actually used
for communication, and it is irrelevant for the formal theory whether the
propositions are 0 sentences in that sense or not.

The use of the term 'proposition' has another advantage which will con
cern us later. In Sec. C we shall formalize certain types of epistatements,
called compound statements, concerning a formal system 6. We do this by
constructing a formal system X whose obs are interpreted as the compound
statements of G. In such a case the term 'proposition' for these obs of X is
particularly appropriate.

Propositions thus differ from statements in that they are talked about as
obs. Now sometimes we have to talk about statements: to say that they
are true, that they are asserted, deducible, complex, etc. This is permissible
usage according to the habit of the English language; it was already alluded
to in Sec. 2A3. We shall adhere to this usage in informal discussions, re
serving the term 'proposition' for cases where the procedure is in some
degree formalized. Indeed, there is no point t.o making a distinction be
tween proposition and statement at all except with reference to some for
malization. In discussing interpretations, where both terms occur, we shall
speak of either propositions or statements as being true, a proposition being

1 The reduction to an assertional system is essentially a systematic transformation of
certain A sentences into clauses.
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true just when the statement associated with it is also true. Indeed, we
may, in such a context, identify propositions with the statements which
are their interpretants.

3. The interpretation of operations. In Sec. 2 we have discussed the
nature of the propositional interpretation. Let us now turn our attention
to the interpretation of the operations denoted by the infixes '::::>', 'A', 'V',
respectively. 'Ve shall attempt to find principles which will guide us in
the choice of postulates to be made later.

For this purpose it is expedient to define a special kind of interpretation
called a normal interpretation. We have seen that a proposition is an object
being talked about, which is nevertheless associated with a contensive state
ment in a definite way. We shall say that an interpretation of a system 6
is a normal interpretation just when the proposition A is true when and only
when I- A. Since the latter statement is true when and only when it is
demonstrable, this is a very restricted kind of interpretation.

The operation A is to be the propositional analogue of the conjunction
connective, in that A A B is true just when A and B are both true. Then
in a normal interpretation this would mean

I-AAB~I-A&I-B

and this could be obtained if we had rules

I-AAB-....I-A
I-AAB-....I-B

I-A&I-B-....I-AAB

(26)

(27)

(28)

Notice that the rule (28) states the circumstances under which we can infer
that I- A A B, whereas (27) states consequences which can be drawn from it.
We can call (28) the rule for introducing A, while (27) can be called rules
for eliminating it. We shall call the rules (27) and (28) Ae and Ai, respec
tively.

The operation V is to be a propositional analogue of the alternation con
nective. Now this alternation connective is much less clear to us than con
junction. However, it is easy to see what rules for introduction and elimi
nation are suitable for it. For introduction we have the rules

(29)

For elimination we note that in order to infer I- 0 from I- A V B, we must
show that we can infer it both from I- A and from I- B; this gives the rule

A 1-0 & B 1-0 & 1-",4 V B -.... 1-0 (30)

rrhe rules (29) and (30) we call Vi and Ve, respectively.
The operation ::::> is to be a propositional analogue of a conditional con

nective. Its rule of introduction is to be that we conclude I- A ::::> B when
we can infer I- B from I- A. If this inference is to be by a formal proof in
whatever system we are formalizing, this gives the rule of introduction

AI-B-....I-A::::>B (31)
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For the rule of elimination we take the converse of (31), viz.,

rA:::>B--+ArB (32)

This is a form of the rule of modus ponens, which is taken as primitive in
most systems of propositional algebra.! It will be called Pe, whereas (31)
will be called Pi. Note that in these rules the conditional connective rep
resented is one of deducibility within a system. On this account the
theory in which :::> plays the principal role is appropriately called the theory
of formal deducibility.

Lorenzen has shown that the rules of elimination are consequences of the
rules of introduction in accordance with his "principle of inversion." The
idea of his proof is as follows. Suppose that the operations:::>, A, V do not
occur in the axioms of a system G, and the rules are such that none of them
other than (28), (29), and (31) has a conclusion of the form r A A B, r A V B,
or r A :::> B. Then we can derive (27), (30), and (32) as follows. Suppose
we have a proof that r A A B, and let this proof be exhibited in tree form.
Then the bottom node of this tree must be formed by an application of (28).
The branches leading to the two nodes constituting the premises will furnish
the desired proof that r A and that r B, thus establishing (27). Again,
assume that we have proofs that r A :::> Band r A. Then, since the last
step in the first proof must be an application of (31), we must have a proof
that ArB. From this proof we obtain a proof that r B by putting the proof
of r A over r A wherever it occurs as a top node in the proof tree. Finally,
suppose we have proofs of the premises of (30). The last step in the third
proof must then be an application of (29). The premise must be either r A
or r B. Suppose it is the former. Let the proof of Are be exhibited in
tree form, and let the proof of r A, in tree form, be placed over each occurrence
of r A as a premise in the first proof. The result will be the desired proof of
rC. If the given proof is that of r B, we proceed similarly with the second
premise of (30).

The argument which we have just been through depends in a subtle way
on the normality of the interpretation. To see this, consider the elementary
statement

rA:::> (B:::> A) (33)

We shall see that this is valid in any normal interpretation. From the fore
going it follows that (33) is equivalent to ArB :::> A, and this in turn to
A, BrA; since A is an axiomatic proposition of the indicated extension, this
is obviously true. Suppose, however, that the interpretant of r A is a state
ment to the effect that A is true, while the statement r A itself is true only
when it is deducible in a rather restricted system. In such a case (33) may
not be valid. For example, let A :::> B be the proposition that ArB,t
where A is the proposition that New York is in North America and B is the
proposition that Calcutta is in Africa, and r refers to some system of logic
in the ordinary sense; then r A is valid in the interpretation, r B :::> A is not,
and hence (33) is invalid. This invalidity arises from the fact that no reason
able system of logic would allow us to derive r A from r B.

1 Note that if it is a primitive rule, it can be expressed as A, A ::> B r B.
t In a normal interpretation this explanation did not have to be made.
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4. Auxiliary interpretations. In Sec. 2C5 a direct interpretation was
defined as one obtained from a valuation by assigning to each formal predi
cate a contensive predicate defined over the values. Interpretations defined
in that wayl in a more or less artificial manner are often an important tool in
the epitheoretical study of propositional algebras. We shall call these
interpretations auxiliary interpretations.

A special case of some importance is where the interpretation is such that
obs which are equal (in the sense of Sec. AI) have the same value. Such an
interpretation will be called a regular interpretation. The values in a regular
interpretation will be called elements. A system with a regular interpreta
tion is an "algebra" in the sense of ordinary mathematics. The usage of
'elements' conforms with general mathematical practice. In case the ele
ments are sats, there may be some confusion, since it may seem more natural
to call the members of these sets elements, rather than the sets themselves;
when such confusion seems dangerous, one can avoid it by calling the mem
bers of the elements "members" or "individuals," or by making some spe
cific convention. The methods of modern algebra can evidently be applied
to systems with a regular interpretation.

In connection with regular interpretations it is permissible to use the same
symbol for both the ob and the element. Thus we can speak about "the ob
A" and "the element A," meaning by the latter the element associated with
the former.

A special case of a regular interpretation is that in which the element
associated with an ob A is the set of all obs B such that

A=B

The ordinary algebra so obtained is known, especially in the case where the
original system is assertional, as the Lindenbaum algebra2 associated with
the system; from the present standpoint it is appropriate to refer to it as the
Lindenbaum interpretation.

In terms of regular interpretations the notion of homomorphism, and
related notions, can be explained. Let 81 and 8 2 be two given systems.
Then a homomorphism of 8 1 into 8 2 is a mapping associating to each element
(or ob) A of 8 1 an element A * of 8 2 and to each operation w or predicate ~

of 81 an operation w* or predicate ~* of 8 2 of the same degree, such that, for
all obs A v ... , An of 8 1 ,

w(Av ... , A n)* = w*(A1*, ... , An*)

~(Av··· ,An) --+~*(Al*'··· ,An*)

An isomorphism is a homomorphism which is one-to-one between elements
and works both ways; an endomorphism is a homomorphism of a system into
itself; and an automorphism is an endomorphism which is also an isomorphism.
These concepts can, at least in part, be defined between systems, but seem
most useful between systems with regular interpretations.

1 Here it is intended to include not only direct interpretations in the narrow sense of
Sec. 2C5, but also those in which the basic predicate is interpreted as the possession of a
certain property for all admissible valuations. This is admitted explicitly under matrix
interpretations below.

2 From Adolf Lindenbaum, a Polish logician, who perished in World War II.



SEC. B] PROPOSITIONAL ALOEBRAS 175

Another special kind of interpretation, called a matrix interpretation, is
defined as follows'! Let there be given a certain set <X of values and a subset
(J of values which are called designated values. To the operations of an
assertional system S let there be assigned functions of the same degree which
determine a value in <X for each set of arguments in <x. Let the function so
assigned to implication be f( -1' -2)' The ordered sequence consisting of <x,

{J, f and the other functions assigned to the operations constitutes a matrix
for S. In a matrix an assignment of values to the atomic obs determines
uniquely the value assigned to every ob. An ob A is tautologous for a
matrix M if and only if A has a designated value in every possible assign
ment of values to the atoms. Then ~ A is interpreted as saying that A is
tautologous. (Validity by 0-1 tables is a special case.)

A matrix is called normal just when Y is in {J whenever x and !(x,y) are
both in {J. In such a case, if AI' ... , Am are assigned values in {J, the sole
rule of inference is (9), and

AI' ... ,Am ~ B

then the value assigned to B must be in (J. Normal matrices, especially
finite ones, are frequently an important tool in investigating questions of
consistency and independence.

A matrix interpretation, even a normal one, is not necessarily regular. A
sufficient condition that a normal matrix give a regular interpretation is that
f(x,y) andf(Y,x) be both designated if and only if x and yare the same value.

B. PROPOSITIONAL ALGEBRAS

In this section we study certain propositional algebras which express the
interpretations discussed in Sec. A3. We shall discuss three forms of such
algebras and their relations to one another. One of these, called the T form,
will be based directly on the rules considered in Sec. A3; the idea is due to
Gentzen,2 who proposed what he called "N rules" (for "natural rules") of
this nature. The second form, called the H form, has modus ponens (Le.,
the Pe of Sec. A3) as its sole rule, and axiom schemes of the traditional sort.
The implicative lattices considered in Sees. 4C and 4D constitute the third
form, which will be referred to here as the E form. There will further be two
kinds of algebra. The algebra whose asserted propositions consist of those
derivable by the rules of Sec. A3 and nothing else will be called the absolute
propositional algebra; its three forms will be designated TA, HA, and EA,
respectively, where it will turn out that EA is precisely the absolute implica
tive lattice of Sec. 4C3. The algebra formed by adjoining to the absolute
algebra just enough so that its E form is a classical implicative lattice will
be called the classical positive propositional algebra,. its three forms will be
called TC, HC, and EC, respectively. Later we shall see that the assertions

1 Cf. Sec. 4A2, item 80
; also~ukasiewicz and Tarski [UAK, Definitions 3 and 4].

2 Gerhard Gentzen (1909-1945), German mathematical logician. He got his doctorate
at Gottingen under Hermann Weyl about 1933; died in a prison camp in Prague at the
end of World War II. His inferential methods are presented in his [ULS]. Later (in
his [WFR], [NFW]) he applied them, in connection with a transfinite induction up to the
first € number, to prove the consistency of a formalization of arithmetic. These have
beC'OJllc famous, whereas his thesis has become known only in recent years.
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of this classical algebra are precisely those which are tautologies in the
ordinary two-valued truth tables.

1. The system T A. As stated in the introduction to this section, the
system TA is the system based on the rules of Sec. A3. Since these rules are
now primitive, they can be expressed as follows:1

{A A BI-A Ai A, B ~A A B
Ae

AAB~B

Ve A~G&B~G~AvB~G {A I- AV B
Vi

B~AvB

Pe A, A :::> B ~ B Pi A~B~~A:::>B

The following technique for writing these rules and for exhibiting proofs
formed from them was given by Gentzen. It will be noted that t,vo of these
rules, namely, Pi and Ve, are not elementary. Suppose we indicate the
elementary rules by writing the premises above the horizontal line and the
conclusion below it, so that the rules for A become

AAB
Ae -A-

AAB
1J

Ai A B
AAB

The prefix '~' is here superfluous; the rules can be regarded as relations
between obs. Proofs formed from these rules alone can then be exhibited
in tree fOrD} according to the technique of Sec. 2A6, the abbreviations 'Ae',
'Ai', etc., being written at the right of the horizontal lines to indicate the
rule being applied. A tree so constructed indicates a derivation of the con
clusion (Le., the bottom node) from the premises (Le., the top nodes); if the
top nodes are AI' ... , Am and the bottom node is B, the tree indicates a
derivation of

(1)

A A (BAG)
A A (B A G) A BAG Ae

A e --Ae
________B

Ai
AAB

For example, a derivation of

A A (B A G) ~ (A A B) A G

which is a form of the associative law, is given by the tree

A A (BAG) Ae
BAG A

G e
-----------------Ai

(A A B)AG

To extend this technique so as to include the rules with nonelementary
premises (namely, Pi, Ve), Gentzen indicates a premise of the form A ~ B
by writing the subsidiary premise, here indicated by 'A', in brackets over

1 It will be recalled that A ~ B is that special case of

where the inference is made by application of the rules. This special case will apply if the
inference is an instance of a primitive rule.
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the subsidiary conclusion, here indicated by 'B'. Thus the renlaining rules,
in Gentzen's notation, would be written thus:

[A] [B]

Ve
C C AvB

Vi
A B

C AvB AvB
[A]

A A "::) B B
Pe

B
Pi

A"::)B

To form the constructions using such rules we need only some way of indi
cating that the conclusion of an instance of Ve or Pi no longer depends on
the bracketed premise. We can do this most simply by numbering the
distinct premises, and then marking along with 'Ve' and 'Pi' the number or
numbers of the premise(s) to be canceled. At the same time the number of
the premise can be canceled in all occurrences, not already canceled, over
the inference in question. For example, a proof of (33) of Sec. A can be
exhibited thus:

1 2
A B p.

B"::)A 1-2
------Pi -1
A"::) (B"::) A)

(2)

Here both of the indicated premises have been canceled; hence the conclu
sion is an assertion of the absolute propositional algebra.

Other examples of this technique giving, respectively, proofs of

~A "::).B"::) C:"::):A"::) B."::).A"::) C

A "::) B, B "::) C ~ A "::) C
AAB."::)C~A "::).B"::)C
A s B, A "::) C ~ A "::) B A C
A "::) 0, B "::) C ~ A vB"::) C

are the following:

3 1 3 2
A A"::) (B "::) C) P A, A "::) B P

B"::)C e B e
C Pe

--Pi - 3
A"::)C Pi-2
A"::) B."::).A"::) C
A "::).B"::) C:"::):A"::) B."::).A"::) C Pi - 1

(3)
(4)

(5)

(6)

(7)

3
A

1
A"::) B 2
B Pe B"::) C

C Pe
-- Pi-3
A"::) C
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1
AAB.-:=J G pG e

-- Pi - 3
B-:=J G

pi
_

2
A -:=J.B -:=J G

[CHAP. 5

3
A

132
A-:=JB A A-:=JG
B Pe G Pe
-------Ai

BAG p'
A-:=JBAG 1-3

3 1 ~ 2
A A-:=JG B B-:=JG ~

G Pe G Pe AvB

G p'
Ve - 3,4

AvB-:=JG 1-5

The reader should observe that these proofs may be constructed from the
bottom up in a very natural manner.

Let us now establish a connection between the system TA and the system
EA.
Theorem 1. If the relation ~ is defined by

A ~ B ~ I- A -:=J B (8)

then the system TA is an implicative lattice.!
Proof. We note first that, in view of Pe and Pi,

A~B~AI-B

Then (p) is obvious; AK, AK' follow by Ae, and VK, VK' by Vi~ (7) follows
by (4), AS by (6), VS by (7), and P 2 by (5); while PI follows by Ae and Pe
thus:

1
AA(A -:=J

A
B) Ae

1
A A (A -:=J B) A

A -:=J B e
B Pe

Thus all the postulates of EA are valid when interpreted by (8) in TA. This
completes the proof.

A converse to Theorem 1 will be established in Sec. 3.
2. The system RA. Before proceeding to the converse of Theorem 1,

we seek a formulation HA of the absolute propositional algebra in which the
only rule is Pe (Le., modus ponens).

It is clear that, in the presence of Pi, any premise of the form A I- B in a

1 According to Sec. 4Al (fifth paragraph) this means that every elementary theorem of
an absolute implicative lattice is valid when interpreted in TA by (8). The proof shows
this by deductive induction.
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nonelementary rule can be replaced by ~ A :::> B; further, in the presence of
Pe, any elementary rule of the form

AI' ... ,Am ~ B

can be replaced by a statement scheme

~ Al :::>. A 2 :::> •••• :::>. Am :::> B

By the first of these principles, Ve can be replaced by the elementary rule

A :::> C, B :::> C, A V B ~ C

By the second principle, the rule Ai will follow from the scheme

~A:::>.B:::>.AAB (B)

whereas Ae, Vi, and Ve will follow, under the same assumptions, fronl the
schemes

AK
AK'
VK
VK'
VS

~AAB.:::>.A

~AAB.:::>.B

~A.:::>.AvB

~B.:::>.AvB

~A :::>C.:::>:B:::>C.:::>:AvB.:::>.C

No confusion should arise from the fact that the same abbreviations have
been used for these postulates as for corresponding postulates of EA, for the
latter are direct translations of the former according to the principles of this
article and Sec. 1 (cf. Sec. 3).

This brings us to Pi. We seek axiom schemes from which Pi ,vill follo'v,
in the presence of Pe as sole rule, as an epitheorem. To do this we go through
the motions of a proof of Pi by deductive induction; more precisely, of a
proof that any ob C such that A ~ C is such that ~ A :::> C. The basic step
of this induction involves two cases, viz., when C is A itself and ,,,hen C is
some other axiom; and the inductive step takes the case \\'here ~ C is ob
tained from ~ B :::> C and ~ B by Pe. This gives three cases as follows:

CASE 1. C is A. The desired conclusion will follo\v immediately froln
the scheme

PI ~ A :::> A

CASE 2. C is an axiom, so that

holds. Then, by Pe, we should have the desired result from the scheme

~C :::>.A :::> C
i.e., from

PK ~A:::>. B:::> A

CASE 3. C is obtained by Pe from B :::> C and B. By the hypothesis of
the induction,

and

~A :::>. B:::> C
~A :::> B
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Hence the desired conclusion will follow from the scheme

PS

We thus see that, regardless of what additional axioms or axiom schemes
there may be, Pi will be an epitheorem whenever we have PI, PK, and PS as
axiom or theorem schemes. Before stating this conclusion formally, it will
be expedient to make two remarks.

The first remark is that the scheme PI is a consequence of PK and PS.
This was shown in Sec. 3A3.

The second remark is that (9) can be replaced by the weaker principle

AS l- A :::> B • :::> : A :::> G • :::> : A :::>. BAG

which is analogous to VS. It is perhaps easiest to see this by a direct proof.
Let l- I, and let '~' indicate formal deducibility. Then we deduce (9) from
AS thus: l Since, by PK,

we have

Al-I:::>A&Bl-I:::>B

l-A&l-B-+l-I:::>A&l-I:::>B
~l-I:::>.AAB

~l-AAB

by AS
since l- I

Hence l-A~l-B:::>.AAB

l-A :::>.B :::>.AAB

Conversely, suppose (9) holds. Then

by Pi
by Pi

l-A:::> B&l-A :::>G&l-A~l-B&l-G

~ l-BAG
l-A:::> B&l-A :::>G~l-A :::>.BAG

by (9)

by Pi

whence we derive AS by two applications of Pi as before.
This discussion can now be formalized in the following definition and

theorems. It is convenient to state two different theorems because of the
interest in the results.
Theorem 2. (Deduction theorem.) Let 6 be a system of propositional

algebra with a ply operation :::>. Let Pe be the sole rule of 6, and let the
elementary theorems of 6 include all instances of the schemes PK and PS.
Then Pi is an epitheorem for 6 or any of its axiomatic extensions.

DEFINITION. The system HA is that system of propositional algebra with
operations :::>, A, V which i'3 generated by the axiom schemes PK, PS,
AK, AK', AS, VK, VK', VS, with Pe as sole deductive rule.2

1 In each line, except where Pi is cited, there are one of more applications of Pe; this
Pe is not explicitly mentioned.

I It is understood that what is important in this definition is that the system is asser
tional, that the sole rule is Pe, and that the assertions are those generated from the axiom
sohemes described. Another set of axiom schemes which generated the same set of
assertions by the use of the same rule Pe would be considered as another formulation of
HA, not as a distinct system. In some contexts, however (e.g., in Sec. E2 below), it is
desired to make statements about HA which require that the system be formulated exactly
as here described. Since the context will make this clear, it is not necessary to be fussy
about this distinction. But when great exactness is desired, the term '8tandard formu
lation of H A' will be used to describe the formulation given here.



SEC. B] PROPOSITIONAL ALGEBRAS 181

Theorem 3. Every assertion of TA is an assertion oj HA; furthermore, the
rules of TA are valid as epitheorema of HA.
Proof. The preliminary discussion shows the validity in HA of the rules

of TA; hence every assertion of TA is also one of HA.
The converse of Theorem 3 will be established in Sec. 3 (Theorem 5).
3. The absolute propositional algebra. We shall now complete the

study, begun in Sees. 1 and 2, of the absolute propositional algebra. The
first theorem will be concerned with the relation between the systems HA
and EA; then the studies of Sees. 1 to 3 will be gathered together in a final
stateII1ent of equivalence of the three .types of systems.
Theorem 4. If ~A in HA, then 1 ~ A in EA.

Proof. "Ve note first that, by (vi) of Theorem 4CI,

1 ~ B :::> C~ B ~ C (10)

[so that EA satisfies the condition (12) of Sec. AI]; further, by(3) of Sec. 40
(p. 141),

Bl~(B2:::>C)~BlAB2~O (II)

Now if A is an ob of the form B 1 :::> • B 2 :::> ••• B m :::> • C , we say that an
elementary theorem of EA is an E transform of A just when it is either

I~A

or, for some Ie. ~ m, it is

B11\··· 1\ Bk :::; Bk +1 :::>.Bk + 2 :::>··· :::>.Bm :::> 0

Then by virtue of (10) and (11) all these E transforms are equivalent in EA,
and anyone of them is true if and only if they all are.

Let us say that an ob of HA is EA-valid just when it has an E transform
which is true in EA; this amounts to the same thing as saying that all its E
transforms are true in EA. We have to show by deductive induction that
every assertion of HA is EA-valid.

The inductive step of this induction has already been shown in Sec. Al
[proof of (9)]. To complete the proof it is only necessary to show that each
of the axiomatic propositions of HA is EA-valid. This is shown in the
following table, in which the numbers of the axiom schemes are listed in
the first column, a suitable E transform for an instance of that scheme in the
second column, and a reference to a proof of EA validity in the third.

PK
PS
AK
AK'
AS
VK
VK'
VS

A ~B:::> A
A :::> (B :::> C) ~ (A :::> B) :::> (A :::> C)

AAB ~A

AAB ~ B
(A :::> B) A (A :::> C) ~ A :::> (B A C)
A ~Av B
B ~AvB

(A :::> C) A (B :::> C) ~ (A V B) :::> C

(i) of Theorem 4CI

(iii) of Theorem 4C1

AK
AK'
(iv) of Theorem 4CI

VK
VK'
Theorem 4C3

This completes the proof of Theorem 4.

t For k = m, the right side is interpreted as O.
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Combining Theorems 1, 3, and 4 into one statement, we have:
Theorem 5. The systems TA, HA, and EA are equivalent, in that, given an

ob A, the three statements

~A in TA

~A in HA
A is E A -valid

(12)

(13)

(14)

are mutually equivalent.
Proof. In view of the fact that Pe and ~ 1t hold in TA, we have (12)

from (14) by Theorem 1; (13) follows. from (12) by Theorem 3; and (14)
follows from (13) by Theorem 4.

4. The classical positive propositional algebra. In Sec. 4C5 we saw
that the scheme

(A:::> B):::> A ~A (15)

was not an elementary theorem scheme of an absolute implicative lattice,
and in Sec. 4D1 a classical implicative lattice was defined, in effect, as an
implicative lattice for which (15) holds. This classical implicative lattice
is here called the system EO.

Acting by analogy with the absolute system, we can define classical posi
tive propositional systems HC and TC by adjoining- to HA and TA, re
spectively, postulates in agreement with (15). The postulate for HC is the
scheme

Pc ~A:::> B.:::> A::::> At

which is commonly known as "Peirce's law"; that for TC is the rule

Pk
[A :::> B]

A
A

r~rhe interest of this classical system is that all assertions of HC are obs
formed by :::>, A, v, which yield tautologies when evaluated by the ordinary
two-valued truth tables. This is easily shown by deductive induction.
That conversely every such tautology is an assertion of HC, a result which
will be called the completeness theorem for HC, cannot be shown conven
iently with our present apparatus, but will emerge in due course.

In the meantime, we note simply that the systems TC, HC, EC are equiv
alent in the same sense that TA, HA, EA were; in fact, we have the follow
ing:
Theorem 6. If A is an ob, the three statements

~A in TO
~A in HO

~ A in EO

are mutually equivalent.

t This is to take care of the case where the only E transform of A is 1 ~ A.
t The dots are redundant if we use the rule of association t.o the left..
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Proof. The proof that (15) is validly interpreted in TC is given by the
following diagram.

The rest goes as in Theorems 2 to 5.

EXERCISES

The following abbreviations are used as names for the indicated statement schemes
in all cases.

PB
PB'
PC
PI
PK
PS
PW

l-B=> G.=>: A => B.=>. A ::> G
l-A => B.=>: B =>' G.=>. A => G

l-A =>. B => G :=>: B =>. A => G
l-A => A
l-A =>. B=> A

l-A =>. B => G :=>: A => B.=>. A ::> G,
l-A =>. A => B :=>. A => B

1. Show directly that PB, PC, PW are true in HA.
2. Show that if PK, PS are replaced by any of the following sets

PB, PC, PK, PW
PB', PK, PW

we have a sufficient set of axiom schemes for HA. (The first set was used in Hilbert
[GLM]; the second in Hilbert and Bernays [GLM. I]. The latter, pp. 70ff., discusses
other axioms.)

3. Show directly that Rp holds in HA. (Use PB, PB'.)
4. Investigate the independence of any of the sets of axiom schemes for HA

(Hilbert and Bernays [GLM. I, pp. 72-82]).
5. Put in all details in the above proof of (9), so as to get a proof in the formalism

of HA without using Pi.
6. Show that, if (9) is accepted as an axiom scheme, PK becomes redundant if PB'

(or PB, PC) and PW are postulated, but remains independent if only PS is postu
lated (Church [IML2, exercise 26.8]).

7. Discuss the following set of axiom schemes for HA (due to Heyting [FRI]).

l-A =>. A A A
l-A A B.::>. B A A
l-A=> B.=>. AAG=> BAG
l-A ::> B.A. B => G.=>. A ::> G

l-B=>. A => B

l-A A.A => B.=>. B

l-A =>. A vB

l-AvB.=>. BVA

l-A => G .A. B => G.=>. A vB=> G

Show that these are equivalent to those here given. (Schroter [UHA]. Show
adequacy by reducing to EA, validity by TA.)
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8. What is the effect on the deduction theorem of the admission of a substitution
rule in addition to Pe1

9. Formulate a system admitting Pe and, instead of Pi, the rule that if A ~ B,
then either ~B or ~A :::> B, but such that PK fails. (Church [WTI].)

10. What sort of deduction theorem would hold in a system with PB and PI only;
with PB, PC, and PI; and with PB, PC, PW, and PI? ([GDT].)

11. Show that a necessary and sufficient condition that A ~ B be demonstrable
in TA with the omission of the rules for P is that A :::;: B hold in a general distributive
lattice.

12. Show that we get a formulation for HC by adjoining either of the schemes

~A V. A :::> B
~A:::>.BVG.:::>:A:::>B.VG

as additional axiom scheme to HA.
13. Show that PK, PB', and Pc are a sufficient set of axiom schemes for pure

implication in HC. (Schmidt [VAL, Theorem 56]. The formulation is due to Tarski
and Bernays and appeared in Lukasiewicz and Tarski [UAK, Theorem 29].)

14. Show that the statements deducible by Pe from the single axiom scheme

.~A :::> B.:::> 0 ::::>: E:::>: B:::>. 0:::> D.:::>. B:::> D

are precisely the elementary theorems of HA (here "E' is a U variable). (Meredith
[SAP].)

*15. Can the elementary theorems of a lattice, and if so of what sort of lattice, be
obtained from the axiom schemes for HA other than those for P by making a suitable
definition of A :::;: B1 If not, what addition should be made? [If we use the defi
nition (8), there is trouble with (p) and (T); if we use that of Exercise 11, with AS
and VS.]

16. Show that HA has the following normal matrix interpretation (Sec. A4):

rJ. == {I, 2, ... , n} fJ == {I}
A V B = min (A,B)
A A B = max (A,B)

{
I if A > B

A:::> B = B if A ~ B

Hence show that Pc is not demonstrable in RA. On the other hand, if AI' ... , Am
are distinct atoms, and

B ii == Ai :::> Ai .A. Ai :::> Ai
Ok == B lk V B 2k V •• • V Bk-l.k

Dm=02vOav···vGm

then D m is not demonstrable, even though it always has a designated value in the
above matrix if n < m. (Godel [IAK].)

c. THE SYSTEMS LA AND LC

In this section we shall begin the study of certain systems which Gentzen
introduced and called L systems. These differ from the systems considered
up to now principally in the following respects. The elementary statements
are statements of deducibility; each such statement has a certain conclusion
and a set, which may be void, of premises; and it is interpreted as stating the
existence of a T proof leading to the stated conclusion and having no un
canceled premises other than some of those stated. But whereas such
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theorems for a T system would not constitute a deductive theory, at least
not one with elementary rules, they do constitute such a theory in the L
system. Furthermore, the rules are such that new combinations can be
introduced but not eliminated, and this gives the system a quasi-constructive
character which has important consequences.

Along with the L systems another innovation will be introduced at the
same time. It is assumed that the propositions have as interpretants cer
tain statements concerning an underlying formal system 6. This 6 is
subject only to broad restrictions which admit as special case the possibility
that G may be vacuous. In that special case the theory of Gentzen-and
propositional algebra as ordinarily understood-results. We thus have
here a slight generalization; as a result of it propositional logic becomes part
of the methodology of formal systems in general, rather than the theory of a
special formal system being studied for its own sake. This innovation is
independent of those mentioned in the preceding paragraph; it could have
been introduced in Sec. B or even in Sec. 4C. It is introduced at this point
because it fits in conveniently with the semantical discussion in Sec. 1.

Since the theory of the L systems is rather extensive, it is convenient to
divide it between three sections. The present section will deal with the
formulation of the system and of techniques and simple theorems connected
with it. The relations between the different kinds of L systems and other
types of systems will concern us in Sec. D, and the further development of
the system in Sec. E. The exercises for all three sections will be found at
the end of Sec. E.

This section will lay the foundation, not only for the systems LA and LC,
which principally concern this chapter, but for the analogous L systems in
the succeeding chapters.

1. Preliminary study of the absolute system. We shall first consider,
in a preliminary and partly intuitive manner, the formation of the system
LA(6) based on a given formal system G. In this consideration we shall
proceed with a certain interpretation of the system and a discussion of the
validity of postulates relative to that interpretation, in order to form a basis
for the formalization to be introduced later.

The propositions of LA(6) will have as interpretants certain statements of
6. We call these statements the compound statements of 6. They form an
inductive class generated from the elementary statements of G by the posi
tive sentential connectives. Correspondingly, we speak of the elenlentary
statements of 6 as forming the class (f of elementary propositions; the (com
pound) propositions are the class ~ generated from the elementary proposi
tions by the operations. In the present chapter these operations are :::>,

A, and V. Both of the classes (f and ~ are relative to 6; when we wish to
make this dependence explicit, we call them (f(6) and ~(6), respectively.

Among the propositions we postulate two sorts of deducibility relation,
synlbolized, respectively, by

AI' ,Am ~o B

AI' ,Am I~ B

(1)

(2)

These forms are admissible for any value of m ~ 0; for the case m = 0, they
are written with nothing to the left of the signs '~o' and ' I~', respectively.
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Of these, (I) will hold only when AI' ... , Am and B are elementary, and
then, for m > 0, just when Bt is a consequence of A!, ... , Am by virtue of
an instance of a deductive rule of 6, and for m = 0, just when B is an axiom
of 6.+ The statements (I) are thus specified by a finite list of schemes,
and their purpose in the theory is purely auxiliary. On the other hand, the
statements (2) will be the elementary statements, properly speaking, of the
system LA(6); they will be a deductive class specified in the usual way by
axioms and rules. l

This study is thus concerned principally with elementary statements of
the form (2). It will be convenient to use German capital letters, generally
from the end of the alphabet, to stand for sequences of propositions; thus a
typical statement (2) is

X II-B (3)

where X is a finite sequence, which may be void, of propositions.
The interpretation we now associate with (3) is that B is a consequence of

X. We may define this more specifically as saying that B is the conclusion
of a T proof having no uncanceled premises except certain members of X.
Alternatively, we may regard (3) as stating that II- B is demonstrable in a
system L(G;X) formed by adjoining X to L(6).

For this interpretation (3) will be valid in the following cases:

(al) When B is in X.
(a2) When B is an axiom of 6.
(a3) When B is an elementary proposition and X contains elementary prop

ositions AI' ... , Am such that (I) holds.

In the same interpretation the validity of (3) depends only on the class of
propositions in X, and not at all on their order or multiplicity; further, one
can add arbitrary propositions to X without destroying the validity of (3).
These facts can be expressed by three inferential rules, called structural
rules. The first of these, called the rule of permutation, says that (3) is
derivable from

X'II-B

where X' is any permutation of X; the second, called the rule of contraction,
says that (3) is derivable from

X,A II-B (4)

provided A is present in X; and the third, called the rule of weakening, says
that (4) is a consequence of (3) for any A. It will be convenient to call these
three rules C, W, K, after the combinators C, W, and K, respectively.

t In discussing interpretations it is permissible to identify propositions with the state
ments they represent (cf. Sec. A2).

: The form (1) can represent only an elementary rule (Sec. 3D3). Thus our considera
tions are restricted to systems (5 which have only such rules. This is a matter o( some
importance.

1 The relations 1-0 and II- are thus predicates of an unspecified number of arguments.
This is a possibility not explicitly considered in Sec. 2C. To bring it under the conception
of Sec. 2C, it is necessary to analyze these predicates into an assemblage of predicates
each with a fixed number of arguments. From this point of view, the rules adopted later
would be quite complex.
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Next "re consider the rules related to the operations. We adopt the
principle, already suggested in Sec. A3, that the meaning of a concept is
determined by the circumstances under which it may be introduced into
discourse. For statements of the form (3), introduction can be made either
on the left or on the right. This suggests the following notation. Let 'P',
'A', 'V' be used, as heretofore, for the operations :::>, A, V, respectively, and
let '0' stand for any of these, or indeed, for the name of any operation intro
duced now or later. Then we indicate a rule of introduction on the right by
writing the appropriate one of these symbols with ah '.' on the right; like
wise we indicate a rule of introduction on the left by writing such a symbol
with an '.' on the left.!

For the rules on the right the situation is essentially the same as in Sec.
A3. In fact, the rules P., A., V. are analogous to the rules Pi, Ai, Vi,
thus:

X, A U- B --+ X U- A :::> B
X Ir A & X Ir B --+ X Ir A A B

X Ir A --+ X Ir A V B
X Ir B --+ X Ir A V B

For the rules on the left we have to ask questions analogous to those we
asked for the rules Oe in Sec. A3. To justify the introduction of A 0 B to
form

X, A 0 B Ire

we have to ask when, in the presence of X, e is a consequence of A 0 B. If
we examine the motivation of the rules Oe, we conclude the following. We
can infer e from A A B when we can infer it either from A or from B, thus
giving the rules

X, A Ir e --+ X, A A B Ir e
X, B Ir e --+ X, A A B Ir e

We infer e from A V B just when we can infer it both from A and from B,
thus giving the rule [cf. (30) of Sec. A]

•V X, A Ir e & X, B Ir e --+ X, A V B Ir e
Finally, unless A is present, we can infer nothing from A :::> B that ",oe cannot
infer from it as a wholly unanalyzed proposition, but if A is present, we can
infer from A :::> B any e which we can infer from B alone, thus giving the
rule

X Ir A & X, B Ir e --+ X, A :::> B Ir e
1 This notation is a modification of that introduced by Kleene [IMM]. The latter uses

'-.' for 'Ir' and the infixes '=>', 'A', 'V' in place of 'P', 'A', 'V'. He indicates the rules by
writing' -.' so that the operational symbol rather than the' -.' indicates the side on
which the introduction takes place. The modifications adapt these notations to the
general conventions made here and in combinatory logic. In the latter theory 'P', 'A',
'V' are prefixes for the operations, and it is essential to have such prefixes which are
distinct from the infixes. Other prefixes, '0', 'K', 'A', respectively, are used by the Polish
school, but they are incompatible with the other conventions of combinatory logic.
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I t will be seen that the rules .0 express essentially the same principles as
the rules Oe, only now there is no elimination.

To express the fact that the set of propositions A such that ~ II- A holds
is closed with respect to the rules of 6, we need a rule

1-. If (1) holds and
i = 1,2, ... , m

then

Reciprocal to this, in a certain sense, is a rule

.1- If (1) holds and
~,BII-C

then

Finally, the rule
~ II- A & ~, A II- B --+ ~ II- B (5)

appears to be valid on the basis of the interpretation chosen. This rule was
called by Gentzen "cut" (Schnitt).

The rules so stated are redundant. Thus (a3) expresses intuitively the
same principle as 1-., and is easily derived from it and (aI) (see Theorem 5 in
Sec. 8). Having (a3) and 1-., we can then deduce .1- by (5). We shall there
fore omit the rules (a3) and .1-. But the most striking redundancy is that
of (5). This redundancy constitutes the principal theorem (Hauptsatz) of
Gentzen's thesis. Here we shall not admit (5) as a primitive rule, but shall
prove an epitheorem, called the elimination theorem, to the effect that it is
an admissible rule on the basis of the others. l This profound theorem has
important consequences, some of which were mentioned in the introduction
to this chapter. Other redundancies will nlanifest themselves as we proceed.

The postulates (aI), (a2), C, W, K, 0., .0 (where 0 is P, A, or V), and 1-.
constitute the basis we adopt for LA(6); this will be called simply LA when
it is not necessary to be explicit about 6. The rules 0., .0 will be called its
operational rules. The system G is arbitrary, except that its rules must be
of the form (1), so that it is elementary in the sense of Sec. 2D3. The possi
bility is admitted that 6 may have no axioms and rules, so that (a2) and (1)
are vacuous; in that case 6 will be called '.0'. Then <f(D) will consist of
E l , E 2 , ••• , which function as indeterminates, and LA(D) will be a form of
propositional algebra.

The system LA defines a class of propositions A such that

II-A (6)

These propositions will be called the assertible propositions, or simply the
assertions, of LA. We shall see in due course that I.JA(D) has precisely the
same assertions as HA.

1 A careful consideration of the principles according to which the rules are set up suggests
that this redundancy can be expected a priori. For the structural rule~ simply explain
that the X in (3) is to be regarded as a class, whereas the rules O. and .0 explain a complex
concept in terms of something simpler. The rules (a2), 1-. show that deducibility in 6 is
carried over into LA( 6). Intuitively one would feel that these rules suffice to explain the
meaning of each statement (3). Thus (5) ought to be an epitheorem, and in fact it is.
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Before proceeding to the strict formalization of these ideas, we shall
pause to discuss another interpretation of a more classical nature.

2. The classical system Le. In the system LA a lack of symmetry
between the treatment of the left and right sides is immediately apparent.
Suppose now we set up, using formal analogy as a guide, a more extended
system in which some, at least, of this lack of symmetry is removed. In
this new system the elementary statements replacing (2) are of the form

Le., of the fornl
AI' ... , Am I~ B 1, ••• , B n (7)

(8)

in which ~ as well as ~ may be a propositional sequence of arbitrary length.
Such a statement we accept as axiomatic in the cases:

(al)

(a2)
Some B; is the same as some Ai'
Some B; is an axiom of G.

We admit further structural rules affecting ~ which are the duals, so to speak,
of those affecting ~, and following the analogy of the operational rules, we
call the former C., W *, K., respectively, whereas the latter (those affecting
~) are .C, • W, and *K, respectively. As for the operational rules, we adopt
the same rules with the addition of an arbitrary propositional sequence 3
on the right of all premises and conclusion; thus the rules for Pare

~ I~ A, 3 &~, B I~ C, 3 --+~, A :::> B I~ C, 3
~, A I~ B, 3 --+ ~ I~ A :::> B, 3

In this way we form a system which we call LC [more explicitly LC(6)].
The rules will be written out in full in Sec. 4.

The system LC has been formulated by analogy. It has, however, a
valid interpretation in terms of truth-table valuations. Suppose that we
call a valuation any assignment of values 0 and 1 to the elementary prop
ositions. We call such a valuation admissible just when every axiom has
the value 1, and in any instance of (1) in which the premises AI' ... , Am
have the value 1, the conclusion B also has the value 1. Then in any ad
missible valuation every assertible elementary proposition has the value 1, but an
elementary proposition which is not assertible may have either of the values
o or 1, arbitrarily.l Let the values assigned to compound propositions be
obtained by the usual two-valued truth tables with 1 taken as truth. Then
the interpretant of (7) is true by 0-1 tables just when for every admissible
valuation either some Ai has the value 0 or some B; has the value 1. It is
then easy to show, by deductive induction, that the interpretant of (7) is
true whenever (7) is derivable in LC.

On the other hand, there are statements (3) which are valid on the inter
pretation here considered but not on that of Sec. 1. For example, the
statement I~ A V (A :::> B) is true for the interpretation by 0-1 tables, no
matter what the system G or the propositions A, B are. On the other
hand, in the system G for which <f(6) consists of El' E 2 , and E a, of which
E a is the sole axiom, and the sole rule of inference is E 1 ~ E 2' consider the

1 Note that there may be a nonconstructive element here.
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proposition E 2 V (E 2 :::> E 1). Here E 2 is not assertible because the only
assertible elementary proposition of 6 is E 3' and E 2 :::> E1 is not assertible
since on adjoining E 2 to 6 the only elementary theorems are E 2 and E 3 ;

hence u- E 2 V (E 2 :::> E 1) is not assertible in LA(6) for that 6.t
Thus the rules for LA (as given in Sec. 1) are essentially the same as the

rules for LC (as given here), with the additional requirement that ~ of every
statement (8) consist of a single proposition. We can express this by saying
that LA is singular, whereas LC is multiple. However, this does not imply
that one cannot interpret (7) in terms of the concepts of Sec. 1. In fact,
suppose we interpret (7) in LA as meaning that

A!, ... , Am I~ B1 V ••• V B n
With this interpretation, as we shall see later, all the rules of LC are valid,
with the exception of P.. Thus there is a multiple formulation of LA; it
differs from that of LC in that in P. the 3 must be void.

Again, we may have a singular formulation of LC. We shall see in due
course that the assertions [i.e., propositions for which (6) holds] of LC(.o)
are precisely those of the classical positive propositional algebra. A com
parison with Sec. B4 suggests that we can get a singular formulation of LC
by adjoining to LA the rule

Px ~,A :::> B I~ A --+ ~ I~ A

We shall use subscripts '1' and em' to distinguish singular and multiple forms.
Thus the singular form of LA, described in Sec. 1, is LA1, its multiple form
is LAm; the singular and multiple forms of LC are, respectively, LC1 and
LCm. When these subscripts are absent, it will be because the context does
not require that the form be specified.

The relations between these various formulations, singular and multiple,
of LA and LC will concern us later. We shall find that the various relations
suggested here informally can be established by rigorous arguments.

3. Formulation of the morphology. We now turn to the strict formali
zation of the systems LA and LC and some related systems. We begin here
by formulating the morphology, leaving the theory proper to Sec. 4.

a. Elementary Propositions. We start with a class (f whose members we
call elementary propositions. Nothing is postulated concerning (f except
that it is a definite class of formal objects. In the interpretation of Sees.
1 and 2 it corresponds to the elementary statements of the underlying system
6. We reserve the letter 'E', perhaps with affixes, to designate elementary
propositions. I

b. Propositions. The class ~ of propositions is the monotectonic inductive
class generated from the elementary propositions by the operations :::>, A,

V. We thus have the principles

(bI) (f ~ ~

(b2) If A and B are in ~, then A :::> B, A A B, A V B are in ~ but not in (f.

t This example is from [TFD], pp. 28ff. One can show rigorously that

I~ E. V (E2 :::> E 1 )

cannot be obtained by the rules. This is a special case of the general procedure in Sees.
5 and E7.

1 Whether these symbols are U constants or U variables will be left to be determined
from the context.
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The propositions are the obs of our system, whereas the elementary prop
ositions are the atoms. We use the letters 'A', 'B', '0', 'D', and when
necessary other capital italic letters, for propositions.

c. Prosequences. A finite sequence of propositions will be called a pro
sequence. We use capital German letters, usually from the end of the alpha
bet, for prosequences. The propositions which belong to a prosequence will
be called its constituents; this is to be understood in the sense that when a
prosequence contains repetitions of the same proposition, each individual
occurrence is a separate constituent. A prosequence may be void, or it may
have any finite number of constituents. A prosequence with not more than
one constituent will be called singular; one with two or more will be called
multiple. The void prosequence will be indicated either by '0' or by a
blank space. A prosequence with a single constituent will not be distin
guished notationally from that constituent. When the symbols for two or
more prosequences are written one after the other, separated by commas,
the complex expression will designate the prosequence formed by con
catenation of those indicated; for example,

X, AI' ... , Am' ~, ~

is the prosequence consisting of the constituents of ~ i'n order, then AI' ... ,
Am' then those in ~, then those in ~ (repeated). Constituents which are
occurrences of the same proposition will be said to be alike.

d. Auxiliary Statements. Among the elementary propositions, we pos
tulate a relation ~o of an unspecified number of arguments, producing ele
mentary statements of the form (1). These statements we call the auxiliary
statements. The true auxiliary statements are exhaustively specified as the
instances of a finite number of statement schemes of the form (1); thesp
schemes we call the auxiliary postulates. These auxiliary postulates con
stitute the basic system (5 so far as our formal theory is concerned. If the
set of auxiliary postulates is void, so that there are no auxiliary theorems,
the system (5 is designated D.t An elementary proposition B such that (1)
holds for m = 0 will be called an axiom.

e. Elementary Statements. The elementary statements are of the form (8),
where ~ and ~ are prosequences. We call ~ the left prosequence, or ante
cedent, of (8); ~ the right prosequence, or consequent. The constituents of (8)
will be precisely the constituents of ~ together with those of ~; those of ~
will be called the left, or antecedent, constituents, those of ~ the right, or con
sequent, constituents.

An elementary statement will be called singular or multiple according as
its consequent is singular or multiple. For LA and LC this will mean that
(8) is singular just when ~ has a unique constituent, but in Chap. 6 elemen
tary statements with void consequent will be admitted.

A formulation (or system) will be called singular when all its elementary
statements are required to be singular; multiple when there is no restriction
in the rules requiring an elementary statement to be singular; mixed when
there are no such restrictions for the formulation as a whole, but there are
such restrictions on the applicability of certain rules. From now on the
letters '~', '~', '3' will be used systematically, with or without affixes, as

t The case of general (5 will be reduced to .0 in Theorem E4.
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where E is an axiom
A I~A

I~ E

follows: '~' will always denote an arbitrary, possibly void, prosequence; in
a singular formulation '~' will denote a singular prosequence and '3' a void
one; in a multiple formulation, on the other hand, '~' and '3' also denote
unrestricted prosequences; and in a mixed formulation '~' will denote a
singular or an unrestricted prosequence and 3 a void or an unrestricted pro
sequence according to circumstances stated in the context. Of the systems
to be defined later, LA1 and LC1 will be singular, LCm will be multiple, and
LAm will be mixed.

4. Theoretical formulation; Formulation I. When we come to for
mulate the theory proper, it turns out that there are several different for
mulations, each of which has some advantage, and therefore it is necessary
to consider, more or less on a par, a number of variant formulations. Here
a certain basic formulation, called Formulation I, will be presented; other
formulations will be introduced later as modifications of this one. The for
mulation reflects directly the intuitive considerations of Secs. 1 and 2. The
rules are stated in a table following the preliminary discussion.

The elementary statements which function as axioms in the theory will be
called prime statements. The term 'axiom' will be reserved for the usage of
Sec. 3d. The prime-statement schemes are listed in the table of rules under 'p'.

The rules proper are to hold for the various systems, with the under
standing that LAI and LC1 are singular systems; LCm is a multiple system;
LAm is a mixed system which is singular for P. and unrestricted for all the
others. The rule Px is postulated (in singular form) for LCI only; later it
will be shown that the general form is redundant for LCm •

The rules are stated in parallel columns. The rules for introduction in
the antecedent are on the left; in the consequent on the right. As in Sec.
B, the almost self-explanatory technique of the Hilbert school is used, the
premises being above the line, the conclusion below. Supplementary hy
potheses are written on the line opposite the word 'if'.

The rules on the left and right are distinguished by using an asterisk on the
side on which the rule is to operate. Thus P. is the rule for the introduction
of implication on the right. When it is desired to talk about both rules, the
asterisks are put on both sides.

The rules .C., •W., .K. are called structural rules; the rules .0., where
'0' stands for one of 'P', 'A', 'V' (and later for names of other operations)
will be called operational rules,. while ~. will be called the rule of 6 derivation.
It is understood that the structural rules on the right are always inapplicable,
even \vith 3 void, in a singular system.

In the following table the letters 'A', 'B' are U variables for arbitrary
propositions; 'E1', 'E 2', etc., for elementary propositions; and ~, ~, 3 for
prosequences according to the conventions of Sec. 3e.
p. Prime Statements

(pI)

(p2).C. Rules of permutation
If ~' is a permutation of ~,

~ I~~

~'I~ ~

~' is a permutation of ~.

~ I~ 1)

~ I~~'
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*w. Rules of contraction

X, A, A I~ ~ X I~ B, B, 3
x, A I~ ~ X I~ B, 3

.K* Rules of weakening

X I~ ~ X I~ 3
X, A I~~ X I~ B, 3

*P. Rules of implication
If ~ is singular,l

X I~ A, 3; X, B I~ ~, 3
X,A ~ BI~~,3

.A* Rules of conjunction

X, A I~ ~ . X, B I~ ~

X, A " B I~ ~ ' X, A " B I~ ~

*'T * Rules of alternation

X, A I~ B, 3
X I~A ~ B,3

X I~A, 3; X I~ B, 3
X I~ A" B, 3

X, A I~ ~; X, B I~ ~

X, A v B I~ ~

X I~A, 3 .
X I~ A v B, 3'

X I~ B,3
x I~ A v B, 3

~* Rule of 6-derivation

Px Peirce rule

If E l , E 2 , ••• , Em ~ Eo

X l~oEl' 3; ... ; X l~oEm' 3
X I~ Eo, 3

X, A ~ B I~ A,3
X I~A, 3

5. Examples of proof technique. Before proceeding with further details
of the formulation, it will probably be helpful to consider examples of finding
proofs in this system. These examples will illustrate an important fact
about these systems, viz., that given an elementary statement r containing
a constituent M, there are only a finite number of possibilities for obtaining
r as conclusion of a rule R. It is therefore possible, in principle, to search
for a proof starting with the desired conclusion. In due course we shall see
that the situation is actually decidable and that one can set up an algorithm
for constructing a proof or showing that none exists. But for the illustra
tive examples presently to be considered, it will merely be shown that proofs
can or cannot be found subject to certain reasonable assumptions; if a proof
is found, this of course settles the question, but a negative answer depends
on verification of the assumptions later.

In these examples we shall consider only the systems LA l and LCm ; these
will be called simply LA and LC, respectively. The assumptions are: that
we can omit *K* if we admit as prime statements those of the form (al) and

1 The rule *P, if formulated strictly according to Sec. 2, would have C for~. In Chap.
6, we shall need the case where ~ is void.
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(9)

(a2) in Sees. 1 and 2, and that *W* can be omitted if we modify the opera
tional rules so as to admit the presence in the premises of a constituent like
the new one being introduced. In the latter case the modified rule is equiv
alent to the original rule followed immediately by an application of *W *.
Thus for *P the modified rule is

~,A ~ B II- A, 3 ~,A ~ B, B II- ~, 3
~,A ~ BII-~,3

This can be obtained from the regular *P thus:

~,A ~ BII-A,3 ~,A ~ B,BII-~,3*p

~,A ~ B, A ~ B II-~, 3*W
~,A ~ BII-~,3

Conversely, the regular *P can be obtained from it by using *K* to intro
duce the extra constituent A ~ B. In these examples *P will be assumed
in the form (9).

Exarnple I. We seek a derivation in LA(.o) of

f 1 II- A ~. A ~ B :~. A ~ B

where A and B are elementary. The only rule of which f l can be the con
clusion (of an instance of the rule, of course) is P*; the premise in that case
would be

f 2 A ~. A ~ B II-A ~ B

Here we have two choices, *P and P*, for the next preceding rule. If we
were to use the former in the form (9), we should require as left premise

fa A ~. A ~ B II- A

but this is false on the 0-1 valuation (cf. Sec. 2), and hence it is not deriv
able in LC, let alone in LA. We therefore take the second alternative, P*.
In that case the premise would be

f 4 A ~. A ~ B, A II- B

Now we have no choice but to use *P, for which the premises are

f s A ~. A ~ B, A II- A

f 6 A~. A ~ B,A,A ~ BII-B

Here f s is of type (al). As for r 6 , if we use *P with A ~ B as principal
constituent,l the premises would be

f 7 A ~. A ~ B, A ~ B, A II- A

r a A~. A ~ B,A ~ B,A,BII-B

Since these are both of type (al), we have a derivation of fl. The deriva
tion in tree form would look like this:

f 7 fa *P
r s r 6 *P

f 4 p*

f 2p*
f l

1 If we used A ~. A ~ B again as principal constituent, the right premise would be
the same as r 6.



SEC. C] THE SYSTEMS LA AND LC 195

Example 2. Let us investigate the derivability in LA(D) and LC(D) of

f 1 U- A => B • => A : => A

where A and B are elementary. Suppose, now, that we are in LA. Evidently
r 1 can only come from P*, with the premise

f 2 A=>B.=>AU-A

Then r2 must come from *P with premises

f 3 A=>B.=>AU-A=>B
r 4 A=>B.=>A,AU-A

Here r 4 is of type (pI). We therefore investigate f 3. The only rules pos
sible are .P, P.. If we used the former, the left premise would have to be
identical with f 3. For the latter the premise is

r s A=>B.=>A,AU-B

Here the only possibility is .P. But in that case the right premise would
have to be the same as r 5. Thus the set of statements r 1 to r 3, r 5 does not
contain any prime statements, yet is such that none of its members can be
the conclusion of a rule instance which does not have some member of the
set as premise. It follows that a demonstration of r 1 in LA(D) is impossible.

It is easy, however? to derive f 1 in LC(D). In fact, in LC we could re
place f 3 by

r'3 A => B . => A U- A => B, A

and this follows by P. from the prime statement

A=>B.=>A,AU-B,A

Thus r 1 is derivable in LC(D), but not in LA(D).
In Example 1 we excluded certain possibilities (for example, r 2) by appeal

ing to the 0-1 interpretation of Sec. 2. It was not necessary to do this;
we could have handled all the possible alternatives by the method of Example
2 until we reached the proof. On the other hand, if we had made the same
appeal in Example 2, we could have observed that r 3 is invalid on that inter
pretation (viz., where A, B have the values 1, 0, respectively) and ended
the argument for LA at that point. This shows how the use of kno,vn
models can shorten the search for a decision. Theorems and techniques to
be established later will shorten it still more.

The argument for Example 1 shows that its f 1 could have been derived
using the original .P-in other words, the result is derivable in Formulation
I without • W. It will be instructive to consider an example for which
that is not true.

Example 3. Let us investigate the demonstrability in LA(D) of the dis
tributive law

Ir A A (B V C) • =>. (A A B) V (A A C)

Here we adopt the abbreviations

D1 == A A (BVC) D 2 == (A A B) V (A A C)
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SO that our thesis is

This can come only via P. from

Suppose now that ,ve are using Formulation I without .W*. Then there
are two possibilities, .A and V.. But for .A the premises \vould have to
be one or the other of

whereas for V. we need similarly one or the other of

All four of these possible premises are invalid in the 0-1 valuation. It is
therefore impossible to derive f l in Formulation I without • W. With.W
we can proceed thus: f 2 can come via .W from

and this in turn by two applications of .A successively from

A, D I U- D 2

A, Bve U- D 2

Here f g can come from .V from flO and r lV namely,

For rIO we can use V. and the premise

A, B II- A A B

which comes via A* from the two prime premises

A, BII-A A, BII-B

We can prove r n similarly. Thus r l is demonstrable with .W, but not
without it.

These examples will suffice to illustrate the technique. We shall return
to general considerations.

6. General properties of the rules; constituents. Before we proceed
to discuss modifications, there will be formulated here certain general con
ditions on the rules which will turn out to be important in the proofs of
theorems. Later, when we meet other systems of similar structure, but
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differing in the presence of new operations (and perhaps in other respects),
the theorems will generalize readily if these new systems satisfy the same
conditions.

The constituents of an instance of a rule are defined as the constituents of
the premises together with those of the conclusion. These constituents are
classified into principal, subaltern, and parametric constituents. For the
operational rules these are as follows. The principal constituent is the new
constituent introduced into the conclusion. The subaltern constituents (or
simply the subalterns) are the constituents in the pr~mises, replicas of which
are combinedl by an operation to form the principal constituent. The
parametric constituents are those, like the constituents of the various ~'s,

~'s, and 3's, which appear in the premises and are carried unmodified, so
to speak, into the conclusion. By analogy we can define such constituents
in all the other rules except .C.. Thus, in • W. there are two like constit
uents in the premise which are replaced by a single constituent, which is
like them, in the conclusion; the latter is the principal constituent, and the
two former the subalterns. In .K. the new constituent which is introduced
in the conclusion is the principal constituent; there are no subalterns. In
~. the Eo in the conclusion is the principal constituent; the E i in the prem
ises are the subaltern constituents. In Px the unique constituent of the
consequent of the conclusion is the principal constituent; in the premise the
A :::> B in the antecedent and the A in the consequent will be the subalterns.
The parametric constituents in all these cases will be tnose included in ~,

~,or 3.
In the sequel there will be occasion for introducing modifications which

will make possible situations not considered in the foregoing. For example,
the rule (9) is a modification of .P in which there is a copy of the principal
constituent in each premise. Such copies of the principal constituent appear
ing in one or more premises [in (9) it is redundant in the right premise] will
be called quasi-principal constituents and will be reckoned as special cases of
subalterns.

To take care of such eventualities let us formulate the following condi
tions on the rules:

(rl) Every constituent in the premises and conclusion is either the principal
constituent, a subaltern constituent, or a parametric constituent.

(r2) The principal constituent, if present, is unique and occurs in the con
clusion only.

(r3) The subaltern constituents, if present, occur in the premises only.
(r4) There is an equivalence relation among the parametric constituents

(p.c.) which we call congruence, such that (a) congruent p.c. are alike and
on the same side; (b) every p.c. is congruent to exactly one p.c. in the con
clusion; and (c) every p.c. is congruent to at least one p.c. in the premises
and to at most one in anyone premise. A set of mutually congruent p.c.
will be called a parameter.

(r5) A correct inference by any rule remains correct if a parameter is deleted.

1 In the case of the left half of V. in Formulation I, the subaltern constituent is A and
the principal constituent is A V B, which seems to involve an extraneous B. But A V B
can be thought of as t.he result of performing on A the operation - V B.
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(r6) A correct inference by any rule remains correct if a parameter is changed
or a new parameter is inserted, provided the general restrictions of the
system l and of (r4) are satisfied.

(r7) The principal constituent is composite, and is formed from replicas of
the subaltern constituents by an operation.

In regard to (r4), the different formulations satisfy more specific require
ments. In Formulation I all rules except .P satisfy a more stringent form
of (r4), which will be called (r4)':

(r4)' The congruence relation satisfies (a), (b) of (r4), and (c'), every p.c. is
congruent to a unique p.c. in each premise.

We call a rule which satisfies (rl) to (r7) a regular rule; one which satisfies
(rl) to (r5) and (r7), a semiregular rule; one which fails to satisfy (r7), an
irregular rule. Thus the operational rules of LA I , LOI , LOmare regular; the
structural rules, ~., and (in LOI ) Px are irregular. If we leave the rules
.0. to one side, all the rules of LA I , LO I , LOmsatisfy (rl) to (r6), but in LAm
the rule P. fails to satisfy (r6). t

The term 'L system' will be applied to any system formed from LA or LO
by adjoining additional rules, and possibly imposing additional conditions,
such that (rl) to (r5) are satisfied.2 rrhus LOI and LAm are L systems. To
such a system the terms 'singular', 'multiple', and 'mixed' may be applied
as explained in Sec. 3e.

7. Conventions regarding theorems and proofs. The use of the rules
.C. in what follows will generally be tacit. Unless there is an express
statement to the contrary, these rules are assumed everywhere; rearrange
ments of prosequences are made in proofs without explicit justification; and
in counting steps (for certain inductions) such rearrangements will not be
counted as separate steps. In short, prosequences which are rearrangements
of one another will be treated as identical.

Capital Greek letters 'f', 'Il', '0' will be used to designate statements or
sets of statements.

If 0 is a set of elementary statements, a deduction from 0 is a construction
(Sec. 2A6) on the basis consisting of prime statements and 0, using the rules
of Sec. 4. In accordance with Sec. 2A6, such a deduction can be repre
sented as a sequence Il of elementary statements fl' f 2' ••• , r n such that
each f k is either (I) in 0, (2) a prime statement, or (3) derived from one or
more of its predecessors by a rule. We can suppose without loss of gener
ality that every f k' except the last, is used once and only once as premise for

1 By "general restrictions" I mean those which apply to the system or formulation as a
whole, as opposed to those which apply to individual rules. Thus in a singular system
no parameter can be added on the right (since we do not, as yet, have the possibility of a
void consequent), whereas in a muIt.iple system there is no such restriotion. In a mixed
system there is no general restriction forbidding the addition of a parameter on the right,
but there may be in certain rules; in such a system the condition (r6) is not satisfied on the
right for those rules.

t See the preceding footnote.
2 We shall find it expedient to consider systems in which even some of these conditions

are modified. We may call these modified L systems. l\fuch of what is said about L
systems applies to thenl with reservations.
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inferring some r m' m > k by a rule R m . In such a case Il will be called a
regular deduction. A demonstration is a deduction with 0 void.

An (5 deduction is one such that its statements (including those of the b~sis)

are of the form (6), where A is elementary, and the only rule used is ~•.
According to the interpretation of Sec. 1, such a deduction can be inter
preted as a deduction in the underlying system (5 defined by the postu
1ates (1).

We now consider certain conventions which are suggested by Kleene
[PIG].

A constituent in the conclusion of a rule will be called an immediate de
scendant of one in the premises just when either the two are congruent para
metric constituents or the former is principal constituent and the latter is a
subaltern. The relation of being a descendant is defined as the quasi ordering
generated by immediate descendance. A constituent will be called an
ancestor of a second one just when the second is a descendant of the first.
Note that descendance and the ancestral relation are both reflexive. l In
both cases the modifier 'parametric' will mean that only parametric con
stituents are involved, so that a parametric ancestor or descendant is one which
would still be an ancestor or descendant if the case of a principal constituent
vs. a subaltern were omitted from the definition of immediate descendance.

The following theorem, due to Kleene, is valid in any L system.
Theorem 1. If a constituent in the conclusion of a deduction has no ancestor

which is constituent of a prime statement, then the deduction remains valid if
that constituent and all its ancestors are omitted.
Proof. No prime statement is invalidated by the omission. I.Jikewise,

the inferences remain valid, although certain of them may collapse because
the premises and conclusion become identical. In that case the conclusion
and, if there is more than one premise, the entire derivation of the extra
premises can be omitted, Q.E.D.

We may speak of an ultimate ancestor (ultimate descendant) of a constituent
as one which has no further ancestors (descendants). Thus the ultimate
ancestors of a constituent which are not constituents of a prime statement
are principal constituents of an instance of .K.. The theorem applies when
all the ultimate ancestors are of the latter kind. In particular, the theorem
applies if there is no parametric ancestor which is constituent of a prime
statement or principal constituent of a rule other than .K•.

8. Modified formulations II, IK, 11K. As already stated, there exist
a number of modifications of the formulation of Sec. 4. Here we shall con
sider a modification to be called Formulation II, together with certain
modifications due to Ketonen [UPK].

Formulation II differs from Formulation I in that the parametric con
stituents in the different premises are not identified in the rules with more
than one premise. The formulation satisfies the following specialization of
(r4):

(r4)" The congruence relation satisfies (a), (b) of (r4), and also (c"), every p.c.
in the conclusion is congruent to exactly one p.c. in the premises collec
tively.

1 By definition of 'quasi ordering'.
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The rules affected are *P, A., •V, and ~.. For the first, second, and fourth
of these the modified rules are:

~1 I~ A, 3
B 1~~,3

*V (singular)

*V (multiple)

~1 I~ A, 31 ~2 I~ B, 32
~1' ~2 I~ A A B, 31' 32

If E1, E 2, ••• , Em ~o Eo

~i I~ E i , 3i i = 1, 2, , m

~1' ~2' ... , ~m I~ Eo, 31' 32' , 3m
For *V the rules for the singular and multiple cases must be stated separately:
thus:

~1' A I~ ~ ~2' B I~ ~

~1' ~2' A V B U-~

~1' A I~ ~1 ~2' B I~ ~2

~1' ~2' A V B I~ ~1' ~2

The equivalence of Formulations I and II is shown by the following
theorem:
Theorem 2. The rules of Formulation I I can be derived from those of Formu

lation I by the use of *K* (and *C.); the converse derivation can be made
with the use of *W* (and *C.).
Proof. Suppose we have an inference by Formulation II; then the param

eters can be made the same in the premises and conclusion by using *K.
to introduce the missing constituents; the conclusion can then be inferred
by Formulation I. If we have an inference by Formulation I, then by
Formulation II we can draw the same conclusion except that there may be
several copies of the same parameter corresponding to the different premises;
these copies can then be removed by • W •.

For example, in the case of *P for a multiple system the I-II transfor
mation can be made thus (here ~ is singular):

~1 I~ A, 31 ~2' B I~ ~,32 K-------- .K. * *
~1' ~2 I~ A, 31' 32 ~1' ~2' B I~ ~, 31' 32' P--------------------- * I

~1' ~2' A :::> B I~ ~, 31' 32

In the opposite direction, the transformation is made thus:

~ I~ A, 3 ~,B I~~, 3
----------- .Pn
~,~,A:::> BI~~,3,3

*W.
~,A:::> BI~~,3

This completes the proof of Theorem 2.
The modifications of Ketonen concern the rules *P, *A, V. in the multiple

systems. In the case of .P, the modification is

~ I~ A, ~ ~,B I~ ~)

~,A:::> BI~~
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In the cases *A and V* the Ketonen rules are
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*A X, A, B II- ~
X, A A B II- ~

V* XII-A,B,3
X II- A V B, 3

X, A II- ~ *K
I, A, B II- ~ *A
X, A A B II- ~

Of these transformations, the change in *A can be made even in a singular
system. We therefore define Formulation IK as that obtained by carrying
out the Ketonen modifications in so far as possible-in the singular system
leaving *P and V* unchanged. We may similarly define a Formulation
11K as that derived from Formulation II by changing *A and, in so far as
possible, 'T *, leaving *P unchanged.

Note that in Example 3 of Sec. 5 the transition from r 2 to r g can be made
directly by the Ketonen form of *A. We shall see later that the Ketonen
rules have generally (with an important exception) the effect of making the
rules *W * dispensable.

The equivalence of Formulations I and IK is shown as follows:

Theorem 3. An inference by either of the rules *A or V* in Formulation I
can be obtained by an application of the corresponding K etonen rule pre
ceded by a single application of *K* on the same side; conversely, an infer
ence by the K etonen rule can be obtained by two applications of the rule of
Formulation I followed by an application of *W * on the same side. I n the
case of *P, an application of K* to the left premise followed by the Ketonen
rule will give any inference by *P in Formulation I,. the converse requires
at most a previous application of K * and a following one by \V*.
Proof. For the case of *A the two proofs are as follows:

X, A, B II- ~ *A
X, A A B, B II- ~ *A
X, A A B, A A B II- ~ *W
X, A A B II- ~

(The other case of the left-hand proof is similar.)
In the case of V*, the situation is dual to that of *A.
In the case of *P the derivation of the Formulation I rule from that of

Ketonen1 is

I II- A, 3 K*
I II- A, ~,3 I, B II-~, 3 *P

I,A ~ BII-~,3

Conversely, the Ketonen form of *P is identical with that case of *P in
Formulation I in which ~ is void. If void prosequences on the right are not
admitted, we take the ~ of Ketonen's *P to be C, 3; then the rule can be
derived in Formulation I thus:

I, B II-C, 3 K*
I II- A, C, 3 I, B II- C, C, 3 *P

X,A~BII-C,C,3 w*
X,A ~ BII-C,3

This completes the proof.

1 The proof is for the multiple case only. In the singular case the two formulations
of *P are identical.
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The Ketonen modification of *P has somewhat the opposite effect of that
of Formulation II, since it makes the parametric constituents uniform in all
the premises, and thus (r4)' is true without exception. Of course, it is only
applicable in case *P is multiple; in the singular cases we must leave *P as
in Formulation I, and the exception to (r4)' must stand.

Theorems 2 and 3 use the structural rules *K* and *W* to establish the
equivalence of Formulations I and II, on the one hand, and of the Ketonen
rules and those of Formulation I, on the other. In generalized situations
where the *K* and *W * do not both hold, these equivalences may fail. In
such a case one of the variant formulations may have definite advantages.

9. Some simple properties. \Ve shall establish here two rather simple,
but unrelated, properties.

Theorem 4. Let the prime statement scheme (p I) be replaced by the scheme

(pI)' E I~E

where E is elementary. Then the general scheme (pI) is an elementary
theorem scheme of LAI .

Proof. We proceed by structural induction. The basic step, where A
is elementary, is precisely (p I)'; the inductive step is established using the
rules of Formulation II and the Ketonen form of *A as follows:

A I~ A B I~ B *P
A, A :::> B I~ B P.
A :::> B I~A :::> B

A I~ A B I~ B A*

A, B I~ A A B *A (Ketonen form)
A A B I~ A A B

A I~A B I~ B
A I~ A V B V* B I~ A V B V*
------------ *V

A V B I~ A V B

This completes the proof.
Remark. The second of the above derivations could be replaced by the

dual of the third, and the third, if multiple elementary statements are
allowed, by the dual of the second. Note that the proof does no~ require
any rules other than those stated.

Statements of the forms (aI) and (a2) in Sec. C2 are obtained from (pI)
and (p2) by *K* only. Such statements will be called quasi-prime state
ments. In such cases the constituent(s) introduced by the original prime
statement will be called the principal constituent(s). A prime (quasi
prime) statement will be called elementary just when the (corresponding)
prime statement is of type (pI)' or (p2). As long as *K* are accepted, a
demonstration starting with quasi-prime statements can be converted
trivially into one starting with prime statements.
Theorem 5. Let AI' ... ,Am' B be elementary, and let B be (5 deducible

from AI' ... ,Am. Then (2) holds in LAI.
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Proof. If B is one of the Ai' then (2) holds by (pI)' and .K. If B is an
axiom, then (2) holds by (p2) and .K. Suppose now that B == Bo and

Bv B 2 , ••• , B n ro Bo
Suppose that for all B;,

Av ... , Am Ir B;

Then (2) follows by r.. The theorem therefore follows by deductive in
duction on the given (5 deduction.

D. EQUIVALENCE OF THE SYSTEMS

The theme of this section is the proof of equivalence of the various formu
lations of L systems, as given in Sec. C, with each other and with the other
types of system formulated in Sec. B. The key theorem for this purpose is
the elimination theorem mentioned in (5) of Sec. C. This theorem will be
proved in Sec. 2 under circumstances which are generalized so as to be
applicable later. After Sec. 2 the term 'L system' will be understood to
include the elimination theorem. The inversion theorem of Sec. 1, although
not strictly necessary for the elimination theorem, is of a similar nature and
allows shortening of the proof of Sec. 2 in a number of special cases and
strengthening of it in other cases; since the inversion theorem is needed in
Sec. E, it is put at the beginning of this section. In the later articles of this
section the elimination theorem is applied to prove the equivalences men
tioned, together with some other results which follow more or less immedi
ately. These include, in Sec. 6, the completeness of LC.

t. Direct inversion of inferences. It is often desirable to know, when
we have a proof whose concluding statement contains a composite constit
uent which is parametric, whether the proof can be recast so as to end with
the introduction of that constituent. This amounts to showing that the
rule in question can be inverted. We shall study here a method for carrying
out this inversion under certain conditions.

Let r be an elementary statement containing a compound constituent M.
Let'£ be the other constituents of r. Let r be written, without indication
of the sides on which the constituents occur, as

'£, M (1)

For given M let there be a unique operational rule R which can have M as
principal constituent. Let R have p premises, and let the subalterns
supposedly uniquely determined by M-irt the ith premise be Ui . (The
parameters may, of course, be different in the different applications of R.)
Suppose further that '£ is such that r could be inferred by R from premises

(2)

We seek conditions under which we can derive (2) and from it get (1) by R.
We consider first the case where there are no rules other than Rand .K.

which introduce M. This requires, in particular, that M be not introduced
by.W•.

Let Il be a proof of r in tree form. Let III be the subtree of Il formed by
those nodes which contain a parametric ancestor of M. At each node of
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ill snppose we delete M and put in Ui . If all the rules used in the subtree
are such that (r5), (r6) hold, then all inferences in which M was parametric
will remain valid. We have to consider the top nodes of the subtree. We
can exclude the case that such a top node is a prime statement with M as
principal constituent by requiring that all such principal constituents be
elementary (Theorem C4). The only other possibilities are that M be intro
duced by *K*, or that M be introduced by an application of R. In the
former case we can introduce Ui by *K*; this may require the use of *K*
on the opposite side to that of its use in introducing M. In the latter case,
when M is replaced by Ui , the statement in question becomes the ith premise
of that application of R. Thus, under the assumptions made, the changes
convert the given proof of (1) into a proof of the ith statement (2). If we
do this for all i = 1, 2, ... ,p, then we have (2) and we can apply R to con
clude (1).

In the case where *W* occurs, let us define a quasi-parametric ancestor as
one obtained by modifying the definition of Sec. C7 by admitting the prin
cipal constituent of *W* as immediate descendant of either of the subalterns.
Then a quasi-parametric ancestor of M will be like M (Sec. C3c). Now
carry out the replacement of M by Ui in the subtree ill consisting of all
nodes of il containing a quasi-parametric ancestor of M. Then an inference
in ill in which M is principal constituent of *W* would be of the form

~,M,M

~,M

This would be replaced by

~,Ui,Ui

~,Ui

and can be effected by applications of *W*, possibly on the opposite side.
The rest of the argument goes through as before, there being simply some
additional fuss when there are two or more instances of M being introduced
at different place'3.

This argument establishes the following theorem:

Theorem 1. Let the pri'lne statements of type (pI) be such that the principal
constituent is elementary. Let r be an elementary statement containing a
compound constituent M. Let il be a derivation in tree form ending in r,
and let ill be the subtree formed by all statements of il which contain a quasi
parametric ancestor of M. Then it is sufficient for the existence of a deri
vation il' of r in which M is introduced at the end by a single application of
R that the following conditions be fulfilled:

(a) The M in r is so placed that r can be the conclusion of R with M as
principal constituent.

(b) All the ultimate quasi-parametric ancestors of M, except for those
introduced by *K*, are introduced by R with the same subalterns Ui in the
ith premise.

(c) All the rules used in ill satisfy (r5) and (r6), at least in so far as deleting
M and inserting Ui is concerned.!

1 That is, whenever M can appear as parameter, the M can be dropped and the Ui added.
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(d) If M can be inserted by *K*, so can any Ui .

(e) If M can be contracted by *W *, so can all the Ui .

Let us consider the significance of the conditions of the theorem in the
multiple systems LAm and LCm.

The condition (a) imposes a restriction only in the case of P* in LAm. In
that case where M is, say, A :::> B, it must be the sole constituent on the
right in (1).

The condition (b) requires that the subalterns be uniquely determined (as
to nature and side on which they occur) by M. This condition is not satis
fied in the case of *A and V* of the original Formulation I, for there are then
two distinct rules with the same principal constituent. In Formulation IK,
however, the condition (b) imposes no restriction on the operational rules
proper, but it might interfere with the possibility of applying the theorem if
special rules are present. However, there can be no conflict with ~* since
the principal constituent of ~* is elementary.

The condition (c) imposes no restriction in LCm • In LAm' however, there
is a restriction in that the rule P* fails to satisfy (r6). If there is an instance
of P* in ill' then M must be on the left (since it is parametric); in that case
there is no difficulty unless one of the subalterns is on the right. This excep
tional situation occurs only when R is *P.

The conditions (d) and (e) impose no restriction so long as the rules *K*
and *W *, if present at all, are assumed without special restrictions.

When the transformation indicated in the theorem can be carried out, we
shall say that a direct inversion of R can be completed. The demonstration
obtained for the ith premise (2) will be called a direct inversion of R relative
to that premise. Such a relative direct inversion can be carried out whenever
the conditions (b) to (e) are satisfied (relative to that premise); in such a case
we shall say that R is directly invertible (relative to that premise). Thus a
rule may be directly invertible with respect to all premises although the
direct inversion cannot be completed on account of failure of the condition
(a).

COROLLARY 1.1. I n Formulation IK of LCm , all operational rules are directly
invertible and a direct inversion can always be completed.

COROLLARY 1.2. In Formulation IK of LAm' all operational rules except
*P are directly invertible. A direct inversion can always be completed with
the following exceptions:

If R is P*, then M must be the sole constituent on the right in order for (1) to
be obtained from (2) by R, and it may not be possible to invert *P if there is an
instance of P* in ill.

COROLLARY 1.3. If R is directly invertible relative to one of its premises, then
the construction of the theorem leads from (1) to a demonstration of the cor
responding statement (2) regardless of (a).
The following are special cases of this corollary.

COROLLARY 1.4. In Formulation IK of LAm' if

~ I~ A :::> B,3

then ~,A I~ B, 3
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COROLLARY 1.5. In Formulation IK of LAm' if

~,A:::> BII-~

then ~, B II- ~

Let us define the degree of a proof tree as the total number of its nonstruc
tural inferences, and the rank as the maximum number of such inferences in
anyone branch. Then we have the following:

COROLLARY 1.6. When the inversion is possible, the proof of each statement
(2) has a degree and a rank which are not greater than that of (1), and the
degree is actually less unless M can be dropped from (1) altogether. Further,
the new proof does not contain any inference by nonstructural rules which were
not used in the proof of (1); the same applies to the structural rules except that
a rule used in (1) on one side may be needed in (2) on the other.
Proof. This follows by inspection of the method of proof. The modifica

tions made were changes in parameters, omissions of applications of R, and
insertions of new structural rules as stated in the corollary. If there are no
omissions of R, then M can be omitted from (1) by Theorem Cl.

The situation in the singular systems, which is evidently more complex,
will not be treated here. l

The problem of inversion is related to that of permutability of inferences.
Suppose that the last inference in Il is by a rule R' with M as parameter.
Then after the inversion there will be no applications of R to introduce a
quasi-parametric ancestor of M before the various applications homologous
to R' . This is one of the senses in which we can say that Rand R' have
been interchanged. (For other possible senses see Kleene [PIG].)

In the following examples this idea of interchange is the dominant con
sideration. It is left to the reader to see how the interchange can be ob
tained by the argument of Theorem 1. (In the proofs accompanying these
examples the top nodes are quasi prime.)

Example 1. A:::>. A :::> B II- A :::> B. (Compare Example 1 in Sec. C5.)
If the last step in the demonstration is by P*, the rest of the demonstration
is uniquely determined in LAm' except for a possible quasi-principal con
stituent in the *P, as follows:

A II- A A, B II- B *p
A II- A A, A :::> B II- B *P

A :::>. A :::> B, A II- B P*
A :::>. A :::> B II- A :::> B

On the other hand, if the last step in the derivation is by *P without quasi
principal constituent, the premise on the left in LAm would have to be

II-A,A:::> B (3)

Since the only rule whose conclusion can give (3) is J{.*, t and both of the two
possible premises are invalid by 0-1 tables, (3) cannot be derived in LAm.
If we use the form with quasi-principal constituent, the premise would be

A :::>. A :::> B II- A, A :::> B

1 See, however, Exercise 13 at the end of Sec. E.
t The case of W * can be eliminated by a theorem to be proved later (cf. Corollary

E7.1).
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in LAm. This is more complex than the original statement. To be sure it
is derivable and the interchange may be regarded as satisfied in a trivial
sense, yet no significant interchange has been accomplished, and it can be
shown that no proof is possible in which an instance of P. is not preceded by
one of *P. t In LCm , however, the interchange is possible in a nontrivial
sense, for (3) can be derived immediately by P. from the prime statement
A II- A, B, and the right premise for the final *P is prime.

Example 2. A V B, A :::> B II- B. If the last rule applied is .V, the
demonstration is as follows:

A II- A, B A, B II- B
--------- .P

A, A :::> B II- B B, A :::> B II- B .V
A V B, A :::> B II- B

In reverse order the derivation in LAm is

A, B II- A, B .V
A V B II- A, B A V B, B II- B .P

A V B, A :::> 13 II- B

The interchange is impossible in LA l .

Example 3. The following proof is valid in LA l .

AII-A BII-B
A II- B V A V. B II- B V A V•
------------ .V

A V B II- Bv A

This proof uses the original form of V*, which fails to satisfy the condition
(b) that the rule is uniquely determined by the principal constituent. The
two instances of V. are actually distinct rules. If we use the Ketonen form
of the rule, which does satisfy the condition (a), the proof becomes the follow
ing in LAm.

AII-B,A v* BII-B,A V*
A II- B V A B II- B V A •V

A V B II- B V A

In this form the rules can be permuted, thus:

A II- B, A B II- B, A •V
A V B II- B, A V.

A V B II- B V A

Example 4. Consider the following derivation in LAl .

B II- B.A A II- A .A
A A B II- B A A B II- A A.

A A B II- B A A

The theorem does not apply to this for the same reason as in Example 3.

t See Exercise 15.
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However, in this case the order of the rules can be reversed, using the same
rules, thus:

B I~ B *K A I~ A *K
A, B I~ B A, B I~ A A*

A, B I~ B A A *A
A A B, B I~ B A A *A

A A B, A A B I~ B A A
---------- *W

A A B I~ B A A

In this case an application of *W is necessary at the end. The combination
of the two rules *A and this *W is of course the same as a single application
of the Ketonen form of *A.

2. The elimination theorem. We shall now turn to the formulation
and proof of the theorem of which the singular form was stated in (5) of Sec.
C. With the same conventions as to '~', '~', '3' as in Sec. C3e, the statement
is as follows:
Elimination theorem. If

and

then

~,A I~~

~'I~ A, 3

~,~' t~~, 3

(4)

(5)

(6)

The statement of the theorem does not specify the type of L system to
which it applies. This is therefore not a theorem in the strict sense, but has
the character of a theorem scheme. The validity of the theorem for specific L
systems and types of systenls will be stated in the regularly numbered
theorems. The term 'elimination theorem' will be abbreviated 'ET'.

The first proof will be for systems LA1, LCI , and LCm (with some complica
tion to include LC1). This proof is given in such a way as to make as little
use as possible of special and structural rules in the proof itself, so that the
proof may apply to generalizations later.

We shall often say that (6) comes from (4) and (5) by the elimination of A
and that A is the eliminated proposition in the particular instance of the
theorem which is under discussion. The indicated occurrences of A in (4)
and (5) will be called the eliminated constituents. The premises (4) and (5)
will sometimes be spoken of as the first. and second premises, respectively.

The proof will involve three stages. In Stage 1 we examine the proof of
(4). We assume as hypothesis of the stage that the theorem is true for the
same A and the same second premise whenever the proof of the first premise
[corresponding to (4)] ends with the introduction of the eliminated constit
uent by a regular operational rule, and we show that for this same A and
second premise the theorem then holds generally. Since the hypothesis of
the stage is vacuously true when A is elementary, the theorem is completely
proved in Stage 1 when A is not compound. We therefore assume through
out the rest of the proof that A is compound. In Stage 2 we perform a
reduction, analogous to that of Stage 1, but relative to the proof of (5),
rather than to that of (4), with the additional restriction that A be com
pound. Finally, in Stage 3, under the assumption that elimination is
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possible for any proper component of A, we show that the hypotheses of
the first two stages hold for a given compound A.

The entire argument is thus a complex double induction. The primary
induction is a structural induction on the eliminated proposition. The
basic step of this primary induction is taken care of incidentally in Stage 1.
The rest of the argument may be regarded as the inductive step of the pri
mary induction, but the inductive hypothesis plays no role until we come to
Stage 3. Given a fixed compound A and a given second premise, Stage 1
reduces the primary induction step to the special case where the demonstra
tion of the first premise has a special form. Stage 2 does the same for the
second premise. Since neither stage requires any restriction on or change
in the opposite premise, the two together reduce the primary induction step
(for a given fixed A) to the case where the demonstration of both of the
premises have the special form. Then Stage 3 gives the coup de grace. The
argument in Stages 1 and 2 is a secondary deductive induction on the proofs
of (4) and (5). These two stages are practically independent of one another;
except for the fact that we have to take care of the basic step of the primary
induction in Stage 1 and do not allow A to be elementary in Stage 2, the two
stages could be carried out in either order.

The proof for Stages 1 and 2 will apply not only to the systems LA1 and
LCI and to LCm , but to L systems of rather general character. The addition
of regular rules to these systems hardly affects the proof, but when additional
irregular rules are adjoined, modifications may have to be made. Thus the
argument of Stage 2 is considerably complicated by the presence of Px; the
reader who is not interested in LC1 may ignore these complications.

In case the rule for introducing the eliminated constituent on the left is
directly invertible, we may replace Stage 1 by the argument of Sec. 1; simi
larly, if the rule for introducing it on the right is directly invertible, we can
dispense with Stage 2. But the exceptions in Sec. 1 will require the present
method, and it is nearly as easy to handle the general case by the present
method as well. Thus the present proof, so far as it goes, is independent of
Sec. 1. However, the method of Sec. 1 will permit some extensions.

In view of Theorem C2, we may suppose that we are dealing with For
mulation II, for which the condition (r4)" is satisfied. Likewise, in view of
Theorem C4, we can suppose that the prime statements have only elementary
constituents.

Proof of Stage 1. Let t!J. be a regular derivation r l , ... , r n of (4). Then,
by definition of a regular derivation, each r k for k < n is used in t!J. once and
only once as premise for deriving arm, m > k, by a rule R m • Let f k be

~k' Uk H- IDk , ~k

where Uk' IDk (and hence ~k' ~Ih) are defined by induction, working back
ward from r n' as follows:

(a) Un is the indicated occurrence of A in (4), ID n is void, ~n is ~, and ~n is ~.

(b) If f k is used as premise for deriving r m by R m , then:
(bl) All parametric constituents of Um (ID m ) which are in f kare in Uk (IDk );

(b2) If the principal constituent of an irregular rule is in Urn or ID m , then
each of the s~baltern constituents is in that one of Uk' ID k which is
on the appropriate side.
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By the general principle of an inductive definition, viz., that Uk' IDk con
tain only those constituents which belong by virtue of the stated rules, Uk
and ID k are defined for all k ~ n. Since the only irregular rules admitted so
far are *K*, *W*, ~*, Px, t it follows that IDk is void for all k and that the
constituents of Uk are all like A. They are actually all the quasi-parametric
ancestors (Sec. 1) of A.

Let ill be that part of il in which Uk (as well as IDk ) is void, and let il 2 be
the rest of il. Then since Uk is void [under case (b)] whenever Um is void, all
premises used to derive members of ill are also in ill'

With each rk we now associate a statement r~ as follows:

~k' (~') I~ ~k' (3)

Here '(~')' indicates a set (possibly void) of replicas of ~', there being one
such replica for every occurrence of A in Uk; likewise, '(3)' indicates a set of
replicas of 3, one for each occurrence of A in Uk' Note that if r k is in ill'
then r~ is the same as rk , and r~ is precisely the statement (6).

We show by an induction on k-which is a deductive induction with
reference to the fixed deduction il-that if the hypothesis of the stage holds,
every r~ is derivable. There are five cases to be considered, which will be
indicated by the Greek letters 'rx' to '€', as follows:

(rx) r k is in ill' Then r~ is the same as r k •

(fJ) r k is prime and in il 2 • Since Uk is then nonvoid, r k cannot be of type
(p2); hence r k must be

A I~ ..A
where the A on the left is the unique constituent of Uk' Then r~ is precisely
the statement (5) and hence is demonstrable. (By the restriction on the
prime statements, A is then elementary.)

(y) r k is in il 2 and is derived by a rule Rk for which all the constituents of
Uk are parametric. Let the premises be r i , r;, . . .. By the hypothesis of
the deductive induction, r;, rj, ... are demonstrable. By (r5), (r6), rkis
derivable from r;, rj, ... ; moreover, (r6) is applied on the right only if 3
is nonvoid. This shows that r k is demonstrable in the appropriate system.

(<5) r k is obtained by an irregular rule whose principal constituent is in
Uk' The only possible irregular rules are *K and *W. Let the premise be
r i' where r; is derivable by the hypothesis of the deductive induction. If
the rule is *W, then r k differs from r i only in that it cont.ains one less in
stance of A in Uk and rk differs from r; only in that it contains one less
replica of~' on the left and, if 3 is nonvoid, one less replica of 3 on the right;
thus r~ can be transformed into rkby a succession of applications of *Wand
W., the latter being used only if 3 is nonvoid. If the rule is .K, there is one
additional instance of A in Uk' and rk can be obtained from r; by using a
succession of applications of *K to insert an additional replica of ~' on the
left, and applications of K. to insert an additional replica of 3 on the right,
the latter being necessary only if 3 is nonvoid. Thus rk is derivable from
ri·t

t The proof of Stage 1 applies to LeI without change.
: If we were to entertain systems in which one of the rules *W or *K was not accepted,

then one or the other of the subcases could not occur. However, if we admit either of
these rules and also allow nonvoid 3, then we must admit the corresponding rule on the
right also.
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(€) r k is obtained by a regular operational rule whose principal constituent
is in Uk. Let r~ be derived from r k by replacing all parametric constituents
of Uk by replicas of X' and adding replicas of 3 on the right. Then we can
derive ri by the same argument as in (y). We derive rk from ri by the
hypothesis of the stage.

Since case € cannot arise when A is elementary, the proof of the elimina
tion theorem is complete for that case. If A is compound, the theorem is
reduced to proving the hypothesis of Stage 1 for the particular A and second
premise concerned.

Proof of Stage 2. Stage 2 of the proof is rather similar to Stage I; it is
therefore permissible to be more brief and to restrict attention principally
to those points in which the two treatments differ. Those differences arise
from the singularity restrictions and from the existence of certain irregular
rules with principal constituent on the right. Among these latter the rules
~* and Px have no analogues in Stage I. Complications in regard to ~* are
avoided by the exclusion of an elementary eliminated constituent, but those
for Px have to be taken into account if the system LCI is to be treated at all.

Let Il be a derivation r1, ••• , r n of (5). For rk we take the form

Xk, Uk I~ IDk , W k

For the determination of Uk' IDk , we take the following rules:

(a) Un is void, IDn is the indicated eliminated constituent in (5), X~ is X',
Wn is 3.

(b) If r k is used as premise for deriving r m'

(bl) The parametric constituents of IDm(Um) which are in r k are in
IDk(Uk)·

(b2) If R m is an irregular rule whose principal constituent is in Um or
ID"l' then the subaltern constituents are in that one of the Uk' ID k

which is on the appropriate side.
(b3) If R m is a rule *P whose principal constituent is in Um , let the left

premise be r k and the right premise be r i ; then the subaltern con
stituent of r k is in IDk , but no specification is made as to the subaltern
constituent in r i.

This constitutes an inductive definition of the Uk' IDk , and hence of the
X~, Wk. By induction, working from r n backward, we shall see that all
constituents of IDk are like A, and all those of Uk are of the form A :::> C (the
C's not necessarily the same). This is evidently true for r n. Suppose it
true for r m. Then it is certainly true for the parametric constituents which
are in r k by virtue of (bl). For the irregular rules entering under (b2), the
possibilities are *K, *W on the left, and K*, W*, ~*, and Px on the right;
of these ~* is excluded by the requirement that the eliminated constituent
be compound; in all the other cases the constituents introduced into 1\ are
as stated. Finally, the constituent introduced into ID k by virtue of (b3) is
like A, which completes the induction. Note that Uk is void, except in the
case of LCI , which is a singular system.

For the case where Px is not admitted, r~ will be the statement
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where (X) is a set of replicas of X, and (~) a set of replicas of ~, there being
one replica of each for each occurrence of A in IDk • If Px is admitted, we
have necessarily a singular case,l in which ~ has a single constituent B;
then rk is obtained from r k by replacing a constituent A :::> C of Uk by
B :::> C and a constituent A of IDk by B and by adjoining on the left a replica
of X for each constituent of Uk or IDk • Then rk is the same as r k for r k in
ill (Le., when Uk and IDk are void); also r~ is precisely (6).

The proof that every f k is demonstrable proceeds as in Stage 1. The
added parametric constituents on the right come froln replicas of ~, rather
than of 3, and those on the left from replicas of X, rather than of X'. In the
singular cases ~ is singular, and either IDk is singular and W k void or vice
versa. If Px is admitted, there is one additional case, here called case ,.
The details are as follows:

(ex) r k is in ill. Then r k is the same as rk •

(fJ) f k is in il 2 and is prime. This case is impossible by the restrictions on
the prime statements, since A is compound.

(y) r k is in il2 and is derived by a rule Rk for which all constituents in
Uk and IDk are parametric. Then rk is derivable by the same argument as
in Stage 1.

(0) r k is obtained by a rule R k satisfying the conditions (b2). If R k is one
of *K* or *W *, the situation is again analogous to that of Stage 1. If the
rule is Px, leading from r i to r k by dropping a constituent A :::> C from Ui ,

then the inference from r~ to rk can be made by dropping an instance of
B :::> C by the same rule Px and dropping a superfluous replica of X by suc
cessive applications of *W. It is necessary to postulate *W in this case.

(€) r k is obtained by a rule Rk for which the principal constituent is in
IDk • This situation is analogous to that in Stage 1 using the hypothesis of
the stage. Note that there can be parametric constituents in IDk , only in
the multiple case. In the singular case we apply the hypothesis of the stage
at once.

(,) r k is obtained by a rule R k satisfying the conditions (b3). Let the
premises be r i , r j where r~ and fj are derivable. Then we derive rk from
r~ by the same rule.

Proof of Stage 3. We now suppose that the derivations of both (4) and
(5) terminate in the introduction of the eliminated constituent A on the left
and right, respectively, by the appropriate operational rules, and that the
elimination has been established if the eliminated proposition is a proper
component of A. There are three cases corresponding to the three operations
so far introduced.

In these cases it will be convenient to use 'Xl" 'X 2 ' for 'X', 'X", and where
these are subdivided, to understand that Xu, Xl2 constitute Xl' etc.

CASE 1, A == B :::> C. Then (4) comes from the premises

Xu U- B, 31
X12 , C U- ~l

(7)

(8)

I If a multiple case were needed, it would not be difficult to treat it. One would simply
replace A :::> C by ~ :::> C, where ~ :::> C is a prosequence whose constituents are B :::> C,
with B an element of~. Such a case occurs in Chap. 6, but not in connection with a
system of primary interest.
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where ~ is ~1' 31' The premise for (5) is

~2' B II- C, 32
Then from (8) and (9), by elimination of C, we have

~12' ~2' B II- ~h, 32

and from this and (7), by elimination of B, we have

Xu, X12 , ~2 II- 'Ill' 31' 32

(9)

which is (6).
CASE 2, A == B A C. If we use the Ketonen form of .A, the premise for

(4) is

The premises for (5) must be
~21 II- B, 31
~22 II- C, 32

From (10) and (12) and elimination of C we have

Xl' X22 , B II- ~, 32

From this and (11), eliminating B, we have

~1' ~21' X22 II- ~, 31' 32

(10)

(11)

(12)

which is (6).
Without the use of the Ketonen rule the situation would be dual to that

considered in the next case.
CASE 3, A == B V C. In the multiple case, with the use of the Ketonen

form for V., the situation is dual to that in Case 2. In the singular case we
can argue as follows. The premises for (4) must be

Xu, B II- ~ (13)

~12' C II- ~ (14)

The premise for (5) must be one or the other of

~211-B ~211-C (15)

Supposing it is the first of (15), then, eliminating B with (13), we should
have

~u, ~2 II- ~

This is not quite the same as (6); to get (6) we need to postulate .K in order
to get ~12 on the left.

This completes the proof of the elimination theorem so far as LA, LC,
LC1 are concerned. Thus we have the following:
Theorem 2. The elimination theorem holds for LAl' LC1, LCm • It further

holds for any L system formed by adding regular operational rules to one of
these, provided that the argument of Stage 3 holds for the new operations.
Proof for LAm. t The proof fails to go through for LAm because P. fails

to satisfy (r6). However, it can be proved for LAm by modifying the argu
ment. The crucial point is that when 3 is void, Stage 1 requires (r6) only

t An alternative method of extending the proof to LAm is suggested in Sec. 5 (see
Exercise 17 at the end of Sec. E).
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on the left and therefore goes through for LAm for void 3. In particular,
ET is true for A elementary and 3 void.

If A is compound and not of the fornl B :::> C, then we can eliminate Stages
1 and 2 by Theorem 1. Hence we have only to consider the cases where A
is elementary or A is of the form B :::> C. In these we begin by modifying the
proof of Stage 2. Since mk now consists of the quasi-parametric ancestors
of the eliminated constituent, and since there are such in alP statements of
Ll 2 , there can be no application of P* within Ll 2 • Therefore the part of the
proof of Stage 2 under cases (x, y, and <5 stands without change and case ~ is
vacuous. It is only necessary to consider case € for the case where A is
B :::> C; in the case where A is elementary, we have to reconsider not only
(fJ) but the possibility that ~* may occur.

If A is B :::> C, then case € can occur only when the right side is singular.
The Stage 2 induction is completed by direct application of the hypothesis of
the stage. It remains to verify that hypothesis. But, under the conditions
of that hypothesis we have a case in which 3 is void, and therefore Stages 1
and 3 go through without trouble. ET is therefore proved provided it holds
when A is elementary.

If A is elementary and case fJ occurs, then again we have a void 3 at that
point, and the case has already been covered. Thus ET is proved in full
for any elementary A such that there is no instance of ~* introducing A
into Ll 2 •

If some parametric ancestor of the eliminated constituent is introduced
into Ll 2 by ~*, we use a tertiary induction2 on the number of such applica
tions of ~*. The preceding argument takes care of the basic step. Suppose
then that r k is

(where 3k contains Wk and parametric instances of mk ) and that r k is ob
tained by ~* from

i = 1,2, ... ,m (16)
where

~k == ~kl' • • • , ~km

and

Then by Theorem C5,
B1, • •• , B m I~ A

From this and (4), by cases already proved, we have

After the transformations described in Stage 2, let (16) become

(17)

1 Except the last. It is assumed in this context that k < n.
2 Alternatively, one may eliminate ~* by proving Theorem E4 below by a direct induc

tion which does not involve ET. This is the only place where the presence of ~* causes
any trouble.
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then

From these and (17), eliminating the B i by the tertiary inductive hypothesis,
we have r~. Thus the proof of ET for this A and (5), and so for LAm gener
ally, is complete.

This establishes the following:
Theorem 3. The elimination theorem holds for LAm.

There is a certain amount of interest in ET for modified L systems in
which the structural rules are not postulated in their full strength. These
structural rules have entered into the foregoing proofs in the following ways:
(1) in case c5 of Stage 1 (and also dually for Stage 2), it is required that if *W*
or *K* holds on one side, it does on 1;he other; (2) in case c5 of Stage 2, we
need *W in order to take account of Px; (3) in Case 3 of Stage 3, we need
*K in the singular systems. l Thus the proof of the theorem is not complete
for generalizations in which some of these structural rules are denied. How
ever, in the multiple systenls with Ketonen rules, ET, as here stated, does
not require that either *K* or *W* be postulated.2

In case these principles are postulated, we have the following:

Theorem 4. If *W* both hold, then ET entails the following ET':
ET'If

~,A II- ~

and for some 3 which is a part (or the whole) of ~

~ II-A,3

~ II-~

Further, if *K* both hold, ET' entails ET. Thus ET and ET' are equiv
alent for L systems.
The proof is analogous to that of Theorem C2.
Henceforth the definition of 'L system' (Sec. C6) will be understood to

include the validity of ET.
3. The replacement theorem. As a tool for later use it is expedient to

formulate a theorem which has a relation to the theory of L systems similar
to that which the replacement theorem of Sec. 3B had to the algebraic sys
tems of Chap. 4. Indeed, by passing to a higher stage of epitheory, it may
be regarded as a modified form of that theorem; it will also be called the
replacement theorem and abbreviated Rp when there is no likelihood of
confusion.

Let B be a proposition which contains a proposition A as component.
Then the composition from A to B is accomplished by a series of applica
tions of unary operations of the forms

C :::> -, - A C, C A -, - V C, C V -, - :::> C

Here the dash indicates the position of the argument, while '0' indicates a
parameter which may be different in the different steps of the composition,
but is independent of the argument. Now, on the hypothesis that

A II-A' (18)

1 This is not surprising if we request that the rules V * (and also the original form of *A)
contain principles with approximately the same intuitive meaning as K* (*K).

2 This has not been checked for the case where there are inferences by 1-*.
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one can easily establish that
0:::> A 11-0:::> A'

A A 0 II- A' A 0
o A A 11-0 A A'
A vO II- A' vO

Ov A II-OV A'
A':::> OIl-A:::> 0

These show that if we interpret the relation R of Sec. 3B as II-, then the
first five operations in the above list are directly monotone, while the sixth
one is inversely monotone. Let us say that A is positive or negative in B
according as the number of inversely monotone operations in the composi
tion from A to B is even or odd. N ow the relation II- is a quasi ordering by
virtue of the elimination theorem. Hence by Theorem 3Bl, if B' is the
result of replacing A by A' in that particular occurrence, the left-hand one
of the two statements

BII-B' B'II-B (19)

will hold if A is positive in B, while the right-hand one will hold if A is nega
tive in B.

Now let r be an elementary statement in which there is a constituent B
containing an occurrence of A. Let us say that A is positive in r if B is in
the consequent of r and A is positive in B, or B is in the antecedent of r
and A is negative in B; and that A is negative in r if B is in the consequent
of r and A is negative in B, or B is in the antecedent of r and A is positive
in B. Let r' be obtained from r by putting A' in the place of A at that
occurrence. Then we have the following:
Theorem 5. In any L system with monotone operations, we can infer from

(18) that
or

respectively, according as A is positive or negative in r.
Proof. Let B be on the right in r, so that r is

~II-B,~

Then r' is

(20)

~ II-B',~

By the elimination theorem we have that one of the relations (20) which is
on the same side as that occupied by the true statement in (19). This will
be the left one if A is positive in r and the right one if A is negative in r.
This completes the proof for this case.

Let B be on the left in r, so that r, r' are, respectively,

~, BII-~ ~,B' II-~

Then the elimination theorem allows us to infer that one of (20) which is on
the opposite side to that occupied by the true statement in (19). This will
be the left side if A is positive in r (hence negative in B) and the right side
if A is negative in r. This completes the proof.

4. Equivalence of T and singular L. From the preliminary discussion
in Sees. Cl and C2 it would be expected that the systems LA and LC would
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be equivalent to the corresponding T systems. That this is indeed so, and
in exactly what sense, is now to be shown.

We first extend the T systems so as to include a rule analogous to l- •.
This rule will be called l-i; its formulation is
H If E 1, •.• , Em l-o Eo (in the sense of Sec. C3d), then

DEFINITION. The statement
(21)

relative to one of the systems TA or TC will mean that in the T system
under discussion there is a derivation of B such that all uncanceled prem
ises are propositions in ~.

Our task now is to show that (21) relative to TA (TC) is equivalent to

~ Il- B

relative to LA1 (LC1). For the sake of explicitness, the latter of these rela
tions will now be written

(22)

This investigation has one difficulty at the very beginning, in that the
relation (21) is less rigorously formalized than (22). The statement (21) is
to be verified by inspection of a tree diagram; we have to see that all the un
canceled premises of the proof are in~. We have to take it as intuitively
evident that any true instance of (21) can be derived from the prime state
ments

(pI)

(p2) if E is an axiom of G

Ai

Pi ~,A Il-T B
~ Il-T A :::> B

~ Il-T A ~ Il-T B
~ Il-T A A B

~Il-T A
Vi

~ Il-P A V B

by means of the rules analogous to .C, .W, and .K and the following rules:

~ Il-T A ~ Il-T A :::> B
Pe

~ Il-T B

~ Il-T A A B ~ Il-T A A B
Ae

~ Il-T A ~ Il-T B

~ Il-T A V B ~,A Il-T 0 ~,B Il-T 0
Ve

~ Il-TO

l-i If E1, ••• , Em l- Eo,

~ Il-T E i i = 1,2, ... m
~ Il-P Eo

Pk ~,A :::> 0 Il-T A
~Il-T A

With this matter clarified, we proceed to the following theorem.
Theorem 6. I n order that (22) hold, it is necessary and sufficient that (21)

hold.
Proof of Necessity. (Proof does not require ET.) The result will follow
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by deductive induction on the proof of (22) as soon as we show that the
prime statements and rules of the L system are valid when n-L is interpreted
as n-T .

For the prime statements this is clear. It is also clear for the structural
rules. For the other rules the proof is as follows:

P* By hypothesis there is a derivation of B whose uncanceled premises are
in the prosequence X, A. By Pi there is a derivation of A ~ B whose
uncanceled premises are in X.

A* By hypothesis there is a derivation from X of A and also one for B.
By Ai there is a derivation of A A B from the sanle premises.

V *, ~* Similarly using Vi, H.
*P By the first hypothesis there is a derivation of A from uncanceled prem

ises in X. By Pe there is therefore a derivation of B from Xand A ~ B.
By the second hypothesis there is a derivation of C from X and B. Over
each occurrence of B as premise for this derivation place the established
derivation of B from X and A ~ B. The result is a derivation of C from
X and A ~ B.

*A By hypothesis there is a derivation of C from X and either A or B or
both (for the Ketonen form). Over each occurrence of one of these prenl
ises put the derivation of that premise from A A B by a single application
of Ae. The result is a derivation of C from X and A A B.

*,r By hypothesis there is a derivation ill of C from X and A and a deriva
tion il2 of C from X and B. If we adjoin the premise A V B, then we can
conclude C by Ve and cancel the premise A over ill and the premise B
over il 2 • "fhe result is a derivation of C whose uncanceled premises are
either A V B or in X.

Px By hypothesis there is a derivation of A from X and A ~ B. By Pk
we can cancel the premise A :::> B. The result is a derivation of A from
X,Q.E.D.
Proof of Sufficiency. (Using ET.) It is enough to show that the rules

of the T system are valid when I~T is interpreted as n-L . This is clear for
(pI), (p2) and the rules analogous to *C, *W, and *K. Likewise, it is true
for the rules Pi, Ai, Vi, H, and Pk, since the interpretation carries these
directly into P*, A*, V*, ~*, and Px, respectively. For the remaining rules
the validity is shown by the following schemes, in \\,hich 'HI', 'H2', etc.,
represent the hypotheses of the rule in question, and 'ET' signifies an appli
cation of the elimination theorem, possibly along with structural rules:

Pe

HI (pI)
X I~ A X, B I~ B *P

X, A :::> B I~ B
X I~ B

H2
X I~ A :::> B ET

(pI)

HI A, B I~ A *A
X I~ A A B A A B I~ A ET

X I~A
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(pI)

HI A, B II- B *A
~ II- A A B A A B II- B ET

~II-B

H2 H3
HI ~, A II- 0 ~, B II- 0 *V

~ II- A v B ~, A v B II- 0 ET

~ 11-0
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This completes the proof of Theorem 6.
In connection with the theorems of Sec. B we have the following corol

laries:
COROLLARY 6.1. The following statements are all equivalent:

II-A

I-A
I-A

I~A

in LA(D)
in TA(D)

in HA
in EA

Likewise, the statements obtained by substituting LCv TC, HC, and EC,
respectively, for LA, TA, HA, and EA.

COROLLARY 6.2. The following statements are also equivalent

AI' , Am II- B in LA(D)

AI' , Am II- B in TA(D)

I-A1 =>. A 2 =>•••• =>. Am => B in HA (or TA)

Al A A 2 A ••• A Am ~ B in EA

Likewise the statements arising from the same substitutions as in Oorollary
6.1.
5. The equivalence of sin~ular and multiple systems. We now

attack the problem of showing that the singular systems LA1 and LC1 are
equivalent, respectively, to the multiple systems LAm and LCm • We shall
do this first for the absolute systems LA1 and LAm; then the argument will
be extended to the classical systelns LC1 and LCm.

The following conventions will be understood. All systems are formulated
in Formulation IK, that is, with the Ketonen forms of *P and *A. When
explicitness is desired, '11-1' will be written for' 11-' in connection with a singular
systenl, whereas' II-m' will be so used in connection with a multiple system.
It will be supposed further that ~ is 0 1, ••• , 0 p and that

0==0IV02V···VOp (23)

with association to the right; similarly, that ~' is Oi, ... ,0; and 3 is D1,

... , Dr with 0' and D defined analogously to O. Given a statement

the statement
~ II-m ~ (24)

(25)

will be called its singular transform; likewise, we say that (24) is a multiple
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transform of (25). The singular transform is unique, but since there may be
several decompositions (23), the multiple transform is not necessarily SO;

however, if 0 is not an alternation (Le., if it does not have V as its outside
operation), ~ is singular and (24) and (25) are identical. The inference

can always be made by Rp and CorollaTy 6.2 in case

Ai;.B

is true in EA; in such a case the inference will be said to be made by EA.
Thus the various ways of associating in (23) are equivalent by EA, so that
the agreement as to association was a pure technicality. Finally, in proofs
indicated by the tree diagrams, I shall use 'ET' to indicate an application of
the elimination theorem and 'EA' to denote an inference by EA. The
diagrams are thus not demonstrations, but indications of how demonstra
tions may be constructed; the reader is advised to read these from the bot
tom upward and to construct those parts of them which are demonstrations
by the techniques of Sec. C5.
Theorem 7. A necessary and sufficient condition that a statement of form

(24) hold in LAm is that its singular transform (25) hold in LA1•

Proof of Necessity. We use a deductive induction on the proof of (24).
If (24) is a prime statement, then ~ is singular and so (24) and (25) are

identical.
If (24) is derived by any of the rules *C, *K, *W, *A, *V, all of which

leave the right side completely unchanged, then the same rule will allow us
to derive (25) from the singular transform(s) of the premise(s).l

Suppose that (24) is derived by *P. Then ~ is ~', A :::> B, and the prem
ises are

The singular transforms may be written, by EA, as

~'II-A vO ~',BII-O (26)

From these premises we argue as follows. We construct first a proof of
A :::> B, A vO II- BvO, thus:

A II- A B II- B *P (pI)

A:::>B,AII-B V* A:::>B,OII-O V*

A :::> B, A II- B V 0 A :::> B, 0 II- B V 0 *V
A :::> B, A V 0 II- B V 0

From this conclusion and the left-hand premise (26) we have, by ET,

~', A :::> B II- B v 0 (27)

1 The only case of Dlultiple premises is *V. In that case it is important that we are
using Formulation I, so that the right sides in the two premises are the same.
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On the other hand, using the right-hand premise (26), we have

(pI)

~', B II- 0 ~', 0 II- 0 •V
~', BvO 11-0

Hence, eliminating B V 0 with (27), we have

~',A:::> BII-O
which is (25).

Next, suppose (24) is derived from

~ II-~' (28)

by one of the rules C., K., W.. Then we derive (25) from the singular
transform of (28) by EA.

If (24) is derived by P., then ~ is singular and so is the premise from which
(24) is derived. By the hypothesis of the induction, since p = 1, that prem
ise is also derivable in LA1 ; hence so is (24). In such a case, (24) and (25)
are identical.

If (24) is obtained by A., then ~ is A A B, 3 and the premises are

~ II-A,3 ~II-B,3

~II-BvD

The singular transforms may be written, in view of the association to the
right of v, in the form

~ II-A V D

From these by A. we have in LA1

~ II- (A V D) A (B V D)
On the other hand, since

(A V D) A (B V D) ~ (A A B) V D

holds in EA, we have by EA
~ II- (A A B) V D

which is (25) for this case.
Finally, suppose (24) is obtained from V.. Then ~ is A V B, 3. Let the

singular transform of the premise be
~ 11-0'

Then since
0' ~O

holds in a lattice, we have (25) by EA.
If (24) is obtained by 1-., then the inference is

~ll-mEi,3 i = I,2, ... ,m
~ II-m Eo, 3

By the inductive hypothesis,

~ 11-1 E i V D
By Theorem C5,

i = 1,2, ... ,m (29)

and hence by V.,
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This is the case k = 0 of

(30)

To show that this holds for all k :s;: m it is sufficient to give the induction
step for induction on k. This is obtained fronl (30) and the conclusion of

by *V in Formulation II (which in turn follows from Formulation I by
Theorem C2). Thus (30) holds for k = m. From this and (29) we have
(25) by successive applications of ET.

This completes the proof of necessity.
Proof of Sufficiency. Since all the rules of LAI are valid in LAm't (25) is

valid in LAm. From this we obtain (24) by Theorem 1, inverting with
respect to the join operations on the right.

This completes the proof of Theorem 7.

COROLLARY 7.1. The statements of the form

which are valid in LAm are the same as those which are valid in LA.
Proof. This is the case where p = 1.
Since ET for LAm was not used in the proof of Theorem 7, one can use

Theorem 7 to give an alternative proof of ET for LAm' namely, by deducing
it from ET for LAI.~

The following corollary generalizes Corollary 6.2.
COROLLARY 7.2. The following statements are equivalent:

AI' ,Am I~ Bv ... , B n

AI' , Am I~ BI V B 2 V ••• V Bn

~AI =>. A 2 => ••• =>. Am =>. B1 V B 2 V ••• V Bn
Al A A 2 • • • A Am ::;: B1 V B 2 • •• V Bn

in LAm

in TA

in HA
in EA

So much for the absolute systems. We turn now to the classical ones.
Theorem 8. A necessary and sufficient condition that (24) hold in LCm is

that (25) hold in LCI .

Proof of Necessity. I t is only necessary to add to the cases considered in
Theorem 7 the case of the only inference possible in LCm but not in LAm'
namely, that by the unrestricted rule P*. If (24) is so obtained, then ~ is
A => B, 3; the premise is

~,A I~ B, 3

The singular transform, which is valid in LCI by the inductive hypothesis, is

~,A I~ Bv D

t One might think that *P was an exception, but the LA l form of *P is valid in LAm'
t See Exercise 16. Instead of using Theorem 1 in the sufficiency proof we could have

used a deductive induction directly.
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~, A II- A :::> B .v D

~, A, A :::> B .V D .:::> B II- B p*

~,A :::> B .V D .:::> B II- A :::> B V.

~, A :::> B .V D .:::> B II- A :::> B .V D Px
~ II-A:::> B.v D

SEC. D]

From this we derive (25) as follows:

A,BII-B
----P*

B II- A :::> B V* D II- D
-------V.

B II- A :::> B .v D D II- A :::> B .v D
------------.V (Hp)

B V D II- A :::> B .v D ~, A II- B V D
-------------------- ET

BIt- B.p
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ET

Proof of Sufficiency. Here again the only case to consider is that where
the inference is made by Px. The inference in LCI would then be of the
form

~,O:::> BII-O

~ 11-0

The corresponding inference in LCmcan be justified as follows:

(pI)
0i II- B, ID i = 1,2, ... ,p .V
o II- B, ID P.

~, 0 :::> B II- ~ II- 0 :::> B, ID
~ II- ID

This completes the proof of Theorem 8.

COROLLARY 8.1. The statements of the form

~II- B

which are true in LCmare the same as those which are true in LCI .

Proof. This is the case where p = 1.
The following corollary connects Theorem 8 with Corollary 6.2.

COROLLARY 8.2. The statements of Oorollary 7.2 remain equivalent if the
systems LAm' TA, HA, and EA are replaced, respectively, by LCm, TC, HC,
and EC.

COROLLARY 8.3. The rule analogou8 to Px, namely,

~,A :::> B II- A, 3 ~ ~ II- A, 3
is redundant in LCm •

Proof. The sufficiency proof of the theorem holds whenever 0 is in ID.
COROLLARY 8.4. Let LC~ be the same as LCI except that Px is subject to the

additional restriction that B be a component of A. Then any elementary
theorem of LCI is demonstrable in LC~ and vice versa.
Proof. The necessity proof for Theorem 8 used only such instances of Px
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as satisfied the additional restriction. (The only use of Px was in validating
inferences by P •. ) Hence if r is demonstrable in LCv it is derivable in
LCm by Corollary 8.3, and hence, by the necessity part of Theorem 8, in
LC~. The converse is clear since any demonstration in LC~ is a fortiori one
in LCI .

6. Completeness of LC. We saw in Sec. C2 that any elementary state
ment of LC was valid in an interpretation by 0-1 tables. The complete
ness theorem for LC is the converse statement for the case where S is .0.
Since validity by 0-1 tables may be regarded as a fifth form of formulation,
parallel to the L, T, H, and E formulations it is appropriate to prove this theo-
rem in the present section. The proof is, in principle, due to Ketonen [UPK].
Theorem 9. A necessary and 8ufficient condition that

(31)

hold in LC(D) is that it be valid relative to every evaluation by 0-1 tables in
the sense of Sec. C2.
Proof. The necessity of this condition [even for LC(S)] is shown by

deductive induction. It is hardly necessary to give the details explicitly.
It is enough to state the following facts. A prime statement of type (pI)
has a common constituent on both sides, and the statement is valid for either
of the two possible values of this common constituent. In the inductive
step it is sufficient to consider the case that all parametric constituents on
the left have the value 1 and those on tlie right have the value 0, since other
wise the conclusion is valid; under these circumstances the validity of the
premises restricts the values for the subalterns, and for these values the
ordinary truth tables assign a value to the principal constituent such that
the conclusion is valid.

It remains to prove the sufficiency. Suppose then that (31) is valid as
stated. We construct a tree from the bottom up by applying the opera
tional rules of LCm , formulation IK, in the inverse direction. Since each
premise of such an operational rule contains fewer operations than the con
clusion, the process must eventually terminate in the construction of a tree
1) in which the top nodes contain only elementary constituents. If the state
ments at these top nodes are demonstrable, then from 1) we can construct a
proof tree for (31).

Now the inverted rules of LCm also preserve the property of being valid by
truth tables, as we can show by working the inductive step of the necessity
proof in the opposite direction. Hence all the nodes of 1), and therefore
the top nodes, will be tautologous by truth tables. But if (31) is tautolo
gous and has only elementary constituents, then there must be a common
constituent in ~ and ~; otherwise there would be a valuation which would
give all constituents of ~ the value 1 and all those of ~ the value o. There
fore all the top nodes of 1) are quasi prime (Sec. C9) and 1) can be trivially
converted into a demonstration of (31), Q.E.D.

Since the demonstration so obtained from 1) contains no instances of .W.,
the proof shows that the contraction rules are superfluous. Likewise the
uses of .K. are specialized. Generalizations of these results will concern
us in Sec. E.
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Remark. The sufficiency argument will go through in any case in which
all the operational rules are directly invertible and preserve truth-table
validity when inverted.

E. L DEDUCIBILITY

This section is devoted to the development of theorems and techniques
concerned with what can or cannot be done in the operation of the L systems.
These systenls have two characteristics: the first is that inferences by the
rules generally increase the complexity, so that a demonstration is a process
of synthesis; the second is that one can (with certain exceptions) tell by
inspection whether an elementary statement can be the conclusion of a given
rule, so that there is the possibility of a corresponding analysis.

The section begins with the study of a "composition property," which
expresses in a refined way the synthetic characteristic. I t then proceeds,
in Sees. 2 to 4, to study properties which are more or less immediate con
sequences of the composition property and to express broad necessar) con
ditions for deducibility. These include the separation property, to the effect
that rules for an operation are relevant only when that operation actually
occurs; the conservation properties, which concern relations to the under
lying system 6; and the alternation property, which in the simplest case
says that A V B is assertible in the absolute propositional algebra only when
one or the other of A, B is. Then in Sees. 5 to 6 the structural rules are
studied with a view to restricting or eliminating them, and thus reducing the
nUlnber of alternatives in the analytic process; in particular, it is shown in
Sec. 6 that in slightly modified formulations, called Formulations III and IV,
the rules *W* are redundant. This paves the way for the decidability
theorem of Sec. 7. Finally, Sec. 8 is devoted to a "tableau" method, essen
tially due to Beth, which simplifies, and to some extent mechanizes, the
decision process.

1. The composition property. The most striking property of the
operational rules for the L systems is that they form new combinations, but
they do not allow combinations to drop out unless they are repetitions of
combinations already present. We proceed to formulate this property
precisely. We shall use the term 'component' in the sense of Sec. 3Bl.
That definition determines when a proposition A is a component of another
proposition B. The possibility that A is the same as B is included. Then
a proposition A will be said to be a component of an elementary statement r
just when it is a component of a proposition occurring as a constituent in r.

A rule R will be said to have the 'composition property'l just when every
subaltern constituent is like a component of the principal constituent. A
system will be said to have the composition property just when everyone of
its rules does. A rule or system will be said to have the composition property
for compound constituents just when the conditions of the above definition
are satisfied for all compound subaltern constituents, but not necessarily
for elementary ones.

Thus all the rules, regular or irregular, of the systems LAl(D), LAm(D),

1 The term 'subformula property' is beginning to be standard for this property, but it
does not agree so well with the terminology of this book as the term used in the text.
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and LCm(.D) satisfy the composition property, and consequently these sys
tems do. If 6 is such that the auxiliary statements (Sec. C3d) are non
vacuous, then the rule 1-* does not satisfy the composition property, but since
the subaltern constituents of 1-* are necessarily elementary, it does satisfy
the composition property for compound constituents; therefore all the
systems LA(6), LC(6), LAm(6) do also. Finally, the rule Px does not
satisfy the composition property, not even for compound constituents, and
therefore the same is true for all systems LCI .

Since all the constituents in the premises of a rule are either subaltern or
parametric, and the latter are like some constituent in the conclusion, every
constituent in the premises of the rule satisfying the composition property
will be like some component of a constituent in the conclusion. The same
will be true under the restriction to compound constituents if the rule satis
fies the composition property for compound constituents. Thus we have,
either with the omission of all the words in parentheses or with the inclusion
of all of them, the following theorem:
Theorem 1. If an L system satisfies the composition property (for com

pound constituents), then every (compound) constituent of an elementary
statement in a regular demonstration is like a component in the final result.
Proof. Every descendant of the constituent in question will contain it

as a component, and there will be such a descendant in the final result,
Q.E.D.

2. Separation property. A system will be said to have the separation
property (with respect to a set of operations Q) just when, for every opera
tion co (of Q), every elementary theorem r in which co does not occur is
demonstrable without using postulates related to co. For L systems the
postulates related to co (unless there is some auxiliary explanation)1 consist
of those rules in which co is the main operation in the principal constituent.
In other cases the relationship is left a little vague, but is understood to be
that which is made apparent in the formulation of the system.
Theorem 2. If an L system has the composition property for compound

constituents, then it has the separation property with respect to all operations.
Proof. If r is an elementary theorem, it has a demonstration; hence it

has a regular demonstration. By Theorem 1 none of the deleted rules is
used in the regular demonstration, Q.E.D.

Since all the rules of LA}) LAm' LCm have the cODlposition property for
compound constituents, we have at once:
COROLLARY 2.1. The systems LA}) LAm' and LCm have the separation prop

erty for all operations.
To derive the separation property for LCI requires a little thought. We

note first:
COROLLARY 2.2. The elementary theorems of LCI (LCm) 'which do not contain

implication are the same as those of LA I (LAm)'
Proof. If r is an elementary theorem of LCI , then by Theorem D8 it is

demonstrable in LCm. If r does not contain implication, it has a demonstra
tion in LCm not using the P rules (by Corollary 2.1). Since the operational
rules of LCmother than the P rules are the same as in LAm' r is demonstrable

1 As in Corollary 2.3.
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in LAm. If it is singular, it is demonstrable in LA1 by Theorem D7. Con
versely, any elementary theorem of LA1 (LAm) is clearly demonstrable in
LC, Q.E.D.

Now suppose that r is an elementary theorem of LC1 which involves
implication. By Theorem D8 and Corollary 2.1, r has a demonstration in
LCm using only rules for operations which actually occur in r. This may be
transformed into a demonstration in LC~ by Theorem D8 and Corollary
D8.4. All the rules of LC~, except Px, have the composition property, and
Px can drop out only the constituent A :::> B, which, since B is a component
of A, contains no operations except implication and operations in A. Hence
each node of the demonstration contains no operations, except possibly
implication, which are not in the node just below it. Since implication
occurs in r, no node contains operations not in r, and hence no rules corre
sponding to operations not in r can occur.

Since this is also true if r does not contain implication by Corollaries 2.1
and 2.2, we have:
COROLLARY 2.3. The system LC1 has also the separation property for all

operations, even if Px is added to the list of rules related to implication.
The equivalence theorems of Sec. D allow the separation property to be

extended to other types of formulation. rrhis requires a detailed examina
tion of the equivalence proofs. In the equivalence between the T and sin
gular L systems in Theorem D6, the justification of a rule in either system
required only the use of a corresponding rule for the same operation in the
other system; consequently, an analogue of Theorem 2 holds without modifi
cation for TA and TC. But the proofs of equivalence between the E, H,
and T systems in Sec. B did not separate the operations in that way. Thus
the reduction of TA to HA in Theorem B3 required properties of implication
for all the T rules, and the reduction of EA to HA in Theorem B4 required
properties of conjunction as well. Hence the conclusion to be drawn from
Theorem 2 is the following:1

COROLLARY 2.4. The systems TA, TC have the separation property for all
operations; the systems HA, HC in standard formulation for all except impli
cation. Further, an elementary theorem of EA which does not contain the
operation V is a theorem of an implicative semilattice.
There does not seem to be much point to investigating the situation with

respect to EC.
3. Conservation property. An L system over G will be said to have

the conservation property relative to G just when every elementary theorem
with only elementary constituents has some proposition in the consequent
which is G-deducible (Sec. C7) from those in the antecedent.
Theorem 3. If an L system over G is such that all rules other than ~* and

the structural rules are related to some operation and the separation property
holds for all operations, then the L system has the conservation property rela
tive to G.
Proof. Let r be an elementary statement all of whose constituents are

elementary. Let Il be a regular demonstration of r. By the separation
property no operational rules are used in Il, and hence all constituents in Il

1 Cf. Exercises 11 and 15 of Sec. B.
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are elementary. We use a deductive induction with respect to fl. If r is
prime, then either some proposition of the consequent of r is the same as one
in the antecedent or some proposition in the consequent is an axiom; in
either case the thesis of our theorem is verified. If r is derived by a rule
other than l-*, then there is one premise, and the propositions appearing on
either side in the premise appear also on the same side in the conclusion;
since, by the inductive hypothesis, our thesis holds for the premise, it holds
for the conclusion also. Finally, suppose r is obtained by rule l-*. Let the
inference be

ri
r

i = 1,2, ... m

where all the propositions in any of the ~i are contained in ~ and all in any
of the 3i are contained in 3.t If a proposition in 3i is S-derivable from
those in ~i' then a fortiori some proposition of 3 is S-derivable from those in
~. By the inductive hypothesis the only remaining possibility is that, for
every i, E i be derivable from the propositions in ~i; then Eo is S-derivable
from Ev ... ,Em and hence in turn from those in ~, Q.E.D.

The following theorem, which reduces LA(S) and LC(S) to LA(D) and
LC(D), may also be considered as a kind of conservation theorem.
Theorem 4. Let fl be a demonstration in LA(S) or LC(S) of

~ Il- ~ (1)

Let IDl be the (finite) set of all propositions M which appear as axioms [i.e.,
constituents of prim-e statements of type (p2)] in fl, and let 91 be the set of all
propositions N of the form

N 1 :::>. N 2 :::> ···N",:::> No

where the auxiliary statement
N1,···,N",l-oNo

is used as justification for an inference by l-* in fl. Then

IDl, 91, ~ Il- ~

(2)

(3)

(4)

is demonstrable in the corresponding L system over D.
Proof. By Theorems D7 and D8 there is a proof tree in the corresponding

singular system of
~ Il-C

where C is as in Sec. D5. By Theorem D6 there is a T proof ending in C,
all of whose uncanceled premises are in~. In this T proof each M in IDl will
appear at a top node, and inferences by l-* will become inferences by l-i.
Now let the members of IDl at the top nodes be taken as additional premises,
and where there is an inference by l-i justified by (3), let the inference be
made by successive applications of Pe with (2) as additional premise. Then
we shall have a T proof relative to D of

IDl, 91, ~ Il- C

This can be converted into a proof of (4) by Theorems D6 to D8, Q.E.D.

t This treats Formulations I and II simultaneously.
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4. Alternation property. This is the property of absolute propositional
algebra, not possessed by classical algebra, to the effect that A V B is assert
ible only if either A or B is assertible.

To formulate this precisely, we assume that we are dealing with the system
LA}. We say that an operation is nondilemmatic if its rule for introduction
on the left satisfies (r6) on the right and either has one premise or, if it has
more than one, the right constituent in the conclusion is congruent to the
right constituent in exactly one of the premises. Thus A is nondilemmatic
because *A has only one premise; P is nondilemmatic in LA} because the
right constituent of the conclusion of *P is congruent to that of the right
premise only; but V is dilemmatic because the right constituent of *V is
parametric in both premises. In Chap. 7 we shall meet a case where an
operation is dilemmatic because it fails to satisfy (r6).

Theorem 5. Let i! be a singular L system formed by adjoining to LA} at
most semiregular rules for additional operations. Let ~ be constructed from
elementary propositions at most by nondilemmatic operations. Let A and
B be propositions not necessarily elementary. Let r, viz.,

~ II-Av B

be demonstrable in i!. Then one or the other of

(5)

(6)
is demonstrable in i!.
Proof. Let Il be a regular derivation of (5), and let it be exhibited in tree

form. Since the operation V does not occur on the left in r and the right side
is not elementary, r is not quasi prime. Then the bottom node of Il must be
obtained by an inference. This inference cannot be by 1-*, since the right
side is not elementary, nor can it be obtained by an operational rule on the
right other than V*. If this bottom inference is not by V*, it must there
fore be by a structural rule or by an operational rule on the left. In either
case, by the restrictions of the theorem, there will be a unique premise whose
consequent is congruent to that of (5). We pass up the tree to that premise.
We continue climbing the tree in this way until we reach a node r' which has
been introduced by V*. Then r' must be of the form

~'II-Av B

and the premise imnlediately above it must be one or the other of

~' II-B (7)

Now the rules along the branch from r' to r all satisfy (r6) on the right;
hence we can replace A V B by whichever of A or B is in the consequent of
the premise for r'. This will convert Il into a proof of one or the other of
(6), Q.E.D.
COROLLARY 5.1. The rule *P in Formulation IK of LAm cannot be inverted

as to its left premise.
Proof. (Cf. Sec. Dl, Example 1.) In LA we have

A:::> BII-A:::> B



230 THE THEORY OF IMPLICATION [CHAP. 5

If .P could be inverted, the left premise would be

II-A,A:::> B

and from this we should have by V*

II-Av.A:::> B

By Theorem D7 this could be derived in LA1. But this contradicts Theorem
5 since both of the possibilities (6) are invalid by truth-table valuation.

5. Restriction of *K*. We now. investigate to what extent the rules
.K* can be restricted without loss of deductive power.

Suppose we have a rule R which is regular (Sec. C6). If such a rule is
followed by an application of *K*, then by virtue of (r6) the inference would
still be valid if the new constituent is introduced as an additional parameter
before applying the rule R. Thus if all the rules satisfy (r1) to (r6), as in the
case with LAv LCv LCm , the applications of .K* can be pushed upward (on
the proof tree) until they are made immediately following the introduction
of the prime statements. In such a case let us say that .K* is applied only
initially. If one were to allow starting with quasi-prime statements (Sec.
C9), one would not need *K* any further. But in cases where there are
some rules, like the P. in LAm' which do not satisfy (r6), it is not possible to
push an application of .K. on the relevant side up the proof tree beyond such
a rule; therefore we have to admit the possibility of an application of K. or
.K, as the case may be, immediately following such a rule.

Next let us consider the nature of the principal constituent introduced by
.K.. If all the rules are regular, then we can use an argument similar to the
proof of Theorem C41 to show that we can restrict *K* to have the principal
constituent elementary. But in the general case there will be certain excep
tions. In those formulations, considered in Sec. 6, in which certain rules
are required to have a quasi-principal constituent, then a first instance of
that constituent may have to be introduced by *K.. Again, in LAm an
extra constituent of the form A :::> B cannot be introduced on the right by
P •.

Let us call an operational rule unrestricted if it is regular and if, whenever
a constituent of the form of the principal constituent can be introduced by
.K*, that constituent can also be introduced by first using *K* to bring in
the subalterns and then using the operational rule. Then we do not need
to postulate .K* for principal constituents for which an unrestricted opera
tional rule is present.

The upshot of this discussion is the following:
Theorem 6. The rules .K. can be restricted, witho'lltt loss of generality, to be

made initially or immediately2 after a rule which fails to satisfy (r6) on the
same side and to have a principal constituent which is elementary or for
which no unrestricted operational rule for introducing it is present.

CORO~LARY 6.1. I n the Formulation I of LAv LC1, LCm, *K* can be restricted
to be made initially, with principal constituents elementary.

1 That is, we can introduce the subalterns first and then use the operational rule in
question.

2 There may of course be several successive applications of .K* in such positions.
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COROLLARY 6.2. In Formulation I of LAm' .K can be restricted to be made
initially and with principal constituents elementary,. K * can be restricted to
be made initially or after rule P., with principal constituents which are
either elementary or of the form A :::> B.
Further exceptions must be made in case quasi-principal constituents are

required (see Corollary 7.3).
For some purposes one may ask under what circumstances an application

of *K* is moved down the tree, rather than up. We shall not go into this
question.

6. Reduction of .W*; Formulation III. The next problem is the
reduction or elimination of the rules of contraction. This is especially
important in the case of a decision procedure because these rules increase
the number of alternatives to be considered.

In Sec. D6 we noticed that in LCm , where all the operational rules are
directly invertible, the rules *W. are superfluous. This suggests that the
invertibility of the rules is the essential factor. We can accomplish this for
such a rule as *P, which is not invertible in LAm with respect to its left
premise, by requiring that there be a quasi-principal constituent in the left
premise, so that the rule becomes

X, A :::> B n- A, ~ X, B II- ~

X,A :::> _811-~
(8)

Here the left premise can be derived from the conclusion by K*. Since the
quasi-principal constituent can be introduced into the premise by .K, the rule
is not weaker than .P, and .P can be derived from it by .W (cf. Sec. C8).

These two forms of inversion have an important feature in common, viz.,
that the proofs of the premises are not essentially more complex than the
original proof of the conclusion. However, there are differences between
them, so that it seems best not to subsume them under a unified concept of
invertibility.

In the proof of the following theorem the degree of a demonstration is to
be understood in the sense of the remark preceding Corollary D1.6. Also an
application of one of *W* will be called a contraction, and its subalterns, the
contracted constituents.

Theorem 7. Let an L system satisfy the following conditions: (a) all rules
satisfy (r4)' except that those which are singular on the right do not have to
satisfy it on that side,. (b) for every nonstructural rule and every premise,
either the premise contains a quasi-principal constituent or the rule is directly
invertible with respect to that pre1nise. Then the rules *W. are redundant.
Proof. Suppose that there is a contr,action leading from r to r'. Sup-

pose further that there is a demonstration Il of degree n and not containing
any contraction, leading to r. We shall see that there is then a demonstra
tion Il', also of degree :::;: n and not containing any contraction, leading to
r'. This will be proved as a lemma by induction on n.

Let Il be exhibited in tree form. Since all prime statements are singular
on both sides, r is not a top node of Il. Hence there is a rule R such that
r is the conclusion of an instance R1 of R in Il. If R is singular on the right,
then the contracted constituents cannot be on the right. Hence such of
these constituents as are parametric appear in all premises of R1 by (r4)'.
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If both the contracted constituents are parametric, then they both appear
in all the premises. If the premises can be contracted, then by (r5) the rule
R will lead from the contracted premises to r'. If R is a nonstructural rule,
then the contraction can be accomplished without using •W. by the induc
tive hypothesis, and we have the Il' sought. Otherwise we simply cut the
final .K. off of Il and establish the existence of a 6,' for the Il so shortened.

This reduces our lemma to the case where one of the contracted constituents
is the principal constituent of RI . If R is structural, then it is one of
.K.. In this case the premise r I of RI is identical with r', and the part
of Il leading to r1 is the Il' sought. Since this exhausts the possibilities
if n = 0, the basic step of our induction is complete.

Suppose now that R is nonstructural, and that the contracted constituents
are the principal constituent MI of R1 and a like parametric constituent
M 2. Let the premises of RI be rl , r 2' ••• , r 'P. Let r~, ... , r; be obtained
by dropping (the constituent congruent to) M 2 from r i. The inference
from r~, ... , r; to r' is, by (r5), an instance of R. Hence if we show that
there are contraction-free demonstrations Il~, ... , Il~, each of degree ~

n - 1, for r~, ... , r;, respectively, we shall have the Il' sought.
Let r i have a quasi-principal constituent. Then this constituent and

M 2 can be contracted to give rio Since r i has a demonstration in Il which
contains no contraction and is of degree ~ n - 1, the existence of Il; follows
by the inductive hypothesis.

Let R be directly invertible with respect to its jth premise. In a notation
similar to that of Sec. 1, let r; be

~,U;, M 2 (9)

This can be the conclusion of an instance R 2 of R with M 2 as principal con
stituent. By Corollary DI.3 we can invert with respect to the jth premise
of R, obtaining

~, U;, U; (10)

from which r; follows by a series of contractions. Now (9) has a proof in
Il of degree ~ n - 1 and not containing any contractions; hence, by Corol
lary D1.6, (10) has a proof as required by the inductive hypothesis. By
successive applications of that hypothesis we have the required Ilj.

This completes the proof of the lemma. But that lemma shows that the
rules •W. are eliminable rules-one can eliminate them from any demon
stration by starting at the top and working downward, Q.E.D.

This suggests a new formulation for LAm and LCm which will be called
Formulation III. It differs from Formulation IK only in the following
respects: (a) the rules .W. are omitted; (b) in LAm' .P is taken as (8), but
in LCm, as in Formulation IK; (c) r., if admitted, ·has a quasi-principal con
stituent in every premise.
COROLLARY 7.1. In Formulation III of LAm and LCm, the rules .W. are

epitheorems. For these systems Formulation III is equivalent to Formula
tion I.
Proof. The rules of Formulation I are epitheorenls of Formulation III.

This was shown for •W. in the theorem; for the other rules this follows by
an argument similar to that of Sec. C8 [for .P see the text after (8) of this
article]. The converse argument follows along the lines of Sec. 08.
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COROLLARY 7.2. Peirce's law, viz.,

A => B.=> A.=> A
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is not assertible in LA.
Proof. The argument of Example 2 of Sec. C5 is quite rigorous in Formu

lation III.
COROLLARY 7.3. In those cases of Formulation III in which there are rules

with a quaBi-principal constituent on the left, we must allow applications of
*K in which the principal constituent has the form of such a quasi-principal
constituent,. we should need similar cases on the right if we should adjoin rules
with a quasi-principal constituent on that side.

The foregoing theorem gives circumstances under which the rules *W *
are redundant. This helps with finding a decision process in Sec. 7. But
they do not exclude the possibility of repeated constituents. The following
example, using the Ketonen form of *A, shows this:

A,A II-A *A
A A A II- A p*
II-AAA .=>.A

We shall now seek a formulation such that repeated occurrences of the same
constituent do not need to occur. This is rather a technical question.

The new formulation will be called Formulation IV. It will consist of
Formulation III plus some additional rules. Demonstrations in it will be
called IV-demonstrations, whereas those in Formulation III will be called
III-demonstrations. Then our thesis is the following. Let r' be obtained
from f by contracting until there are no repetitions. Let there be a 111
demonstration of degree n of f. Then we seek a IV-demonstration of degree
~ n of r'. This will be proved possible by induction on n.

The process of eliminating contractions used in the proof of Theorem 7
did not increase the degree. By that process there will be a III-demonstra
tion, call it d, of f'. We may therefore suppose that f' is the same as f.

If there are structural rules at the end of d, let r 1 be such that r is ob
tained from f 1 in d by applications of *K*, whereas r 1 is not obtained in d
by structural rules (the only structural rules are *K*). Then r 1 contains no
repetitions and has a III-demonstration of degree n. Further, if we have
a IV-demonstration of r 1, these same applications of *K* will give a IV
demonstration of f. We can therefore suppose that r is the same as r 1,

that is, that it does not end with applications of structural rules.
If n = 0, r must now be prime. Our thesis is trivially satisfied, and the

basic step of the induction is complete.
We now suppose that d ends with a nonstructural rule R whose premises,

let us say, are r 1, ••. , r p. These have III-demonstrations of degree ~ n - 1.
By the inductive hypothesis there are IV-demonstrations of r~, ... , r~.

We need rules to validate the transition from fi, ... , r; to f. To get them
we take a look at the contractions which may take place in r l' ... , r p.

There are three kinds conceivable: (a) between two parameters, (b) between
two subalterns, and (c) between a parameter and a subaltern.

Contractions between two parameters are impossible, since there would
then be repetitions in f.
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Contractions between two subalterns can indeed arise, as the above example
shows. We need additional rules to take care of this eventuality. It can
occur only when there are two subalterns on the same side in the same prem
ise, viz., in .A and V•.

Contractions between a subaltern and a parameter can also occur. We
therefore need rules which allow the same constituent to act as both param
eter and subaltern. However, these rules are trivial. If the rule has a
quasi-principal constituent, it may happen that one of the premises is iden
tical with the conclusion. In all other cases, if we have unrestricted *K*,
we can drop the parameter and restore it after the inference by *K•. t Thus
rules of this character are needed only when *K. is restricted.

In view of this discussion Formulation I V is defined as follows. The ele
mentary statements are restricted to have no repeated constituents in any
prosequence (so that a prosequence is simply a class of propositions). As
additional rules we have

~,A Ir ~
~,A A A II- ~

~ II-A,3

~ II- A V A, 3

Theorem 8. Let r be an elementary statement of Formulation III, and let
r' be obtained by contracting it until there are no repetitions. Then a neces
sary and sufficient condition that r be a theorem of Formulation III is that
r' be a theorem of Formulation IV.
Proof. The preliminary discussion shows the necessity. The sufficiency

follows, since the missing constituents can be reinstated by *K*.
7. Decidability. The composition property, in combination with the fact

that the operational rules (in certain formulations) are such that the rule
and the premises are uniquely determined once the conclusion and the
principal constituent are given, suggests that after trial of a finite number of
alternatives we ought to be able to ascertain whether a proposed elementary
statement of such a formulation is demonstrable or not. Since there is
only a finite number of choices for the principal constituent, it should be
possible to discover a derivation of a given elementary statement, or to
prove that none exists, by starting with the desired conclusion and using the
rules backward, taking into account all possible alternatives. The examples
of Sec. C5 are illustrations of decisions as to demonstrability which are
reached by just such a process. The results of Secs. 5 and 6 considerably
decrease the number of alternatives.

That such a process must eventually lead to a decision may be seen as
follows. Let r be the elementary statement to be tested, and let n be the
number of distinct components in f. Suppose we use Formulation IV,
where prosequences consist of unlike constituents. Then the number of
possible prosequences is 2n , and the number of distinct elenlentary state
ments which satisfy the condition of Theorem 8 is 22n in the multiple cases
and n · 2n in the singular cases. Let this number be m. If f is demonstrable,

t The following is an example:
X,A II-B

X,A II-A::::> B

Here one can perform an ordinary P. followed by a .K.
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the demonstration can be exhibited as a finite sequence of such statements,
and hence as an initial segment of one of the mt permutations of them.
Given any such permutation, it is a definite question whether an initial
segment of it constitutes a demonstration of r.

This argument applies when the system has the composition property in
the full sense. Further, we need the fact that .W. are redundant. Hence
we have the following:

Theorem 9. If an L system has the composition property and satisfies the
conditions a and b of Theorem 7, then it is decidable.
Since the hypotheses are satisfied for LAm(.D) and LCm(.D), we have the

following:

COROLLARY 9.1. The systems LAm(.D) and LCm(.D) are decidable.
The method used in the proof of Theorem 9 does not give a practical deci

sion process. Thus for Example 1 of Sec. C5, where n = 5, there are 160
possible statements. But at least it shows that a decision is possible, and
any systematic search must eventually reach it.

8. Proof tableaux. Although a theoretical solution of the decision prob
lem was presented in Sec. 7, yet the procedures for carrying out the decision
are often tedious. This is true for two principal reasons: on the one hand,
there are a large number of alternatives to be investigated; and on the other
hand, since the changes from one st~p to another involve only a small num
ber of constituents (the subalterns and the principal constituent), the same
expressions have to be written down repeatedly. There is need of a method
for making the decision which will eliminate some of the excess labor. We
shall study here such a method, which is a modification of one due to E. W.
Beth.

There are two aspects to the problem as stated, viz., the description of the
procedure and the notational devices for recording it. These will be treated
separately.

It will be convenient to describe the notation first. The basic idea is as
follows. Each step in a proof cancels certain constituents (the subalterns)
and inserts the principal constituent. If the rules are reversed, as is natural
when we are seeking a decision for a given statement, the principal constituent
is dropped and the subalterns are added; where there is a quasi-principal
constituent, the changes consist solely of additions. Accordingly, we ar
range the analysis in the form of a tableau, consisting of two columns, in
which we make entries as follows. We write the antecedent of the state
ment to be tested on the first line of the left column; the consequent of that
same statement in the first line of the right column. Supposing, for the
moment, that we are dealing with cases "There there is only one premise and
that one is uniquely determined, we write the subaltern(s) in the appropriate
column(s) of a new line; we mayor may not cancel the principal constituent,
depending on which formulation we are concerned with. It is then under
stood that uncanceled constituents on the line above are included among the
constituents of the statement represented on the line being written. The
process continues until we reach a line with a common constituent on both
sides, or the tableau reaches a point where no new constituents can be added.
In the former case we say the tableau closes,. in the latter, that it fails to
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close. If a tableau closes, the statement which has been reached is quasi
prime (Sec. C9), and the tableau read backward furnishes an abbreviated
proof of the statement on its first line; if none of the possible ways of develop
ing the tableau leads to a closed tableau, then (assuming invertible rules)
such a proof is impossible. For example, the proof of

II- A =>. B =>. C V A

is given by the tableau!
A =:J.,B =:J.OVA

A B =:J.OVA

B OVA

O,A

Here the fourth line represents a prime statement, and the tableau closes.
The basic principle must be modified in case we take into account rules

with multiple premises or a choice of rules with the same principal constituent.
In such a case the tableau will split into two or more subtableaux. The
splitting may be conjunctive, in the sense that closure of the whole tableau is
equivalent to closure of all the subtableaux, or it may be alternative, in the
sense that closure of the whole tableau is equivalent to closure of at least
one subtableau. The conjunctive case occurs when there is a single rule with
multiple premises; the alternative case, when two or more rules are appli
cable. The splitting of a tableau will be indicated here by choosing one of
the subtableaux, usually that corresponding to the left premise, to be written
as a continuation of the main tableau, whereas the others are carried out as
independent side tableaux. The presence of such a side tableau is indicated
by the appearance, at the end of the relevant line in the main tableau, of the
appropriate one of the signs '&', 'or', followed by the first line of the side
tableau. In case we are dealing with a system which is not decidable (as
will be the case later), it would be necessary to operate the main and all side
tableaux simultaneously, so as to discover a proof or counterproof as quickly
as possible; but when the situation is decidable, as we know it is here from
Sec. 7, we may continue with the main tableau until we are through with it,
and then pick up the side tableaux later. This enables us to write the whole
tableau in a single pair of columns (aside from the incidental indications).
The repetition of the constituents at the top of a side tableau, perhaps in
abbreviated form, avoids a difficulty which arises when cancellations are
allowed, viz., that when a constituent in the main tableau above the split is
canceled in one of the subtableaux, these cancellations may not occur at the
same time in the other subtableaux.

In the system LC one can interpret a tableau as an attempt to construct
a counterexample for the statement on the first line. If that statement is
false (by 0-1 tables), then all the propositions in the right column must
have the value 0, those in the left the value 1. The rules are such that this
holds throughout the tableau. If the tableau closes, then the same con
stituent must have both values; since this is impossible, the statement on

1 In each line the consequent of the preceding line is canceled. A technique for indicat
ing this will be introduced shortly.
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the first line must be valid by 0-1 tables. l Because of this interpretation,
Beth speaks of 'semantic tableaux'. For the absolute system Beth found
an interpretation by means of treelike models. But although this inter
pretation is both ingenious and interesting, it seems artificial from the
semantic point of view of Secs. A3 and C1. For this reason the tableaux are
called here simply 'proof tableaux'.

Before giving examples of tableaux it will be necessary to explain the
conventions in regard to them. In accordance with Theorem 8, we avoid
repeated occurrences of the same proposition in the same prosequence. Like
wise, when a rule would merely transform a line above into an identical line
below, the rule is regarded as not applicable. A horizontal line drawn
across a subtableau indicates that we are through with that subtableau, and
nothing above the line is to be regarded as part of the subtableau which
follows. The horizontal line is marked with 'T', 'F', '"",', or cd' to indicate
the disposition of the subtableau above. The letter 'T' indicates closure of
the subtableau; 'F' or '"",' indicates failure to close; 'd' indicates that the
subtableau has no further interest because the question of derivability has
already been settled. The letter 'F' indicates failure to close because the
final statement cannot be reduced further, or is false by 0-1 tables or
previously established results, etc. The sign '"",' is used when a statement
has already occurred farther up; such a recurrence does not necessarily mean
failure to close, because the rules of the algorithm may be such that a new
rule is applicable at that point, in which case the analysis proceeds with that
rule; but where a statement recurs and no rule not previously applied to that
statement is applicable, further prolongation of the reduction can lead to no
new statements, and so the subtableau fails to close; this is the situation
which is indicated by '"",'. A horizontal dashed line drawn across one side
of a tableau indicates cancellation of everything on that side above it.

To get all this information down in handy form it is convenient to use an
arrangement with six columns. The steps are numbered in the first column.
The second column gives the justification for the step. The third and fourth
columns are the two columns of the main tableau as above described. The
fifth column indicates the beginning of a side tableau. The sixth column
indicates the disposition of the side tableau; usually this is simply the line
of the main tableau where that side tableau is taken up.

In the second column the following abbreviations are used. A notation
such as 'L6.I' means that the principal constituent is the first constituent on
the left side of line 6; likewise 'R2' indicates it is the constituent on the right
of line 2, etc.; in cases like these, the principal constituent determines the
rule. An'&' or 'or' followed by a numeral indicates the beginning of the
subtableau whose existence was signalized at the line cited. The notation
'(PK).' will be explained in the next paragraph. In some complex cases
(not illustrated here) I have found it expedient to write in this second column
an indication, using' =' and a line number, that the statement in question
has previously occurred.

By virtue of Theorem 6 we need to consider only applications of .K which
are made initially and those of K. which are nlade initially or after an

1 Cf. Theorem D9. The tableau method is indeed a very efficient method of carrying
out the test by truth tables.
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instance of P.. The initial applications of .K. can be eliminated if we allow
starting with quasi-prime statements. Those after P. can be avoided if we
replace P. by the complex rule

~,A IrB
~ Ir A :::> B,3

in which A :::> B will be called the principal constituent. Now if, in the
tableau, we come across a statement of the form of the conclusion of (PK)*,
we cannot infer that it was obtained by (PK). by the particular premise
indicated. In this case it is necessary to split the tableau alternatively,
thus:

~,A Ir B or

where the right alternative is to make the rule invertible (in the side tableau
we can explore any other possibilities). The shifting of the 'A :::> B' will
remind us that this particular possibility has been considered. This even
tuality is indicated by writing '(PK).' in the second column.

We now proceed to two examples. Example 1, which closes, shows that
PS is assertible in LA. Example 2, which fails to close, shows that Peirce's
law is not assertible in LA. t

Example 1
A=>.B=>O:=>:A=>B.=>.A=>O

A °
A

A=> B,A,B => 0 °
A

B => 0, B,A 0

B

2 Rl

3 R2

4 R3

5 L2

6 &5

7 L6.1

8 &7

A =>. B => 0 A => B. =>. A => °
A=> B A=>O

&
-------I-------------T

&
-------I-------------T

&

------..........------------T

L3, A, B => °Iro 6

A, B => 0, B Ir 0 8

B,A,olro
-----T

Example 2

1

2 Ll

A=> B.=>A A

A=>B &

A => B or

AlrA T

LllrA,A=> B

A B

A=>B

4 R3

5 Ll &

------...L-------------d
A IrB
---F

So much for the tableaux themselves. vVe now turn to the question of
constructing a systematic procedure or algorithm-in the general sense of
an effective process, not necessarily the specific sense of Sec. 2E-for apply
ing the rules efficiently. Except for certain details, such an algorithm is

t Cf. Example 2 of Sec. C5 and Corollary 7.2.
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given for the classical system in the proof of Theorem D9; the present dis
cussion will therefore have primary reference to the absolute system.

Let us first discuss some general principles. It will be an advantage to
use rules which are reversible, because we then know that we never have to
go back to the beginning, and if the tableau closes we have a demonstration.
Again it is advisable to begin with the rules which do not require splitting
of the tableau, because that avoids a certain amount of repetition. Another
principle is that we should apply first rules which may be expected to cut
down the total number of distinct components and postpone till last those
which leave this unchanged. There is some empirical evidence that it is,
on the whole, better to apply rules on the right first. The algorithm given
here is constructed according to these principles, one stated earlier having
precedence over one stated later.

Again it is necessary to have some indication as to which of several possible
candidates is the principal constituent. Beth does this by the device of
cycling used above in the discussion of (PK*). In his algorithm the principal
constituent is always the leading (i.e., leftmost) constituent of its prosequence;
after execution of the rule the subalterns are placed last (i.e., on the extreme
right). Although this does keep track of what constituent is principal,
I have found it a nuisance in practice; besides, it requires supplementary
treatment for certain cases where the leading constituent is elementary or is
to be passed over. It is here used only in the cases (like the above PK*)
where the principal constituent does not disappear. In other cases the
following device is used. The letters '~', '~' will denote arbitrary pro
sequences; '3', prosequences which are void in LA, arbitrary in Le. One
of these letters with a subscript 1 will denote a prosequence containing no
constituent of the same type as the principal constituent (which immediately
follows it); one with subscript 2, or one without a subscript, is not so restricted.
Then the principal constituent is simply the first (leftmost) constituent
which is eligible.

In accordance with these principles, an algorithm will be proposed below.
In this proposal the following conventions are supposed to be understood.
The rules are stated as rules for entry in a tableau and are thus the inverses
of rules intended for proof construction. For this reason the terms 'prem
ise' and 'conclusion' may be misleading; the upper line of a rule will there
fore be called its datum, the lower line its result. l The terms 'subaltern' and
'principal constituent' shall then be understood, in the same sense as pre
viously, as if the rule were being used in the order of deduction, Le., from
the result to the datum. A rule is applicable just when (1) the datum has
the form indicated in the rule and (2) the same rule has not previously been
applied to the same datum. 2 The rules are given in order; as usual in the
case of an algorithm, the rule actually to be applied is the first one, in the
order given, which is applicable.

1 When the result in this sense is compound, we shall sometimes apply the word 'result'
to the elementary statements of which it is composed. In such a case there will be more
than one result.

2 We should perhaps add here "with the same principal constituent." However, the
formulation in the text is such that the datum and the rule together determine the
principal constituent uniquely.
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Subject to these conventions, the rules for LAm are as follows.1

I

II

III

IV

V

VI

VII

x n· 3t, A ::> B, 31
~, A Ir 31' B, 32
~ Ir IDl' A V B, ID2
~ Ir IDl' A, B, ID2
~,A A B, ~2 Ir ID
~, A, B, ~2 Ir ID

X Ir IDl' A A B, ID2
~ Ir IDl' A, ID2 & ~ Ir IDl' B, ID2

~1' A V B, ~2 Ir ID
~l' A, ~2 Ir ID & ~, B, ~2 Ir ID

X Ir A, ID
~ Ir A or ~ Ir ID, A

~,A ::> B, ~2 Ir ID

In the algorithm for LCm, rule VI is deleted and the quasi-principal con
stituent is left out of VII.
Theorem 10. A necessary and sufficient condition that

(11)

be derivable in LAm(.O) or LCm(.O) is that the corresponding algorithm lead
to a closed tableau.
Proof of Sufficiency. We need to show only that inverses of the algo

rithmic rules, Le., the inferences from result to datum, are valid as inferences
in the pertinent L system. The inverses of the rules I, II, III, IV, V, VII
are rules of LAm; so are those for I and VII in LCm. It remains only to
consider the rule VI in LAm. The inference from the left result to the datum
can be made by K., while that from the right result is a specialization of C•.

Proof of Necessity. For LCm this follows by Theorem D9. We therefore
confine attention to LAm. We suppose we have a formulation of type IV,
with elementary prime statements, and .K. applied only initially or as part
of a (PK).. (For some details see Theorem 7BII.)

By hypothesis there exists a demonstration Il of (11). Let n be the num
ber of its operational steps. If n = 0, then (11) is quasi prime and the
tableau closes at the very beginning. It therefore suffices to prove the
necessity for a given value of n on the assumption that it holds for any
smaller value of n.

Suppose that (11) contains a constituent of one of the first five types. By
Corollary DI.6 (adapted to Formulations III and IV) there will be demonstra
tions of the results2 of the first step in the tableau, and these demonstrations

1 From correspondence with S. Kripke in the summer of 1958, I understand that he had
found independently a similar, but apparently not quite identical, algorithm.

2 There may, of course, be only one result.
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will have fewer than n operational steps.1 By the inductive hypothesis their
subtableaux all close. Hence the tableau for (11) closes in that case.

In any other case the only rules which can terminate Il are K. and .P,
and the algorithm passes through to VI. Let ID be 01, O2, ••• ,Om' Then
VI is equivalent to a rule giving as result the alternation

~ U- 0 1 or ~ u- O2 or . · . or ~ II- Om or ~ II- ID
The tableau will close if that for

(12)

(13)

closes for some value of k; otherwise we go through a complete cycle and
pass on to VII.

Suppose the last step in Il is by K.. This cannot be an initial K. since
n > 0; it must therefore be part of an inference by (PK).. Let Ok == A ::::> B
be the principal constituent of that (PK).. Then application of I to (13)
will give the premise of that (PK).. The part of Il over that premise will
have n - 1 operational inferences. Hence the subtableau for that premise
closes by our inductive hypothesis. The tableau for (11) therefore closes
in that case.

If the last step in Il is by .P, then we choose the alternative in VI which
carries us on into VII and examine its subtableaux. (We may, of course,
be able to close the tableau in VI, but that is irrelevant.) Let

(14)

be all the constituents of the type of the principal constituent in VII in the
order in which they occur in~. Suppose that the premises of the last infer
ence in Il are

(15)

where ~', A k ::::> Bk is a permutation of~. These have demonstrations (in a
secondary Il) with fewer than n operational steps in the two together. We
show by induction on k that the tableau will close. In fact, if k = 1, the
premises (15) are precisely the result of the next step; hence the tableau
closes. For k > 1, suppose that ~ is ~I' Al ::::> Bl' U, A k ::::> B k , ~2' Then
the result of the next algorithmic step is the conjunction of

~I' U, A k ::::> Bk , X2, Al ::::> B1 II- ID, Al

~1' U, A k ::::> B k , ~2' B I II- ID

Now (16) can be inferred by .P from the conjunction of

~, U, A k ::::> Bk'~' Al ::::> B I II- ID, AI' A k

~, U, B k , ~2' Al ::::> B1 II- ~, Al

(16)

(17)

(18)

(19)

1 In that phase of Corollary D1.6 where M drops out because it is introduced solely
by .K., we employ a secondary induction. Let M be of order m ~ 0 if it is formed by
m uses of A, V from obs which are elementary or of the form A ::> B. The case of order
o cannot occur here because the omission of 1.1 would leave a theorem with void con
sequent. Thus the results of the first step of the algorithm will have the same n, but the
total order of all the constituents introduced by .K. will be less.
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and similarly (1 7) can be inferred from

~l' U, A k :::> B k , ~2' B1 u- ~, A k

~l' U, B k , ~2' B1 u- ~

(20)

(21)

Now (18) can be derived from the left premise of (15), and (19) from the
right premise of (15), by the unrestricted K.; hence these have demonstra
tions with the same number of operational steps as in the demonstration of
that premise. Similarly, (20) and (21) can be derived from the premises of
(15) by the unrestricted K. and Corollary D1.5, and the number of opera
tional inferences will not be greater by Corollary D1.6. Thus (16) and (17)
will have demonstrations ,vith not more than n operational steps; they also
have a smaller value of k. By the inductive hypothesis on k their subtableaux
will close, and hence that for (11) will. l

This completes the proof of Theorem 10.

COROLLARY 10.1. In LAm and LCm the uses of .c. can be confined to cyclic
permutations.
Proof. As already mentioned in the introductory discussion, the rules

II to V can be given an alternative form using a cycling rule of the form,

~ n-A, 3
~1~3,A

to be used whenever A is not of the appropriate form. One can then require
that the principal constituent can always be the first constituent in the pro
sequences.

Remark. It is not claimed that the algorithm gives the shortest possible
derivations. I have no reason, except purely heuristic ones, for preferring
it to any of various conceivable modifications. It has the advantage that
similar steps can be telescoped. Thus by combining several applications of
rule I we can make inferences of the form

~ I~ Al :::>. A 2 :::>••••• :::>. Am :::> B

~, AI' ... , Am I~ B

Similarly, one can combine several steps of rule II to clear the right pro
sequence of all constituents of the form A V B, etc. In rule VI, one could
theoretically restrict attention to the case "A is of the form B :::> C," but
this seems to complicate matters. When one comes to rule VII, the mechan
ical operation of the algorithm can be very t·edious. If one is alert, one can
shorten the process considerably by arranging the constituents (14) in a
suitable order; thus, if we have on the left, along \vith (14), an instance of
A k , it is an advantage to begin with A k :::> B k , for then the left result is quasi
prime and the right result is simpler. But if one wants a purely algorithmic
procedure-e.g., if one wishes to have a machine to do the job-the algo
rithm is, so far as I know, as effective as any other.

1 In the proof of Theorem 7B 11 there is an alternative method of treating this pha8e of
the algorithm.
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where

1. Show directly that the axiomatic propositions of HA are assertible in LA.
2. Prove that the following are assertible in LA:

A => B.=>. A => C :=>: A =>. B => G
A => B.=> A :=>: A => B.=> B
A => B.A. C => D :=>: A A C.=>. BAD

What about the converses (i.e., those obtained by interchanging the two sides of the
main ply operation)~

3. Show that the following are assertible in LC(£» but not in LA(£»:

A => B.=> B :=>: B=> A.=> A

A => B.=>: A => G .=> B.=> B
4. Show that

A, A=> B U-B

A A B.=> G U- A =>. B=> C
A =>. B => C U- A A B.=>. G

are demonstrable in LA(£» using Formulation I without .W, but not

A A.A => B U-B

A => B.A. B => C U- A => G
A v. A => B:=> B U- B (Kripke)

U-P=> B.=> B (Wajsberg)
P==:A=>B.=>A.=>A

5. Show that, without change in the elementary theorems of an L system, the
rule *P could be stated in the form: if 3 is a part of ~, then

~1~A,3 ~,BI~~

~, A => B Jr ~

6. Formulate systems dual to L systems in which implication is replaced by sub
traction, and develop some of their properties. (Feys [SLP].)

7. Show that if prosequences are restricted to be singular and nonvoid on both
sides, we have a formulation of a lattice. (Lorenzen [ALU].)

*8. What sort of systeln should we get from Formulation I ofLA (presumably LAm)
if •W were denied, or if the quasi-principal constituent were left out of *P in Formu
lations III and IV? What would be the associated Hand E forms? (Cf. Exer
cises 3, 4, and 7.)
*9. What sort of system should we get if the rules were restricted to be singular

on the left but not on the right?
*10. What sort of multiple system should we get if we replaced P* by a rule

~,A I~ B 1, B 2 , ••• , B n

~ I~ A => B 1, A => B 2, ••• , A => B n

How would it be related to LA and LC?
*11. What sort of L system would one get if one interpreted X I~ B as meaning that

there is a demonstration of B using as uncanceled and unremovable premises
(a) exactly those propositions which appear in~; (b) some of those in ~with not greater
than the multiplicity with which they occur there; (c) both of these restrictionsatonce1
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12. Show that a necessary and sufficient condition that

~, Al :::> B I , A 2 :::> B 2 , ••• , An :::> Bn Ii- ~

be true in HA is that all the 2n statements be true which are formed from

by dropping out any subset (including the null set) of the Ai on the right and chang
ing the corresponding Ai :::> B i to B i on the left.

13. Under what conditions are inferences directly invertible in LA11 (Cf. Kleene
[PIG].)

14. Show that the invertibility (but not the direct invertibility) of all operational
rules in LCmand in Formulation III (Sec. E6) of LAm can be derived from the elim
ination theorem.

15. Prove in detail that PW cannot be derived in LA without having an instance
of .P above one of P•.

16. Construct demonstrations in HC of the theorems that the propositions of Exer
cise 2 are assertible.

17. Derive the elimination theorem for LAm' using the arguments of Sec. D5, from
that theorem for LAl . What is the situation with respect to LCI and LCm 1

18. If 3 is DI , D2, ••• , Dn as in Sec. D5, show that in LC

~ u- mA, 3 ~~, D1 :::> A, D2 :::> A, ... , Dn :::> A U- A

(Cf. [TFD, Theorems 1116, 1117].)
19. Show that, in LA(.Q), LC(.Q), if a component has a positive or negative occur

rence (Sec. D3) in any elementary.statement of a demonstration, then it has an
occurrence of the same sign in the conclusion.

20. Let E1, .•• ,En be elementary, and let none of them occur as component in
~ or~. In LA(.Q) or LC(.Q) show that if

~,Ol ' ... ,Om U- ID
where

then

E I , ... , En H- 01 A O2 • • • A Om

~II-~

(Use Exercise 19. The theorem generalizes [SLD], Theorem 1.)
*21. Is it true that in LC1 all applications of Px can be made last? In particular,

if Q is assertible in LCI , is there a C such that in LA

Q:::> °II-Q

22. Complete the proof of Theorem E6 by adding details of reduction to special
forms of principal constituents.

23. The algorithm of Beth [SCI] has the following peculiarities: (a) the quasi
principal constituent is left out of .P; (b) the rules II to V and VII are stated with
the principal constituent on the extreme left in the datum and the subalterns at the
extreme right in the results; (c) one must begin with VI and then apply a rule on the
left, then VI, then a rule on the right, then VI again, etc., in cyclic order. Show
that the algorithm fails to close in the following cases:

A,A:::> BII-B

B :::> 0, A :::> B II- A :::> °
although these are demonstrable in LA.
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1. Historical comment. A reader who has some familiarity with cur
rent logical literature will notice at once two peculiarities of the present
approach. The first of these is the complete separation of the finite positive
operations, treated in this chapter, from negation and quantification, treated
in Chaps. 6 and 7. The second is the emphasis on the absolute system, which
plays here the leading role, whereas the classical system is carried along by
an analogy. These peculiarities arose from the interpretation from which
we started out. This interpretation was described in Sec. A (especially Secs.
A2 and A3), which, in turn, is based on Sec. 3A2 and amplified in Sec. Cl.

The following are the essential facts in the history of the present treatment.
In the study of combinatory logic (cf. Sec. 3D5) it was necessary to use
epitheoretical methods of some complexity and at the same time to adhere
strictly to the constructive point of view. Accordingly, the question natu
rally came up as to how to define the logical connectives and to formulate
propositional logic so as to be applicable to statements which are generated
by inductive definitions. When Gentzen's thesis [ULS] became available,
it suggested a method of attacking this problem. From this the semantical
point of view of Secs. A3 and Cl evolved. A preliminary manuscript (never
published) was written in 1937 (for an abstract see [PFD]); the manuscript
of [TFD] was written in 1948 after a long gap. The second edition of [TFD]
contains a preface, written in September, 1955, giving an account of the
history up to that time. A discussion of the principles of the interpretation,
written primarily for philosophers, appears in [IFI]. The treatment in
Secs. A2, A3, and Cl is a revision of [IFI].

The absolute propositional algebra, arrived at in the way just described,
coincides exactly with the propositional algebra arrived at independently
by other authors starting from similar but yet significantly different inter
pretations. Two such systems which are particularly interesting are Hey
ting's formulation of the intuitionistic propositional algebra (see Sec. 4S2,
under Brouwer algebra, and Exercise B7, also below in the discussion of H
systems) and Lorenzen's "Konsequenzlogik" (see below). Both of these
systems emphasize a constructive point of view, and they both start (this
is explicit with Lorenzen and plausible with Heyting) with an interpretation
similar to that with which we began here. However much they may differ
from one another and from the present treatment in the details of their
interpretations, they agree both in the kind of logical algebra with which
they emerge and in the separation of negation. All three treatments
therefore exemplify an approach to logical calculus characterized by inter
pretations leading to these two features; it is appropriate to call this the
constructive approach.

In contrast to the constructive approach, the more usual procedure, which
I shall call the traditional approach, has the following features. The prin
cipal interpretation is that of validity as tautologies in evaluations by 0-1
tables. This leads to primary emphasis on the classical systems; if non
classical systems are nlentioned at all, they are usually considered as artificial
constructs whose interpretation is more or less mysterious. Furthermore,
there is no semantical reason for deferring the treatment of negation, and
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since it, being unary, is regarded as simpler than the binary operations, it is
often used as a basis for eliminating some of the latter as primitive opera
tions (see Chap. 6).

Now there is a tendency, even in theories motivated by the traditional
approach, to evolve in the direction of a rapprochement with the construc
tive approach. In particular, the separation of the operations may be
motivated, as in mathematics generally it often is, by considerations of
formal structure. Thus the operations were separated in Chap. 4. This
separation goes back in principle to Schroder, who developed the properties
of a lattice first and then superposed on them the properties of negation.
This separation did not occur in Boole and was only imperfect in Peirce (see
the remark in Sec. 4S1). Now it seems likely that Schroder had no non
classical interpretation (the classical one then being item lOin Sec. 4A2) in
mind; on the contrary, he sought for and found such an interpretation
afterward. Many other such interpretations were found later; e.g., Dede
kind found the interpretation 50 of Sec. 4A2 and treated it at some length
in his [ZZG]. The separation of positive operations from negation is com
monplace in modern lattice theory. In assertional propositional algebra
the situation is more complex. In the system of Frege there was a partial
separation; it is now known that Frege's schemes for pure implication suffice
for the absolute properties of implication, but not for the classical non
absolute ones. The formulation of Whitehead and Russell [PMt] com
pletely ignored this separation. The separation of the classical properties
of various operations is a prominent motive in various Polish investigations
reported in ~ukasiewicz and Tarski [UAK] (these were mostly due to Tarski),
Wajsberg [MLB], etc., but these authors paid no attention to separation of
the absolute properties (although Wajsberg did in later papers). The treat
ment of Hilbert and Bernays [GI.JM], which forms the basis of most more
recent treatments, is thorough in the separation of the absolute properties,
but considers only incidentally that of the classical properties. This treat
ment is to be reckoned as traditional because the interpretations of the
absolute system, which Hilbert and Bernays call "positive Logik" (see
[GLM.II], supplement III), seem a bit forced and to be dictated primarily
by a search for an interpretation to fit the formal structure. That there are
certainly similarities in their supplement III to the present interpretation
is interesting as showing that one is approaching the same answer from both
directions. Their system is thus intermediate in character between the
classical and constructive approaches. To what extent it was influenced by
the prior existence of Heyting's system I do not know.

In the work of Gentzen the constructive and traditional approaches are
considered strictly in parallel. The treatment given here is based on his.
Indeed the systerns TA, LAl , and LCm of this chapter are obtained from
Gentzen's NJ, LJ, and LK, respectively, by dropping out everything con
nected with negation; the other inferential systems, TC, LAm' Lev are modi
fications introduced later.

From the foregoing it should be clear that the indebtedness of the present
treatment to Gentzen's [ULS] is very great. For references on the Gentzen
technique in general, see Sec. IS5 and [IAL]. For the present context it is
worthwhile to point out that Gentzen was apparently influenced by Hertz
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(see his [ASB] and other papers cited in Church [BSL]), and in his very first
paper, [EUA], he showed that a complex rule (called "Syll") of Hertz' could
be replaced by Gentzen's "Schnitt." This throws some light on the role of
"Schnitt" in the Gentzen system. There is no trace in Gentzen [ULS] of the
idea that the propositions represent the statements related to an underlying
system G, but the idea is germane to the work of Hertz. Thus the idea is
not completely foreign to Gentzen, and perhaps he did not consider it impor
tant because he foresaw, in some way, the result of Theorem E4.

There is also some indebtedness to Lorenzen, at least for a parallel and
independent development of related ideas. He starts with an idea of a
"calculus," which is essentially a syntactical system with elementary rules.
(On the relation of the two ideas, see [CFS].) He defines an implication,
symbolized by '--+', taken, like the present' 11-', as a functor with any number
of arguments on the left and one argument on the right; propositions formed
with this function are to be interpreted as rules concerning a calculus which
are valid just when they are admissible (see Sec. 3A2). He presents a number
of "principles" which are essentially epitheorems giving methods of establish
ing such admissibility; one of these, the inversion principle (Inversionsprinzip),
was mentioned in Sec. A3. His "Konsequenzlogik," which appeared in his
[KBM] and was incorporated in his book [EOL], secs. 6 and 7, aims to in
clude as assertions just those propositions which are admissible for every
calculus. I t can be shown that under a suitable translation the assertions
of ](onsequenzlogik become the same as those of LA. This seems to mean
(the situation is not quite clear) that it does not make any difference whether
one takes implication in the sense of deducibility or of admissibility so long
as the underlying calculus is completely unspecified. All this developnlent
is certainly completely independent of [TFD], and vice versa. Curiously,
Lorenzen shares in the German tendency to shy away from Gentzen; the
latter's [ULS] is not listed in the bibliography, and there is no reference to it
in the index; the rules of Konsequenzlogik are strongly reminiscent of the
very rules of Hertz which Gentzen simplified in his [EUA], and the proof of
a certain decidability theorem, which would follow immediately from Gent
zen's results, is deduced instead from Wajsberg [UAK]. The treatment of
Lorenzen [EOL] is, moreover, not free from error (e.g., see [EOL], top of p.
56). Hermes [IPO] shows that the statement of the inversion principle
needs correction. Naturally, the development of mathematics in the later
portions of Lorenzen [EOL] goes beyond the limits of this book.

So much for this chapter in general and the semantical discussion in Sec.
A. The following remarks relate to matters discussed in the separate sec
tions from Sec. Bon.

Of the systems considered in Sec. B, the oldest are the H systems. They
correspond to the LH systems which Gentzen exhibited in his [ULS], sec.
V2, as "einen dem Hilbertschen Formalismus angeglichenen Kalkul." Here
the 'L' in the names of these and similar systems is stricken out, and the term
'H system' is extended to include not only the particular systems which
Gentzen described, but any assertional system based on axiom schemes and
modus ponens. Thus the 'H' stands for 'Hilbert'. The designation is apt
in so far as Hilbert in his [NBM] and [GLl\I] considered formulations very
similar to those which Gentzen exhibited.
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On the history of these H systems see Church [IML2, sec. 291- To this I
shall add only the following remarks concerning details. The earliest such
system is that of Frege (PF in Church). For information about this system,
see also Hermes and Scholz [NVB]. From there one learns that the primi
tive operations were implication and negation; the axiom schemes (speaking
of it as if it were a modern system-actually the notion of axiom scheme had
not then been formulated) were PK, PS, and PC, of which PC was redundant,
as ~ukasiewicz first showed. Thus PK and PS, which form an adequate
pair of axiom schemes for absolute illlplication, appeared already in this
very first system. The system employed by Hilbert (loc. cit.) used PB, PC,
PK, and PW as axiom (schemes) for implication, whereas IIilbert and
Bernays [GLM] replaced PB and PC by PB'; with respect to other positive
operations, both of these systems used the same axioms as the present for
mulation of HA, except that Hilbert [GLM] used (9) of Sec. B instead of
AS (cf. Church [IML2, p. 160, note 267]). Gentzen's system LHJ was actually
not taken directly from Hilbert, but (so far as HA is concerned) from Glivenko
[PLB] (which Gentzen cites); in it PI, PB', PC, AS are all postulated, but
not PB or (9) of Sec. B. This system is formed from that of Glivenko [LBr] ,
which contains "principes connus de la logique," all of which, except the law of
excluded middle, are intuitionistically acceptable, by adding certain new
axioms, for some of which the intuitionistic acceptability was credited to
Heyting. The positive part of the formulation of Heyting [FRI1] also con
stitutes a formulation of HA (see Exercise B7); for a detailed proof of its
equivalence to that of Hilbert and Bernays [GLM] and some comments about
its history and significance, see Schroter [UHA] (this represents a study
made in 1937 at the suggestion of Scholz; it is curious, in view of the exist
ence of the Glivenko papers, that it had not been made earlier). The
present formulation of HA is the same as that in Wajsberg [UAK], which he
credited to the Munster school.

For an extended study of the system HA see Hilbert and Bernays [GLM.
II, supplement III] and Wajsberg [UAK]. Many properties, here ob
tained by the Gentzen formulations, are there obtained by direct considera
tion of the H formulation.

All the above systems concern HA only; they were obtained by dropping
out negation (and in some cases quantification) from systems in which the
positive postulates are all absolute. So far as HC is concerned, the first
studies concern the system with implication as the only operation. These
are due to Tarski, but the realization that by adjoining Pc to HA with im
plication only we get the corresponding part of HC seems to be due to Ber
nays (see Lukasiewicz and Tarski [UAK, sec. 4, especially Theorem 29]).
The theorem to the effect that PK, PB', and Pc form a sufficient set of
axiom schemes for HC is known as the "theorem of Tarski-Bernays." For
further information about HC see Church [IML 2, sec. 26], Wajsberg [MLB],
Schroter [VIE]. From a historical point of view, Peirce [ALg 2] is not with
out interest; that is the point of appearance of Peirce's law; for a discussion
of it see Prior [PAP].

The T systems of this book correspond to the "N systems" (for "natural
systems") of Gentzen. The change from 'N' to 'T' was made in [TFD] to
forestall possible confusion with 'N' standing for negation. The system TA
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is the positive part of Gentzen's NJ; the system TC was proposed in [TFD]
on the same motivation as that given here. Rules similar to the T rules of
Gentzen appear in J askowski [RSF]. There is also some similarity to
Tarski [FBM], where Pe and Pi were postulated; it is easy to show that
Tarski's postulates are satisfied if Fl(X) [in the English translation Cn(X)]
is the set of all B such that X HooTB.

Kneale [PLg] gives a multiple form of TC which bears much the same
relation to LCm that the present TC does to LCI .

The equivalence of the Hand T systems established in Sec. B, and of the
Land T systems in Sec. D4, was proved in Gentzen [ULS, sec. V]. He
showed directly that the postulates of his H system could be established in
the T system; those of the T system in the L system; and finally, those of
the L system in the H system. The latter reduction in particular was
rather involved. Some minor improvements in this proof of equivalence
were proposed in [NRG], from which the present treatment evolved through
[TFD].

The deduction theorem of Sec. B2 has a curious history. Apparently it
occurred independently to a number of different workers. It is included,
for example, in [PEl], Theorem 13. It is, of course, also implicitly con
tained in the equivalence proof cited in the preceding paragraph. The
name 'deduction theorem' appears to be due to Hilbert and Bernays [GLM.I],
where the theorem is stated and proved on pp. 155ff.; it is my understanding
that this was also an independent discovery. In all probability this is the
publication which made the theorem well known. The theorem appeared
earlier, however, in Herbrand [RTD, p. 61]; for an even earlier appearance
in a publication of Herbrand see Church [IML2, p. 164]. Herbrand appears
to be the first to publish a proof of the theorem. As already noted, Tarski
stated Pi as a postulate in his [FBMI ]. For his claim to priority in the dis
covery of the theorem see the note to the paper just cited, in Tarski and
Woodger [LSM, p. 32].

Formulation I of the systems LAI and LCmwas taken directly from Gent
zen [ULS], as already explained. The system Lei was proposed in [SLD],
p. 42, and again in [ETM], p. 263. The system LAm is related to the LJ' of
Maehara [DIL] (see below), much as LAl is to Gentzen's LJ; as presented
here, however, it is the development of an idea in [NRG], sec. 6.

The modifications of Ketonen are taken from his [UPK].
The inversion theorem of Sec. D1 is in principle due to Schiitte [SWK].

At least there is in that paper the fundamental suggestion that inversion
could be established in that way; the details are more easily worked out
directly than transferred from his point of view to the present one. Schmidt
[VAL] makes extensive use of this idea. Ketonen [UPK] showed the in
vertibility of his classical propositional rules, of which Formulation IK of
LCm constitutes the positive part, by using the elimination theorem, but the
Schiitte method gives more information. Kleene's [PIG] has also been
suggestive. The notions of ancestor and descendant in Sec. C7 are Kleene's
terms, but the same idea occurs in Schiitte (and also in Schmidt), where it
is ascribed to Gentzen [NFW]. The examples at the end of Sec. Dl are
taken from the counterexamples given by Kleene as illustrations of cases
where permutation is not possible in LAl -
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The elimination theorem is the principal theorem ("Hauptsatz") of Gent
zen [ULS]. He formulated his systems at first with the cut rule ("Schnitt")
as a primitive rule-which is natural in view of the way in which his [EUA]
indicates it originated (see above); he then showed that uses of this rule
could be eliminated from a demonstration. The theorem is therefore often
called the "cut-elimination theorem;" but from the present point of view, it
is the constituent A, rather than the cut~ which is eliminated. Gentzen's
original proof involved a double induction. The primary induction was, as
here, on the number of operations in A, the secondary induction on the
number of steps in demonstrating the premises. There were a large number
of special cases treated independently. The present proof was worked out
for [TFD], revised in [ETM], adapted for a different purpose in [CLg], sec.
9F4, and finally revised for this book. Anyone who will compare this proof
with Gentzen's will probably find that it is essentially only another variant
of the same thing. The extension to include LAm is new here. It was not
ready when [IAL] was written, and at first the theorem was proved in connec
tion with the theorem of Sec. D5. In Umezawa [IPL, p. 22, footnote 3] there
is a statement to the effect that Ohnishi proved ET for the system LJ' of
Maehara, which includes LAm.

The proof of the equivalence of singular and multiple systems is to be com
pared with that of Maehara [DIL] (Umezawa [IPL, p. 22, footnote 3] claims
independent discovery). Of course, for LC, the equivalence is, in principle,
already shown in [TFD].

The various theorems of Sec. E are proved here in ways which involve some
generalization over [TFD]. The composition property is of course the main
and most obvious characteristic of the Gentzen L rules. Gentzen used this
property to prove decidability; this proof is somewhat simpler here on
account of the restriction on the structural rules in Secs. E5 and E6.

Some interest attaches to the extension of the separation property to the
H systems. This theorem is also, in principle at least, contained in Gentzen's
proof of equivalence between the systems, but he was not interested in the
question and did not make it explicit. Apparently the first explicit state
ment and proof were in [NRG]. Wajsberg, in his [UAK], which appeared
when [NRG] was in press, stated the theorem and claimed a proof; I have
never examined this proof, but I understand from Bernays and from an
errata sheet (received January, 1957) to Church [IML 2] that it contains an
error.

The alternation property for the H system is due to Godel [IAK].
For references on proof tableaux see Sec. IS5. The topic was the subject

of some correspondence with Kripke, who verified the existence of errors in
Beth [SCI]. A correction, Dyson and Kreisel [ABS], has appeared, but it is
concerned mostly with the completeness question for the intuitionistic predi
cate calculus, which goes beyond the scope not only of this chapter, but of
this book.

2. Weakened implications. The absolute implication of the foregoing
theory is related to formal deducibility in that

~A :::> B (1)

expresses essentially that B is assertible in any extension (of the basic
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system G) in ,vhich A is assertible. It is characterized by the deduction theo
rem and the rule of nlodus ponens, and is the minimal implication which has
those two properties. It is an objective notion and has significance for for
mal deducibility regardless of one's philosophy. But it does not, and was
never intended to, satisfy the demands of those who wish to formalize an
implication such as we express by conditional sentences in ordinary language.
We shall consider here briefly some formalized implications which do better
in that respect. It will be convenient to use the term 'entailment' for rela
tions so expressed in ordinary language, and to call implications which for
malize them entailment implications. These entailment implications will be
weak implications in the sense that they are weaker than the absolute.

If (1) expresses an entailment, then most persons would agree that it holds
only when there is some sort of logical connectionl between A and B. From
this standpoint the statement

~A:::>. B:::> B (2)

which is derivable in HA for arbitrary A and B, is not acceptable because
there need not be any connection, logical or otherwise, between A and
B :::> B. Now of course the notion of logical connection is rather vague,
and its explication would seem-for the reasons discussed in Chap. I-to
require some sort of previous formalization. Yet, apart from this, it makes
sense to seek for a formalized implication which, in one way or another, is
reasonable from the standpoint of this requirement of logical connection.
The extent of the current discussion concerning contrary-to-fact condi
tionals, disposition statements, and the like, suggests that such a formalized
entailment implication may be useful.

The problem of formulating entailment implication has interested phi
losophers for a long time.2 Curiously, most of these attempts have been by
way of modal logics, Le., logics containing notions of necessity or possibility,
or the like. The consideration of these is postponed until Chap. 8. In
recent years, however, there have been a number of attempts to formulate
systems of entailment implication directly. Among these are Church
[WTI], Ackermann fBSI], Schmidt [VAL], and a series of papers by Ander
son, Belnap, Wallace, and their coworkers at Yale University.3 The paper
by Anderson and Belnap [PCE] explains the motivation of these papers and
discusses also the work of Ackermann and Church. The bibliography of
Anderson and Belnap [peE] cites most of the preceding work on this topic,
and the nlore important items are actually discussed in the text. The
reader is referred to these sources for the details, but it will be appropriate
to add here a few general remarks.

The principal bone of contention is the scheme PK. It is sometimes said
that this scheme represents the principle that if B is true, then any A implies
it. This is not quite correct. For in order to derive (1) from PK by Pe,
one must first have

~B (3)

1 Ackermann's "logischer Zusammenhang."
2 Thus Aristotle had a modal logic, and various sorts of implication appear to have been

formulated by the Stoics. Cf. Bochenski [AFL] and [FLg].
3 To some extent based on Fitch [SLg].
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and this is true, not when the interpretant of B is true, but when (3) is
demonstrable in the system. Thus if the interpretation is such that (3)
holds only when B is logically valid (in some sense), then (1) holds only for
such B. Statement (2) is an example. This point is elaborated in [IFI].

It follows from this that absolute implication is not incompatible with an
interpretation of (1) as stating that B is a logical consequence of A, at least
in one sense in which those words are commonly used. For according to
that sense, B is a consequence of certain premises whenever B is a conse
quence of some subset of those premises. Any mathematician would include
the null set of premises as a possible subset. But assuming 6 is a suitable
logical system, (3) holds just when B is a logical consequence of the null set
of premises; then if A is the conjunction of all the premises, B is a logical
consequence of A, so that (1) is valid.

The protagonists of entailment implications argue that such words as
'consequence', 'deducibility', and 'implication' do not properly apply when a
null set of premises is involved. Yet they accept such principles as AK,
AK', the associativity of A, the transitivity of 'entails', etc., and from these
it follows that they accept for all nonvoid subsets the property of logical
consequence mentioned in the preceding paragraph. They are thus arguing
that ordinary language makes a special except.ion of the null set. This is
probably true. Mankind went for thousands of years without a notation
for zero. The logic of Aristotle did not know the null class. The fact that
these innovations came at such a late stage is evidence that there is indeed
something sophisticated about them. It happens in mathematics again
and again that we find it expedient to extrapolate to zero a situation which
is given naively only for nonzero values of some parameter (we shall meet
this in Chap. 7 for "vacuous quantification"), and in such cases not only is
the null situation often unnatural, but the most advantageous extrapolation
is sometimes difficult to discern. Thus it is to be expected that ordinary
language should have, at least in nontechnical use, a connotation that the
situation present is nonnull.

The statements of null character are often unnatural in ordinary language
for another reason, viz., that they are trivial. Ordinary language is used
for purposes of human communication; one does not ordinarily attempt to
communicate trivialities, and if one did so without some indication, one
would probably be misunderstood.! Nevertheless, the extrapolation to zero
mentioned in the preceding paragraph is often a great advantage. The
invention of zero is generally regarded as one of the major steps in human
progress. It thus frequently happens that we get a more acceptable theory
by including trivial special cases than otherwise, the exclusion of trivial
cases then being left to common sense. However, this is not necessarily
the case. There are theories of some significance in which certain null
cases are excluded. Examples are the formulation of Aristotelian logic in
~ukasiewicz [ASS] and the ontology of Lesniewski (see Sec. IS4). Philos
ophers of nominalistic tendency are said to be interested in such theories.

It would seem that the most obvious way to get an entailment implica
tion would be to modify the system TA by limiting Pi to cases where the
canceled premise is actually necessary for the derivation of the conclusion.

1 Amusing examples of this are given in Anderson and Belnap [peE].
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A corresponding modification of LA would be to star constituents all of
whose ancestors are introduced by .K. and to limit P. to unstarred sub
alterns. But for the system arrived at in that naive fashion, ET will fail,
for

H-AAB.=>B

A A B • => B H-. A =>. B => B
both hold, but not

H-A =>. B=> B

It seems likely that there should be some modification of .P.
Another possibility is to deny .K.. If the rules .A and V. are taken in

the original form of Formulation II, we should have a system similar to the
foregoing; the interrelations of the two systems are unknown. The proof
here given of the elimination theorem fails for it. If the Ketonen rules for
.A and V. were used, we should have a system of much more restricted
character, in which even AK would not be derivable. In this case the ply
operation would be more in the nature of an equivalence than an entailment.

The problem of entailment implication is still under active investigation.
The various solutions which have been proposed do not quite agree with one
another. For some recent ideas see Kripke [PEn].

Besides the systems already mentioned, other forms of weakened systems
a,re conceivable. There would be some interest in knowing what would
happen if the quasi-principal constituent were left out of .P in Formulation
IV. This possibility has not been explored. Church, in his abstracts [MiL],
calls attention to weakened systems and ventures the opinion that there will
be one which is minimal. Each of these systems will have a weakened form
of the deduction theorem; for systems of pure implication this is studied in
[GDT]. The considerations adduced there cast doubt on the idea of a mini
mal system in Church's sense. Formulations without the distributive law
are considered in Lorenzen [ALU] and Moisil [LPs].

3. Extension of the alternation property. Since the main text was
written, it has been brought to my attention that Harrop and T. Robinson
have, in principle, extended Theorem E5 to certain cases where ~ contains
dilemmatic operations; viz., to those where each such operation is interior
to a component G which is in negative position in ~ (hence positive in r),
and all operations whose arguments include G are regular. The proof of
Theorem E5 is easily extended to this case. For such a G can only become a
principal constituent when it is on the right (cf. Exercise E 19), and this can
happen only in one of the branches which is by-passed in the process of tree
climbing.



Chapter 6

NEGATION

The usual practice in mathematical logic is to introduce negation along
with the operations considered in the previous chapter. From the semantic
point of view of Sec. 5A3, however: negation is an operation of essentially
different character, and it can be constructively defined only when the
underlying formal system is rather special. For this reason the study of
negation was deferred in Chap. 5. The time has now come to take it up,
and this chapter is devoted to it.

The chapter begins, in Sec. A, with a discussion of the semantics of nega
tion, in the same sense that Sec. 5A3 discussed the semantics of the ply,
meet, and join operations. We shall then proceed with the development of
various formal systems for negation. In this development it will be con
venient to reverse the order used in the study of the positive operations.
That study really began with the relational systems of Chap. 4, proceeded
through the T and H systems of Sec. 5B, and reached a climax with the L
systems of Sees. 5C to 5E. This arrangement had the advantage that the
study began with systems which, on the one hand, are simple and natural
from the viewpoint of ordinary mathematics and, on the other hand, have
applications in other fields; it ended with systems which are rather abstruse
from that point of view, but are very natural from the semantic point of
view of Sees. 5A3 and 5Cl. Now that this semantic point of view has
become familiar, it agrees with the theme of this book to take it as funda
mental. Accordingly, Sec. B will be devoted to the L systems for negation.
The T, H, and E (i.e., lattice) systems for nonclassical negation, together
with the analogous properties of classical negation, will be taken up in Sec.
C; the special properties of classical negation in Sec. D. The latter will
include a study of the techniques of Boolean algebra.

A. THE NATURE OF NEGATION

In this section we discuss the nleaning of negation more or less intuitively,
so as to have a motivation for the formal developments which follow. We
begin, in Sec. 1, with an explanation of different kinds of negation as applied
to elementary propositions. This is illustrated by the examples considered
in Sec. 2. In Sec. 3 we proceed to a formalization in terms of singular L
systems. We end with five kinds of formal negation, of which that called
simple refutability is fundamental.

254
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1. Preliminary analysis. Our first step will be to ask what is meant
by the negation of an elementary statement of a formal theory (or system)
6. This amounts to inquiring under what circumstances we say that such
a statement is false, for the negation of a statement is then a second state
ment to the effect that the first one is false.

Since an elementary statement of a deductive theory 6 is true just when
there is a demonstration of it according to the deductive postulates of 6, one
would most naturally say that such a statement is false just when no such
demonstration exists. Negation defined in this way will be called non
demonstral1ility.l From a platonistic standpoint it answers all questions.
But we saw in Sec. ilA2 that from a constructive standpoint it does nothing
of the kind. Furthermore, it contrasts sharply with the positive operations
in its behavior with respect to extensions of the basic system. For let 6'
be an extension of 6. Then if a positive compound statement is true for
6, it will remain true for 6', but since a statement which is nondemonstrable
for 6 may become demonstrable for 6', this invariance will not hold for
negation in the sense of nondemonstrability.

There are, however, notions which correspond partially to our intuitions
of negation and nevertheless can be treated by methods analogous to those
of Chap. 5. We shall consider here two sorts of such notions; these will be
called absurdity and refutability, respectively.

For the first notion, an elementary statement is defined to be absurd just
when the system 6' formed by adjoining it to 6 is inc'onsistent-in other
words, when every elementary statement is 6-derivable from it. Then we
can define negation by taking falsity in the sense of absurdity. This nega
tion evidently has the same invariance properties relative to an extension
(provided the extension does not change the elementary statements) that
the positive connections do.

The second notion, that of refutability, can be defined as follows. Suppose
we have a new kind of theory in which, besides the conventions defining the
subclass 1: of the elementary theorems (the true elementary statements),
there are additional conventions defining a second subclass 6 (viz., the
refutable ones). The definition of 6 is also inductive. The basis is a definite
class of elementary statenlents called the counteraxioms. The generating
specifications state that if A and B are elementary statements such that B is
refutable and is at the same time deducible from A by the deductive rules for
6, then A is refutable. If we interpret falsity as refutability, then we again
have a negation with the same invariance with respect to extension as the
positive connections.

These two kinds of negation are intrinsic. Other kinds may be defined
with reference to an interpretation.

With each of these kinds of negation there is associated a kind of consist
ency and completeness. A theory will be said to be consistent with respect
to a certain definition of negation just when no elementary statement is
both true and false; it will be called complete with respect to that definition if
every nondemonstrable elementary statement is false. Then consistency
in the sense of Post, as defined in Sec. 2Bl, is the same as consistency with

1 Called "invalidity" in [TFD].
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respect to absurdity, and an analogous identity holds for completeness in
the sense of Post, which was defined in Sec. 2B"3.

2. Examples from number theory. In order to get examples we set
up a rudimentary system of number theory; this is a modification of the
system of sams in Sec. 2C2, Example 2. The primitive frame for this system
is as follows (the single rule of the system is here designated 'Rule l' because
further rules will be introduced afterward).

OBS. These are generated from a single atom, 0, by one unary operation,
indicated by a postfixed accent. Thus the obs are those in the sequence

0,0',0", ...

We shall treat these as the natural integers 0, 1, 2, ... , and the ordinary
numerals and arithmetical notations will be used for them, including the sign
for addition. As U variables for obs, the letters 'a', 'b', 'c' will be used.

ELEMENTARY STATEMENTS. These are of the form

a = b
where a and bare obs.

AXIOM. 0 = O.

RULE 1. If a = b, then a' = b'.

In this system the elementary theorems are precisely those elementary
statements of the form

a=a

Le., those of the form a = b in which a and b are the same ob. The following
rules are admissible in the sense (introduced in Sec. 3A2) that the adjunction
of any or all of them does not add any elementary theorems to the system.

RULE 2. If a = b, then b = a.
RULE 3. If a = band b = c, then a = c.
RULE 4. If a' = b', then a = b.

RULE 5. If 0 = a', then 0 = a.
These rules, however, have a very decided effect on the properties of

negation. Let us consider the effect of adding them one by one, on the
assumption that 1 = 7 and 4 = 6 are counteraxioms. Then, after each rule
is adjoined, the following become refutable or absurd:

After Rule 1: 0 = 2, 1 = 3, 2 = 4, 3 = 5, 0 = 6 become refutable.
After Rule 2: 2 = 0, 3 = 1, 4 = 2, 5 = 3, 6 = 4, 6 = 0, 7 = 1 become

refutable.
After Rule 3: 0 = 1 and 1 = 0 become absurd (and hence refutable); in

addition, 1 = 2, 2 = 3, 3 = 4, 4 = 5, 0 = 3, 1 = 4, and their
converses become refutable.

After Rule 4: a = a' and a' = a become absurd for all a;" = a", a = a + 3,
a = a + 6, and their converses become refutable for all a.

After Rule 5: All nonderivable elementary statements become absurd. The
system is then complete in the Post sense.

The example may be modified to give an illustration of a system which is
complete with respect to refutability, but not with respect to absurdity, by
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taking as counteraxioms all those of the form a = a + a, where a =1= 0, and
using Rules 1 to 4.1

The example just given shows that the generating principle for refutability,
which is a rule with a relation of deducibility as a premise, cannot be re
placed by more elementary rules derived from the given rules for (5 by a
process of simple contraposition. By this is meant taking each rule of
deduction and replacing it by a set of rules to the effect that, if all the prem
ises except one are true and the conclusion is refutable, then the remaining
premise is refutable. Thus, if we use the infix' =1= ' to indicate the refutability
of the corresponding statement with ' :r=' in the place of' =1= " then the follow
ing rules are obtained by simple contraposition from Rules 1 to 3:

a' =1= b' --+ a =1= b
a =1= b --+b =1= a

a =l=c&a =b --+b =l=c
a=l=c&b =c --+a=l=b

These rules do not suffice to deduce 4 =1= 5 from 4 =1= 6, although such a con
clusion is obtained easily as follows:

4=5
--I

4=5 5=6
--------3

4=6 4=1=6
4=1=5

3. Formalization of negation. Up to the present we have proceeded in
an informal and more or less intuitive fashion. We now move toward a
fornlalization of negation. It will be appropriate to do this in several steps.

In the·first step we reduce the theory G to a system with two unary predi
cates. For this purpose we take the elementary statements of (5 as prop
ositions, Le., as obs, and the interpretants of the two unary predicates will
be the classes 1: and 6. To designate these predicates the prefixes 'I-' and
'1', respectively, will be used. The elementary statements of the new system
will thus be of one of the forms

I-A 1A (I)

Of these the left-hand one will mean that the statement which is associated
with A is in 1:, while that on the right will mean that this statement is in
6. If G is already a system, transformations analogous to those in Sec.
2DI will be involved. Thus, if (5 is the system in Sec. 2, we replace the
elementary statement a = b (as in Sec. 2DI) by the proposition a D b; then
the statements

I-a D b 1a D b

will represent, respectively, the a = b and a =1= b of Sec. 2.
The second stage will be the application of the reduction of Sec. 2D1 to

reduce the system to an assertional one. This means that we introduce a
new operation, designated by the prefix 'I', to replace the predicate prefix

1 For this system Rule 3 is unnecessary. If it is omitted, no elementary statement is
absurd.
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'-I', and then in place of the second form of statement in (1) we have the
form

(2)

At this point let us pause to make two observations. The first is that the
new type of theory mentioned in Sec. 1, in which there are counteraxioms
and a notion of refutability, is not a radical innovation as opposed to the
type of theory considered in Chap. 2, but is rather a specialization of it. The
second is that the reduction of these two stages, although apparently tied
to the notion of refutability, applies to the notion of absurdity equally well.
Indeed it applies to any situation where we have a theory in which more
than one subclass of the class of elementary statements is considered. This
will hold for absurdity if we simply take 6 to be the class of absurd state
ments.

After the first two steps negation has become an operation parallel to
those of Chap. 5. The third step is to state postulates expressing the prop
erties which characterize the different species of negation. The explana
tions will be in terms of a singular L formulation, because that formulation
is most explicit in regard to the deducibility relationships. Inasmuch as
the other propositional operations may be introduced at the same time, the
explanation will include the negations of compound propositions. The
statements

will be taken for the time being intuitively, i.e., as indicating that A is deduc
ible from ~ in some sense, not completely specified as yet, for which the
elimination theorem (ET) holds.

Let us first consider refutability. Let the counteraxioms be Fl' F 2' ••• ,

and let notations like 'F / indicate an unspecified one of these. Then the
basis of the definition of refutability is the set of statements

(3)

The generating specification is a rule which may be stated thus:

~, A II- B ~,A II- IB

~II-IA
(4)

(5)

where the antecedents ~, A in the right premise are inserted, by a weakening
principle, to preserve symmetry. If B is some F i' then the right premise of
(4) is derived by weakening from (3), so that (4) becomes

~,A II-Fi

~II-IA

This principle includes (3) (for ~ void and A == F i ). On the other hand, if
negation is regarded as introduced solely by (3), (4), an induction on the
number of applications of (4) shows that (5) suffices in the place of (4), in
the sense that whenever the conclusion of (5) holds, the premise will hold for
some F i; in fact, by the hypothesis of the induction, the right premise of
(4) can be replaced by ~, A, B II- F i ; then by ET one can get the premise of
(5). Thus (5) is sufficient for the introduction of negation on the right.
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Fj

From the formal point of view, at least, the rule (5) can be split into two
rules, F * and N *, as follows:

~ Ii- F i

~II-F

~,A II-F

~II-IA

The proposition F thus introduced can be interpreted as a statement to the
effelJt that some counteraxiom is d,emonstrable, and hence that the system
is inconsistent. If there is only a finite number of counteraxioms, such an
F can be defined in terms of alternation. Otherwise we take F as a new
primitive. We can so take it even for the void system D. Thus N * is, so
to speak, a universal rule which is valid for any system; on the other hand
F*, like 1-*, represents the special conventions of the ground theory 6.

The discussion of the next to the last paragraph suggests that the rule N *
should be reversible. That circumstance suggests further that negation be
defined thus:

IA == A :::> F (6)

With such a definition N * becomes a special case of P*. The following rule

~II-A

~, IAII-F

is then a special case of *P. We adopt it as the rule for introduction of
negation on the left.

The last three paragraphs may be summed up as follows. Refutability
may be characterized by the rule F* and the definition (6) or by the rules
F*, N *, and *N. The negation so defined is known as minimal negation;
it may also be called the system of simple refutability. It was studied by
Johansson.! Its L formulation will be called, after Johansson, LM.

Let us now turn to absurdity. If we here introduce a proposition F,
whose interpretation is a statement that the system is inconsistent in the
Post sense, then (6) will define absurdity. By definition of F the rule2

~II-F

~II-A

will be valid. The rules N * and *N will be admissible since they follow
from (6). The rule F* may be vacuous, Le., F may be the only element of
(1, but we may have cases, like that of Sec. 2, in which one establishes the
absurdity of certain statements (for example, 0 = 1 after Rule 3) by an
epitheoretic argument not formalizable in the L system, and in such a case
these can be taken as counteraxioms. We thus have a system formed by
adjoining Fj to LM. It is the system adopted by the intuitionists and
therefore is appropriately called intuitionistic negation; another name is the

1 Norwegian mathematician, professor at the University of Oslo. The paper on the
minimal algebra is his [MKR]. Cf. Kolmogorov [PTN]. See also Sec. SI.

2 This rule goes slightly beyond the preliminary discussion (Sec. 1) in that A is not
necessarily an elementary proposition. The possibilities in regard to restriction of A in
Fj are left open; they are evidently similar to those for K*.
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system of simple absurdity. Its L formulation will be called, after Gentzen,
LJ.

Besides the types of negation which have just been considered, there is
some interest in types which are applicable when the underlying system is
complete. In Sec. 1 a complete system was defined as one in which every
elementary statement is true or false; here we are concerned with a stronger
form of completeness in which this is true for every compound proposition.
We are thus dealing with systems with a law of excluded middle. This
principle may be expressed by saying that any antecedent of the form
A V jA may be dropped; in view of ET and the rule *V, this Dlay in turn
be expressed by the rule

Nx
~, A II- B ~,jA II- B

~II- B

which has some analogies to (4). When B is A, the left premise is prime;
hence we have in that case

~, jAll-A

~II-A
(7)

The rule (7) is a special case of Px if (6) is adopted.! But we shall take Nx
in the above more general form. To get it from (7) requires ET, whereas the
converse argument is immediate.

If we adjoin Nx to LM, the system so obtained will be called the theory of
complete refutability, or strict negation.2 Its L formulation is called LD.

If we adjoin Nx to LJ, we obtain a system LK which will be called classical
negation, or the theory of complete absurdity.

Up to the present nothing has been said about the nature of the deduci
bility expressed by '11-'. Let it now be specified that for all the systems
LM, LJ, LD, LK, the rules for F and N are to be adjoined to LA. It is then
natural to ask what would be the effect of adjoining these same rules to LC.
Since we are supposing that (6) holds in interpretation, and thus Nx, in
principle, is a special case of Px, the system so formed will necessarily be
complete. Furthermore, one can show that LK includes LC as follows:

A II-A *N
A, jA II- F F.

A iA If- B p~
jA II- A ~ B ~, A ~ B II- A

~ jA II-A ET
'~II- A (7)

Thus the only new system is that formed from LC as ~M is from LA. Kripke
[SLE]3 has studied this system and called it LE. From the present point
of view it may be called by the name he proposed, viz., classical refutability.

1 Actually, Nx was proposed first (in [TFD]) in the form (7), the 'x' suggesting 'excluded
middle'; later Px was named from its resemblance to this Nx.

2 This term was proposed in [TFD] on account of a remark in Joh~nsson [MKR] to
the effect that the system might be suitable as a theory of strict implication. The term
is hardly apt, but no better short name has been proposed.

3 For anticipations see Sec. S1.
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The result of all this is that we have five kinds of constructive negation
whose characteristics are as follows:

LM Minimal negation, or simple refutability, formed by adding to LA the
rule F. and either the definition (6) or the rules .N.

LJ Intuitionistic negation, or simple absurdity, formed by adjoining Fj
toLM

LD Strict negation, or complete refutability, formed by adjoining Nx to
LM

LE Classical refutability, formed by adjoining Px ~o LM; includes LD
LK Classical negation, or complete absurdity, formed from LJ by adjoining

Nx and from LD or LE by adjoining Fj

For all these systems we distinguish an F formulation, in which only F
rules and (6) are adopted [Nx being formulated in terms of (6)], an N for
mulation, in which (6) is abandoned in favor of .N., and an FN formulation,
in which F and I are both taken as primitives and (6) becomes a theorem.
These formulations for LM will be called LMF, LMN, and LM(FN), re
spectively, with a similar convention for the others. This convention will
be used only when there is some reason for distinguishing the formulations.

In regard to the rule .N, the rule proposed above has the technical dis
advantage that it fails to satisfy condition (r2) of Sec. 5C6. This is on
account of the constituent F in the conclusion, which would have to be con
sidered a second principal constituent. But if we take the B in .P to be
F, the rule we come up with is

~ n- A ~,F II- 0
~IA 11-0

This rule is regular. From it we get the above .N by taking 0 to be F (the
right premise being then quasi prime). This explains the formulation in
the next section.

One should remark that refutability is the fundamental kind of negation,
the others being defined by additions to it. This is true for nondemonstra
bility with respect to a fixed system; one can then take the nondemonstrable
elementary statements as counteraxioms.

B. L SYSTEMS FOR NEGATION

The preceding section was concerned with the motivation and justifica
tion of the L rules. In this section these rules will be formulated and various
consequences derived from them. The object will be to extend the theorems
of Secs. 5C to 5E to the systems of negation and to derive analogous theorems
about the relationships between different types of L formulation. The
argument is abstract and formal; reference is made to Sec. A only for moti
vation.

1. Formulations of L systems for negation. The conventions for the
positive L systems as given in Sec. 5C3 are to apply to the L systems for
negation except for certain changes which will be stated presently. In
particular, the conventions for prosequences, auxiliary statements, and
prime statements are to be taken over without change. The changes in the
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other conventions will be different for the different formulations. However,
the changes will be listed systematically, with indication at the appropriate
place of the types to which they apply.

PROPOSITIONS. The following changes will be made in the definition of <f
and ~.

1. A subclass 6, called the counteraxioms, is defined in ~. The letters
'F1', 'F2', 'F/, 'F/, etc., will stand for counteraxioms. The class 6 may be
void, and will always be void when (5 is D.

2. In some formulations a unary negation operation, indicated by the
prefix' I', will be adjoined to those used in generating~. Then if A is in ~,

IA will be in ~ but not in <f. The letter 'N' will sometimes be used, parallel
to 'P', 'A', 'V', to designate this negation.

3. In some formulations a fixed proposition F will be adjoined to <f. This
F is an indeterminate so far as (5 is concerned. In terms of F the negation
operation may be defined thus:

IA~A:::>F (1)

In this case also, for any A in ~, 1 A will be in ~ but not in <f.
ELEMENTARY STATEMENTS. The only change from Sec. 5C3e is that in the

N fornlulation there may be a void prosequence on the right.
RULES. The following new rules will be added to those in Sec. 5C4, sub

ject to special restrictions in the different systems and formulation types as
explained later.
F Rules of direct refutability
F* If F i is a counteraxiom,

Fj

N Rules of negation
*N (multiple)

~ II- A, ~ ~,F II- ~

~'IA II-~

*N (singular)

~ II- A ~,F II- B
~, IAII-B

~II-Fi,3

~II- F,3

~II- F,3
~II-A,3

N * (all formulations)

~,A II-F,3

~II-IA,3

Nx
~, A II- ~ ~,IA II- ~

~II-~
(for LD only)

FORMULATION TYPES. As already mentioned in Sec. A3, there will be
three formulation types: the F formulation in which negation is defined in
terms of F by (1); the N formulation in which 1 is taken as primitive and
F is not postulated; and the FN formulation in which both F and 1 are
postulated [and (1) will turn out to hold in the sense of a provable equivalence].

The rules just formulated are those for the FN formulation. In the F
formulation the rules *N* are omitted as primitive rules, but are valid as
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(2)
~II-A,3

~, IAI1-3

specializations of .P., respectively. In the N formulation F is simply
omitted wherever it occurs in the above rules except in .N; the latter be
comes

(3)

The singular and multiple systems are to be subject to the s'tme conven
tions as in Sec. 5C. It is understood that in the multiple formulations of
certain systems particular rules may be restricted to be singular; Le., they
may be mixed systems in the sense of Sec. 5C3e. It is further to be under
stood that structural rules on the right, in particular K., are inapplicable in
singular systems even where a void consequent is admitted.

F and N formulations will be distinguished, when that is expedient, by
writing the letters 'F', 'N', respectively, after the abbreviated name for the
system, and for its FN formulation we shall write '(FN)'; thus LMF, LMN,
LM(FN). Singular and multiple formulations will be distinguished by
subscripts as in the case of LA in Sec. 5C.

DEFINITIONS OF THE SYSTEMS. The singular FN formulations are made
by adjoining rules to LA or LC as shown by the following table:

LM = LA + .N. + F.
LJ = LA + .N. + F. + Fj = LM + Fj
LD = LA + .N. + F. + Nx = LM + Nx
LE = LC + .N. + F.
LK = LC + .N. + F. + Fj = LE + Fj

In the multiple formulations Px is not postulated, but in those cases where
Px does not hold in the singular systems, the rules N. and P. are to be sin
gular. Thus N. and P. are both restricted to be singular in LMm , LJm ,

and I.JD m , and there are no singularity restrictions in LEm or LKm •

In the system LDm analogy would suggest that we should simply omit Nx
and allow N. to be multiple. However, in the system so formed

II-A,A:::> jA

would not be demonstrable, whereas its singular transform

II-Av.A:::> IA

is demonstrable in LD1, using the weak form [(7) of Sec. A] of Nx,

A II-A V.
A II- A V. A :::> IA F II- F
------------------.N
A, I (A V. A :::> IA) I~ F N., .K

A, I(A v.A :::> IA) II-IA P.

I(AV.A:::> IA)II-A:::> IA V.

I(AV.A:::> IA)II-Av.A:::> IA
----------~-------Nx

II-A v.A:::> IA

thus:

It is therefore necessary to postulate the multiple form of Nx. The form
taken here for Nx we shall find easier to work with than the form (7) of Sec.
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A. We can then restrict N * to be singular, as it would be if it were a special
case of P*.

The F and N formulations are obtained froln the FN formulation as above
described, but the following peculiarities about their multiple forms should
be noted. Since N * is the special case of P. where the B (in the formula
tion of the rule in Sec. 3C4) is F, I.JD m does not require P* to be singular in
that spechtl case. Again the void consequent adnlitted in the N system
brings with it automatically the "ex falso quodlibet," hereafter abbreviated
"efq," thus:

A II-A
-------K.
A II-A, B
-------.N
A,IAII-B-------P.
IA II-A ~ B

Thus, in principle, we cannot have multiple N formulations without Fj,
and N forms of LMm , LDm , and LEm are not defined.

MODIFIED FORMULATIONS. One can state alternative formulations as in
Sec. 5C8, but these will not be considered here further. The rules just
stated are suitable for adjunction to Formulation IK. From now on the
rules .K* and *W * will be assumed to be valid, not necessarily as primitive
rules, without restriction, and we are therefore free to change back and forth
between the different modified formulations as we please.

2. The inversion theorem. The proof of the inversion theorem in Sec.
5D1 involved two major steps. The first step was the examination of the
top nodes of ill; the second, the validation of the inferences in ill. The first
step was taken care of by the assumption, (b), that the only rules which could
have M as principal constituent were R, with the Ui then uniquely deter
mined, and the structural rules *K. and *W*; assumptions (d) and (e) took
care of the structural rules. The second step required the assumption (c).

In the present situation an instance of M may also be introduced by Fj.
In the N formulation Fj is essentially a special case of K*, and there cannot
be any difficulty as long as .K* holds without restriction. In the other
formulations an M introduced by Fj will be on the right; if in the ith prem
ise of R, one of the Ui is on the right,l that subaltern can be introduced by
Fj, the rest by *K.. This takes care of the first major step. In the second
major step we may have the same difficulty as before with respect to assump
tion (c) in case R has a principal constituent on the left, one or more of
its premises has a subaltern on the right, and there are rules in ili which are
singular on the right. Otherwise the proof of Sec. DI goes through. We
thus have the following:
Theorem 1. The inversion theorem (Theorem 5DI) remains true if the con

dition (b) is modified to the condition (b') and a new condition (f) is imposed,
as follows:

(b'). The only rules which can have M as principal constituent are R
(with the Uk then uniquely determined) and *K., *"T., Fj.

( f ). If M is introduced into ill by Fj, then the Ui can be introduced at
that point by Fj and *K*.

1 This condition is fulfilled for all rules so far. In fact, in all cases where R has a
principal constituent on the right, every premise has at least one subaltern on the right.
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Since the conditions are fulfilled in the cases which interest us here, we
have the following corollaries:
COROLLARY 1.1. I n the systems LEm and LKm all rules are directly invertible

with respect to all premises. Moreover, the direct inversion can always be
completed.
In the system LDm there appears to be trouble on account of the presence

of the rule Nx. That rule has no principal constituent, and hence cannot
introduce an instance of M as such. Thus this rule does not cause any excep
tion in regard to condition (b'). The exceptional cases in regard to condi
tion (c) are .P and .N on the left. However,.N can be inverted on the
left, but not directly, as follows:

(pI) ~, IA Ir ID K.
~, A Ir A, ~ ~,IA Ir A, ~ Nx

~ Ir A, ~

We thus have the following:
COROLLARY 1.2. In the system LDm all rules are directly invertible, except

that .N and .P are not directly invertible with respect to their left premises
(or the only premise in the N formulation of .N). The inversion of .N with
respect to its left premise can be carried out, but not directly.

COROLLARY 1.3. In the systems LMm and LJm all rules are directly invertible
except that neither .P nor .N can be inverted with respect to the left premise
(or the only premise in certain forms of .N).

COROLLARY 1.4. The conclusions of Corollary 5D1.6 also hold if the rule Fj
and (in LDm) Nx are reckoned as structural rules.1

3. The elimination theorem. Using a method similar to that of Sec.
2, let us examine the proof of the elimination theorem to see what modifica
tions are necessary to accommodate the presence of negation. In view of
the remark on modified formulations at the end of Sec. 1, no further atten
tion will be paid to the formulation types of Chap. 5 or to uses of the struc
tural rules.

In Stage 1 the only new possibilities are the cases under (y), in which Rk

is one of the rules .N., Nx, Px, F., Fj, and the case under (€), where Rk is
.N. Note that the rule Nx causes no difficulty since all the constituents in
the conclusion are parametric, and this is true for F. and Fj on the left.
The changes made in passing from r k to r k are dropping out parametric
constituents of A on the left and adding replicas of ~' on the left and of 3
on the right. These changes do not affect the validity under (y) of any of
the rules in the above list, nor the new case under (€). Hence Stage 1 goes
through for all unmixed cases, and also for the mixed cases where 3 is void.

In Stage 2 we have the same new possibilities under (y); also F., Fj, Nx
under (~) and Nx under (~). The changes made in passing from rk to r~

consist in dropping parametric instances of A on the right and adding con
stituents of ~ and ~ on the left and right, respectively; if Px is present,
there are additions of others on the left. In the unmixed systems, where A
is composite, none of these changes invalidates an inference by any of the

1 If all quasi-parametric ancestors of M are admitted by K. or Fj, Fj can be taken 8S

R, and hence as nonstructural, in that particular case.
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new rules. Further, the case of F. under (0) is impossible since A cannot be
F. The case of Fj under (0) is similar to that of K*. Let the instance of
Fj in question lead from r~ to rk. Then if ~ is void, we have necessarily
an N formulation and the passage from r; to rk can be made by *K only;
other\\rise it can be made by Fj and *K*. The case of Nx under (0) and (,)
again causes no difficulty since it has no principal constituent. l Thus the
proof of Stage 2 also goes through for the unmixed systems.

Let us now look at Stage 3. I n the F formulation there is nothing to
prove. In the other formulations let A be IB, and suppose that ET holds
for B. The premises of the case of ET under discussion are

~, IBII-~

~II-IB,3

(4)

(5)

We suppose that (4) has been obtained by .N from the premises [in the N
formulation without F in (7)]

~II- B, (~)

~, FII-~

whereas (5) comes by N. from [without (F) in the N formulation]

~,BII-(F),3

From (6) and (8), eliminating B, we have

~ II- (F), (~), 3

(6)

(7)

(8)

This is the desired conclusion in the N formulation. In the FN formulation
we eliminate F with (7).

This completes the proof of ET for all the unmixed systems, so that we
have the following:
Theorem 2. The elimination theorem holds without qualification for all

formulations of the systems LMv LJl , LD1, LEI' LKv LEm , LKm •

Now let us consider the extension of ET to the mixed systems using the
method of Sec. 5D2. As there, we have only to consider the cases where
A is B :::> C, IB (in LMm and LJm )2, or is elementary. The case where A
is B :::> C can be handled as in Sec. 5D2, and the case of I B can be handled
analogously, so that we are reduced to the case where A is elementary. In
the N formulation of LJm' the rest of the argument can be carried through as
in Sec. 5D2. But in the F and FN formulations, we have to consider the
possibility that A is F.

1 I f we were to take N x in the form

~, IA II-A,3
~II-A,3

we should be able to carry through this part of ET, by using a method similar to that used
for Px in Sec. 5D2. But there would be difficulty with the inversion theorem, and this
would cause trouble below for LDm •

2 In LDm , since .N and N. can be inverted, we can use that inversion to carry out the
elimination, and it makes little difference whether N. is singular or not. But if we used
the form of Nx in the preceding footnote, then we must have N. singular and include
the case lB.
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If A is F, it may happen that such an F is introduced by F.. In that
case it seems to be necessary to impose further restrictions.

The difficulty cannot arise if the class of counteraxioms is void. There
need not be any loss in generality in this if the original counteraxioms were
elementary. For then we could take F as single counteraxiom and adjoin
to the auxiliary statements the following:

F i 1-0 F (9)

Then the rule F. becomes superfluous since the only inference possible by it
has premise and conclusion identical.

In the remaining cases the argument can be carried through as in Sec. 5D2.
Thus we have the following:
Theorem 3. The elimination theorem holds without qualification in the N

formulation of LJm' For the other formulations of LJm and the formulat-ions
of LMm and LDm , it holds if the counteraxioms are elementary.
Remark 1. Instead of the rule F., one might introduce a third type ofprime

statement formed by weakening from

F i II- F (10)

This would cause difficulty with the elimination theorem. Statements of
the form (10) can be introduced by F. thus:

Fill-FiF--- .
Fill-F

This F. can be further reduced, as explained in the proof, if the F i are ele
mentary.

4. Equivalence between formulation types. Before we go further it
is important to see that the three formulation types-the F, N, and (FN)
formulations-are mutually equivalent in so far as they are all defined. This
will be shown here under the hypothesis that the elimination theorem holds
for all the forIJlulations concerned. The proof of the main theorem is pre
ceded by the definitions of certain transformations and by the proofs of four
lemmas.

We first define a G transformation from statements of an N formulation
to those of the FN formulation as follows:

(~II- )G~~ II- F
(~II- ~)G~~ II- ~

Further, if R is a rule of an N formulation, RG will be the same rule in the
corresponding FN formulation in which all premises and conclusion are
replaced by their G transforms.
LEMMA 1. If r is demonstrable in an N formulation, then rG is demonstrable

in the corresponding FN formulation.
Proof. Let Il be a demonstration r 1, ••• , r n of r in the N formulation.

We show that rff is demonstrable in the corresponding (FN) formulation on
the hypothesis that every rf for i ~ k is so demonstrable. It suffices to
consider the following six cases.

CASE 1. rk is prime. Then the consequent is not void. Hence rfis the
same as r k and is prime.
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CASE 2. r k is derived from r i , r;, ..., by a rule R involving neither F nor
negation, and the consequent of r k is not void. l Then none of the prem
ises has a void consequent; r?, rf, ... , rf are the same, respectively, as
r i , r;, ... , r k , and RG the same as R. Hence r~ is obtainable in the (FN)
formulation from the same premises by the same rule.

CASE 3. r k is obtained from r i' r;, ... , by a rule as in Case 2, but r k

has a void consequent. Then the rule cannot be a rule with principal con
stituent on the right. If the rule is .C, *K, .W, .A, .V, or Nx, then the
right side is parametric and the inference remains correct if the void con
sequent is replaced by F, giving rf as consequence of r?, rf, ... , by RG

•

If the rule is .P, let the original inference be

~II-A ~,BII-

~,A:::> BII-
The transformed inference is

~ II- A ~,B II- F
~,A:::> BII-F

This is correct by .P.

CASE 4. r k is obtained by a rule R, namely, Fj or N *, which requires, in
the (FN) formulation, a constituent F on the right in some premise. All
such rules have one premise, which we call r i , and a conclusion with a non
void consequent. Then rf is rk • Let r i be

~ II- ID
and let r~ be

~II-F,~

Then r k follows from ri in the (FN) formulation by the same rule. If ~ is
void, then r~ is r?; if not, it is obtainable from r? by K*. Thus in any
case rf is derivable from r? in the FN formulation.

CASE 5. rk is obtained by a rule R, namely, F., which introduces an F
into the conclusion. In this case the premise r i has necessarily a nonvoid
consequent; hence r? is the same as rio Let r k be

rk ~ II- ~

The result of applying the same rule to rf in the (FN) formulation will be
rk, namely,

rk ~ II- F, ~

If ~ is void, this will be precisely rf. Otherwise, let B occur as constituent
in~. Since we have a multiple N formulation, Fj will be postulated. Then
we can argue from rk thus:

~ II- F,~ Fj
~II-B,~W*
~II-~

rrhe conclusion is r k' which is the same as rf. Thus rf is derivable in the
corresponding (FN) formulation.

1 The argument also applies to Nx, which can occur only in LD1.
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CASE 6. r k is obtained by .N. Then the inference is

~II-A,3

~,IA 11-3

In the case of 3 void, the transformed inference can be made thus:

X II- A ~,F II- F .N
~, IAII-F

If 3 is nonvoid, it can be made thus:

~ II- A, 3 K.
~ II- A, F, 3 ~,F II- F, 3 .N

~,IA II- F,3
From this point we can argue as in Case 5. The right-hand premise, in
either case, is quasi-prime.

This completes the proof of Lemma 1.
Let us now define an F transformation associating to each proposition A

of an (FN) formulation that proposition AF of the corresponding F formu
lation which is obtained by replacing, from within outward, every component
of the form I B by B :::> F. This is a special case of a definitional reduc
tion in the sense of Sec. 3Cl; it can be expressed in the form of a definition
by structural induction as follows:

a. If A is elementary, A F is A.
b. The transformation is a homomorphism relative to operations other

than negation.
c. If A is I B, A F is BF :::> F.

The transformation may be extended to prosequences, elementary state
ments, and rules by the requirement that it be a homomorphism, Le., that all
constituents be replaced by their F transforms.
LEMMA 2. If r is an elementary statement of an F formulation, then r is

demonstrable in that formulation if and only if it is demonstrable in the cor
responding FN formulation.
Proof. If r is demonstrable in an F formulation, then it is a fortiori

demonstrable in the corresponding FN formulation. The converse follows
immediately if the formulation is one for which the composition property
holds for compound constituents. But even without that property, we can
conclude the converse by deductive induction. For let r 1, ••• , r n be a
derivation Il of r. If r k is a prime statement, r: is also a prime statement.
Also, if R is a rule of an FN formulation, RF is a valid inference in the cor
responding F formulation. It follows that every rf, and hence r F

, is
derivable in the F formulation. Since r F is the same as r, this completes
the proof.
LEMMA 3. In an FN formulation for which the elimination theorem holds, an

elementary statement r is demonstrable if and only if r F is.
Proof. The proof schemes

A II- A .N A II- A F II- F .P
A,IAII-F P. A,A:::>FII-F

N
•

I A II- A :::> FA:::> F II- I A



270 NEGATION [CHAP. 6

(11)

show that I A and A :::> F are interchangeable. The lemma therefore
follows by Rp.

Next we define an S transformation from an FN formulation to an N
formulation. This consists in eliminating F by the definition

F=IT
where T is some assertible proposition, say, E1 :::> E1. The definition by
structural induction is as follows:

a. If A is elementary and distinct from F, then AS is A; FS is I T.
b. With respect to all operations, the transformation is a homomorphism.
This transformation may also be extended to prosequences and elemen-

tary theorems by the requirement that it be a homomorphism.
LEMMA 4. Let the elimination theorem hold for a certain (FN) formulation

and also for the corrresponding N formulation. Then a necessary and
sufficient condition that r be demonstrable in the (FN) formulation is that
r S be demonstrable in the N formulation.
Proof of Necessity. For each rule R in the FN formulation, let RN be the

corresponding rule in the N formulation and RS the S transform of R. We
show that RS is a correct inference in the N formulation. This is clear if R
does not postulate an occurrence of F in either premise or conclusion. If it
postulates F on the right in the premise, then, since we have in LMN

II- T
ITII- .N

we can infer a premise of RN from that of RS by the elimination theorem,
and then draw the desired conclusion by RN • If R postulates an F on the
right in the conclusion, then the prenlise is the same as in the N formulation,
and we can insert the required I T in the conclusion thus:

~ 11-3 .K
~,T II- 3 N.
~II-IT,3

If R is .N in the singular case, let the inference be

~ II- A ~,F II- B .N
~, IAII-B

The transformed inference can be obtained thus:

In the multiple case the original inference is

~ II- A, ~ ~,F II- ~ .N
~, IAII-~
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The transformed inference is
XS II- AS, ~s

XS , lAs II- ~s·N

(12)F, TIl- F N.
Fll-jT

The transform of the right premise is irrelevant. Thus in all cases RS gives
a correct inference in the N formulation.

Suppose we have a derivation Il of r in the FN formulation. Since the
S transformation carries a prime statement into a prime statement and, as
we have just shown, an inference by a rule R into a valid N inference, we see
that applying the S transformation to all the statements will produce a
derivation of r s. This proves the necessity.

Proof of Sufficiency. If r s is derivable in the N formulation, then r SG is
derivable in the (FN) formulation by Theorem 1. Since the consequent of
r S is not void, r SG is the same as r S . Thus r S is derivable in the FN for
mulation. The rest follows by Rp, since we have

II- T
I T II- F·

N

This completes the proof.
We may summarize this as follows:

Theorem 4. If the relevant formulations are defined and the elimination
theorem holds for them, then we have the following:

(i) If r is an elementary statement of an N formulation, then r is a theorem
of that formulation if and only if r G is a theorem of the corresponding FN
formulation.

(ii) If r is an elementary statement of an F formulation, then r is a theorem
for that formulation if and only if it is a theorem for the corresponding FN
formulation.

(iii) If r is an elementary statement of an FN formulation, then r is equiv
alent in that formulation to each of r S and r F ,. further, its truth in the FN
formulation is equivalent to that of r F in the corresponding F formulation
and also to that of r s in the corresponding N formulation.
Proof. The only-if part of (i) follows by Lemma 1; the if part, by Lemma

4, since rGS differs from r only in the possible presence of an extra con
stituent I T on the right, and this can be dropped by (11) and the elimina
tion theorem.

The statement (ii) is the same as Lemma 2.
The part of (iii) relating to r It follows from Lemmas 3 and 2. By Lemma

4, r holds in the FN formulation if and only if r s holds in the N fornlulation;
since r SG is the same as r s, we conclude by (i) that r s holds in the N for
mulation if and only if it holds in the FN formulation.

This completes the proof.
5. Singular and multiple formulations. We now attack the question

of equivalence between the singular and multiple systenls. This was handled
for the positive systems in Sec. 5D5. It will be shown here that it holds, in
so far as the multiple formulations are defined in Sec. 1 and ET holds, for
all formulations of negation. In vie\v of the results of Sec. 4, the number of
types to be considered may be cut down, but it seems advisable to make this
subsection independent of Sec. 4.
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The proof in Sec. 5D5 made use of the fact, established in Sec. 5D4, that a
statement A ::;: B in EA is equivalent to A II- B in LA. Since LA is included
in all the systems, we may use inferences by EA here just as we did in Sec.
5D5.

We adopt the same conventions in regard to '~', '~", '3', '0', '0", 'D',
'II-m', '11-1' as in Sec. 5D5.
Theorem 5. For any formulation of LM, LJ, LD, LE, or LKfor which both

singular and multiple forms are defined and ET holds, a necessary and suffi
cient condition that

(13)

hold in the multiple formulation is that1

~ 11-10 (14)

hold in the corresponding singular formulation.
Proof of Necessity. We have only to add to the cases arising in the proof

of Theorems 5D7 and 5D8 those in which the inference leading to (13) is by
one of the rules F., Fj, .N, N.. The proofs for thse cases, which will follow
presently, depend on the following observations. The first is that the infer
ence

A,BII-O

A, Bv D II-OV D

can be justified in any of the systems thus:

A, B II- 0 v. A, D II- D v.
A, B II- 0 V D A, D II- 0 VD

A, Bv D II- OV D

(15)

The second is that where 0 is F, the analogous inference in an N formula
tion, viz.,

A,BII-

A, Bv D II- D

can be made, since Fj holds in any multiple N formulation, as follows:

A, BII- Fj
A, B II- D A, D II- D .v

A, Bv D II- D

(16)

The third observation is that we can suppose that the ~, 3 entering in the
following proofs are nonvoid, since otherwise the situation is trivial.

After these observations we proceed to the proofs for the new cases as
follows. Expressions in parentheses are to be omitted in dealing with N
formulations.

Suppose first that (13) is obtained by F.. Then ~ is F, 3 and the premise
is

1 In case the consequent of (13) is void, that of (14) is to be void also.
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By the hypothesis of the induction,

~ n-I F l V D

Now F i II- (F) follows by F. from the prime statement F i II- F i ; hence by (15)
or (16) we have

F i V D II- (F V)D

By the elimination theorem we can therefore obtain from the transformed
premise the conclusion

~II- (FV)D
"7hich is (14).

Next suppose (13) is obtained by Fj. Then the original inference is

~11-(F),3

~II-A,3

If F is present, the transformed inference is

XII-Fv D

~II-Av D

Now the statement F II- A follows from the prime statement F II- F by Fj.
Hence, by (15), we have

Fv D II- A V D

and therefore the transformed inference can be obtained by the elimination
theorem. If F is not present, the transformed inference is a special case of
V•.

If (13) is obtained by .N, the original inference in the FN formulation is

~ II- A, ~ ~,F II- ~

~, IAII-~

The transformed inference is

~ II- A V 0 ~,F II- 0

~,IA 11-0

This can be obtained thus:

~II-A vO

A II-A .N
A, I A II- F ~, F II- 0 ET

~,A, IA 11-0 ~,O, IA 11-0
------------------ .V

~, A V 0, I A II- 0 ET
~, IAII-O

In the N formulation the inference is

and the transformed inference is

~II-A vO

~'IA 11-0
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The demonstration is-since Fj holds whenever there is a multiple N system

A I~ A *N
A, IA I~ •
X,A, IAI~aFJ,*K

From this point on the argument is the same as before.
If (13) is obtained by N*, the original inference is

X, A I~ (F), 3
X I~ IA,3

If F is present, the transformed inference is

X, A I~ Fv D
~ I~ IA V D

Now F I~ I A can be obtained by N* from the quasi-prime stat.ement A,
F I~ F; hence, by (15),

Fv D I~ IA V D

From this and the transformed premise we obtain, by the elimination theorem,

X, A I~ I A V D (17)

If F is absent, we obtain (17) from the transformed premise by V*. Again,
from a prime statement and V*, we have

X,IA)~IAVD (18)

By the restrictions on N *, 3 is nonvoid only in systems where Nx is present. l

Therefore, from (17) and (18), we have

X I~ IA V D
which is (14) for this case.

If (13) is obtained by Nx, the original inference is

X, A I~ ~ X, I A I~ ~

X I~ ~

The transformed inference is

X, A I~ C X, I A I~ C

X I~ C

which is again valid by Nx.
This completes the proof of necessity.
Proof of Sufficiency. As in Sec. 5D5, it suffices to show that if (14) holds

in the singular system, then it holds in the multiple system, for the rest will
follow by the inversion theorem. In the case of LM, LJ, and LD, where
there are no rules peculiar to the singular systems, this finishes the argument.
In case the rule Px is postulated, the corresponding multiple inference can
be made in LCm , and hence in LEm and LKm , by the proof of Theorem 5D8.

This completes the proof of the theorem. Note that the necessity proof

1 It is left as an exercise to show that Nx is a derived rule in LEI' even though it is not
postulated (see Exercise 4).
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requires ET for the singular system; the sufficiency proof uses the inversion
theorem and, in case Px is present, also ET for the multiple system.

6. Deducibility questions. The question now to be considered is the
extent to which the deducibility theorems and other theorems of Sec. 5E, as
well as some in Sees. 5C and 5D which have not already been dealt with,
extend to the systems involving negation. Many of these theorems were
stated as general theorems applicable to L systems satisfying broad general
conditions. These theorems extend at once to systems with negation.
Others extend with slight changes.

In the following, not a great deal of attention is paid to LD. Details
about LD are, for the most part, left to the exercises.

Of the theorems in Sec. 5C, Theorems 5Cl, 5C2, 5C3, and 5C5 extend ,vith
out significant change. Theorem 5C4 requires only the additional case

A Ir A .N
A, I A Ir F N.
IA IrlA

Thus it is trivial that the theorems of Sec. 5C hold for all the formulations. l

The method of proof of the conlpleteness theorem of Sec. 5D6 can be
applied to either of the systems LEmCO) or LKm(.O), leading to the following:
Theorem 6. A necessary and sufficient condition that

~ Ir ID (19)

be an elementary theorem of LKm is that it .be tautologous with respect to all
valuations by 0-1 tables in which F is assigned the fixed value 0, and hence
I A has the value opposite to that of A,. for (19) to be an elementary theorem
of LEm , it is necessary and sufficient that it be tautologous with respect to all
0-1 valuations in which F is assigned either of the values 0 or 1, and hence
I A has either the value 1 or the value opposite to A.

The theorems as to the restriction of .K. and the elimination of • W • were
formulated in general terms in Chap. 5 (Theorems 5E6 to 5E8). They need
no further attention here. 2 For Formulation III we need a quasi-principal
constituent for .P and .N in LMm, LJm; for .P, but not for .N, in LDm;
and for none of the rules in LEm or LKm. The rule Fj can be made revers
ible by having a quasi-principal constituent. The rule F. does not concern
us when (5 is void.

More interesting is the question concerning the composition property and
properties connected with it. The possibilities in regard to dropping out of
components are as follows. Elementary constituents can be dropped by
r*, counteraxioms by F., instances of F by Fj, and compound constituents
by Px, Nx. This gives us the situation shown by the following theorem and
corollaries:
Theorem 7. Let the counteraxioms be elementary. Then all L formulations

of Sec. 1 which do not postulate either Nx or Px have the composition prop
erty with respect to compound constituents.

1 Corresponding to the different forms of .P, there are, of course, variants of .N.
These we shall not stop to investigate.

2 For LD some slight changes in the proof of Theorem 5E7 are necessary. It is neces
sary to treat Nx as a structural rule.
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Proof. The only constituents which can be dropped out by any rule are
F, subalterns for an instance of r*, and counteraxioms. Since these are all
elementary, the theorem is clear.
COROLLARY 7.1. If the counteraxioms are elementary, all the L systems of

Sec. 1 which do not postulate Px or Nx have the separation property. If
there are no counteraxioms, they have also the conservation property.
Proof. This follows by Theorem 7 and Theorems 5E2 and 5E3.1

COROLLARY 7.2. The N formulations of the systems LM1(.O), LJ1(.O) and all
the multiple systems over D have the composition I property without restric
tion.
Proof. The exceptional constituents which can be dropped out, as listed

in the proof of Theorem 7, do not exist in those formulations.
COROLLARY 7.3. The N formulations of LM1(D), LJ1(D), LJm(D), and

LKm(D) are decidable.
Proof. This follows from Corollary 7.2 and rrheorem 5E9.
For formulations involving F, we can go a little further, as shown by the

following theorem:
Theorem 8. Let the formulation be one containing F in which neither Px

nor Nx is postulated, and let the counteraxioms be elementary. If Fj is
postulated, let there be an effective process associating with each positive
proposition A and each counteraxiom F i' a deduction justifying the inference

(20)

for arbitrary parametric ~ and 3,. further, let no true auxiliary statement
contain F as constituent. Let Il be a regular demonstration r l' r 2' ••• ,

r n such that neither F nor negation occurs in any component of r n. Then
there is a demonstration Il' terminating in r n such that neither F nor negation
occurs in any statement of Il'.
Proof. If negation occurred in any statement of Il, then it would occur

in r n by Corollary 7.1. Hence no negation occurs in Il, and we have only to
consider the case that an F so occurs.

If an F occurred on the left in some r k' then it could never drop out later
and hence would occur in r n. Hence any such F must appear on the right.
In that case it could only be removed later by N* or Fj. Of these, the
former is impossible, since it ,,,ould introduce a negation. We may there
fore suppose that r k immediately precedes an application of Fj.

Let us consider the first such r k • Let the inference from r k to r k +1 be

~k H- F, 3k
~k Ir A, 3k

This A is positive, since if it contained any negation or a proper component
F, that would appear in r n. Let us look at the uppermost parametric

1 If F* is replaced by (9), the restriction in regard to the counteraxioms for the con
servation property can be dropped. Thus the argument applies in principle to cases
where t.he counteraxioms are elementary. Otherwise

F i II-F

is a counterexample for t he conservation property.
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ancestors of this F. Such an ancestor might conceivably be introduced as
principal constituent of some prime statement, by ~., by K., or by F.. A
prime statement of type (pI) is impossible since there would have to be an
F on the left. A prime statement of type (p2), or an introduction by ~., is
impossible, since F cannot be the consequent of an auxiliary statement.
Therefore all ancestors of the indicated F must be introduced by K. or F •.
In the former case the F can be replaced by A; this is true in the latter case
also since the inference (20) can be effectively justified. Thus all the ances
tors of the indicated F can be replaced by A.

This process can be continued until we arrive at a Il' not containing any
F's, Q.E.D.

Remark 1. The hypotheses made concerning the counteraxioms are con
sistent with the interpretation discussed in Sec. A3. For if Fj is postulated,
we have to do with absurdity. Ordinarily one would not expect counter
axioms in such a case; but if they are present, it is because we have some
way of knowing their absurdity, perhaps by an epitheoretic argument not
fornlulated in the system. (Compare the examples in Sec. A2.) Thus (20)
is a way of expressing the requirement that the counteraxioms be themselves
absurd. Again the requirement that no true auxiliary statement contain
F is essentially a requ:~'ement that F be an indeterminate, as was intended in
Sec. 1.

Remark 2. The requirement in regard to F may seem to contradict the
suggestion made in the proof of ET (Sec. 2) that rule F·. could be replaced
by an auxiliary statement of the form

(21)

Actually, the two situations do not conflict because there we were talking
about LDm and here about a situation in which Fj holds. However, the
present theorem would hold if we replaced F. by (21), provided that (21)
were the only auxiliary statements in which F is a conclusion, and (20)
holds for all F i •

COROLLARY 8.1. Let the counteraxioms satisfy the conditions of Theorem 8,
and let r be an elementary statement not containing negation nor any instance
of F. Then, if r is demonstrable in any formulation containing F of LM,
LJ, or LD, it is demonstrable in LA,. if it is demonstrable in such a formu
lation of LE or LK, it is demonstrable in LC.
Proof.! If r is demonstrable in any formulation, it is demonstrable in a

multiple formulation by Theorem 5. In that formulation there is a demon
stration not containing any F or any negation by Theorem 8. Hence the
demonstration is valid in LAm or LCm as the case nlay be, Q.E.D.
COROLLARY 8.2. Let the counteraxioms satisfy the conditions of Theorem 8,

and let r be an elementary statement all of whose constituents are elementary
and none of them is F. Then r is demonstrable in one of the systems of
Sec. 1 containing F if and only if some constituent in the consequent of r is
6-deducible fro'ln some of those in the antecedent.
Proof. By Corollary 8.1 and Theorem 5E4.

1 The proof does nor, consider LD, but the corollary is true. See [SLD] and Exercise 7
at the end of this sect ion.
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Remark 3. For N formulations the conclusions of these corollaries do not
hold. In fact,

F i H-

is a simple counterexample. But those conclusions hold, in particular, if
6 is D.

These theorems extend the separation and conservation theorems to
systems with negation. The following theorem is the analogue of Theorem
5E4.

Theorem 9. Let the counteraxioms be elementary, and let the formulation
contain F. Let r be an elementary theorem (19) of some formulation of
Sec. 1. Let fl be a demonstration of r. Let 9J1 be the set consisting of all
the constituents as in Theorem 5E4 and also of all propositions I F i where
F i is a counteraxiom used in an application of F. in fl. Let 9"l be as in
Theorem 5E4. Then

is an elementary theorem of the corresponding formulation over D.
The proof will be left as an exercise. It may be expedient to employ the

techniques of Sec. C.
In regard to proof tableaux, it seems expedient to use the multiple F for

mulations as a basis. l Since we are considering the systems over .0, the only
new rule will then be Fj, the distinctions between the systems having mostly
the nature of the singularity restri~tionson P. and its specializations. These
can be taken care of by making modifications of I as in Sec. 5E8. If Fj is
present, we need only add a rule for adding an F to the right side of the
datum. (For certain details see Sec. 7B6.)

EXERCISES

1. For what systems of negation is each of the following assertible?

(a)

(b)

(c)

(d)
(e)

(f)

(g)
(h)

(i)

A=>·IIA
IA => A·=>.IIA
IA=> A.=>A

IIA =>. A
IIA =>.IA => A

A=>·IA=>A

IIIA=>IA
II A =>: I A => A. => A

II(IIA => A)

2. Answer the same question for the following:

(a)

(b)
(c)

(d)

IA A IB.=>.I(AV B)

I(A A B) .=>. IA VIB
I(IA AlB) .=>. A VB

I(AV B) .=>. IA A.I B

1 The argument of Sec. 5E8 depended, at one point, on the impossibility of a void
consequent. This could probably be avoided by complicating the induction somewhat,
but this is not necessary In an F formulation.
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(e)

(f)
(g)

L SYSTEMS FOR NEGATION

II(A=> B).=>: IIA.=>jjB
IIA =>IIB.=>: jj(A => B)

A =>jA.=> B.=>: A=> B.=> B

279

holds in LD (LK), thenI

3. Consider the following properties in LDm:

(a) ~, A II- ~ &~, I A II- ID --+ ~ II- ID
(b) ~, IA II- ~ --+ ~ II- A, ID
(c) ~, I A II- A, 3 --+ ~ II- A, 3
(d) ~, A Il-jB, 3 --+ ~ II- A => I B, 3
[Here (a) is Nx.] On the basis of LM show that all the properties follow
from (a), that (b) and (c) are equivalent, and that (d) follows from (b), all
without use of ET; further, that (a) follows from (b) or (c) by ET. ·What
would be the situation in regard to ET for LD if N x were postulated in the
form (b), (c), or (d) instead of (a)? (Cf. footnotes in Sec. 3; also Kripke [DCn].)

4. Show that Nx is a derived rule in LEI.
5. Discuss in detail the analogues of Theorem 8 and its corollaries for the N

formulation.
6. Complete the proof of Theorem 9.
7. (Generalized Glivenko theorem.) If

~ II-ID

~,IID II-~

holds in LM (LJ). What can you say about

~II-IIID

([SLD] gives the proof in the singular case. For the original Gli~enko theorem see
Glivenko [PLB]. See also Kripke [DCn].)

8. Show that if ~, ID do not contain implication and

~ II-ID
holds in LE, then it holds in LD.

9. Let A be a proposition formed from the elementary propositions by A and I
only. Show that A is assertible in LK(D) only if it is assertible in LM(D). Hence
show that if A is any proposition of LK(D) and A * is a proposition obtained from A
by replacing-from within outward as in a definitional reduction-components of
the forms B => 0, B V 0, respectively, by I(B A 10), 1(1 B A 10), then

II- A => A * and II- A * => A in LK(D)
II- A in LK(D) +t Ir A * in LM(D)

(Gadel [IAZ]; cf. Schmidt [VAL, sec. 131], who refers to Kolmogorov [PTN].)
*10. What property analogous to the Glivenko theorem will hold for the system

LE1 (Cf. Exercises 5E21 and 7B8.)
*11. Does the situation in Exercise 9 generalize to the case of statements

~ II-ID

*12. Suppose that in LEm the B in multiple cases of P* were restricted to be IA.
What would be the relation of this system to LD1 Would ET hold for it1

*13. Suppose that an elementary statement r holds in both LD (or perhaps LE)
and LJ. Does .it necessarily hold in LM1

1 Here I~ is the prosequence formed from ~ by negating all its constituents.
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(1)

14. Show that in LJ there are no "quasi definitions" (cf. Sec. 6D) of the form

AoBU-G&GU-AoB

where A and B are elementary; 0 is one of the operations:::>, A, and V; and G is a
proposition constructed from the remaining operations; likewise, ifG is positive, there
is no elementary statement of the form

GII-IA

(Wajsberg [UAK, sec. 10]; McKinsey [PIP].)

c. OTHER FORMULATIONS OF NEGATION

This section will be devoted to the study of the T and H systems of nega
tion and to the algebraic properties of nonclassical negation. Properties
peculiar to the classical systenl are deferred to Sec. D. Since the preceding
formulations solve the problem of discovering demonstrations, the emphasis
here is on the axiomatization.

1. The T formulations of negation. The T formulations of the various
systems of negation are defined as those formed by adjoining to TA or TC
the appropriate ones of the following rules.

Ne AlA Ni [A]
-F- F

IA
Fi Fi~

F
Nj F

A
Nd [IA]

A
A

Nk IIA
-A-

The different systems are defined according to the following scheme:

TM = TA + Ne + Ni
TJ = TM + Nj
TD = TM + Nd
TE = TC + Ne + Ni
TK = TM + Nj + Nd = TM + Nk = TE + Nj

Here the first formulation of TK is taken as definition, and the others will be
shown to be equivalent to it.

It will now be shown that these T systems are equivalent to the corre
sponding L systems of the singular FN formulations. In this we use the
same devices for translating from the L systems to the T systems, and vice
versa, as in Sec. 5D4. The statement

~ u- T B (2)
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is to mean that there is a T proof of B all of whose uncanceled premises appear
as constituents in~. The T rules can then be interpreted as permitting
inferences between statements of the form (2) by supposing that the uncan
celed premises over the inference consist of the propositions of ~ plus those
indicated; thus any premise A represents ~ U_T A and any premise

[A]
B

represents ~, A U- B. To distinguish from (2) the elementary statements of
the L system, the latter are written, when such explicitness is necessary,
thus:

(3)

We regard (3) as the L transform of (2) and (2) as the T transform of (3).
Likewise, the L transform of a T rule is the rule obtained by replacing all its
statements (premises and conclusion) by their L transforms, and the T
transform of an L rule is defined similarly.
Theorem 1. If (3) holds in an L system, then (2) holds in the corresponding

T system.
Proof. I t is only necessary to add to the proof of Sec. 5D4 a demonstra

tion that the T transforms of the L rules F., Fj, .N., and Nx are valid in
ferences of the T system. Now the T transforms of the rules F., Fj, N.,
and Nx1, respectively, are the T rules Fi, Nj, Ni, and Nd, respectively, and
hence they are valid in the appropriate l' system. The same is shown for
.N as follo\\rs:

This completes the proof.
Theorem 2. If (2) holds in a T system, then (3) holds in the corresponding

L system.
Proof. As in Theorem 1, it is here only necessary to add to the proof of

Theorem 5D6 the induction step for the L transforms of Fi, Fj, Ne, Ni, and
Nd. But the L transforms of Fi, Nj, Ni, and Nd are precisely the rules F.,
Fj, N., and Nx, respectively. The L transform of Ne is established thus:

~, I A II- F·
N ~ II- I A ET

~ n· F

This completes the proof.
2. Alternative formulations. Besides the standard T formulations

given in Sec. 1, there are certain variants of these formulations which raise
questions of some interest. Some of these will be considered here; others
are given in the exercises.

The first such question, already mentioned in Sec. 1, is the existence of
various alternative forms of TK.
1 Here and in proof of Theorem 2, this is the old form of Xx as in Exercise 6B 3(b).
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Theorem 3. As addition to TM, the rule Nk is equivalent to the conjunction
of Nj and Nd and entails Pk.
Proof. Derivation of Nk:

2
IIA lANe

F N ·
A J
-Nd-2
A

Derivation of Nj :

I ;A Nit
--Nk

A
Derivation of Nd:

[IA]
A p. 1

IA=>A 1 IA
A Pe

---Ne
_F__

Ni
_
1

IIA
Nk

A
Derivation of Pk:

j t
IA A Ne

F N.-- J
_B_ Pi_2
A => B H fPkA po .

A Nd-l

The result about Pk also follows from the fact that Pk is the T translation
of Px, and Px is valid in LC, and hence in LK, by Theorem 5D8.

Another result of this nature concerns the formulation of negation without
F. The principal difficulty here is that there is no T transform of an L
statement \\'ith void consequent. However, we saw in Sec. B3 that the
statements

~II- ~II-IT

where T is some assertible proposition, are equivalent. Thus we can re
place F as consequent by I T, and F as premise by T, I T. This, after
some modification, leads to the following:
Theorem 4. The rules Ne and Ni together are equivalent to the single rule

Nm [A]
B IB

IA

t We here use a weakened form of Ni in which the premise [I A], which is discharged,
is not actually used in the proof.
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Proof. Derivation of Nm:

Derivation of Ne:
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1
A

B IB Hp
F Ne

--Ni-l
IA

2 3
I~ T

Derivation of Ni:

1

B IB
IT

i
A

Nm-3

1
T IT

IA Nm-2

Here the demonstration of '1' can be placed over T, and the result gives I A
as consequence of A U- TIT.

3. H systems. Following the pattern of Sec. 5B let us define an H
system as an assertional system admitting the propositions ~ (Sec. 5C3b)
as obs and having Pe (Le., modus ponens) as its sole inferential rule. For
the assertion predicate (the '~' of Sec. 2DI) of an H system, we may use,
when great explicitness is desired, the prefix '~H', and we may extend to
that prefix the secondary use of '~' to indicate deducibility as in Sec. 2D3.
Associated with each such H system is a corresponding lattice, or E system;
this association is defined in Sec. 5Al. The H system whose assertions are
the same as those of LM will be called the system HM, and its corresponding
lattice will be EM; likewise, the Hand E systems associated with LJ "\\?ill be
HJ, EJ, respectively; etc.

A set of prime assertions for an H system will be a set of assertions of the
system such that every assertion can be obtained from those in the set by a
deduction using Pee They correspond to the axiomatic propositions of the
H system in the sense of Sec. 2DI, but the new term is used to avoid confusion
with the axioms of Sec. 5C3d. A set of prime assertions will be said to be
separated if every assertion B of the system can be obtained by Pe from the
prime assertions which contain, besides implication, only operations actually
present in B.

If we have a system with negation, a separated set of prime assertions will
consist of a separated set for the positive part, HA or He, together with
certain schemes which contain only implication and negation (including F as
a form of negation). Conversely, any set of propositions of that character
will form, when so adjoined to a separated set for the positive system, a
separated set for the system in question, provided only that they are asser
tions of the latter system and are sufficient, in combination with the former
system, to validate the T rules of Secs. 2 and 3. In fact, by Theorems B7
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and B8, any assertion can be established in the corresponding L systems
using only rules concerning the operations which actually occur. The
equivalence theorems show that the translation of this L demonstration into
an H demonstration can be made by the use of prime assertions satisfying
the conditions of separation.

In the discussion of H systems it will suffice, in principle, to consider only
the case where the underlying system (5 is D. This is the case of primary
interest; besides, the general case can be reduced to this one by Theorem B9.

4. The system HM. If we consider the F formulation of LM, it is clear
that its rules, since F. is now vacuous, are precisely the same as those of LA.
Negation is defined by (1) of Sec. B, so that HM will now be simply a defini
tional extens10n of HA. Since we have R p in LA, this definitional extension
is the same as what we should get by adjoining to HA, as prime assertions
schemes,

~ IA .:::>. A :::> F
(4)

~A:::> F.:::>.IA

Thus we should get a separated set of prime assertions by adjoining (4) to a
separated set for HA.

For the N formulation we have seen that special interest attaches to propo
sitions containing only implication and negation. Every such assertion
is obtained from an assertion of pure implication of HA by specializing one
of its atoms to be F and applying (4). It is convenient to use 'NB', 'NC',
etc., for propositions formed in this way from 'PB', 'PC', etc. The following
are some examples (using the definition of ~ in Sec. 5A1)1:

NB I B ~ A :::> B .:::>. I A
NB' A :::> B ~ I B :::> I A
NC A :::> I B ~ B :::> I A
NS A :::> I#B ~ A :::> B.:::> 1 A
NW A:::> I A ~I A
NI' A ~II A
NK(l) I A ~ A :::> I B

All of these are true statements concerning LM.
Clearly, NC in combination with Pe is sufficient to justify the rule Nm.

Further, since by PK
B ~A:::> B

one can derive NC from NS by Rp; hence the same is true for NS.
This discussion proves the following:

Theorem 5. A separated set of prime statements for HM can be formed by
adjoining to such a set for HA either the schemes (4) or NC or NS.

1 All but the lastl two of these are in the list preceding the exercises to Sec. 5B. The
last two are related to the combinators I' ~ CI, K(l) ~ BK; the corresponding P propo
sitions are

PI'

PK(l)

A :::>:A:::> B.:::> B
A:::>C.:::>.A:::>.B:::>C
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The formulation obtained by adjoining NC to the standard formulation of
HA will be taken as the standard formulation of HM.

Various other possibilities for prime propositions for HM are given in the
exercises. Note that since HM is a subset of HE, the necessary condition
for validity in HE can be applied to HM (see Sec. 6).

The scheme NB' is not sufficient alone to generate HM. t Hence the
algebra formed by adjoining this scheme to HA would be of some interest.
The scheme expresses the fact that negation is a dual endomorphism with
respect to inclusion. There should be interesting applications for this
weaker algebra. But we do not reach it by the semantical approach of
Sec. A3.

5. The intuitionistic propositional algebra HJ. The system LM
becomes the intuitionistic system LJ if we adjoin Fj. This, in turn, is equiv
alent to the T rule Nj, which could be justified by

F~A

This in turn is equivalent to efq (the "ex falso quodlibet")

(5)

(6)

Theorem 6. A separated set of prime assertions for HJ is formed by adjoining
to a similar set for HM either of the schemes (5), (6).
The proof is similar to that of Theorem 5.
The set formed by adjoining (6) to the standard formulation of HM will

be called the standard formulation of HJ.
The property (5) shows that F is a zero element in the lattice EJ. It is

therefore appropriate to use '0' for 'F'. Then (6) gives, by Pl'

A A (I A) ~ 0 (7)

Thus 1 A is sometimes called a "pseudocomplement" of A, and EJ is called
a "pseudocomplemented lattice." A pseudocomplement is not a true com
plenlent because of failure of the law

which is a form of the law of excluded middle. The lattice EJ has topo
logical applications where the propositions are open sets and the pseudocom
plement is the interior of the complement. The dual lattice is a lattice of
closed subsets of a fixed "universe."

The following half of the "definition" of material implication of "Principia
Mathematica" is true in EJ:

IAvB~A:::>B (8)

The converse does not hold.
6. The systems HD and HE. The strict system HD is formed by

adjoining to HM a law of excluded middle. This, of course, can be for
mulated as

t See Exerci~e 4

I-AV 1 A (9)
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Since A v"1 A contains alternation, this cannot fulfill the requirement of
separateness. However, the scheme

(10)

justifies the rule Nd, and hence is sufficient in combination with HM to give
all assertions of HD. If it is adjoined to a standard formulation of HM, the
formulation will be called the standard formulation oj HD.
Theorem 7. A separated set of prirne assertions for the system HD is obtained

by adjoining (10) to such a set for HM.
In the system HD the converse of (8), viz.,

A=>B~iAvB (11)

is valid.
No applications are known for HD, and the system has been little studied.

Johansson, who was the first to consider it, suggested that it formed a
natural system of strict implication, but this has not been worKed out.

The system HE is related to HC in the same way as HM is to RA. Hence,
if we adjoin Pc to a separated set for HM, we shall have a set which is still a
separated set, since Pc involves no operations except implication and is
sufficient for HC. Such a set may also be formed by adjoining any of the
sets of Theorem 5 to HC. The standard formulation of HE will be taken as
that formed by adjoining Pc to the standard HM or NC to the standard HC.

Note that both HM and HD are subsystems of HE. The criterion of
Theorem B6, which can sometimes show nondemonstrability in HE very
quickly, "rill then show nondemonstrability in these other systems also.

7. The system HK. It follows by Theorem 3 that in the system HK we
have the features of HJ and HD simultaneously. We can therefore form a
separated set of prime statements for HK by adjoining both (6) and (10) to
such a set for HM. Such a formulation would have the property that if we
omitted (6) we should have HD, and if we omitted (10) we should have HJ,
whereas if we omitted bQth we should have HM. The formulation so ob
tained from a standard formulation of HM will be called the 8tandard for
mulation of HK.

There are, however, many other ways of formulating HK. Reserving
until Sec. D a study of the algebraic nature of HK, we note here some of the
simpler properties which are parallel to the developments treated elsewhere
in this section.

In the system HK we have both (8) and (11), and hence, using '=' as in
Sec. 5AI, we have

A=>B=iAvB

Furthermore, since Nk is derivable in TK, the statement

(12)

(13)

is a theorem of RK; since the converse holds even in HM (by NI'), we have

(14)
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Again consider the four principles of contraposition:

A:::>B:5:IB:::>IA
A:::>IB~B:::>IA

IA:::>B:5:IB:::>A
IA:::>IB::;:B:::>A

(15)

(16)

(17)

(IR)

These are all equivalent in HK by virtue of (14). But whereas (15) is NB'
and (16) is NC, both of which hold in HM, (17) and (18) fail in HE.

The statement (13) justifies the rul,e Nk of Sec. 1, and hence by Theorenl :1
is sufficient to generate HK if adjoined to HM. The statement (18) is suffi
cient to generate the whole of HK when adjoined to HA. This can be shown
as follo\vs:

byPK
by (18)

by (6), Rp

by (10)

Thus we have (6). Hence, putting I A for A and I B for B,

IIA:5:IA:::>IB
:5: B :::> A by (18)

Here if we take B to beII A, we have (13) by P\V. Applying PB' to
(13), we have

A :::>IB.:5:.IIA :::>IB
::;: B :::> I A by (18)

which is NC. Thus we have NC and (13), and hence all of HK.
Summing up, ,ve have the following:

Theorem 8. The system HK contains all the statements (12) to (18) and
includes HC. A set of prime assertions for it can be formed by adjoining (6)
and (10) to HM, (13) to HM, or (18) to HA. A separated set can be formed
by adjoining (6) to one for HE.
Ptoof. I t is only necessary to add to the preliminary discussion a proof of

the inclusion of He. This follows from Theorem 3, but a direct proof that
Pc holds is easy, as follows:

A :::> B. :::> A :5: I A :::> A

~A

EXERCISES

1. Show that any of the following schemes or combinations of schemes are equiva-
lent, on the basis of HA, to NC, and thus suffice to generate HM from HA:

(a) NB',NW
(b) NB', NI'
(c) NW, NK(1)

([LLA], Theorem IV 1.)
2. Show that NW and efq [that is, (6)] suffice to generate HJ from HA. ([LLA],

Theorem IV 2.)
3. Show that
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is equivalent, in the presence of HM, to efq. Hence it suffices, when adjoined to HM,
in order to get HJ. (Schmidt [VAL, p. 345]. For the history see Hermes and
Scholz [MLg, p. 37]; the result is attributed to Bernays.)

4. Find independence examples showing that neither NB' nor NW alone is suffi
cient to generate HM. The same is true for NKU ) since it is a consequence of NB'.
([TFD], Theorem 9, for NW; for NB' see Hilbert and Bernays [GLM.I], p. 76.)

5. Verify the statements in the text concerning (8) and (11).
6. The generalized Glivenko theorem (Exercise B5) can be stated in terms of H

systems thus: A is an assertion of HD (or HK) only if IA :::> A is an assertion of
HM (or HJ). Prove this by deductive induction in the H systems. ([LLA], sec.
IV5.)

7. Discuss the results of Exercises B7 to B9 from the standpoint of H systems.
8. Show that PB', (10), and

l-A :::>.IA:::> B

form a sufficient set of axiom schemes for the part of HK which contains implication
and negation only. [Church [IML2, exercise 29.2]; originally due to Lukasiewicz.
I do not know what the state of affairs is if the new axiom scheme is replaced by (6).]

9. Show that the scheme NC in the standard formulation of HK is redundant,
but that if (10) is replaced by either of the schemes

(a) l-A:::>IA.:::> A.:::> A
(b) l-A :::>1 A .:::> B.:::>. A:::> B.:::> B

the resulting set of schemes gives an independent (but not separated) set of prime
assertions for HK. Show further that (a) is equivalent to (10), relative to HM, but
(b) is not. (On the history of these schemes see Hermes and Scholz [MLg, footnote
53]. On the independence, cf. Exercise 11.)

10. Show that the standard formulation of HE is such that by adjoining efq one
has an independent and separated set for HK. (Kanger [NPP].)

*11. What sort of systems would one get if one admitted the possibility that jA
was always false, in the same sense that LM, LD, LE admit the possibility (see
Theorem B6) that IA is always true? In such a case NB' and (17) would hold,
but not (16) or (18). What if both of these possibilities were admitted? Would
the system then coincide with that formed by adjoining NB' alone to some positive
system? How would such systems be formulated in the various formulations?
What could you say if IA has always the same value as A?

12. Suppose we have an H system, call it HS, which is an (axiomatic) extension of
HM such that whenever A is an assertion of HK, IA :::> A is an assertion of HS.
Show that HS is an extension of HJ. (Porte [PCP], but his proof is erroneous-see
the review in Journal of Symbolic Logic. The theorem as here stated is constructive.)

13. Show directly that

inLK
is equivalent to

inHK

D. TECHNIQUE OF CLASSICAL NEGATION

The system of classical negation (HK) is very much further developed
than the other systems. Some of the features of this development will be
considered in this section. The treatment will center around the concept of
a Boolean algebra, which will be defined as a complemented distributive
lattice. This notion will be introduced in Sec. 1 and shown to be equivalent
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to related notions developed previously, viz., classical subtractive and im
plicative lattices, Boolean rings, the system EK, and tautological inter
pretations. In Sec. 2, entitled "Quasi definitions," will be considered
elementary theorems which have the effect of decreasing the number of
primitive operations, together with formulations based on reduced sets of
such operations. The remaining subsections will develop the standard
technique of Boolean algebra, including representations, normal forms,
elinlination, solution of equations, etc. However, in keeping with the aim
of this book, only finitary properties \\'ill be treated; the rather extensive
nonfinitary theory of Boolean algebras, including the general case of the
"representation theorem," is beyond the scope of this book.

The notation of this section will be modified to fit standard procedures.
Thus negation will generally be designated by priming, and the meet opera
tions by simple juxtaposition; and lower-case let.ters will occasionally be
used for 0 bs.

1. Boolean algebras. Given a lattice L with a zero element 0 and a
unit element 1, an ob A' will be said to be a complement of an ob A, just
when

A A A' = 0

A v A' = 1

(1)

(2)

are both true. A lattice in which every ob has at least one complement will
be called a complemented lattice. A complemented distributive lattice will
be called a Boolean algebra.
Theorem 1. A classical subtractive lattice with unit in which negation is so

deftned that

A' = 1 - A (3)

is a Boolean algebra. So also is a classical implicative lattice with zero and
negation such that

A' = A => 0 (4)

Proof. Let L be a classical subtractive lattice with unit. Then L is
distributive by Theorem 4C5. Fronl (3) we have (1) and (2) thus:

AA' = A(I - A) = 0

1 :::;: A V (1 - A) = A V A'
by (3) of Sec. 4D

by (-h

This proves the first part of the theorem. The second part follows by
duality.
COROLLARY 1.1. The algebra EK is a Boolean algebra.

Proof. In the F formulation of LK, negation is defined by

IA=:=A=>F

Since F is the zero of the system by Fj, this is the same as (4). Thus EK
can be generated by adding 0 and (4) to EC, which is a classical implicative
lattice. Thus the theorem applies, Q.E.D.
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Theorem 2. In every Boolean algebra the complement is unique. Moreover,
the following hold for all obs A, B:

A" =A (5)
A = ABv AB' (6)

A ~ B ~ AB' = 0 (7)

A ~ B~B' ~A' (8)

Proof. In a distributive lattice, complements are unique, by Corollary
4B9.1. For (1) and (2), one concludes by AC and VC that A is a complement
of A'. Since A" also is, we have (5). Again, by (2) and the distributive law,

A = A(BV B') = ABv AB'

which proves (6). To prove (7), note first that, by Rp and (1),

A ~ B --+ AB' ~ BB' ~ 0
Conversely, by (6),

AB' ~ 0 --+ A = AB
--+A~B

From this we derive (8) thus:

A ~ B --+ AB' = 0

--+ A"B' = 0

--+ B' ~ A'

(by AK')

by (7)

by (5)

by (7)

Theorem 3. Let L be a lattice with 0, 1 and having a negation operation such
that (1) and

A ~ABvAB'

are satisfied. Let subtraction be defined in L in such a way that

A - B = AB'

(9)

(10)

(11)

Then L is simultaneously a Boolean algebra and a classical subtractive
lattice. Moreover, (3) holds.
Proof. The property (- h follows at once from (9). We also have

A - B ~ A by AK
B(A - B) = 0 by (1)

By (9) we have 4D(7), and hence ( -)2 as in proof of Theorem 4D2. Then (3)
holds since it is a special case of (10). The rest follows by Theorem 1.

COROLLARY 3.1. A Boolean algebra with a subtraction satisfying (10) is a
classical subtractive lattice with unit, such that (3) holds.
Proof. The condition (9) follows from (6) by AK' and Rp.

COROLLARY 3.2. A Boolean algebra with an implication satisfying

A :::> B = A' vB

is a classical implicative lattice in which (4) holds.
Proof. This is the dual of Corollary 3.1.

Theorem 4. If a Boolean algebra is also a subtractive lattice, then it is a
classicalsubtra,ctive lattice in which (3) and (10) hold. Likewise, if a Boolean
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algebra is an implicative lattice, then it is a classical implicative lattice in
which (4) and (11) hold.
Proof. Since the two halves of this theorem are dual to each other, it will

suffice to prove the first half.
Suppose that L is a Boolean algebra which is also a subtractive lattice.

Let C == AB'. Then

BC = 0

A=ABvC~BvC

A - B ~C

by (1)
by (6), AK', Rp

by (-)2

Conversely, since C ~ A, (- ) 1 holds, the lattice is distributive, and
BC =·0,

C = CA ~ C(B V (A - B)) = C(A - B) ~ A - B

Thus (10) holds. The rest follows by Corollary 3.1.
Theorem 5. A Boolean algebra becomes a Boolean ring with unit if ring

addition is defined by

A + B = A B' V A'B (12)

and ring multiplication and the ring 0, 1 are identified with the lattice meet
0, 1, respectively. Conversely, a Boolean ring with unit becomes a Boolean
algebra if

A V B = A + B + AB
A' = 1 + A

(13)
(14)

Proof. This theorem is a composite of Theorem 1, Corollary 3.1, and
Theorem 4D4. If we adjoin (10), then by the corollary we have a classical
subtractive lattice, and (12) becomes condition (i) of Theorem 4D4.1 Con
versely, if we have (13) and a suitable definition of A - B, we have a classical
subtractive lattice in which (3) is the same as (14); we then have a Boolean
algebra by Theorem 1, Q.E.D.

Theorem 6. A necessary and sufficient condition that

A=B (15)

hold in a general Boolean algebra is that A and B have the same value in every
evaluation by 0-1 tables; the same condition for

A~B (16)

is that B have the value 1 in every evaluation in which A has the value 1.
Proof. If (15) and (16) hold in a general Boolean algebra, then they hold

in EK(.o) by Corollary 1.1; the converse is clear since no special assumptions
are made in EK(.o). Thus the theorem is a consequence of Theorem B6
and the equivalence between LA and EA (Sees. C, 5D4, 5B5), Q.E.D.

Although this theorem gives a theoretical solution to the decision problem
for a general Boolean algebra, it is not always the fastest method. If the
number of indeterminates is n, then there are 2n possibilities to be considered.

1 The condition (iii) of Theorem 4D4 can be ignored here. It was introduced in Sec.
4D2 solely to subsume the notion of Boolean ring under the general concept of a rjng;
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The method of reduction by translating into a Boolean ring with unit, multi
plying out, and adding modulo 2 is faster; so also is Beth's method of proof
tableaux.

The 0-1 tables for the Boolean operations considered here are given in
Table 1.

TABLE 1. TRUTH TABLES FOR VARIOUS FUNCTIONS

A B AAB AVB A-B A=>B A+B AV)B AlB A'
-- --

I I 1 1 0 1 0 J I 0 0
1 0 0 1 1 0 1 0 0 0
0 1 0 1 0 1 1 0 0 1
0 0 0 0 0 1 0 1 1 1

2. Quasi definitions. In (10), (11), (12), and (13) of Sec. 1 we have
examples of equations of the following type:

A 0 B =f(A,B) (17)

in which the infix '0' stands for a binary operation and 'f (-1' - 2)' for
a construction which is independent of that operation. In (3), (4), and (14)
we have equations of similar character except that the operation in question
is a unary operation. Such equations will be called quasi definitions,. a
particular quasi definition will be said to be a quasi definition of the principal
operation on the left, and that operation will be said to be quasi-definable by
the equation. In partially ordered presentations a quasi definition consists,
of course, in the conjunction of the elementary statements; e.g., for (17)
these would be

A 0 B ~f(A,B)

f(A,B) ~AoB

When none of the operations of a certain set of operations is quasi-definable
in terms of the others, the operations \\"ill be said to be independent.

When an operation is quasi-definable, one would expect that the opera
tion could be eliminated in the sense that to every elementary theorem con
taining it there would be an equivalent elementary theorem which was free
from it. However, to draw this conclusion from the existence of a quasi
definition requires R p. In the case of a definition (in which case the infix
'==:' would ordinarily be used), Rp is satisfied automatically, but in other
cases it has to be established. In the cases considered up to now, and in
most of those considered later, Rp holds, and consequently the distinction
between a definition and a quasi definition can be ignored; but there are
exceptional cases in which the derivation of Rp is an essential difficulty.

In some, at least, of the previous systems the operations were independent.!
But this is not the case in HK, or even in He. The rest of this subsection
"rill be centered on such quasi definitions for the operations of Boolean
algebra in ternlS of one another or in terms of extraneous operations. There
will be included a sketch of ways in which Boolean algebra can,be formulated
in terms of a restricted list of primitive operations.

I See Exercise ll14.
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We may as well begin with a recapitulation,l from the present point of
view, of the results of Sec. 1.

Theorem 7. With respect to the quasi definitions in Table 2, the following
systems are equivalent: Boolean algebra, a classical subtractive lattice with
unit, a classical implicative lattice with zero, a Boolean ring with unit, and a
system formed by adding a zero to the dual of a Boolean ring.

TABLE 2. QUASI DEFINITIONSt

Opera-
Boolean algebra

Subtractivo Implicative Boolean Dual Boolean
tion lattice lattice ring ring

AAB A VI B VI (A V B)
AvB A + B+ AB
A-B AB' [(A::> B)'] A+ AB AVBVlBVtO
A::>B A'VB [(A - B)'] 1 + A + AB AVBVtB
A+B AB'VA'B (A - B) V (B - A) [(A Vt B)'] AVtBVtO
AVtB (A V B')(A' V B) [(A + B)'] (A::> B)(B::> A) 1+ A+ B

A' I-A A::> 0 1+ A A Vt 0

t Those in square brackets are not given in full, but require reference to other lines in the same column.

Let us now turn to the proper business of this subsection.
The property (8), in combination with (5), expresses the fact that negation

is a one-to-one mapping of a Boolean algebra on its dual. Such a corre
spondence is called a dual automorphism. The equations of the following
theorem are known as DeMorgan formulas. 2

Theorem 8. In a Boolean algebra negation is a dual automorphism. The
following are theorem schemes:

and the quasi definitions

(A A B)' = A' V B'
(A V B)' = A I A B '

A A B = (A I vB')'

A V B = (A' A B')'

(18)

(19)

(20)

(21)
also hold.
Proof. These follow immediately from the automorphism property by

methods of modern algebra. They can also be verified by Theorem 6.
Perhaps quicker than this is the method of transforming into a Boolean
ring, thus:

A'v B' = (1 + A) + (1 + B) + (1 + A)(I + B)
= A + B + 1 + A + B + AB = 1 + AB = (AB)'

A' A B' = (1 + A)(I + B) = 1 + A + B + AB = (A V B)'

Of course, (20) and (21) follow from (18) and (19) by negating both sides and
using (5).

COROLLARY 8.1. I n a Boolean algebra one can form from an ob A an ob equal
to A' as follows. One forms first the ob AD, which corresponds to A by

1 The recapitulation misses certain details which appear in Sec. 1 and adds some quasi
definitions not considered there. Thus Theorem 7 is not quite the same as the con
junction of Theorems I to 5.

2 The term is customary despite its historical inaccuracy. According to BochenRki
[FLg], thp formulas were known in the Middle Ages.
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duality (inte1"changing A and V, 0 and 1), and then in A D replaces each atom
E (other than 0 and 1) by E'.
This is established by structural induction, moving the negation toward

the interior by (18) and (19).
This theorem and corollary show that the principle of duality holds for

Boolean algebra in a stronger sense than for a lattice. In the latter case, if
r is an elementary theorem and r D its dual, then r --+ r D is an admissible
rule, but here one can pass from r to r D provided one can substitute for the
indeterminates. For let r be

A~B

Then by (8) we have
B' ~A'

By Corollary 8.1 one can convert A', B', respectively, into AD, BD by sub
stitutions of the indeterminates and, possibly, applications of (5).

The following theorem shows that one can define all operations in terms
of :::> and negation.
Theorem 9.1 The quasi definitions

A A B = (A :::> B')'
AVB=A:::>B.:::>B

hold in EK; the second one, even in EC.
Proof. This follows from the following theorems:

A A B II- I (A :::> I B)
I (A :::> I B) II- A A B

A V B II- A :::> B .:::> B

A :::> B .:::> B II- A V B

(22)

(23)

These hold in LM, LK, LA, and LC, respectively.
These theorems show that in HK all operations are quasi-definable in

terms of negation and anyone of the three binary operations A, V, :::>. It is
possible to define all these operations in terms of a single binary operation.
This is shown as follows:
Theorem 10. If

A IB == (A A B)' (24)

then the following quasi definitions in terms of this operation as the sole primi
tive operation hold:

A' =AIA
A A B = (A IB)'
A V B = A' IB'

A :::> B = A IB'

(25)

Proof. See Theorem 6.
This theorem is attributed to Sheffer [SFI], and the new operation is called

the Sheffer stroke function. Someone has recently discovered that the idea
occurs in the work of Peirce, but this apparently was not known when
Sheffer's paper appeared. (See Church [IML 2], note 207.) Some logicians

1 [LLA], Theorem, IV 10.
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consider the idea'a great discovery (e.g., see the introduction to Whitehead
and Russell [PMt.12]), others a mere curiosity (e.g., Hilbert and Ackermann
[GZT], sec. 12).

The existence of quasi definitions indicates the possibility of formulating
the algebra in terms of a reduced set of operations, using the quasi definitions
to introduce the others. There is a great variety of such formulations, and
it is not possible to consider them all here.

That a formulation in terms of P and N alone is possible may be seen as
follows. The axiom schemes for A and V in HK remain tautologous when
the operations are replaced by their quasi definienda by (22) and (23). By
the separation theorem, these are deducible in that part of HC which con
tains only implication. Hence one needs to adjoin to HC axiom schemes of
the type considered in Sec. C7. As shown there, one can make such addi
tions to absolute implication. The very first assertional formulation, that
of Frege, was of that character. He had six axiom schemes; three of these,
of which one was redundant, were for absolute implication; to these were
added NB', NI', and (13) of Sec. C. This has since been abbreviated. A
system of three axiom schemes is formed by adjoining to PK, PS the scheme

1-1 A :::> 1 B .:::>. B :::> A

Another similar system is that of .£ukasiewicz, consisting of PB' and

I-IA:::> A.:::> A
I-A :::>.IA:::> B

Systems with a single axiom scheme are known.
The formulation of Whitehead and Russell [PMt] was in terms of V and

N. After eliminating a redundancy (cf. the remark in Sec. 4S1), the axiom
schemes are (see also Sec. 4S1):

Taut
Perm
Simp
Sum

I-A:::>. AvA
I-A vB.:::>. Bv A

f-A:::> Av B
I- A :::> B :::>: 0 V A .:::>. 0 V B

These together with the quasi definitions (11) and (20) suffice for the whole of
HK. Note that this gives eight axiom schemes; further, it is necessary to
establish Rp. A lattice formulation in terms of these primitives is given in
Huntington [SIP], [NSP]; these take equality and Rp for granted.

The schemes!

I-A:::> AA
I-AB:::> A
I-(AB)':::> (BA)'
I- A :::> B .:::>: (OB)' :::> (OA)'

with the quasi definition (21) and

A :::> B = (AB')'

1 [LLA], p. 114.

(26)

(27)
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form a set in terms of A and N. The first formulation of that sort was given
by Sobocinski. Rosser [LMt, chap. 4] introduces a twist into the fourth
axiom by which he is able to dispense with the third. For other formula
tions of this sort see Porte [SCP].

3. Finite interpretations. The preceding subsection has been con
cerned with formulations of Boolean algebra in general. We shall now deal
with regular interpretations (Sec. 5A4) of Boolean algebras; this will cause us
to be interested in Boolean algebras of a more special nature.

In this connection there is some conflict of terminology between that \vhich
has been used here up to now and that which is current in regard to Boolean
algebra. It is therefore necessary to devote some space to clarification of
the terminological questions.

The notion of "regular interpretation" was introduced in Sec. 5A4, and
also the idea of "element" in connection with it. It is important not to
confuse this notion of element with that of ob. Thus, if E1 and E 2 are primi
tive obs, the obs E1 :::> E 2' Ei V E 2' E 2 V Ei, E~ :::> Ei, (EIE~)' constitute
five distinct obs, but they all correspond to the same element. It is never
theless permissible (cf. Sec. 5A4) to use the same symbol for an element as
for the ob to which it is associated, and thus to say that the above five obs are
the same element; when we do this, and say, for example, "the element
E1 :::> E 2," what we have to say will apply equally well to E~ V E 2 , but when
we say "the ob E1 :::> E 2'" it will not.

In Sec. 2C3 the term 'atom' was used for the primitive 'ob of an ob system.
This term was appropriate because these obs precede in the order of construc
tion. This usage, however, conflicts with one which has become common in
connection with Boolean algebra. In that usage an atom is a nonnull ele
ment which is preceded (in the ordering ~ of the algebra) by no elements
distinct from itself except the 0 element. In order to avoid using 'atom' in
two senses, I shall, following Birkhoff [LTh], use 'point' in the sense of
'atomic element'. Thus, if the infix 'i=' means that the associated elements
are (contensively) distinct~ a point is an element U such that

(28a)
and for all A,

A i= ,0 & A ~ U --+ A = U (28b)

A counterpoint of a Boolean algebra is now defined as an element which is
the dual of a point; i.e., it is an element U such that

and for all A,
Ui=l

U~A&Ai=U--+A=l

(29)

(30)

A finite Boolean algebra is one with a finite number of elements.
In a finite Boolean algebra every nonzero element contains at least one

point and is the join of all the points which it contains. For let A be an
element. If among the finitely many elements distinct fronl A and 0 there
is none ~ A, then A is a point. If not, let Al < A, Al i= A, Al i= O. Then
start in again with AI' and so on. Eventually we nlust reach a point. Let
U1, ••• , Un be all the points U i such that U i ~ A. Let

B==U1 vU 2 v",vUn
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If A - B =t- 0, then it, and hence A, will contain a point distinct from
Ul' ... , Un' which is impossible. Hence

i.e.,

A - B=O

A=B

Thus an element can be identified with the set of points which it contains.
This proves the following:
Theorem 11. I n a finite Boolean algebra every nonzero element contains at least

one point and every element is the union of all the points which are included 1 in
it. The algebra is isomorphic to the system whose elements are all possible
sets of its points,. if the number of points is m, the number of elements is 2m •

A special case of such a finite Boolean algebra is the case where m = 1.
In that case the unit 1 is itself a point, and the algebra consists of two ele
ments 0 and 1. Validity with respect to such an interpretation corresponds
to validity by 0-1 tables.

Theorem 11 is a special case of the "Stone representation theorem," which
says that every Boolean algebra is isomorphic to a fieldlof sets. This means,
in the present terminology, that every Boolean algebra has an interpretation
in which the elements are subsets of a fixed set, meet and join are set inter
section and set union, respectively, and negation is complementation with
respect to the fixed set. rrheorem 11 is the special case where the fixed set is
finite. The proof of the general theorem requires transfinite methods and is
therefore beyond the scope of this book. Of course, the term 'representa
tion' has a different meaning in this connection from the one it had in Sec.
2C.

4. Developments and bases. If U1, U 2' ••• , Un are all the points of
a Boolean algebra L, then, by Theorem 11, for each element A there exist
av ... , an' where ai is 1 if U i ~ A and ai is 0 other\vise, such that

A = a1 U1 v·· · V an Un

It. is convenient. to write (31) as

n

A = VaiU i
i=l

(31)

This is a special case of the following situation. Let L be a Boolean
algebra and K be a subalgebra of L; that is, the elements of K are some sub
set of the elements of L and are combined in the same "ray by the operations.
We use lower-case letters for obs and elements of K. Then a set of L-ele
ments U1, ••• , Un will be called a basis of L relative to K just when the
following conditions are satisfied:

a. For every A in L there exist aI' ... , an in K such that (31) is satisfied.
b. For i =t- j, UiU j = o.
c. If a is in K and aU i = 0, then a = O.

1 Here the relation ~ is taken as inclusion, so that, for example, 'A ~ B' is to be read
"A iR included in B."



298 NEGATION [CHAP. 6

These conditions are satisfied if the U1 , ••• , Un are points and ai' ... , an
a,ye eithey ~ Oy 1. Another possibi\ity, to be considered later, is that L is an
extension of K by adjoining certain indeterminates and the U i are certain
combinations of these indeterminates.

The dual of this situation is occasionally of some interest. In this case
the set UI' ... , Un will be called a counterbasis of L relative to K; the con
ditions analogous to a to care:

a' . For every A in L there exists al' ... , an in K such that
n

(== A (a i V Ui))
i=l

(32)

b' . For i =/=j, Ui V Ui = 1.
c'. If a is in K and a V Ui = 1, then a = 1.
The right side of (31) will be called the alternative development of A with

respect to the basis U1, ••• , Un. The separate aiUi will be called the terms
of the development, and the ai the coefficients. The dual development (32)
will be called the conjunctive development of A relative to U1 , ••• , Un'
with "terms" and "coefficients" defined analogously.
Theorem 12. Let L be a Boolean algebra, K a subalgebra of L, and U1, ••• ,

Una basis of L relative to K. Then the coefficients satisfying (31) are
uniquely determined when A is given, and for every i the correspondence

(33)

is a homomorphism.
Proof. Let (31) hold, and let

n

B = V biUi
i=l

Suppose now that A = B; then

n

C = V CiUi
i=l

n

A + B = V (a i + bi)Ui = 0
i=1

Hence

Therefore, by condition c,

a i + bi = 0
a i = bi

rfhis shows that the ai are unique as elements.
Now suppose

C = Av B

Then by the distributive law and the uniqueness just shown,

Ci = a i V bi

Hence, in the correspondence (33),

A V B,t'..IaiVbi

Again, let

C =AB

(34)
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by the distributive law and condition b. Hence, by the uniqueness

ci = aib i

and therefore in the correspondence (3;l),

ABt'../aibi

Now it is evident that in the correspondence (33)

1 t'../ 1
since for every A ,ve have

OUi v· .. V OUn ~ A ~ U1 v· .. V Un

(35)

Hence, if

then

B =A'

AB = 0 A V B = 1

It follows, by what we have already obtained, that

Therefore

and thus in (33)
(36)

From (34), (35), (36), and the uniqueness result, the correspondence (33) is a
homomorphism, Q.E.D.
COROLLARY 12.1. If K is a finite Boolean algebra 'With k elements, then L is

a finite Boolean algebra with kn elements.
A special case of the notions of basis and counterbasis occurs if L is formed

by adjoining certain indeterminates E 1, ••• , Em to K. Then consider the
2m elements

(37)

where each ek is 0 or 1, and temporarily we adopt the convention that for
any A

AO :=A' (37a)

We shall see that these 2m elements constitute a basis. In fact, it is clear
that the conditions band c are satisfied. Given any A in L, we can reduce
it to the form shown on the right of (31) by the following process:

1. Remove all operations other than meet, union, and negation by the
quasi definitions.

2. Move negations toward the interior by (18) and (19) until the fiegaied
components are elements of K or else contain no meet or join operation.

3. Remove multiple negations by statement (5).
4. Multiply out by the distributive law until we have a union of terms, each

of which is a meet of elements which either is in K, or is some Ek' or is some

Ek·
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5. Strike out terms which for some k contain both E k and E~. [These are
0, by (1).]

6. If a term contains neither E i nor E~, multiply it by E i V E~ [which is
1 by (2)] and continue as before.

At the end of step (6) every term will be a product (Le., meet) of elements
each of which is either an ob of K or some E k or some E~ and such that for
every k one and only one of E k' E~ is present. One has then only to collect
together, using the distributive law, all terms with the same factors from the
E's in order to have an ob of the form appearing on the right in (31). (If
any terms are missing, the corresponding a i is 0.)

The development in such a case is called the alternative (or disjunctive)l
normal form of A relative to E l, ... ,Em. The dual development is called
the conjunctive normal form.

An algebra L formed in the manner above described is called afree (Boolean)
extension of K with the m generators E l, ... , Em; if K consists of 0 and 1 only,
L is the free Boolean algebra with m generators. The elements of L may be
thought of as functions of the "variables" El , ... , Em ranging over the set
0, 1. If f(E), ... , Em) is such a function, then the coefficient of (37) in the
expansion (31), where A == f(E l , .•. , Em), is f(el' ... , em); for the substitu
tion, for all k, of ek for E k converts (37) into 1 and all other terms of the
expansion (31) into o. This proves the following:
Theorem 13. Let L be a free extension of a Boolean algebra K with respect

to indeterminates E l , ... ,Em. Then the 2m obs (37) constitute a basis fo?"
L relative to K and the coefficient of an ob (37) in the expansion (31) is the
result of S1J,bstituting ek for E k in A for all k = 1, 2, ... ,m. If K is a finite
Boolean algebra with k elements, then L is a finite Boolean algebra with k2'"

elements.

COROLLARY 13.1. The number of elements in a free Boolean algebra with m
generators is 22"'. .

Since the f( el , ... ,em) are precisely the values for a 0-1 valuation of A
in which each E k is assigned the value ek , the completeness theorem, Theorem
6, can be obtained as a corollary of Theorem 13. A stronger type of com
pleteness theorem is the following:
Theorem 14. Let A == f(El' ... ,Em) be such that A is not a tautology with

respect to 0-1 tables. Then if one adjoins

I- f(xl' . · . , X m) (38)

to HK as a new axiom scheme, the 'Xl', ... , 'xm' being U variables for arbi
trary obs, every ob B is assertible in the resulting system.
Proof. Let the conjunctive normal form of A be (32), where for each i

there exist el, ... , em such that

and, by the dual2 of Theorem 13,

a i = f(e l , ..• , em)

(39)

(40)

1 The separate terms are actually disjoint by condition (b), and one can replace 'V' by
,+' , hence the term 'disjunctive' is not inappropriate.

2 In this dualization it is necessary to interchange the exponents 0 and 1 in (37a).
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Then we have for every i = I, 2, ... , n = 2m ,

A ~ ai V Ui

Since A is not a tautology, we can choose i so that

ai = 0

Then (41) becomes, by virtue of (39) and (40),

(41)

A ~ Ell V E~a V • • • V Ee,:

Since the El' ... , Em are indeterminates, we have as theorem scheme of HK

~ f(xl' ... ,xm ) :::> xli V x 2
ea V ••• V r.,:

Hence by (38) and modus ponens, we have in the extension

(42)

Here let X k == Uk; then by repeated applications of VW and (5) we have ~ B,
Q.E.D.

Thus, if HK is formulated with a substitution rule, every nondemonstrable
elementary statement is absurd. The substitution rule is, however, essential.

5. Boolean equations. To the algebraic logicians of the nineteenth cen
tury, a problem of central importance was the development of a technique,
similar to that which one has in elementary algebra, for manipulating the
elementary statements of Boolean algebra. A sketch of this technique will
be given here.

To begin with, an elementary statement of Boolean algebra can he ex
pressed in anyone of the following forms:

A = 0, A = I, A = B, A ~ B, A = M

where M is a fixed ob, given in advance, and A, B are arbitrary obs. In
fact the first, second, and fifth forms are special cases of the third; the third
and fourth forms can be expressed in any form of the first four by means of
the equivalences

A = B ~ A + B = 0 ~ A"" B = 1~ A V B ~ AB (43)

A ~ B ~ A B' = 0 ~ A' V B = 1~ A = A B ~ B = A V B (44)

while the first and second forms have the equivalences

A = O~A' = 1~A ~ O~A + M = Mt
(45)

A=I~A'=O~I~A

One can therefore take anyone of these five forms as fundamental; the
analogy with ordinary algebra causes mathematicians, in general, to prefer
the first.

In the second place, any set of simultaneous equations is equivalent to a
single equation by virtue of the equivalences

Al = 0 & A 2 = 0 & ... & An = O~ Al V A 2 V· •• V An = 0 (46)

t This is known as the 'law of forms'.
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Suppose now one has an equation of the form

A ==f(x) = 0 (47)

where f(x) is an ob constructed from x and certain constants. Let these
constants be obs in a Boolean algebra K. Then A is an ob in the free exten
sion L of K with the single generator x. If we put A in normal form, (47)
becomes

ax V bx' = 0 (48)

(49)

By (46) and (44), (48) is equivalent to the double inclusion

b ~ x ~ a'

Hence (47) will have a solution just when

ab = 0

and then it will have as solution any x satisfying (49). The solution may be
expressed

x = b V ta' = b + ta'b'

where t is an arbitrary element of K.
Another method of treating the equation is to write

ax V bx' = ax + b(1 + x) = (a + b)x + b

Thus the equation is of the form

ex+b=O
or ex = b

Hence, by AK', PI'

(50)

(51)

b ~ x ~ C :::> b = b Ve' = b va'b' (52)

where the last step comes by taking e = a + b = ab' V a'b, e' = ab V a'b'
and absorbing the ab into b. The most general x satisfying (52) is given by
(50), and this satisfies (51) and hence (48).

Now suppose we have an equation

A == f(xl' ... , x m ) = 0 (53)

where f(x l , ••• , x m ) is a construction from obs of K and the indeterminates
Xl' •.. ,xm • We may suppose that A is in normal form in the free extension
of K with respect to Xl' ••• , X m as generators. Then we consider the follow
ing two questions:

1. (Elimination problem.) What conditions on the coefficients are neces
sary and sufficient for a solution to exist, Le., that there be elements of K
which, when substituted for Xl' ••• , x m , satisfy (53)?

2. (Resolution problem.) Assuming the conditions of elimination ful
filled, how can one represent the solutions explicitly in a formula depending
on certain parameters?

A solution of both these problems for m = 1 has just been given. For
m > lone can, of course, solve for the variables one at a time. This is a
laborious process, at least so far as problem 2 is concerned, as one can as
certain by working it out for the case m = 2; moreover, the results are quite
different in appearance according to the order in which one chooses to solve
for the unknowns. We shall go no further here with problem 2.
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One can easily show, however, by induction on m, that the general solution
of the problem 1 is

(X=O (54)

where (X is the meet of all the coefficients in the alternative normal form of A.
In fact, this has been shown for m = 1. Suppose we have m + 1 unknowns
Xl' ... , X m , Y and that, for n = 2m (the Ui being a basis (37) with E k == xk ),

n

A = VaiUi
i=l

n

B = V biUi
i=l

Then any equation (53) for m + 1 will be of the form

Ay + By' = 0

This will have a solution for y in terms of Xl' •.. , X m if and only if

AB = 0

By Theorem 12 this is equivalent to

m

V aibiUi = 0
i=l

By the inductive hypothesis this is possible if and only if

al a 2 • •• ambl b2 ••• bm = 0

This is, however, precisely the criterion (54) for the equation (f)!»).
A slight generalization of this result is the following:

Theorem 15. Let
n

A ==f(xl , . .. ,xm ) == VaiU i
i=l

(55)

where n = 2m , be an ob in normal form of the free extension of K with the m
generators xl' ... ,Xm • Let (X be the meet and fJ the join of all the coefficients
in A. Then a necessary and sufficient condition that the equation

have solutions in K is that

(X~t~fJ

Proof. The equation (56) is, by (45), equivalent to

A + t = 0

(56)

(57)

(58)

Let
n

A + t = V CiUi
i=l

where the right side is the alternative normal form of A + t. Let y ==
C1C 2 • •• cn • Then by property (a) for (58), a necessary and sufficient condition
for the solubility of (58) is that

y=o

But by the distributive law and Theorem 12,

(39)
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Let y be an additional indeterminate, and let LI/ be the free extension of K
formed by adjoining y to K. Let

Oi = a~y + aiy'

Then by Theorems 12 (relative to L1/) and 8,

0 102 .. · On = p'y + rJ.y'

and hence, putting t for y,
y = P't + rxt'

Thus the condition (59) becomes

P't + rxt' = 0

For this, by the discussion of (48), it is necessary and sufficient that (57)
hold, Q.E.D.

This discussion gives as much of the Boolean technique as is of general
interest. Special developments must be sought elsewhere.

EXERCISES

See also Birkhoff [LTh2], chap. 10.

1. Let L be a complemented lattice such that if G is any complement of B,

AB=O--+A ~G

Show that L is a Boolean. algebra. (The formulation is, essentially, the second set
of Huntington [SIP]; cf. the discussion of Sec. 4S1.)

2. Show that the axiom schemes of Whitehead and Russell [PMt], cited at the end
of Sec. 2, in combination with both parts (~ and ~) of the quasi definitions (11)
and (20), are sufficient for HK, but that if one omits either half of (11), it is not pos
sible to derive any elementary theorem in which implication is the only operation.
(Contributed by my colleague W. Howard.)

3. Show that the schemes of Whitehead and Russell [PMt] (see Exercise 2) admit
the matrix interpretation

v 0 2 (I)

o 0 2

o
2 2 1 2 1

with 1 as the only designated value. How do you reconcile this fact with the theorems
of Sees. 1 and 2 and Sec. 5Al? (Huntington [NSI, p. 297].)

4. Huntington's fourth set of postulates for Boolean algebra contains the axiom
schemes

AVB=BvA
(A V B) V G = A V (B V G)

(A' V B')' V (A' V B)' = A

Show that with suitable additions (so as to give properties of equality, including Rp,
and quasi definitions) these characterize Boolean algebra. (Huntington [NSI]. For
the redundancy of his postulate 4.5 see his [BAC].)

5. Show that the axiom schemes (26) and the quasi definitions (21) and (27) are
indeed sufficient for HK. (Cf. Rosser [LMt, chap. 4].)
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SUPPLEMENTARY TOPICS 305

A = AB~AB' = OC'
(AB)O = (BO)A

together with properties of equality and suitable quasi definitions, generate Boolean
algebra. (Byrne [TBF].)

7. Show that the system formed by adjoining to HA the quasi definitions (22) and
(23) and the schemes

for some t
for some t

~IA:::>. A:::> B
~IA:::>B.:::>.A:::>B.:::>B

are sufficient for HK (Porte [DSS]; the system is extracted from Tarski [FBM1]).

8. Assuming b :::;: a, show that the double inclusion

b:::;:x~a

is equivalent to each of the following:

a'xV bx' = 0
a'x + bx' = 0
x = ax + bx'
(a' + b)x + b = 0
x=bVta
x = at + bt'([LLA].)

9. Show that in every set of axiom schemes for HK there are at least three distinct
U variables for propositions. (Announced in Lukasiewicz and Tarski [UAK, Theorem
15] as due to Wajsberg; see Tarski and Woodger [LSM, p. 47], where references to
proofs are given. The most accessible proof is by Diamond and McKinsey [ASA].)

S. SUPPLEMENTARY TOPICS

1. Historical and bibliographical comment. The present chapter
extends to negation the general program initiated in Chap. 5. For com
ments and references concerning the program as a whole, see Sees. 5S1 and
IS5. The reasons for separating negation so drastically from the operations
were given there as well as here in Sec. AI. 'fhe chapter is based on [TFD],
chap. 4, and [LLA], chap. 5.

The possibility of defining two different kinds of negation corresponding
to absurdity and refutability arose directly from the semantical approach.
The distinction was already present in [PFD]. The name 'absurdity' was
taken from the intuitionists because its formal properties coincide with those
postulated for intuitionistic negation, e.g., in Heyting [FRI]. The name
'refutability' was taken from Carnap [ISm], who defined it in a way very
similar to that given here (in his [LSL] he used the term in a different sense);
what are here called "counteraxioms" appeared there as "directly refutable
sentences." A similar notion, called "rejection," appears in ~ukasiewicz

[ASS]; it had appeared earlier in his [SAr]. There was almost certainly no
connection between either of these approaches and that of [PFD]. Whether
there was any connection between Carnap and -l,ukasiewicz I do not know.

Of the five types of formalized negation considered here, the J and the K
types appeared in Gentzen's [ULS]; all the others, including the positive A
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and C types of Chap. 5, were introduced later as modifications. The K type
evolved from the work of logicians using the traditional approach (Sec.
5S1). The J type represented intuitionistic logic, for which the presenta
tions in Heyting [FRI] and Glivenko [PLB] had only recently appeared.
Possibly the fact that Gentzen's [ULS] was written under the direction of
Weyl had some influence in drawing Gentzen's attention to it. The M type
was the subject of Johansson [MKR]; in part, Kolmogorov [PTN] antici
pated him, but I know that work only through remarks about it in Church
[IML 2J and Feys [MRD]. Apparently the motivation was a feeling of dis
satisfaction about efq [= (6) of Sec. C], but Johansson explicitly mentions
the fact that minimal negation can be defined as the property of implying a
fixed but completely arbitrary (Le., indeterminate) proposition F. (There
are some similar remarks in Moisil [RAL].) Johansson also mentioned the
system D (without so naming it) and suggested that it might form a system
of "strict implication," but this system was not extensively studied until
[TFD], where the semantical approach intimated that it might be suitable
under circumstances in which we wish to have implication represent de
ducibility in the same sense that it does in LA, and yet to be platonistic to
the extent of assuming a law of excluded middle. The E type was suggested
by Bernays in his review of [SLD] and [DNF], and some of its properties
were studied from the standpoint of its H formulation in Kanger [NPP];
an extensive study of it from the standpoint of an L formulation was made
by Kripke [SLE]. In correspondence Kripke has described several other
systems of intermediate character; these remain for the future (see his ab
stract [DCn], which appeared while this was in process).

On the singular and multiple formulations the situation for LJ has already
been discussed in Sec. 5S1. For the other systems the question was in
doubt for some time, and false leads were followed (e.g., in [SLD], sec. 3).
It now seems clear that the singular systems are the more natural semanti
cally; the multiple systems, which are much more natural from the stand
point of convenience in use, have to be justified by translation into the
singular, or by auxiliary interpretation. The results of this book on multiple
systems other than LK are for the most part new, but have been anticipated
by the Japanese work on LJm cited in Sec. 5S1, and by Kripke [DCn].

The idea of defining negation in terms of implication and F goes far back
in the history of our subject. I do not know its origin. It was used in" a
paper by Russell in 1906 (cited in Church [IML 2, p. 157]). It was implicit
in Gentzen's formulation of his natural rules (here the T rules, see Sec. Cl),
but he did not use it in his L formulation. Wajsberg, in his [MBt] and
[UAK], studied H systems based on implication and F (his symbol for it
was '0'). The idea of so defining negation was used in [PFD], but it was not
used for the L rules in [TFD] because of certain technical difficulties. The
equivalence between F and N formulations for the L formulatiot;ls was first
shown in [DNF]. The present treatment contains improvements over [DNF];
these were worked out in the spring of 1960.

The results on T and H systems in Sec. C are taken froni [TFD] and [LLA].
The H formulations come mostly from the latter. References to sources
are given in both of those publications. The remarks given here ,vill supple
ment them.
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The intuitionistic system HJ was formulated in Heyting [FRI]; formula
tions previous to that time, in Glivenko [PLB], Kolmogorov [PTN], etc.
(see Sec. 4S2), were somewhat fragmentary. (The references on the positive
part of the Heyting formulation in Sec. 5S1 give also some information about
negation.) In the Heyting formulation the schemes for negation were
separated. There were two such schemes, NS and efq. Johansson sImply
dropped efq in his formulation of HM. The formulation of HK in Hilbert
and Bernays [GLM] had three prime assertion schemes for negation, namely,
NB', NI', and I I A :::> A; it turned out that the omission of the last
scheme from this list gave a formulation of HM. In 1938 Scholz proposed
the problem of so formulating HK that (1) there should be exactly three
prime schemes for negation, such that, in conjunction with HA, the first
should give exactly HM and the first two exactly HJ, and (2) the resulting
set of prime statements should be independent. :Lukasiewicz [LGL] gave
the first published solution of this problem; the three prime schemes are,
respectively, NC, efq, and Exercise C9b. Bernays, in correspondence (see
Hermes and Scholz), proposed as alternatives the schemes described in
Exercises C3 and C9a. Wajsberg [UAK] used NW and efq (see Exercise
C2) for HJ. Both ~ukasiewicz and Wajsberg mention that they received
an "Anregung" from Scholz and his collaborators; one should note also the
historical remarks in Schroter [UHA], which is a belated publication of
results known for a long time. Wajsberg [UAK], apparently misunder
standing a letter from Scholz, stated that NW was sufficient for HM; he
corrected the error, substituting NC, in his [MBt.II], p. 139. What is here
taken as the standard formulation of HK (and also the formulation of [TFD])
is a solution of Scholz's problem except for condition b of Exercise C9.
Hermes and Scholz (loc. cit.) deny the possibility of an independent and
separated set of prime assertion schemes for HK; Kanger [NPP] showed the
contrary (Exercise CI0).

The matters treated in Sec. D are much older than those of Secs. A to C
which we have just been discussing, and the literature is much more exten
sive. The material in these sections was mostly known before 1930; it is
taken over here with minor changes from [LLA], chap. 5, secs. 7 to 11. The
aim is to present a central core which is of interest to every logician and to
show its relation to other approaches. In order to discuss its history it is
necessary to backtrack a little.

The development of logic to about 1930 was dominated by the traditional
approach. In this development one can distinguish three principal direc
tions. The first of these is the relational algebraic approach, which began
(in principle) with Boole and forms the basis of modern lattice theory. The
second is that leading to assertional deductive systems (H systems); this
began with Frege and was continued by Russell and his [PMt]. The third
direction is that of matrix interpretations (Sec. 5A4). These directions,
although historically distinct, are not incompatible. From the present
point of view they are equivalent, but this equivalence and the reasons for
it were not recognized at the start. The inferential direction, with which
this book is principally concerned, may be regarded as a fourth direction,
which is an offshoot of the second.

From the first direction one is led to Boolean algebras and Boolean rings.
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An account of the history in this direction was given in Sec. 4S1. Since it
was impossible at that stage to separate negation completely, much that
pertains to the present chapter was discussed there. In particular, the
general references on lattice theory in Secs. 4S1 and 4S3 should be consulted
for the developments of Boolean algebra which go beyond the scope of this
book, particularly in those ways in which the developments diverge from the
interests of logic. For an elementary introduction to Boolean algebra, the
recommendation of Couturat [ALg] in Sec. 4S1 still applies. This book
draws its inspiration from the older works cited in Sec. 4S1, but the interest
in these older works is now chiefly historical. Another excellent introduc
tion is Rosenbloom [EML, chaps. 1, 2]. This gives an exposition of the
proof, by Frink, of the Stone representation theorem. It also has interesting
comments on the transition to assertional systems and to relations between
the two types. Its historical comments on pp. 194ff. give information of
that sort not elsewhere readily available. Boolean algebra has recently
found application to the design of electrical networks, and this has caused
the appearance of a number of practical handbooks, but I have no detailed
information about them.

The second direction gave rise to a great variety of formulations of HK.
Since this was the dominant direction in logic, most of the general references
in Sec. IS, especially Sec. IS5, give information about it. For elementary
approaches see Sec. ISle. Church [IML 2] is rich in historical comments,
particularly in regard to systems of prime assertions for HK.

In regard to the third direction, see Church [IML 2, pp. 161ff.] for the early
history. Some modern authors, e.g., Quine, prefer to treat propositional
algebra wholly from the point of view of 0-1 tautologies and show no
interest in deductive treatments. For an elaboration ot techniques from
this standpoint see Quine [MeL], [MLg]. The matrix point of view has
suggested several generalizations; for these see Sec. 2 below.

There is a great variety of ways in which Boolean algebra and HK can be
formulated. For a survey of formulations from the H point of view see
Church [IML 2, secs. 23-29]; for those from the E point of view see Birkhoff
[LTh 2, chap. 10, secs. 3, 4]; Rosenbloom [EML, p. 194]. The formulations
of Whitehead [VAl], Huntington [SIP], [NSI] (gives bibliography to 1933),
Byrne [TBF] have been referred to rather frequently in the literature. Porte
[DSS] gives a survey of systems based on P and N; his [SCP] does this for
systems based on A and N. The latter type of system has interest on account
of the theorem stated in Exercise B9; on this see also~ukasiewicz[lTD], which
tells the fate of the Sobocinski system.

According to Huntington [NSI, footnote p. 278], the term 'Boolean al
gebra' is due to Sheffer [SFI].

On the properties of finite Boolean algebras see also Bernstein [FBA].
The normal form theorems in Sec. D4 are more or less standard theorems

which go back, in principle, at least to Schroder [VAL]. Theorem D14 is
due to Post [IGT].

The theorems on Boolean equations in Sec. D5 are all in Couturat [ALg]
(actually they go back at least to Schroder [VAL]), except those relating to
ring addition; for these see Birkhoff [LTh 2, sec. X9]. Couturat [ALg] also
contains a brief account of a technique due to Poretskii; this technique,
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which is said to be useful for certain purposes, is further developed in Blake
[CEB]. Ledley, in his [CMS], [DCM], [DSF], [MFC], has proposed improve
ments in the technique with an eye to machine applications.

2. Further developments. A few topics will be mentioned here which,
although they are related to the subject of this chapter, it was not possible
to include.

There has been considerable study of the relations between HJ and HK,
in particular to transformations which map the theorems of HK into those
of HJ. The theorem of Glivenko (see Exercise B7) is an example of such a
transformation; so also is that of Godel and KoItnogorov (Exercise B9).
The last has the further property that it can be extended to certain forms of
arithmetic. For other theorems of this nature see Kleene [IMM, sec. 81],
Shanin [LPA], Lukasiewicz [lTD].

By virtue of Theorem 5E5, the system HJ has the alternation property.
This property generalizes to some extent; see, for example, Harrop [DES].
iJukasiewicz [IrrD] conjectured that this property was characteristic for HJ.
Kreisel and Putnam [UBM] prove that this conjecture is false in that if one
adjoins to HJ the assertion scheme

r I A :::> B V C .:::>. I A :::> B .V I A :::> C

one gets a system which is more inclusive than HJ and yet has the alter
nation property.

This brings up the question of logics intermediate between HJ and HK.
Godel [IAK] showed by the use of the matrix method (Sec. 5A4) that there
were infinitely many such intermediate logics. Umezawa has studied these
systematioally (see his [IPL] and papers there cited).

The matrix metnod of approach has suggested generalizations going in
different directions from those followed here. Post made a thorough study
of two-valued matl'ices in his [TVI]. However, the most striking generali
zation is that to matrices with more than two elements. The systematic
work in this field is Rosser and Turquette [MVL]; accessible pioneering works
are Post [IGT] and Lukasiewicz and Tarski [UAK]; for the history see
Church [IMJ~2' pp. 161ff.]; for surveys see, for example, .£ukasiewicz [LGL],
Frink [NAL]. Relational systems ("Post algebras," "Moolean algebras")
for this field have also been studied; see, for example, Rosenbloom [PAl],
Chang [AAM] and publications there cited.

Godel [IAK], a.lready cited, showed that HJ is not identical with any logic
generated by a matrix with a finite number of values. The proof is ex
pounded in Schmidt [VAL, sec 141]. However, an infinite matrix representa
tion is given in J askowski [RSL].

The equivalence between E and H formulations has been stressed in this
book. Rosenbloom [EML] also makes this same point. However, there
are jokers about this equivalence. When the conditions of Sec. 5A1 are
violated, strange things may happen. Thus Hiz [ESC] exhibits an asser
tional system in which every proposition is an assertion which is an assertion
of HK, yet the system is not Post-complete. The system is not an H sys
tem. This sheds light on the significance of the hypotheses in Theorem
D14.

The treatment of the technique of Boolean algebra in Sec. D was very
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brief. The older works, already cited, developed many other topics. One
of these was a theory of inequations, which depends on introducing an
additional predicate of inequality or nonnullity. This is of some interest
because in it one can give a treatment of traditional logic (syllogisms, etc.).
For a very brief account of this, see [LLA, chap. 6].

These developments and those mentioned in Sec. 4S are samples of related
investigations which have been made. Many others exist. Those which
involve nonconstructive semantical considerations are beyond the scope of
this book.

In regard to Boolean algebra, a treatise, Sikorski [BAI], has appeared.



Chapter 7

QUANTIFICATION

The preceding two chapters have been concerned with propositional con
nectives, Le., operations which combine propositions to form other proposi
tions. In these operations the propositions are taken as unanalyzed wholes.
When the theory is interpretedl in the epitheory of an underlying formalism
6, these propositions are formed from the elementary statements of 6 with
out regard to how those elementary statements are themselves formed in
terms of the formal objects of 6. In other words, 6 can be an arbitrary
deductive theory, provided its rules are elementary in the sense (of Sec.
2D3) that they can be formulated in the form of (1) of Sec. 5C.

In this chapter we shall study ways of expressing generality and related
notions. This requires operations of rather a different nature fronl those
used in the preceding chapters. Such operations are traditionally called
quantifiers.2 They require that the underlying theory G be actually a sys
tem, and that we consider two types of obs which we shall call propositions
and terms. In the interpretation in the epitheory of an underlying 6, the
terms correspond to the obs of 6. Then the quantified propositions

(Vx)A (~x)A

are interpreted as epistatements of 6 saying, respectively, that A is true for
all terms x and that A is true for some terms x.

The treatment in this chapter will parallel, at least partially, that in Chap.
6. In Sec. A we shall inquire more deeply into the meaning and nature of
quantifiers, with the aim of arriving at a formulation of L systems of various
sorts containing these operations. Since the semantical difficulties in regard
to quantification are rather less than in the case of negation, but the formal
difficulties are much greater, most of the space will be devoted to formal
matters, and we shall end with an actual formalization. In Sec. B the
fundamental epitheorems concerning these L systems will be derived. In
Sec. C we shall study the relations between the L systems and the nlore
usual systems of predicate calculus-the T and H formulations. The last
section, Sec. D, will be devoted to theorems peculiar to the classical systems.

1 More strictly, evaluated.
2 The term is due to Peirce, the idea to Frege. For details concerning the history, see

Church [IML2, sec. 49].
311
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The superscript' *' will be used henceforth to indicate systems with quanti
fication. Thus LA*, LC*, LK*, HK* will be the systems formed by ad
joining suitable postulates for quantification (as described later) to LA, LC,
LK, HK, respectively. The L systems of this chapter may be referred to
collectively as L * systems. An unspecified one of these L * systems will be
called a system LX*; the 'X' can then be replaced by anyone of the letters
'A', 'C', 'D', 'E', 'J', 'K', 'M'.

A. FORMULATION

We shall begin, in Sec. 1, with a semantical study; the purpose will be to
specify more definitely the meaning of the quantified propositions

(Vx)A (~x)A (1)

when interpreted as epistatements concerning an underlying formalism G.
The formal difficulties connected with the "bound variables" so introduced
will be our next concern. This requires a meticulous formulation of certain
details concerning occurrence of variables, substitution, etc.; these details
are tedious, but they are necessary for exactness. This will lead up to the
precise formulation of various L* systems in Sec. 5.

1. Semantical study. The nature of generalization in connection with
the epitheory of a system 6 has already been discussed in Sec. 3A3. We are
concerned here with the type of generalization which is there called sche
matic. Thus, in interpretation, the first statement (1) is true just when A
is a statement scheme depending on the term parameter x which becomes
true whenever a term is substituted for x; in other words, whenever A is a
theorem of the extension 6(x) formed by adjoining x to G as an adjoined
indeterminateo

The second of the propositions (1), interpreted as an epistatement, is to
mean that A is true for some term t. This we interpret as meaning that A is
a statement of the extension 6(x) for which there is a term t of 6 such that
A becomes a true statement A' of 6 when t is substituted for x.

Certain technicalities concerning the bound variables will be deferred
until later. Apart from these technicalities we have, in principle, an inter
pretation for the propositions (1) considered as epistatements relative to 6.

Next let us consider the semantics of the propositions (1) when they appear
as constituents in a deducibility epistatement of the form

~ I~ B (2)

As in Sec. 5Cl, this amounts to asking under what circumstances a con
stituent of the form (1) may be introduced into (2), in other words, when a
statement (2) containing a constituent (1) may be introduced into discourse.
There are two cases to consider, viz., when the new constituent is on the
right and when it is on the left. In both of these cases we shall suppose that
A' is the result of substituting t for x in A.

Let us first consider introduction on the right. As in Sec. 5Cl, we inter
pret (2) as meaning that B is true in a system 6(~) formed by adjoining X
to 6. If B is (Vx)A, this will be true just when x is an indeterminate for
6(X), so that x does not occur in X, and A is true in the system 6(~,x) formed
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by adjoining x to 6(~). If B is (~x)A, epistatement (2) will be true just when
there is a term t such that A' is true in 6(~). The formal rules for intro
duction on the right, viz.,

~ n- A --+ ~ II- (Vx)A

~ II- A' --+ ~ II- (~x)A

(3)

(4)

subject to the indicated restrictions, express just these principles.
To treat introduction on the left we have to consider the interpretation of

~,Oll- B

where 0 is one of the propositions (1). This amounts to asking under what
circumstances we conclude, in the presence of~, that B is a consequence ofO.
We can conclude this, of course, if B is the same as 0 or is such that the infer
ence can be made without regard to the nature of 0 (Le., schematically, with
o as parameter). In the nontrivial cases we use the nlethod of Secs. 5A3
and 5Cl. The general principle of that method is that the rule for intro
ducing an operation on the right determines the meaning of that operation
in the following sense: if 0 is so introduced by a rule R, then the consequences
of 0, wherever it occurs, are the same as when it was first introduced and are
to be determined by examining the possible premises for R.l Thus if 0 is
(Vx)A, then 0 can be introduced into 6(~) only when A is true in 6(~;x),

and in that case there is a proof 1)1 (of some sort)2 terminating in A; if now
B is in G(~,A'), then we have a proof tree 1)2 terminating in B and having
A' as a premise, so that by putting over each occurrence of A' a proof of it
obtained from 1)1 by substituting t for x throughout 1)1' we have a proof
that B is in 6(~). Thus the rule

X, A'iI- B --+~, (Vx)A II- B (5)

is semantically acceptable. On the other hand, if 0 == (~x)A, then 0 is
true for 6(~) only when there is a tree 1)1 terminating in some A'; if now
there is proof 1)2 terminating in B and having a premise A, and neither B
nor any other premise of 1)2 contains x, then by substituting t for x through
out 1)2 we have a proof of B from A'. Thus the rule

~,A II- B --+~, (~x)A II- B (6)

is semantically acceptable, subject to the indicated restrictions on x.
These form the basis of the rules given formally in Sec. 5.
2. Formal difficulties. Although the interpretations given in Sec. 1 are

fairly straightforward, they involve certain complexities due to the fact
that quantification requires bound variables. Some of these complexities
were discussed in Sec. 3D4. It is desirable to bring them up again here with
particular reference to the present context.

In order to iterate the rules of Sec. 1 with respect to introduction of quanti
fiers, it is necessary to consider cases of (2) where ~ and B contain other

1 Thus, if R is a one-premise rule, it is semantically invertible. This is quito different
from the formal invertibility of Theorem 5D 1. That theorem shows agreement of the
formal theory with the intended interpretation.

2 This being a discussion ofmot,ivation, we do not have to go into the exact specification
of such a proof. We can suppose it is like the T proofs of Sec. 5A3.
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adjoined indeterminates besides x. In other words, we have to consider (2)
with reference to a term extension 6(a) where a is a set of indeterminates,
and we may indicate this dependence by writing (2) as

The terms t which may be substituted for x may thus contain adjoined in
determinates, and hence we may run into the situation, already commented
on in Sec. 3D4, known as confusion of bound variables. Thus if 6 is a
suitable formulation of elementary number theory,

(~y). x < y

is a theorem scheme in which x is an indeterminate; yet if we were to sub
stitute y for x naively, we should have

(~~y) • y < y

which is false.
The phenomenon of confusion of bound variables shows that conditions

of substitution have to be formulated with some care. There are various
methods of doing this. One very drastic method is that of combinatory
logic (Sec. 3D5); this eliminates bound variables altogether and shows how
expressions involving bound variables can be defined in terms of combinators
in such a way that the rules for manipulating bound variables can be inferred
from the definitions.! Inasmuch as this answers the questions of principle,
we can use a method which is advantageous from the standpoint of conven
ience. The method adopted here is essentially that used in Hilbert and
Bernays [GLM, vol. 1]. The formal variables used for terms-here called
term variables-are divided into two classes; in formal developments those
of the first class are used for free variables, those of the second for bound
variables. The classes are here called real and apparent variables, respec
tively, so as to leave the words 'free' and 'bound' available for describing
occurrences of variables; in the discussion of rules it is sometimes necessary to
have apparent variables occurring free. 2 The letters 'a', 'b', 'c', ... will be
used for real variables, and 'x', 'y', 'z' for apparent variables; the letters 'u',
'v', 'w' will be used for variables which may be either real or apparent.

This convention is of some help. But it is still necessary to formulate
notions of substitution, free and bound occurrence, etc., with great care.
After a digression we shall return to this formulation in Sec. 4.

3. The B language. On account of the complexity of the analysis of
variables it is necessary to introduce considerable technical terminology into
the U language. This will be explained as we proceed, but it will help to
clarify matters if we first survey it as a whole.

The situation in which we find ourselves requires some amplification of the
fundamental grammatical conventions of Secs. 2A3 and 2A4. Whereas in
Chaps. 5 and 6 we were talking-to put it naively-about t,vo fundamentally

1 See, for example, [CLg], sec. 6D.
2 The terms 'real variable' and 'apparent variable' were used in "Principia mathe

matica," but seem to have fallen out of use. Hence it is permissible to introduce them
in this technical sense.
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different kinds of things, viz., propositions (Le., obs) and statements made
about them, ,ve here have to talk-in the same naive sense-about three
different kinds, viz., terms, propositions, and statements. In our A language
there "\\rill be three basic grammatical categories: term nouns, proposition
nouns, and sentences; for the time being we shall call these T, 7T, (J, respec
tively. Thus T will contain the primitive constants, Le., names of specific
atoms of 6; the term variables, which are names of indeterminates to be
adjoined to 6 to form term extensions,. as well as more complex phrases
designating specific terms. The category 7T will contain the names of specific
propositions however they may be formed; when our systems are inter
preted in the way intended, these will become statements about 6, but this
fact is not relevant to the purely formal considerations. The category (J

will contain the sentences expressing the statements which we assert, deny,
or otherwise consider.

In addition, we need functors of various kinds. Those which, in the
intended interpretation, become the operators of 6 will belong to the cate
gories FlTT, F2TTT, etc. (depending on their degree); these will be called term
operators, or term functors. l Those which, in the interpretation, become
predicators of 6 belong to categories such as Ft T7T, F2TT7T, etc.; the name
'predicator' will be reserved henceforth for functors of this type, and 'predi
cate' for their designata.2 Functors of the type we have considered hitherto
-such as the infixes :::>, A, V-belong to the category F27T7T7T (and negation
to Fl 1T7T); these will be called propositional operators, the word 'propositional'
being generally omitted. This name will also be applied to quantifiers,
although a quantifier strictly belongs to the category F2T7T7T-more accurately
(cf. Sec. 3D4) to F1(FlT7T)1T. Finally, functors which form sentences will be
called henceforth verbs, or sentential (or statement) functors, and their desig
nata, verbal (or statement) functions, properties, relationships, etc.

All this discussion concerns the A language. For epitheoretic purposes
we need in the U language also U variables ranging over various categories;
names for categories and subcategories, and U variables for thenl; verbs for
expressing epitheoretic relationships; etc. The totality of this technical
terminology, which is necessary for expressing not only the elementary
statements, but the rules, morphology, and certain epitheoretic properties,
constitutes a language which will be known as the B language.

The principal symbols of the B language are exhibited in Table 3. Here
column 1 gives the names of various categories into which these symbols are
classified. Column 2 lists the constants, classified according to category,
which constitute the A language of the system 6* formed by adjoining an
infinite set of term variables to 6. Column 3 lists symbols used as proper
names of the categories in column 1. Column 5 lists U variables for un
specified members of those categories, and column 6, U variables for un
specified subclasses of those categories. Column 4 exhibits ways of indicating
specific subclasses, depending on parameters taken from column 6. All the

1 An alternative name, for which there is some justification in the literature, is 'descrip
tive functor'.

2 There is a disagreement in the literature in regard to this usage, which identifies
'predicate' with 'propositional function'. Some authors, e.g., Church, prefer to confine
'predicate' to statement functions or functors (see Church [IML2, p. 289]).
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TABLE 3

[CHAP. 7

U constants U variables
Name of
category Elements Classes Subclasses Elements Subclasses or

(1) sequences
(2) (3) (4) (5) (6)

Primitive
constants e1 , e" ..• e

Tenn variables ql' q" ••• q u,v,w u, U, tU
Primitive tenn

operators w1,w" ... n
Primitive

predicators 4>1' 4>" ..• tI>
Real variables t ~ a, b, c,J, g, h a, b, c, g
Apparent

variables S x,y,z 1,1),3
Tenns (obs of 6·) t t(u) 8, t
Null class of q 0
Elementary

propositions E1,E" ... ,F (f (f(u)
Propositions ~ ~(u),«J A,B,O,D X, ~, 3, u, m, IDl
Axioms ~ ~(u)

Elementary
theorems 6 6(u)

Theorems X X(~,u), X(u)
Null class or

prosequence 0
Null system .0

symbols may be used as nouns, but certain of them may be used, in combina
tion with parentheses and commas, as functors, according to ordinary mathe
matical usage (cf. Sec. 2A4). The terminology has been chosen so as to be
consistent, in so far as possible, with the convention that German letters
denote classes or sequences of which the members are denoted by italic
letters of the same kind.

The verbs of the B language include those necessary to state the ele
mentary and auxiliary statements of the various systems, the morphological
statement forms

u occurs in t

u occurs free in A

'U occurs bound in A

as well as relations among classes. There will also be the three-place opera
tions whose closures

[s/u]t [s/u]A

designate the result of substituting s for u in t or A, respectively. Various
connectives from Sec. 2A4, as well as additional phrases necessary to state
the rules in Sec. 5, will also be regarded as belonging to the B language, but
it is hardly necessary to be explicit about these.

In connection with classes, the following special convent-ions will be ob
served. The infixes '€', 'c', '=' will be used in their ordinary senses (cf.
Sec. 2A4) of membership, inclusion, and class equality, respectively; the
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infix' =' is used, as heretofore, for identity by definition. A name for a
prosequence appearing in the position of a class name will be understood as
designating the class of propositions having one or more occurrences as
constituent in the prosequence, and similarly for other names of structures.
The union of two or more classes will be indicated (unless it is necessary to be
more explicit in order to avoid confusion) by writing their names in a series
separated by commas; also classes containing only one element are not dis
tinguished from those elements themselves. For example, 'a, b, c' will
designate the class whose elements consist of c together with the elements of
a or b or both.

The letters 'i', 'j', 'k', 'l', 'm', 'n', and sometimes (when the context pre
vents confusion) 'p', 'q', 'r', 's', are used for natural numbers. The opera
tional and relational symbols of arithmetic will have their ordinary senses
in that connection.

The B language is not the same as the A language of any of the systems
LA, LJ, TA, etc. The latter is obtained by adding to column 2 phrases
sufficient to make particular elementary statements. Although we attempt
to be precise as to the use of the B language, yet we do not attempt either to
formalize it or to exhaust the possibilities of the U language in it.

4. Rules for terms and propositions. These rules relate to the formu
lation of the system 6 and its various term extensions, to the constitution of
the class ~ of propositions in relation to these term extensions, and to the
rules for substitution and occurrence of variables.

PRIMITIVE IDEAS OF 6*. The system 6* is that formed by adjoining to 6
an infinite class q of term variables. Its primitive ideas are then as follows:

Atoms of 6, (e): ev e2 , ••• } Atoms of 6*
Term variables (q): ql' q2' ...
Primitive operations WI' W 2, • •• Of degrees ml , m2, ••• , respectively
Primitive predicates 4>J., ~2' • • • Of degrees nl , n2 , ••• , respectively

All except the term variables are primitive ideas of 6.
FORMULATION OF 6(u). If u is a subclass of q, then 6(u) is the system

obtained by adjoining to 6 just the members of u. Then 6(q) is 6* and
6(0) is 6. The formulation is as follows:

I. Terms
(a) Every element of e is in t(u).
(b) Every element of u is in t(u).
(c) If tv t2 , ••• , tm" are in t(u), so is Wk(tl , t2 , ••• , tm ,,).

II. Elementary propositions (f(u)). [In the interpretation these are the
elementary statements of 6(u).]

1. The propositions E l , E 2' ••• , F are in (f(u). (This convention is similar
to that in Chaps. 4 and 5, but we are here insisting. that these be constants.)
The E l , E 2' ••• , F are propositions not otherwise specified; they play the
role of propositional variables in D.

2. If t1, t2 , ••• , tn" are in t(u), then

~k(tv t2 , ••• , tn,,)

is in (f(u). t

t The E i may be regarded as the special case where n" = o.
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III. A uxiliary statements. The rules and axioms of 6 are specified by
statement schemes of the form

AI' ... , Am Ia 1-0 B (7)

where a is a class of real variables, and all the A v ... ,Am, B are in <f(a).
These statements are called auxiliary statements because they are analogous
to the statements so called in Sec. 5C3. If m = 0, B will be called an axiom.

The definition of a system 6 may also specify counteraxioms (Y. These
may also depend on a class a of real variables.

In the void system D there will be no statements of the form (7) and no
counteraxioms.

The following five definitions define formally the notion of proposition,
and also notions related to occurrence of variables and substitutions for
them. This is a highly technical matter. Some readers will doubtless
prefer to take them and the theorems based on them as given intuitively by
the notation.
DEFINITION 1. (Occurrence of an atom in a term.) If u is a term variable

(or more generally any atom) and t is in t(q), then

u occurs in t

is defined by induction on the structure of t as follows:
(i) If t == u, then u occurs in t.

(ii) If t is an atom distinct from u, then u does not occur in t.
(iii) If t == Wk(tl , '••. , f m,), then u occurs in t just when it occurs in one

or more of the tie
DEFINITION 2. (Substitution in a term.) If sand t are terms and u is a

term variable, or more generally an atom, then

[s/u]t

is defined by induction on the structure of t as follows:
(i) If t == u, [s/u]t == 8.

(ii) If t is an atom distinct from u, [s/u]t == t.
(iii) If t == wk (tl' ... , t

mk
), then

[s/u]t == Wk(t~, .• • , t:n
k

)

where t~ == [s/u]t i i = 1,2, ... , mk

DEFINITION 3. (Propositions, and occurrences of variables in them.) If
u is a term variable and u is a class of such variables, the statement forms

A is in ~(u)

u occurs free in A
u occurs bound in A

are defined simultaneously by induction on the structure of A as follows:
(i) If A is in <f(u), then A is in ~(u). If A is some E i or F, then no vari

able occurs, free or bound, in A. If

A == ¢>k(tl , ... , tnk)

then u occurs free in A just when u occurs in one or more of the ti ; no
variable occurs bound in A.
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(ii) If A is B ::> 0, B A 0, or B V 0, then A is in ~(u) just when Band
o are both in ~(u). The variables which occur free in A are just those
which occur free in B or 0 or both; likewise the variables which occur
bound in A are just those which occur bound in B or 0 or both.

(iii) If A is I B, then A is in ~(u) just when B is, and the free (bound)
variables of A are the same as those of B.

(iv) If A is (Vx)B or (~x)B, then A is in ~(u) just when B is in ~(u,x)

and x does not occur bound in Bt; we mayor may not add the further
restriction that x occur free in B (without this restriction we are said to
admit vacuous quantification, otherwise not). The variables occurring free
in A are those which are distinct from x and occur free in B; those occurring
bound in A are those occurring bound in B together with x.

DEFINITION 4. A real term is a term belonging to t(r); a real proposition is
one belonging to ~(r). Likewise a constant term is one belonging to t(o),
and a constant proposition is one belonging to ~(o).

DEFINITION 5. For each A in ~(q), s in t(q), and u in q, we define

[s/u]A

by induction on the structure of A as follows:
(i) If A is E i or F, [s/u]A == A.

(ii) If

then

where

A == 4>k(tl , ••• , tftA:)

[s/u]A == 4>k(t~, ••• , t~A:)

t, == [s/u]t i i = 1, 2, ... , nk

(iii) If A is BoO, where '0' stands for one of the infixes'::>', 'A', 'V',
then

A':=B'oO'

where B' == [s/u]B 0' == [s/u]O

(iv) If A is I B, and B' is as in (iii), then

[s/u]A == I B'

(v) If A is (Vx)B or (~x)B, then

[s/x]A := A

If u ¢ x, and s is a real term, l or if s is an apparent variable distinct from
x, then

[s/u](Vx)B := (Vx)B'

[s/u](~x)B == (~x)B'

where B' is as in (iii).

t This is an optional restriction; we adopt it because it is convenient.
1 This is the only place, up to the present, where the distinction between real and

apparent variables is relevant. If we did not wish to make this distinction, we could
introduce at this point the restriction that x should not be free in 8; this could be supple
mented by a provision for automatic changing of bound variables (cf. [CLg], sec. 3E)
if we wanted to have substitution always defined. The restriction made here allows Bome
simplifications to be made later.
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where

Remark 1. Note that these conventions may not define [s/u]A if A con
tains bound variables and s is a composite term containing apparent vari
ables, or if s is a variable bound in A.

The following theorems can be proved by structural induction on the A.
The proofs are omitted; they are rather tedious, but straightforward.!
Theorem 1. The class ~(u) has the following properties:

(i) The truth of any statement of the forms defined in Definitions I and 3
is a definite question.

(ii) The class ~(u) is monotone increasing with u,. i.e.,

u ~ 1) --+ ~(u) ~ ~(o)

(iii) If A is in ~(q) and u is the class of all variables which occu.r free in A,
then A is in ~(u).

Theorem 2. The substitution operation has the following properties:

(i) [u/u]A == A

(ii) If ~ does not occur free in A,

[s/u]A == A

(iii) If A is in ~(u,w), s is in t(o), then [s/w]A, if defined, is in ~(u,o).

(iv) If s is in t(u), t is in t(o), u ¢ v, and neither u is in u nor v in u, then

[s/u][t/v]A == [t/v][s/u]A

(v) If s is in t(a), t is in t(b), and b~ is not in a,

[s/a][t/b]A == [t'/b][s/a]A

t' == [s/a]t

These theorems are also true if we substitute t for A and t for~. The
theorems so altered will be called Theorems I' and 2', respectively.

ASSUMPTIONS CONCERNING G. Besides the assumptions inherent in the
above formulations, the following assumptions will be made:

AI. The class e is not void.
A2. The auxiliary statements and counteraxioms are invariant of substitu

tion; i.e., when such a statement contains term variables, then a statement
formed by substituting real terms for those variables is also an auxiliary
statement or a counteraxiom.

The first of these assumptions corresponds to the assumption, usually
made in ordinary treatments of the predicate calculus, that the domain of
"individuals" is nonvoid. There has been a certain amount of interest in
the removal of this restriction. Presumably some of the results obtained
by those who have studied this matter could be applied to derive a theory
without Assumption AI, but that is not investigated here.

Remark 2. The representation of substitution will often be abbreviated
as follows. Let A == A(u), then

A(s) == [s/u]A(u)

1 The proof of part (iv) of Theorem 2 is given in detail in [TFD], p. 72, footnote 8.
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Remark 3. The formulation leaves open a number of possibilities in
regard to 6, in particular in regard to <1>. Of course, if <I> were void, no
variable would occur free in any proposition and the situation would be
trivial. Thus <I> must be nonvoid. Beyond that requirement, however,
there is still some latitude. In some systems certain of the ¢>t are indeter
Ininate, in the sense that the primitive frame says nothing about them
explicitly, so that they enter into an axiom or rule instance only by specializa
tion of some U variable. Such a ¢>t is called a predicate variable,. a ¢>i which
is mentioned specifically is called a predicate constant. If G is D there are,
of course, no predicate constants in this sense. If 6 is such that there is an
unlimited number of predicate variables of every degree, it will be said to
have unrestricted predicate variables. Where predicate variables exist, there
will be a derived rule of substitution in connection with them (see Exercise
4 at the end of this section).l

Remark 4. Remarks similar to Remark 3 can be made in regard to other
constituents of the primitive frame for G. In particular, if the e are indeter
minates, they do not differ in any essential way from those term variables
which are not used as characteristic variables,2 and it is a matter of arbitrary
choice whether they are listed as such and included in the range or they are
listed in e. Let us call them e variables. Likewise, an E i \"hich is not an
indeterminate may be called a primitive propositional constant.

Remark 5. It is customary to call an applied predicate calculus one in
which there are primitive term constants, primitive propositional constants,
or predicate constants or term operations; a p1tre predicate calculus, one
without these features. If we identify constants as in Remarks 3 and 4,
then a pure predicate calculus is one in which G is D and n is void. H ow
ever, these expressions are sometimes understood in other senses.3

5. L* systems. We now consider the formulation of systems, called
L* systems, which are analogous to the L systems of the two preceding
chapters, but are modified to allow for the presence of quantifiers and term
extensions. These systems will be designated by adding a superscript' *'
to the name for the corresponding system in Chaps. 5 and 6; we thus have
systems LA *, LC *, LM *, LJ *, LD *, LE *, LK * and their various formula
tions. In discussions related to such systems in general, the letter 'X' will
be understood as standing for any of 'A', 'C', 'D', 'E', 'J', 'K', 'M'; thus the
systems of this chapter are the systems LX *, their T forms TX *, etc.

PROSEQFENCES. The definitions of Sec. 5C3c are carried over with only
the obvious changes. We say that u occurs free in ~ just when u occurs
free in one or more constituents of~, and that u occurs bound in ~ just when
it occurs bound in one or more such constituents. Likewise, [s/u]~ will be
the prosequence formed from ~ by replacing every constituent A of ~ by
[s/u]A.

1 Systems of predicate calculus have been proposed in which such a rule of substitution
is taken as a primitive rule. Such systems are not considered here, and there seem to be
good reasons for avoiding them (see Henkin [BRS]). If they were to be admitted, it
would be better to change 'predicate variable' of the text to 'predicate indeterminate';
'predicate variable' and 'predicate constant' would then have other meanings.

2 For the terms 'characteristic variable' and 'range', see Sec. 5.
3 Cf. the preceding footnote.
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AUXILIARY STATEMENTS. These are defined in the formulation of 6(u) in
Sec. 1. They are subject to the restriction A2.

ELEMENTARY STATEMENTS. These are no,,, of the form

where a is a class of real variables, and

(8)

~ ~ ~(a) (9)

Explicitly, if ~ is AI' ... ,Am' ~ is B1. ... , B n, and a is aI' ... ,a p , then
(8) is

(10)

The class (a) will be called the range of (8). When it is not necessary for
explicitness, indication of the range is frequently omitted.

We extend definitions of occurrence and substitution to elementary state
ments as follows. We say u occurs free in (8) just when u occurs free in JZ
or ~ or both; likewise u occurs bound in (8) just when it occurs bound in ~

or ~ or both. If r is the statement (8) and s € t(b), then [s/a]r is the state
ment

~'Ia',b~~'

where a' is the class formed from a by deleting a, and

(11)

~' == [s/a]~ ~' == [s/a]~ (12)

Note that if (9) holds, the analogous condition for (11) is automatically ful
filled by Theorem 2.

PRIl\IE STATEMENTS. These are the same as before, with the additional
stipulation that the range a is any range satisfying (9).

DERIVATIONAL RULES. The rules for the finite operations, as given in
Secs. 5C and 6B, were stated under the supposition that all propositions,
auxiliary statements, etc., are related to a fixed system 6. With the under
standing that (8) is to be interpreted as stating

with reference to 6(a), these rules are now postulated for any a. This means
that the range is the same in all the premises as in the conclusion; that all
auxiliary statements, counteraxioms, etc., relate to 6(a); and that new
propositions, such as are introduced by .K*, and non-Ketonen forms of *A
and V *, are propositions of 6(a) [i.e., are in '-l.\(a)]. These rules will be called
henceforth the algebraic rules to distinguish them from the new rules pres
ently to be introduced.

In addition, on the supposition that

~,~, 3 ~ ~(a)

t € t(a)

A(c) € ~(a,c) B(c) € ~(a,c)

c is not in a
x is not bound in A(c) or B(c)
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we have the following quantification rules:

TI Universal quantification (or generalization)

*TI ~, A(t) Ia I- ~ TI* ~ Ia, c I- B(c), 3
~, (Vx)A(x) Ia I- ~ ~ Ia I- (Vx)B(x), 3

L Existential quantification (or instantiation)

*L ~, A(c) Ia, c I- ~ L* ~ Ia I- B(t), 3
~, (~x)A(x) Ia I- ~ ~ Ia I- (~x)B(x), 3

SINGULARITY RESTRICTIONS. In the multiple forms of LA*, LM*, LJ*,
and LD*, TI * is restricted to be singular; otherwise there is no restriction.

Remark 1. The rules *TI and L* could have been formulated without use
of the variable c. In the rules TI* and *L, however, the variable c plays an
essential role; it will be called the characteristic variable of the inference.

Remark 2. The conventions of Sec. 5C6 apply to these rules, and it is
clear that the new rules have the properties (rl) to (r5). However, the rules
TI* and *L do not have the property (r6), since the new parametric con
stituent might contain the characteristic variable. Furthermore, the quan
tification rules do not have the composition property, so that the conse
quences drawn from that property for systems LX do not necessarily hold
for systems LX*-in fact, the analogue of Corollary 5E9.1 is known to be
false. We shall see that they do have a generalized form of the composition
property, and that from this some of the other results of Sec. 5E follow.

Remark 3. In a statement (8), the prosequences ~ and ID have only a
finite number of constituents, and the range a is also finite. It would be
possible to admit infinite prosequences and ranges, provided certain restric
tions were fulfilled, but this will not be done here. l It is supposed, of course,
that q, r, s are all infinite.

Remark 4. The conventions are such that whenever a statement of form
(8) can be derived, then (9) holds. For this it is only necessary to postulate
(9) for the prime statements. Since the rules preserve this property, it then
follows that all demonstrable statements are elementary statements in the
above sense.

Remark 5. There is an obvious duality between the rules TI* and *L, on
the one hand, and *TI and L*, on the other. This duality breaks down in
certain respects, notably in that TI * may be singular on the right but *L is
never singular on the left. Nevertheless, it is possible to abbreviate proofs
by saying that the proof for one member of these dual pairs is obtained from
that for the other by duality.

EXERCISES

1. Show that
(Vx)(Vy)A II- (Vy)(Vx)A
(~x)(Vy)A II- (Vy)(~x)A
(~x)(~y)A II- (~y)(~x)A
(Vx)(Vy)A(x,y) II- (Vx)A(x,x)
(~x)A(x,x) II- (~x)(~y)A(x,y)

1 In [TFD] such possibilities were admitted but hardly used. A "finiteness restriction,"
stated there on p. 74, was necessary for quantification theory.
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2. Show that bound variables can be changed arbitrarily, so long as the rules for
being members of ~ are followed.

3. Show that it is sufficient to have predicates of degrees 1 and 2 in <1>. (This was
one of the theorems of Lowenheim [MRK]. Much stronger results of this nature are
now known.)

4. State and prove a theorem concerning the substitution of a propositional
function with certain arguments for a predicate variable with the same arguments, in
such a way as to avoid confusion of bound variables. (For the history of this, see
Church [rev. HA]. For solutions and further discussion see Hilbert and Bernays
[GLM.I], Church [IML2], Zubieta [SVF], Henkin [BRS].)

B. THEORY OF THE L* SYSTEMS

The L* systems were defined in Sec. A5. In this section theorems analo
gous to those in Sees. 5C to 5E and 6B will be proved. This will begin, in
Sec. 1, with theorems concerning the extensions and other forms of weaken
ing principles. We then proceed to the inversion theorem in Sec. 2. The
elimination theorem, and other theorems of Sec. 5D in which little change
occurs in the resulting theorem (though there may be more in the proof),
will be treated together in Sec. 3. The deducibility theorems of Sees. 5E1
to 5E4 will be treated in Sec. 4. In Sec. 5 there will be a discussion of
classical valuations and the use of them to give constructive proofs of non
demonstrability. The final subsection, Sec. 6, will treat proof tableaux.

1. Theorems on extensions and substitution. The first difficulty to be
overcome is that II* and *~ do not have the property (r6). This is because
the new parameter might contain the characteristic variable, and that
would invalidate the inference. It is therefore necessary to establish some
results which show that this property can, in principle at least, be restored.
These theorems will also show that substitution for the free variables can be
made.

The argument begins with two theorems of a preliminary nature. The
first is called a lemma because it will be superseded by Theorem 3.

LEMMA 1. Let Il be a regular demonstration (Sec. 5C7) terminating in

~ I° ~ ~ (1)

and let a € 0. Let s € t(b), where b is a class of real variables not containing
any characteristic variable of Il. Let Il' be the sequence of statements ob
tained from those of Il by substituting s for a throughout. Then~' is a regular
demonstration.
Proof. Let the statements of Il be r l' ... , r n' where r n is (1). Since the

range of the conclusion of any rule is never larger than that of every premise,
it follows that a must occur in the range of every r k ; moreover, since charac
teristic variables drop out, a is not a characteristic variable in Il. It follows
that r k is of the form

where a is not in Ok.

is

where

~k 10k , a ~ ~k

Let the corresponding statement in Il' be r~; then r k

~~ 10k' b ~ ~~

~~ == [s/a]~k ~~ == [s/a]~k
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To prove the lemma we have only to show that (a) if r k is prime, so is
rk; (b) if r k follows from r i , r;, ... by a rule R, then r k follows from r~,

rj, ... by the same R. In either case we can ignore the condition (9) of
Sec. A by virtue of Remark 4 of Sec. A5.

The proof of statement a is clear if r k is of type (p 1). If r k is of type (p2),
then statement a follows by Assumption A2. It is therefore sufficient to
prove statement b.

The proof of statement b is clear if R is one of the rules of Chaps. 5 and 6
which do not involve any auxiliary premise, for the transformation from fl
to ~' is a homomorphism with respect to these rules. For rules with an
auxiliary premise, namely, r* and F*, this is still true by Assumption A2.

If R is n*, the inference must be

~i Iai' a, c r B(c), 3i
~i Iai' a r (Vx)B(x), 3i

The transformed inference is

~i Iai' b, c r B'(c), 3;

where

~i Iai' b r [s/a](Vx)B(x), 3i
B'(c) == [s/a]B(c)

3; == [s/a]3i

Since, by the conventions of Sec. A4 (part v of Definition 5 and Remark 2)
and Theorem A2 (part v),

[s/a](Vx)B(x) == [s/a](Vx)[x/c]B(c)

== (Vx)[s/a][x/c]B(c)

== (Vx)[x/c][s/a]B(c)

== (Vx)B'(x)

the inference is a valid application of R.
The proof of statement b for the case where R iEt *~ is dual to this.
If R is ~*, the inference must be

~i Iai' a r B(t), 3i
~i Iai' a r (~x)B(x), 3i

The transformed inference is

~i Iai' b r [s/a]B(t), 3~

~i Iai' b r [s/a](~x)B(x), 3i
Now let b be a real variable not in ai' bt and not appearing as characteristic
variable in fl. Let

B'(b) == [s/a]B(b)

t' == [s/a]t

Then, by Sec. A4 (Remark 2, part v of Theorem A2, part v of Definition 5),

[s/a]B(t) == [s/a][t/b]B(b) == [t'/b]B'(b) == B'(t')
[s/a](Hx)B(x) == [s/a](Hx)[x/b]B(b) == (Hx)B'(x)

t Cf. Sec. A5, Remark 3.
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Hence the inference is again a correct application of R. For the case where
R is .II, we proceed dually.

This completes the proof of Lemma 1.

Theorem 1. Let r be an elementary theorem of LX· and 9 an infinite sub
class of t. Then there exists a derivation Il of r such that the characteristic
variables of Il are distinct from one another and belong to 9.
Proof. By hypothesis there exists a derivation Il' of r. The theorem

will be proved by induction on the length of Il'.
If this length is 1, then r is prime. Since there are no characteristic

variables, Il' is itself the desired Il. This disposes of the basic step of the
induction. It therefore suffices to prove the theorem when r is obtained by a
rule R from premises r l' r 2' •.• , r'P for which the theorem is already proved.

If R is a rule which does not have any characteristic variable, let 91'
92' ... , 9'P be mutually exclusive subsets of 9. By t.he inductive hypothesis
there exist derivations Ill' 1l 2 , ••• , 1l'P of rl' r 2' ••• , r 'P' respectively, such
that the characteristic variables of each Il i are in the corresponding 9i.
Then Ill' 1l2 , ••• , followed by R to deduce r froIn r l' ... , r p' will give the
Il sought. This takes care of all cases except that where R is II. or .~.

Finally, suppose R is II. or *~. Let the premise be r l and c the charac
teristic variable. Let g € 9, and let g' be an infinite subclass of 9 which does
not include c or g. By the inductive hypothesis there is a derivation Il'
terminating in r l and having its characteristic variables in g'. Let III be
constructed from Il~ as in Lemma 1 with g for s, g as the sole member of b,
and c for a. Then III will terminate in a r~, from which r can be obtained
by the same R except that g takes the place of c. Such a derivation will be
the desired Il, Q.E.D.
Theorem 2. If (1) holds and b is any finite subclass of r such that

~ ~ ~(b) ~ ~ ~(b) (2)

then ~ Ib I- ~ (3)

Proof. Let r be the statement (1) and Il a derivation of it. The theorem
will be proved by induction on the length of Il.

If r is prime and (2) holds, then (3) is also prime. This disposes of the
basic step of the induction. It therefore suffices to suppose that r is ob
tained by a rule R from premises r 1, r 2' ••• for which the theorem is already
proved.

Suppose R is such that all variables which occur free in any premise also
occur in the conclusion. This includes all the rules .C*, *K*, *W., .P.,
.A., • V., .N., Fj. In such a case, if (2) holds for the conclusion, the
analogous inclusion holds for all the premises. By the inductive hypothesis
the premises all hold if the range is changed to b. Then (3) follows by R.

If R is one of the rules II. or .~, then all variables occurring free in the
premises, excepting only the characteristic variable, occur free in the con
clusion. Let this characteristic variable be c. Then if (2) holds for the
conclusion, the analogue of (2) will hold for the premise if we take b, c as the
range. By the inductive hypothesis the premise holds if the range is changed
to b, c. From the altered premise we again have (3) by R.

The remaining possibilities are 1-*, Px, Nx, F., .II, and ~.. In all these
cases variables may occur free in the premise(s) which do not occur free in
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(4)

the conclusion. By Assumption Al there is an element e1 of e. Let a be a
variable ,vhich occurs free in some premise but not in the conclusion. By
I.Jemma 1 we can derive the premise with e1 substituted for a and a deleted
from the range. We can continue in this way until all variables which occur
free in any premise also occur free in the conclusion. Since the conclusion
can still be derived by the same rule R, the theorem follows by the case
treated in the second preceding paragraph.

Remark 1. The theorem would not be true as stated ,vithout Assumption
AI. For if A(a) is a proposition in ,vhich a and no other variables explicitly
appear, then we can easily derive

(Vx)A(x) Ia I- (~x)A(x)

On the other hand, if t(o) is void, we cannot derive

(Vx)A(x) I 0 I- (~x)A(x) (5)

If b is not void, one can use some b in b instead of e1 , but in that case it might
be necessary to involve Theorem 1 in order to satisfy the hypotheses of
Lemma 1.

Remark 2. The theorem allows us to generalize rules which, like *K* and
the original forms of *A and V*, introduce a new component B in the
conclusion, to cases where B contains variables not in the range Q of the
premises. For if B € ~(b), we use the theorem to change the range of the
premises to G, b and apply the original rules to draw the conclusion with
range changed to Q, b. A similar remark applies if B is an additional pa
rameter adjoined to rules satisfying (r6).

Theorem 3. If r is a true statement (1) and s € t(b), then [s/a]r is also true.
Proof. Let r' be [s/a]r (for its definition see the specifications for ele

mentary statements in Sec. A5). If a is not in Q, then r' is

~ IQ, b I- ~

and this follows from r by Theorem 2. Suppose, then, that a € Q. By
Theorem 1 there is a derivation t!J. of r such that none of the characteristic
variables of t!J. are in b. The theorem then follows by Lemma 1, Q.E.D.

These theorems show ho,v we may reinstate the property (r6). That
property evidently holds for the rules *II and ~*, and it holds for II* and
*~, provided the characteristic variable does not occur free in the new param
eter. If that condition is not met, then Theorem 3 shows that we can
replace the characteristic variable by one which satisfies the condition. We
thus have the following:

COROLLARY 3.1. The rules *II* and *~* have the property (r6), and hence are
regular, provided that the characteristic variable, if any, is changed so as not
to occur free in the new parameter.
The quantifier rules also fail to satisfy (r7) in the strict sense. But they

do satisfy (r7) in a modified sense, for the A(x) in the conclusion differs from
the A(c) or A(t) in the premise only in changes of its terms.

2. The inversion theorem. We now study the effect of the introduction
of quantification on the inversion theorem. Except for obvious adaptations
to the present situation, we use the same notational conventions as in Secs.
5DI and 6B2.
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The inversion theorem itself-Theorem 5DI and its modification, Theorem
6B J -was stated and proved for a general L system; and consequently, in
view of the results of Sec. I, it holds for L* systems also. Furthermore,
since no subaltern in an algebraic operational rule can contain a variable
not present in the principal constituent, there can be no conflict with the
characteristic variable of a quantification rule under condition (c). Hence
the impact of the conditions (a) to (/) of these theorems on the algebraic
operational rules is not affected by the presence of quantification rules. We
have only to consider what these conditions allow us to say about the quanti
fication rules themselves.

Before we consider these complications there are two preliminary matters
to be disposed of. In the first place we may suppose, by virtue of Theorem
I, that the characteristic variables in Il are distinct from one another and
from the variables in the range of r. In the second place we note that there
can be several parametric ancestors of M only when there is a branching of
~l or an application of *W*.

Now suppose that R is n* and that M is (Vx)A(x). Then the original
ancestors of M which are introduced by R are replaced by A(cl ), A(c2 ), ••• ,

A(cr ), where the CI ' ••• , Cr are distinct characteristic variables; we may sup
pose that those introduced by K* are replaced in the same way with variables
suitably chosen. It is evident that condition (b) of Theorem 5DI is not
satisfied because of the possible differences in the characteristic variables.
However, suppose we proceed down III as in Sec. 5Dl. Where two or more
branches come together, or *W* is applied to two instances of M, we may
use Theorem 3 to identify the different Ci in the branches, substituting one
of them for each of the others in the appropriate branches. If we carry this
all the way down to the bottom, we shall have replaced all the Cl' ••• , Cr by
the same c. Condition (b) will then be fulfilled in principle. Since all the
variables other than C were present in the original Ilv and since the Ci are
distinct from the other characteristic variables, condition (c) is also fulfilled.
Thus n * will be directly invertible. There may be conflict with condition
(a) in those systems where n * is required to be singular, but otherwise it
does not make any difference whether the system is absolutely or classically
based.

What has been said about n*, except the remark about possible failure of
condition (a), applies by duality to *~.

Next, suppose that R is ~* and that M is (~x)A(x). Then the subalterns
which replace the ultimate quasi-parametric ancestors of M introduced by
R will be A(tl ), A(t 2 ), ••• ,A(tr ). Again condition (b) may not be fulfilled.
We can restore condition (b) by using the entire set A(tl ), A(t2 ), ••• , A(tr ) in
place of each A(t i ), and we can use this same set also where M is introduced
by K* (including Fj considered as a form of K*). But it may happen that
some ti contains a characteristic variable of Ill. In such a case condition
(c) may not be fulfilled. An example of this will be given later (Example I).
If condition (c) is fulfilled, then we need at the end an inference of the
form

~ Ia r A(tl ), A(t 2 ), ••• , A(tr ), 3
~ Ia r (~x)A(x), 3



SEC. B] THEORY OF THE L· SYSTEMS 329

This may be obtained by r applications ~. together with applications of W.;
it will be a single rule if we replace ~. by ~'., which may be regarded as
analogous to the Ketonen form of V•.

The case where R is .II is handled dually. The rule analogous to ~'. is .II'.

~, A(t l ), ... , A(tr ) Ia ~ ~

~, (Vx)A(x) Ia ~ ~

These considerations prove the following:
Theorem 4. The rules II. and .~ are directly invertible in all systems. If .II

and ~. are replaced by .TI' and ~'., then a direct inversion may be carried
out unless there is conflict with cha~acteristic variables of some II. or .~ in
ill. The situation with respect to inversion of the algebraic rules is un
changed.
Example 1. (Vx)A(x) I~ (Vx) • A(x) V B. This can be established in

LA: thus:
A(c) Ic ~ A(c) V B .II

(Vx)A(x) Ic ~ A(c) V B
(Vx).A(x) I~ (Vx). A(x) V B II.

If R is .II, condition (c) is not satisfied because A(c) contains the charac
teristic variable of the following II.. Kleene [PIG, p. 25] shows that it
cannot be derived, even in LK·, with .II last.

Example 2. A(a) V A(b) Ia, b ~ (~x)A(x). This can be derived in LA
thus:

A(a) Ia, b ~ A(a) ~. A(b) Ia, b ~ A(b) ~.

A(a) Ia, b ~ (~x)A(x) A(b) Ia, b ~ (~x)A(x) .V
A(a) V A(b) Ia, b ~ (~x)A(x)

Kleene gives this as an example of nonpermutability in LA l . It can, how
ever, be permuted in LAm' thus:

A(a) Ia, b ~ A(a), A(b) A(b) Ia, b ~ A(a), A(b) .V

A(a) V A(b) Ia, b ~ A(a), A(b) ~'.

A(a) V A(b) Ia, b ~ (~x)A(x)

3. Other basic theorems. We now consider the analogues of the
theorems of Sees. 5C to 5E in which the changes to adapt them to the pres
ence of quantifiers are rather slight. The situation is summed up in the
following:
Theorem 5. The theorems of Sec. 5C, the elimination theorem, the equivalence

of singular and multiple formulations (Theorems 5D7 and 5D8 and 6B5),
and the equivalence of different formulations of negation (Theorem 6B4),
all hold for the systems LX·.
Proof. Theorems 5CI to 5C3 hold without change; and as in Sec. 6BI

we pay no further attention to distinctions between Formulations I and II.
In Theorem 5C4 we need to consider the additional cases

A(b) Ia, b ~ A(b) .II
(Vx)(A(x)) Ia, b ~ A(b) II.

(Vx)A(x) Ia ~ (Vx)A(x)

and the dual of this argument for (~x)A(x).
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(6)
(7)

(8)

*II and II*,

(9)

(10)

~l' B(t) Ia r ~
~2 Ia, c r B(c), 3

where the characteristic variable c may be chosen so as not to occur in (9)
either. From (10) and Theorem 3,

~2 Ia r B(t), 3
Eliminating B(t) from this and (9), we have (6).

CASE L. A is (~x)A(x). This may bellandled dually.
In principle, no change is necessary in the extension of ET to the mixed

systems. We treat all cases where A has the form of the principal con
stituent of a rule R which is singular on the right in the same way as we
treated the case where A was B ::::> C in Sec. 5D2. Also, such a rule R plays
a role similar to that of P* in the rest of the argument of Sec. 5D2.

In regard to the equivalence between the singular and multiple systems
(Theorems 5D7, 5D8, and 6B5), this theorem takes the following form: A
necessary and sufficient condition that

In the proof of Stages 1 and 2 of the elimination theorem, we can avoid
conflict due to the possibility of different ranges by Theorem 2. Conflict
with respect to characteristic variables can be avoided by Theorem 1. In
fact we can suppose, to begin with, that the characteristic variables in either
premise of ET are distinct from one another and from all variables appearing
in the conclusion. Thus the rules are regular [in the modified sense of (r7)].
As for Stage 3, we require two additional cases as follows:

CASE II. A is (Vx)B(x). The premises are

~l' (Vx)B(x) Ia r ~
~21 a r (Vx)B(x), 3

~l' ~2 Ia r ~, 3
By the hypothesis of the stage, (6) and (7) are obtained by
respectively, from

and the conclusion is

(11)

is that ~ Ia r1 C (12)

the notations being the same as in Sec. 5D. In view of the results of Sec. 2,
the sufficiency proof is not at all affected by the presence of quantifiers. For
the necessity proof we have to consider four new cases, namely, *II. and
*L*. Of these the rules on the left involve no difficulty since the right sides
are parametric. The rule II. is singular in I~A*, LM*, LJ*, and LD*; hence
it needs to be considered only for LE* and LK*.

Let us take up first the case of L.. Here ~ is (~x)A(x), 3, and C is
(~x)A(x) V D. By the inductive hypothesis

~ Ia r1 A(t) V D

From this we have the desired conclusion by ET, provided we establish

A(t) V D Ia r (~x)A(x) .V D
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This may be shown as follows:

A(t) IQ I- A(t) ~*

A(t) IQ I- (~x) .A(x) V * _D.....,:..I_Q_I-_D V *
A(t) IQ I- (~x) .A(x) .V D D IQ I- (~x)A(x) .V D

A(t) V D IQ I- (~x)A(x) V D
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In the case of II* we note that we have available all the apparatus of LC1•

The following hold in LA ~ :

A :::>. (Vx)B(x) IQ I- (Vx) .A :::> B(x) (13)

~ II- A V B ~~, A :::> B II- B (14)

while the following holds in LC1 :

~,A :::> B II- B ~ ~ II- A V B (15)

Using these, we can complete the necessity proof for II * as follows. The
inference in question is

~ IQ,C I- A(c), 3
~ IQ I- (Vx)A(x), 3

By the premise and the inductive hypothesis

~ IQ, C I- A(c) V D

From this we conclude, successively,

~, D :::> A(c) IQ, C I- A(c)

~, (Vx).D :::> A(x) IQ, C I- A(c)

~, D :::>. (Vx)A(x) IQ, c I- A(c)

~, D :::>. (Vx)A(x) IQ I- (Vx)A(x)

~ IQ I- (Vx)A(x) .V D

by (14)

by *II
by (13), ET

by II*
by (15)

This completes the proof of necessity, and thus of the theorem under dis
cussion.

Next we look at the theorem of Sec. 6B4 regarding the different formula
tions of negation. Inspection of this proof shows that it is not at all affected
by the presence of the rules for quantification.

This completes the proof of Theorem 5.
4. L* deducibility. We have already noticed (Sec. A5, Remark 2) that

the quantifier rules do not have the composition property, even with respect
to compound constituents. But they do have a modified form of this
property, viz., that in which we interpret the word 'like' as meaning that the
components differ by changes in terms only. This still leaves the number of
possibilities infinite, so that the proof of the decidability theorem fails. l

Yet the modified composition property enables us to establish many of the
other theorems of Sec. 5E.

1 The undecidability of LK* was proved in Church [NEP]; see also his correction [CNE].
In principle this proof extends to the other L* systems, but we shall not look into the
question of exactly how.
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Let us call this form of the composition property the modified composition
property. Then we have the following:
Theorem 6. If a system LX has the composition property, then LX* has the

modified composition property. I n so far as LX has the separation, con
servation, and, in the singular case, the alternation property, LX* does also.
In the case of the alternation property we have to take account of the

fact that *~ is dilemmatic according to the definition of Sec. 5E4 because it
fails to satisfy (r6). But the only reason for that failure is that the new
parameter may contain the characteristic variable. However, if in climb
ing the tree we encounter a case where *~ was applied, the characteristic
variables cannot be in A V B, and hence when the latter is replaced by A
or B, as the case may be, the inference will still be correct.
COROLLARY 6.1. If r is an elementary theorem of LX* which does not involve

quantifiers, then r is demonstrable in the corresponding L system.
Proof. For all except LD* this follows by the separation property. If

r is true in LD*, then r is true in LDi. But LDi can be formulated with Nx
taken in the form

~, I A II- A --+ ~ II- A

and this does not allow a quantifier to be eliminated. Hence, if a quantifi
cation rule were used, a quantifier would appear in r, Q.E.D.

In the case of the alternation property we have the following generaliza
tion:
Theorem 7. Let the operations V and ~ be regarded as dilemmatic, the others

as nondilemmatic. Let the operations in ~ be all nondilemmatic, and let

~ Ia I- (~x)A(x) (16)

hold in LA!, LM!, or LJ!. Then for some t [obtained constructively from
the proof of (16)],

~ Ia I- A(t)
holds in the same system.
Proof. Similar to that of Theorem 5E5. The tree climbing can never

reach a quasi-prime statement.
The following theorem is the relevant generalization of Theorem 5E4.

Theorem 8. Let Il be a demonstration of (1) in a system LX*(6). Let
the auxiliary statements and counteraxioms used in Il be obtained from
auxiliary statement schemes and counteraxiom schemes in which the free U
variables for terms are b == {bl , .•• ,bn }. To each elementary statement
scheme

AI' A 2 , ••• , Am Ib 1-0 B

let there be assigned a proposition G(bl , .•• , bn ), where

G == Al =>. A 2 =>•• • • =>. Am => B

and to each counteraxiom scheme

Fi(b l , .•• , bn )

let there be assigned a

viz.,
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Let IDl consist of all propositions of the form

(VX1)(VX 2) • • • (Vxn ) .G(x1, ••• ,Xn )

(where quantifiers pertaining to variables not actually present can be omitted).
Then

is demonstrable in LX*(D).
The proof is left as an exercise (Exercise 9). It can be obtained either by

analogy with that of Theorem 5E4 or directly by deductive induction.
The theorems on simplification of 'the structural rules hardly need sepa

rate treatment. In Formulation III we need a quasi-principal constituent
in ~* and *II.

5. Nonderivability; classical evaluation. Although the L* systems
are in principle undecidable, yet it frequently happens that applications of
methods similar to those in Seo. 5C5 will lead to a decision in special cases.
This is frequently helped out by the use of other methods, of which one of
the most important is contravalidity by classical evaluation. We shall
examine the latter method here, and then apply it to a proof of nondemon
strability in LA·.

We shall begin by stating some definitions connected with the notion of
classical valuation.
DEFINITION 1. If a ~ q, a classical valuation with range a is a mapping f

which assigns to every proposition A of an extension 6(a) [i.e., to every
element of ~(a)] a value f(A) which is either 0 or 1. This assignment is
arbitrary for the elementary propositions [members of (f(a)],l and each
such assignment defines a separate valuation. For compound proposi
tions, f(A) is defined recursively thus:2

f(A :::> B) = 1 - f(A) + f(A)f(B)
f(A A B) = f(A)f(B)
f(A V B) = f(A) + f(B) - f(A)f(B)
f(IA) = 1 -f(A)

j((Vx)A(x)) = mint{f(A(t))/t € t(a)}t

f((~x)A(x)) = maxt{f(A(t))/t € t(a)}

Such a valuation is said to be constructive if its value can be determined
by an effective process; this means, in the case of f((Vx)A(x)), that we
can either determine effectively that f(A(t)) = 1 for all t or produce
effectively an s such that f(A(s)) = o.
1 Note that an elementary proposition of the form

4>k(t1, ••• , tnt)

is distinct from all the E i , and from every other such proposition with a different 4>k' or
with the same c/>k and different t 1, ••• ,tnt. If there are infinitely many distinct members
of (f( a), the valuations form a nonenumerable set.

2 The right sides are to be interpreted as arithmetical expressions. Note that the first
four cases give the ordinary 0-1 truth tables.

t This means the minimum for all t of the class of values in the braces. Thus the mini
mum is 1 just when all the values in the braces are 1. Similarly, 'maxt' means the maxi
mum of the values in the following braces.
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DEFINITION 2. A valuation is admissible just when f(B) = 1 for all ele
mentary statements B such that

AI' A 2' ••• , Am ro B

wheref(A1) =f(A 2 ) ='" =f(Am ) = 1; andf(B) = 0 for B a counter
axiom or B == F. (In D every valuation is admissible iff(F) = 0.)

DEFINITION 3. If f is a classical valuation and ~ is a prosequence, we
define

f(~) = 1 f(~) = 0

to mean that every constituent of ~ has, respectively, the value 1 or the
value O.

DEFINITION 4. If f is an admissible valuation whose range includes a, then
f shall be said to be a countervaluation for the elementary statement (1)
just when

f(~) = 1 and f(ID) = 0 (17)

The statement (1) is valid by classical evaluation just when no counter
valuation exists.
This notion of validity is evidently indefinite. However, we can some

times establish invalidity constructively by exhibiting a constructive
countervaluation. In such a case the following theorem shows that 'non
demonstrability can also be constructively established.
Theorem 9. If a countervaluation for (1) is construct~vely defined, then (1)

is not demonstrable in any LX*.
Proof. We show, by deductive induction, that if (1) is demonstrable,

then the assumption that there is a constructive countervaluation f will
lead to a contradiction. l This is clear if (1) is prime. The inductive step
is completed if we show that if (1) is obtained by a rule R and there is given
constructively an f satisfying (17) for the conclusion, then there will be one
for at least one of the premises also.

For the algebraic rules this inductive step is clear. (It has already been
used in the proof of Theorems 5D6 and 6B9.)

The inductive step for the case where R is II * is as follows. Let the
inference be

~ Ia, c r A(c), 3
~ Ia r (Vx)A(x), 3

If f satisfies (17) for the conclusion, then

f(~) = 1 f((Vx)A(x)) = 0 f(3) = 0 (18)

From the second of these equations, since f is constructively given, there is
an s € t(a) such that

f(A(s)) = 0

Now let g be the valuation over the range a, c such that for each elementary
B

g(B) = f([s/c]B) (19)

1 This contradiction will consist in the fact that some proposition will be assigned two
values.



SEC. B] THEORY OF THE L* SYSTEMS 335

Then we can show by structural induction on B that (19) holds for all B € ~(a).

For example, if B == (Vy)C(y), and C' == [sle]C, then

g(B) = mint{g(C(t))lt € t(a,c)}

= mint{j(C'(t')}

where t' == [slc]t. Since t' € t(a) and any t € t(a) is such a t',

g(B) = mint{j(C'(t))lt € t(a)}

= j((Vy)C'(y))

= j([xle]B)

Proceeding analogously in the other cases, we have (19) for all B. From
this we have

g(~) = j(~) = 1

g(3) = j(3) = 0

g(A(e)) = j(A(s)) = 0

so that the premise of R is constructively invalid, which is a contradiction.
The inductive step for the case where R is *L is dual to this. The other

cases do not cause any difficulty. This completes the proof.
As a corollary of this theorem we have the following:

Theorem 10. If a ~ r and A and B are elementary, the statement

(Vx) .A V B(x) Ia r A V. (Vx)B(x) (20)

is not demonstrable in LA*(D).
Proof. If (20) is demonstrable, then by Theorem 2 so is the statement

formed by extending the range arbitrarily.
The statement (20) is the special case m = 0, n = 0, of

(21)(Vx) .A v B(x), Um , IDn I a r A V. (Vx)B(x)

Um == B(t1 ), ••• , B(tm )

IDn == A v B(Sl)' ... , A V B(sn)

We shall see, using the rules of Formulation IV, that no statement of form
(21) is demonstrable.

First, if (21) were obtained by application of V*, the premise would be
one or the other of

where

(Vx) .A V B(x), Um , IDn Ia r A

(Vx) .A V B(x), Um , IDn Ia r (Vx)B(x)

These are both invalid by classical evaluation over .0: the first by taking
f(A) = 0, j(B(t)) = 1 for all t; the second by taking j(A) = 1, j(B(tk )) = 1
for all k, j (B(t)) = 0 for some t distinct from tI , .•. , tm (this is possible in a
suitable extension of a). By Theorem 9 neither of these premises can be
derived in LA*. Hence (21) cannot be obtained by V*.

The only other rules of Formulation IV which can lead to (21) are *n,
with principal constituent (Vx) .A V B(x), and *V, with principal constituent
some A V B(tk ). In the former case the premise is again of form (21); in the
latter case there are two premises, of which one is again of form (21). Thus
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the search for a proof of (20) will lead to an infinite regress, and no demon
stration is possible, Q.E.D.
COROLLARY 10.1. The multiple form of II* is not valid in LA·.

Proof. If it were, we could derive (20) thus:

A 1°, c I- A, B(c) B(c) 1°, c I- A, B(c) *v
A V B(c) 1°, c I- A, B(c) *II

(Vx) .A V B(x) 1°, c I- A, B(c) II*
(Vx)A V B(x) Ia I- A, (Vx)B(x) v*
(Vx)A V B(x) 1o I- A V (Vx)B(x)

Remark. The notions used here are related to the ordinary notion of
model. There are, however, certain differences. In the present context
let us understand a model in the following sense. Let there be given a con
tensive system 9J1 (which may be another formal system), and let objects of
IDl be assigned as values to the terms. We thus have values for the terms
as well as for the propositions. It is not necessary that distinct terms have
distinct values. We then assign classes or relations (of the values) to the
predicates and interpret the elementary propositions as contensive state
ments; if the elementary statement is

~k(tv ... , tn ,)

the contensive statement is one to the effect that the values of tv ... , tn"
are related in the order named by the relation assigned to ~k; the E i , which
may be thought of as special cases of the above where nk = 0, are simply
interpreted as contensive statements of some kind concerning IDl. When
the contensive statement is true, we assign to the proposition the value 1;
when it is false, the value o. t The values of compound propositions are
then determined as in Definition 1. Under these circumstances we say that
9J1 is a semimodel (in relation to the correspondence set up); if the inter
pretants of all asserted propositions are true,l 9J1 is a model. Note that a
classical valuation, as defined in Definition 1, is a special case, viz., where we
take the terms as their own values and the contensive statements as those
stating that the proposition has the value 1. In the study of models one
takes a platonistic point of view and does not insist on constructiveness;
from this standpoint Theorem 9 says that an admissible valuation gives a
model.

6. Proof tableaux. Inasmuch as the classical predicate calculus is known
to be undecidable, it is not to be expected that any algorithm will give
a decision as to demonstrability or nondemonstrability in every case. The

t This is then a valuation in the above sense, but two propositions with the same 4>k
whose corresponding terms have the same value must have the same value as propositions.

1 There are at least two variants to this. On the one hand, we may suppose that only the
elementary propositions have interpretants and the truth of the compound propositions,
elementary statements, etc., is determined by Definitions 1 to 4. In this case IDl is a model
for 6. On the other hand, we may suppose that our operations correspond to con
nectives in IDl and then compound propositions have interpretants. In such a case it is
required that truth as determined by our conventions imply contensive truth of the
interpretants.
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(Fj)

most that can be expected of a tableau is that its closure will be a necessary
and sufficient condition for demonstrability, but the tableau may go on
indefinitely without either closing or becoming provably impossible to close.
In such a case it is important, when the tableau splits, to consider all the
subtableaux simultaneously, so that no possibility of decision may be over
looked if the tableau is carried far enough.

An algorithm satisfying these conditions will now be proposed. This is
subject to the general conventions of Sec. 5E8. It is supposed that the
system under consideration is LA':, LC':, LM':, LJ;p LE':, or LK':; further,
that e; is .0, n is void, and e consists of el only. The range of the datum is
not indicated; that for the head of the tableau is to include all the term
variables which occur free; at any step the range of each statement of the
result is to be the same as that of the datum, except that the c in II and III,
which is to be added to the range of the datum to give that of the result, is
to be the first variable in 9 (Theorem 1) that is not in the range of the datum.
In X and XI, tl , ... , tr are el and all the variables in the range (and
hence all atoms which appear in the datum, together with el ). The L rule
permitting the inference from result to datum is indicated at the extreme
right, it being understood that .C* can be used whenever needed.

I ~ Ir 31' A :::> B, 32
~, A Ir 31' B, 32

II ~ Ir 31' (Vx)A(x), 32
~ Ic r 31' A(c), 32

III ~l' (~x)A(x), X2 Ir ~
~1' A(c), ~21 c r ~

IV ~ Ir ~l' A V B, ~2
~ Ir ID1' A, B, ~2

V ~l' A A B, ~2 Ir ~
~1' A, B, ~2 Ir ~

VI ~ Ir ~1' A A B, ~2
~ Ir ~l' A, ~2 & ~ Ir ~1' B, ~2

VII Xl' A V B, ~2 Ir ID
Xl' A, ~2 Ir ~ & Xl' B, ~2 Ir ~

VIII ~ Ir ~
~Ir~, F

IX ~ Ir A, ~
X Ir A or ~ Ir ~, A

X ~ Ir ~l' (~x)A(x), ID2
~ Ir ~l' A(tl ), ••• , A(tr ), ~2' (~x)A(x)

XI ~l' (Vx)A(x), X2 Ir ~
Xl' A(tl ), ••• , A(tr ), X2 , (Vx)A(x) Ir ~

XII ~l' A :::> B, ~2 Ir ~
~1' ~2' A :::> B Ir ~, A & ~l' ~2' B Ir ~
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The convention that the rules are to be taken in the order given is subject
to an important exception; viz., as soon as any of the rules X-XII is app
lied to r we must apply these rules and only these rules with the principal
constituents originally appearing in r until all such possibilities have been
exhausted, without regard to the appearance during the process of other
possibilities of applying these or any other rules; only after each of these
rules has gone through a cycle is the normal course of the algorithm resumed.
The purpose of this provision is to insure that every constituent is reached;
with new terms being introduced by II and III, it is conceivable that the
algorithm might otherwise continue .indefinitely without reaching certain
constituents.

In the dystems based on LC the rule IX is omitted, the quasi-principa~

constituent in XII is removed, and XII is moved up to come immediately
after VII. (For other possible modifications, see Sec. D4.) The rule VIII
is omitted in all systems which do not postulate Fj.
Theorem 11. A necessary and sufficient condition that an elementary state

ment be demonstrable is that its tableau close.
Proof. This follows the pattern of Sec. 5E8, but contains some modi

fications.! It will be expedient to make a few definitions and preliminary
remarks before beginning the proof proper.

A standard demonstration is one made in Formulation IV,2 with prime
statements of type (pI)' (Sec. 5C9) or (p2), and applications of *K* made
initially or in a group immediately after an application of a rule which is
singular on the right (but without any restriction on the form of the prin
cipal constituent).3 By the theorem~ already proved, any demonstration
can be made standard. The degree of a standard demonstration will be,
as in Corollary 5D 1.6, the total number of its nonstructural inferences; in
this the rule Fj, which simply omits F, will be regarded as nonstructural.

A constituent C on a specified side will be called simple in exactly the fol
lowing cases: (1) C is elementary; (2) C is on the right and has the form of
the principal constituent of a rule which is singular on the right; and (3) C
has the form of the quasi-principal constituent of a rule which requires
such on the same side. Any constituent C is formed from simple constitu
ents by the operations which form the principal constituents of the rules
III to VII from their subalterns; the number m of applications of such
operations will be called the order of C. The K -order of a standard dem
0nstration Il is defined as the sum total of the orders of all the constituents
introduced into Il by *K*.

After these preliminaries we pass to the proof proper.
The proof of sufficiency follows at once, since the inference from result to

datum can be made by the rule indicated at the right. In certain cases,
where the two subalterns are equal or a subaltern already occurs in the
datum, the special rules of Formulation IV may be needed.

In the proof of necessity we deal first with the case where we have a

1 Some of these modifications were made too late to affect Secs. 5E8 and 6B6.
2 Due to the restrictions on .K., certain rules discarded as trivial in Sec. 5E6 will

be needed here. The provisions of Sec. 5E8 for omitting repetitions take care of all
special rules of Formulation IV automatically. There is no difficulty about extending
Theorem 5Dl and its corollaries to Formulation IV.

a This is necessary on account of the condition (d) in Theorem 5D1.



SEC. B] THEORY OF THE L· SYSTEMS 339

system based on LA·, then consider what modifications are suitable for a
system based on LC·. The proof proceeds, as in Theorem 5EIO, by an
induction. Let r be the given statement. Let Il be a standard demon
stration of r, and let its degree be n and its K-order be m. If n = 0, then
r is quasi-prime, and the algorithm closes at once. Otherwise we assume
as inductive hypothesis that the theorem holds in all cases where the degree
is less than n; also, if m > 0, in all cases where the degree is n and the K
order is less than m.

If one of the rules I to VII is applicable to r, then we invoke the inver
sion theorem as in Theorem 5EIO. Let M be the principal constituent of
the first step of the algorithm applied to r. If M has at least one quasi
parametric ancestor which was introduced by the operational rule, then by
Corollary 5D1.6 the result(s) of the first step of the algorithm will have
standard demonstration(s) of degree less than n. If not, M must have
positive order; for M is necessarily composite, and the omission of a con
stituent of either of the types I or II would lead to an elementary theorem
with a void consequent, which is impossible in an F formulation. Then, by
Corollary 5D1.6, the demonstration(s) of the result(s) of the first step of
the algorithm will have degree not greater than nand K-order less than m.
In either case the algorithm closes by virtue of the inductive hypothesis.

We may, therefore, suppose that r contains no constituent having the
form of the principal constituent of any of the rules I to VII. No rule
previous to VIII is then applicable, and the last inference in Il must be by
one of the rules Fj, K*, ~*, *II, or *P.

If the last inference in Il is by Fj, then the result of VIII will give the
premise of the inference. Since the result can be obtained from the datum
by K., it has likewise a demonstration of degree n. We may therefore suppose
that r contains an instance of F, and hence that the algorithm will pass
through to IX.

If the last inference in Il is by K., then, since this cannot be an initial
instance of K., it must be one of a group occurring immediately after applica
tion of a rule which is singular on the right. Then one of the alternatives
of IX will give the conclusion of that application, and the algorithm will then
give the premise by I or II. Since that premise has a demonstration of
degree n - I, the algorithm will close by the inductive hypothesis. (Note
that we need only consider those alternatives in IX in which the A has the
proper form, and that we should exclude all other alternatives if we want
the demonstration formed by inverting the algorithm to be standard.) If
the last inference in Il is not by K., then it must be by ~., .II, or .P. In
that case we cycle through IX, and let the algorithm pass through to X.

We continue the proof of the theorem. We recall that we have handled
all cases except that where the last inference in Il is by one of the rules ~.,

.II, or .P, and none of the rules I to VIII is applicable to r. At least one
of the rules X to XII must then be applicable to r. By our special con
vention we must make a cycle through each of these rules using only principal
constituents which were present in r to begin with, without regard to the
possible principal constituents (for these or any other rules) which may
appear during the process. The cycles through X and XI will convert r
into a r' which is derived from it by weakening. If the constituents of the
form A :::> B which were in r are those of (14) in Sec. 5E8, then the 9ycle
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through XII will convert r' into a conjunction r~, r~, ... , r~, where p = 2m

(see Exercise 5E12) and each is derived from r' by inversion and weakening.
The special convention requires that all this be done as if it were a single
step of the algorithm.

If the last inference in Il is by one of the rules L., .n from a premise r",
then the principal constituent is in r. By the reasoning used at the end of
the proof of Theorem B2, we can suppose that the subaltern is one of the
A(t i ). It must therefore appear in r'. Thus r' can be obtained by weaken
ing from r". Since the process of inversion does not increase the degree,
each of the r~ can be obtained by weakening from a statement with a
standard demonstration of degree less than n. By the inductive hypothesis,
the algorithm closes for each of the r~, ... , r~, and hence for r in this case.

The only remaining case is that the last inference in Il is by .P. Let the
premises be r a and r b. If we perform on these the same weakening steps
as led from r to r', we shall obtain statements r~ and r~ from which r' follows
by a homologous instance of .P. Each of the r~ can be obtained from one
or the other of r~, r~ by inversion with respect to certain of the A; ::> B;
and \veakenings. Since inversion alters the structure of a proof only in the
deletion of certain operational inferences (viz., those by the rule R of Sec.
5DI), each of the r: can be obtained by weakening a statement with a
standard demonstration of degree less than n. As before, the algorithm
therefore closes for each r~, and hence for r.

This completes the proof of the theorem for systems based on LA *. For
systems based on LC* the situation is simpler. In the first place, all applica
tions of .K. in a standard demonstration are initial; therefore we do not
need IX, and have no alternative splittings of a tableau. Again since .P
is invertible without a quasi-principal constituent, we can cancel that con
stituent, move the rule up in front of VIII, and treat it like I to VII. This
simplifies matters at the end of the proof considerably.

Theorem 11 is therefore proved for all the systems mentioned in the
preliminary discussion.

EXERCISES

Exercises 1 to 3 are lemmas in the reduction to prenex normal form in Sec. Dl.
Partial answers may be found there.

1. Show that the following hold in LC· and that exactly three of them fail to hold
in LA·.

(Vx).A::> B(x) II- A ::>. (Vx)B(x)

A =>. (~x)B(x) II- (~x).A ::> B(x)

(Vx).A(x) ::> B II- (~x)A(x).::> B

(Vx)A(x) .=> B II- (~x).A(x) ::> B

(Vx).A(x) A B II- (Vx)A(x) .A B

(~x)A(x) .A B II- (~x).A(x) A B

(Vx).A(x) V B 11- (Vx)A(x) .V B

(~x)A(x) .V B II- (~x).A(x) V B
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2. Show that one of the following holds in LM*, the other in LK* but not in LJ*:

I (Vx)A(x) Ir (~x) '1 A(x)

(Vx) '1 A(x) Ir 1(~x)A(x)

In the first of these show that the universal quantifier must be introduced last; in the
second one, the existential quantifier.

3. Let M[A] be a proposition containing an occurrence of a proposition A, such
that M does not contain x except in so far as it is in A. With the understanding
that M[B] is the result of replacing A by B in that particular occurrence, show that
if the occurrence of A is positive,

M[(Vx)A(x)] Ir (Vx)M[A(x)]

(~x)M[A(x)] Ir M[(~x)A(x)]

whereas if the occurrence is negative,

M[(~x)A(x)] :s;: (Vx)M[A(x)]

(~x)M[A(x)] :s;: M[(Vx)A(x)]

4 Determine which of the following hold in LJ* (for A, B, C, etc., elementary):

(a)
(b)
(c)
(d)
(e)

Irll(Vx)(A(x) V IA(x))
Irll((Vx).A V B(x) .~. A V (Vx)B(x))
IrI I (Vy)((Vx)(A(y) V B(x)) ~ A(y) V (Vx)B(x))
Irll((Vxfl,A(x) .~. (Vx)A(x))
11(1(~x)IA(x))Ir II(VX)"A(x)

hold in LK* is that

(Kleene [IMM, Theorem 58], which refers to sources.)
5. Show that

A(a) V A(b) Ir (~x)A(x)

cannot be demonstrated in LAt with the ~ * last (Kleene [IMM, p. 463]).
6. Verify the statement in Example 1 that

(Vx)A(x) Ir (Vx).A(x) V B

cannot be derived even in LK: with *II last (Kleene [PIG, p. 25]).
7. Show that

(Vx).A A B(x) Ir A A (Vx)B(x)

A V (~x)B(x) Ir (~x).A V B(x)

are valid in LA*, but the external quantification must be made before the internal
one, even in LC*.

8. Show that a necessary and sufficient condition that

~ Ir~

~Ir~, F

hold in LE* (Suranyi [RTE, Theorem III], credited to H. Thiele).
9. Complete the proof of Theorem ~.

10. What is the effect on Theorem 7 of not excluding *V?
11. Show (not necessarily conRtructively) that a demonstrable elementary state-

ment in any L* system is valid in any model What modifications are necessary to
make this conRtructive?
*12. Revise the algorithm of Sec 5 RO as to be applicable even if n is not void. (For
the classical rases such a revi~ion is given in Sec. D4.)
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*13. Suppose one were to introduce the Hilbert € operator with the rules

~,A(b)la,bI-ID

~,A((€x)A(x)) Ia I- ID
~laI-A(t),3

In what way would the theory of the L* system be modified1 Can one deduce an
elimination theorem, and if so what can one infer in regard to the separation of the
new rules1 Is not the left-hand rule superfluous1 (These questions are related to
the € theorems stated in Hilbert and Bernays [GLM.II]. It seems evident that their
proofs could be greatly improved by using the Gentzen technique. Cf. also Asser
[TLA]; Maehara [PCE], [EAH]; Rasiowa [ETh].)

C. OTHER FORMS OF QUANTIFICATION THEORY

In this section we discuss other formulations of quantification theory.
The T formulation will concern us in Sec. 1, the H formulation in Sec. 2. The
lattice-type formulations will not be treated in this volume.

1. T formulation of quantification. The T rules for quantification are
suggested by the semantical discussion in Sec. A. They are as follows:

ne
(Vx)A(x)

ni
A(c)

A(t) (Vx)A(x)
[A(c)]

·~e
(~x)A(x) B

~i
A(t)

B (~x)A(x)

it being understood that c does not occur in any other premise in ni, or in B
or other premises from which it is obtained in ~e. When these rules are
adjoined to the formulation of a system TX, the resulting formulation will
be called the system TX*. We thus have formulations TA*, TC*, ... , TK*,
etc.

Let the statement
~ Ia I-T B (1)

hold just when there is a tree whose conclusion is B and whose premises are
in ~, and the range a includes all variables which occur free in the premises
orin B.

As before, we use the notation
~ Ia I-L B (2)

when explicitness is necessary, to indicate an elementary statement of an
L* system.

In the following proofs technicalities concerning the range are omitted.
They may be taken care of by Theorem B2.
Theorem 1. A necessary and sufficient condition that (2) hold in an L*

system is that (1) hold in the corresponding T * system.
Proof of Necessity. For the algebraic rules this follows from Theorems

5D6 and 6C1. I t suffices to add consideration of the induction step for the
quantificational rules. We have to show that the L* rules hold for the T*
system if 'I-L

' is interpreted as 'I- T
'.

This is clear for n * and ~ *, since these rules, when interpreted as stated,
become precisely the rules ni and ~i, respectively.
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For *II the premise states that there is a T proof of B with premises ~

and A(t). Putting over the last premise its derivation from (Vx)A(x) by
lie, we have the derivation postulated by the conclusion of *II.

For *~ we argue thus. By the premise of the interpreted *~ there is a
T derivation of B from A(c) and ~, with c not occurring in ~ or B. By ~e

there is then a T derivation of B from ~ and (~x)A(x).

This completes the proof of necessity.
Proof of Sufficiency. We have now to show that the T rules, when inter

preted in the L* system, are valid as inferences in the latter. The inter
pretation is that each premise A is interpreted as ~ Ia ~ A (for suitable a),
and a rule such as

[B]
A C

D
is interpreted as

with suitable range.
This is clear for IIi and ~i, since, when so interpreted, they become the

same as II* and ~*. For lie we argue thus:

Hp A(t) Ia ~ A(t) *II
~ Ia ~ (Vx)A(x) (Vx)A(x) Ia ~ A(t) ET

~ Ia ~A(t)

For ~e the proof is as follows:

Hp.2
Hp.l ~, A(c) Ia, c ~ B *~

~ Ia ~ (~x)A(x) ~, (~x)A(x) Ia ~ B ET
~ Ia ~ B

This completes the proof.
2. H formulations of quantification. There are several ways of forming

systems of quantification theory analogous to the systems HX. The for
mulation is different according to whether one does or does not admit vacuous
quantification, and whether one insists on having modus ponens as the sole
rule or allows also a rule of generalization for free variables. We shall call
all these systems H* systems, and a system equivalent to the systems LX*,
TX* will be called a system HX*. t It would be appropriate to call such a
system a propositional calculus, letting the word 'calculus', in contrast to
'algebra', suggest the presence of quantifiers; but traditional usage employs
the term 'propositional calculus' for the algebraic systems of Chaps. 5 and 6
and 'predicate calculus' or 'functional calculus' for systems H*.

The predicate calculus is based on the same definitions of term, proposi
tion, occurrence, and substitution as were made in Sec A4. We shall
suppose, however, that the system G is void and that there are no
operations (0); this, however, is not essential, since only minor changes

t The different variants of HX· are analogous to the different formulations of LX • .
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are necessary to treat the case where this assumption is not made. The
systems Hare assertional; an elementary statement may be written

rA (1)
We shall use the notation

(2)

to mean that there is a derivation of (1), using the rules of the system from
premises which are either prime statements of the system or assertions of
propositions in ~ and such that all variables free in ~ or A are in a. On
occasion we shall ignore the distination between a proposition A and the
statement (1).

Specific statement schemes, from which the prime statements are chosen,
are assigned names as follows:

no r (Vx)A(x) • =>. A(t)

nl r (Vx). C => A(x) :=>. C => (Vx)A(x)

n2 rC => (Vx)C

np r (Vx). A(x) => B(x) :=>: (Vx)A(x) • =>. (Vx)B(x)

~o r A(t) =>. (~x)A(x)

~l r (Vx). A(x) => C :=>: (~x)A(x) • =>. C

~2 r (~x)C • =>. C

~P r (Vx). A(x) => B(x) :=>: (~x)A(x) • =>. (~x)B(x)

Here A(x), B(x) € ~(a,x), C € ~(a) in which x is not free, and t € t(a). Note
that n 2 and ~ 2 require vacuous quantification.

The rules of the predicate calculuses are the following:
Ph (modus ponens)

A => B A
B

nh (generalization). If c is an indeterminate,l

.A(c)

(Vx)A(x)

These are to be interpreted as procedural rules in the same sense as in the T
system.

A system HX* which postulates the rules Ph and nh will be called a
predicate calculus with generalization and indicated as HX;; one which pos
tulates only the rule Ph will be called a proper predicate calculus and indicated
as HX;. We shall consider these two cases separately.

3. The predicate calculus with generalization. The systems HX:
will have two forms. In the first form the axiom schemes are no, nl' ~o,

~l; in the second form the schemes nl' ~l are replaced by n 2, np, ~2' ~P.

The second form is, of course, only suitable if vacuous quantification is
permitted. The following theorem is true for either form, but the proof
applies only to the first form; the validity for the second form will follow
from Theorem 3.

1 That is, if the premise of the rule is derivable from premises which do not contain c,
the conclusion is derivable from the same premises.
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(3)

hold in the system TX*.
Proof of Necessity. Under the interpretation of (2) as (3) the rule Ph

becomes the rule Pe, and nh is ni. In view of Theorem 1, it is an exercise
in the techniques of Sec. B to show that the prime statement schemes give
rise to true statements of the form (3). The necessity therefore follows by
deductive induction.

Proof of Sufficiency. We have to show that the rules of TX*, when inter
preted in terms of (2) (cf. the interpretation in terms of L statements in Sec.
1), are valid in HX*. For ne this thesis follows by no and Ph, for Li by
Lo and Ph, and for ni by fIh. For the algebraic rules, once Pi has been
established, this was shown in Sec. 5B2. It suffices therefore to establish
the thesis for Pi and Le.

Next we establish Pi. Suppose that we have a derivation Il of B from A,
and let its steps be B1' B 2' ••• ,Bn • The only addition to be made to the
proof in Theorem 5B2 is the case that Bk comes from B i by an application of
nh. In that case B i is some D(c) and B k is (Vx)D(x). By the hypothesis
of the induction we have

~A ~ D(c)

where c does not occur free in A.t By nh

~(Vx) .A ~ D(x)
and hence, by n 1 and Ph,

~A ~ (Vx)D(x)

which is the desired transform of B k • This, in connection with the proofs
in Sees. 5B2 and 5B3, completes the proof for Pi and all algebraic inferences.

The proof for Le now follows. By the right premise and Pi we have

~A(c) ~ B
and hence by nh

~(Vx) .A(x) ~ B
Hence by L1 and Ph we have

~(~x)A(x) •~ B

From this and the left premise of Le we have the deSIred conclusion by Ph.
This completes the proof of Theorem 2 for the first form of HX;. The

following theorem extends the result to the second form.
Theorem 3. If vacuous quantification is admitted and no, Ph, "h are postu

lated, then the scheme "1 is equivalent to the conjunction of "2 and "P;
further, if "0' Lo, "1' Ph, "h hold, the scheme L1 is equivalent to the con
junction of L 2 and LP.
Proof. This will consist of (1) a derivation of "1 from "2' "P; (2) a deri

vation of L1 from L 2 , LP; (3) a derivation of "2 from "1; (4) a derivation of

t By the hypothesis of IIh, c does not occur in any of the premises used in the derivation
of B i . If A is not used as premise in deriving B i , c might occur in A, but then we can
change c to some other variable which does not occur in A. This can be shown by an
argument similar to the proof of Lemma 1 in Sec. A.
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L 2 from Ll ; (5) a derivation of fiP from fio, fil; and (6) a derivation of LP
from ilo, ill' Lo, Ll.

DERIVATION OF ill

I-(Vx).O=> A(x) :=>: (Vx)O • =>. (Vx)A(x)

From this we have ill by fi 2 and Rp.
DERIVATION OF L l

I-(Vx). A => 0 :=>: (~x)A(x) .=>. (~x)O

Here again we have Ll by L 2 and Rp.
DERIVATION OF fi 2

by ilP

by LP

1-0 => 0

I-(Vx).O => 0

I-(Vx).O => 0 :=>: 0 => (Vx)O

1-0 =>. (Vx)O

DERIVATION OF L 2

by PI
by fih

by fil
by Ph

I-(Vx).O => 0

I-(Vx).O => 0 :=>: (~x)O .=>.0

1-(~x)O .=>.0

as in previous case
by Ll

by Ph

DERIVATION OF fiP. By Theorem 2 it suffices to show the derivability
in TX*, as follows:

(Vx). A(x) => B(x) fie
A(c) => B(c)

B(c) fii
(Vx)B(x)

(Vx)A(x) fie

A(c) Pe

From this we have fiP by two applications of Pi.
DERIVATION OF LP. As before, it is sufficient to show the derivability in

HX*, thus:

1
(Vx). A(x) => B(x) ile 3

A(c) => B(c) A(c) Pe

B(c) Li 2

(~x)B(x) (~x)A(x) Li _ 3
(~x)B(x)

Here again we have LP by two applications of Pi.
This completes the proof of Theorem 3.
4. Proper predicate calculus. For the calculus HX; some additional

conventions are needed. If A (a) is a proposition containing a, we call
(Vx)A(x) the closure of A(a) with respect to a. If b is a class of variables, a
closure of A with respect to b is a proposition obtained by starting with A
and taking successively the closure with respect to the variables of b in some
order.
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Given a class a of real variables, we formulate a proper predicate calculus
HX; with range a by taking as prime statements all closures with respect to
variables not in a of prime statements of the system HX:, together with
similar closures of instances of IIP (if not already postulated).
Theorem 4. A necessary and sufficient condition that (2) hold relative to a

system HX; is that it be derivable in the corresponding system HX:.
Proof of Necessity. If (2) holds in HX;, then there is a derivation in which

the various statements are either (a) assertions of propositions in ~, (b) axioms,
or (c) consequences of preceding statements by Ph. In case a, (2) holds in
either form of the calculus. In case b, B is by definition the closure with
respect to some b of a B' whose assertion is an axiom of the system HX:;
then in HX:,

~ Ia, b ~ B'

from which (2) follows by successive applications of IIh. In case c, we
assume as inductive hypothesis that our thesis holds for the premises; it then
holds for (2) since Ph is a rule of the system with generalization.

Proof of Sufficiency. This amounts to sho\ving that IIh is an admissible
rule of the proper calculus. We prove this, using the method sketched in
Sec. 3A2, by showing that an application of IIh which has no other application
above it in the proof tree can be eliminated. The proof will be carried through
for the case where vacuous quantification is admitted with II 2 and IIP pos
tulated; the remark at the end of the proof will show how the result holds
for other formulations of vacuous quantification; but the consideration of
nonvacuous quantification is left as an exercise.

Suppose, therefore, that we have a derivation in HX; showing that

~ Ia, b ~ A(b)

where b does not occur in~. It is to be shown that

~ Ia ~ (Vx)A(x)

(4)

(5)

We do this by deductive induction. There are three cases to be considered,
as follows:

CASE 1. A(b) is like a constituent of~. Then A(b) does not contain b,
and thus there is a C in ~(a) such that

A(b) == A(x) == C

In this case we can pass from (4) to (5) by II 2.

CASE 2. A(b) is an axiom. Then (Vx)A(x) is also an axiom, and thus (5)
holds.

CASE 3. The statement ~A(b) is obtained by Ph. Let A(b) == A 2(b);
then there is an A1(b) such that

~Al(b)

~Al(b) :::> A 2(b)

precede ~A2(b) in the proof of (4). By the hypothesis of the induction,

~ Ia ~ (Vx)A1(x) (6)

~ I a I (Vx) .A1(x) :::> A 2(x) (7)
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From (7) we have, by lIP and Ph,

~ I0 I- (Vx)A 1(x) .:::>. (Vx)A 2(x)

From this and (6) we have (5) by Ph.
Remark I. If II 2 is not postulated, then it can be derived, as shown in

the proof of Theorem 3, from
I-(Vx)C :::> C (8)

and Ill. But (8) follows by Cases 2 and 3 only, and these do not require
II 2. Note that lIP is postulated in any form of HX;.

EXERCISES

1. Show that if one adjoins to HX the axiom schemes

I- (Vx)A(x) .:::>. A(t)
I- A(t) .:::>. (~x)A(x)

and the rules
I- G :::> A(a) --+ I- G :::> (Vx)A(x)

I- A(a) :::> G --+ I- (~x)A(x) :::> G

where a is not free in C, then one obtains a system with the same assertions as HX*.
(This is essentially the formulation of Hilbert and Ackermann [GZTa]. In [GZT4] a
formulation similar to Schutte's is used.)

2. In mathematics we frequently use the following type of argument. Starting
with certain premises we derive a theorem to the effect that

1-(~x)A(x)

We then say, let y be such that
A(y)

Then, using modus ponens and premises which do not contain y, we derive

I-B

Assuming that these arguments can be justified as proofs using HX* and premises
which do not contain x or y, show that the arguments establish

I-B

as a consequence of those premises. What limitations are there? (Rosser [LMt,
pp. 128ff.]; cf. Quine [MeL].)

3. Show that if one interprets

AI' ... , Am 10 I- B I , ... , B n
as 1-, Al V , A 2 V ••. V , Am V B I V • • • V B n

where all free variables which occur are in 0, then the rules of LK* hold. Use these
rules to formulate a system with the same assertions as HK*. (Cf. Schutte [SWK].)

4. Derive
I-(Vx)(Vy)A(x,y) :::> (Vy)Vx)A(x,y)

in (HA:) and (HA:).
5. A "predicate calculus \vith equality" is often defined as one whose assertions

are obtained by adjoining to predicate calculus the schemes

I-a = a
I-a = b.:::>. A(a) :::> A(b)
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Show that if one adjoins these as assertion schemes to some HX* (6), the resulting
system is the same as one obtained from LX*(6'), where 6' is obtained from 6 by
adjoining the auxiliary schemes

a=a
a = b, a = c ~ b = c
a = b, 1p(a) ~ tp(b)

in which tp is any unary term operation obtained by fixing all but one of the argu
ments of some if> in <1>. Thus a predicate calculus with equality is a special case of a
predicate calculus over 6.

6. Show that the mapping of HK in HM described in Exercise 6B9 cannot be extended
to include quantification. Are there other mappings which do work? (See, for exam
ple, Prawitz, Dag and P. E. Malmnas, "A Survey of some Connections between Classical,
Intuitionistic, and Minimal Logic," in Contributions to M athernatical Logic, edited by
H. A. Schmidt, K. Schutte, and H. J. Thiele, Amsterdam, 1968, pp. 215-229.)

*7. In what way would the present theory be modified if Assumption Al were
dropped, and how would the resulting theory be related to H theories of quantifi
cation over arbitrary (including null) domains? (Cf. Hailperin [QTE], [TRQ]; Jas
kowski [RSF, sec. 5]; Mostowski [RPP]; Quine [QED].)

*8. To what extent do the results of Sec. 4 depend on the order of the quantifiers in
forming the closures? (Cf. Quine [MLg2, pp. 88-95].)

D. CLASSICAL EPITHEORY

Among the immense variety of epitheorems relating to the classical pred
icate calculus, four typical ones, one of them nonconstructive, have been
selected for discussion here. These may presumably be extended, with suit
able modifications, to other systems-extensions to LC*, LE*, in nlost cases,
are immediate. But that question is not gone into (except in the incidental
remarks); throughout the section it is supposed that we are dealing with LK*
or some of its variations.

1. Prenex normal form. An ob of a system HX* is said to be in
prenex normal form just when all its quantifiers are on the outside} i.e., when
in its construction from the atoms all the algebraic operations are performed
first and the quantification afterward. Thus

(Vx)(~y)(Vu)(Vv)(~w)A

is in prenex normal form if A contains no quantifiers, but

A V (Vx)B(x) .::>. (~x)C(x)

is not.
It is a standard theorem of HK*, which is also true for HC*, that given

any ob A, there is an ob B in prenex normal such that

~A ::> B & ~B ::> A

We shall prove a somewhat more general theorem which leads to this result,
viz., that if A contains a quantifier in its interior-viz., at the beginning of
an algebraic component-then that quantifier can be moved to the outside.
The new quantifier will be of the same kind as the original one if the occur
rence ,vas positive, and of the opposite kind if the occurrence was negative.
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We recall the definitions of ~ and = from Sec. 5AI, viz.,

A ~ B~ I-A:::> B

A=B~A~B&B~A

By virtue of the theorems of Sec. 5D4, we have

A ~ B~A II- B

The symbols ' ~' and '11-' may thus be used interchangeably.
If A is a proposition, let M[A] be a proposition containing a specific alge

braic component A whose occurrence is either positive or negative. Then
M[B] will be the proposition obtained by replacing A by B in that particular
occurrence. In the following it will be assumed that neither b nor x occurs
in M[A] except in so far as it occurs in A.
Theorem 1. If the occurrence of A in M[A] is positive, then

(Vx)M[A(x)] = Mf(Vx)A(x)] (1)

(~x)M[A(x)] = M[(~x)A(x)] (2)

If the occurrence of A in M[A] i8 negative, then

(Vx)M[A(x)] = M[(~x)A(x)] (3)

(~x)M[A(x)] = M[(Vx)A(x)] (4)

Proof. A part of this proof is easy. In fact, since

(Vx)A(x) ~ A(b) ~ (~x)A(x)

we have by the replacement theorem (Sec. 5D3) in the positive case

M[(Vx)A(x)] ~ M[A(b)] ~ M[(~x)A(x)] (5)

and hence by n. and .~

M[(Vx)A(x)] ~ (Vx)M[A(x)]
(~x)M[A(x)] ~ M[(~x)A(x)]

(6)

(7)

In the negative case the inequalities in (5) run in the opposite direction;
hence we have, by the same reasoning,

(~x)M[A(x)] ~ M[(Vx)A(x)]
M[(~x)A(x)] ~ (Vx)M[A(x)]

(8)

(9)

These results hold in all systems LX·.
To establish the converses of (6) to (9) we employ structural induction.

The basic step of this induction, where M(A) == A, is trivial. The inductive
step in this induction is made by the following:

(Vx). B ::> A(x) II- B ::>. (Vx)A(x)
B ~. (~x)A(x) II- (~x). B :::> A(x)
(Vx)A(x) .::> B II- (~x). A(x) ::> B
(Vx). A(x) :::> B II- (~x)A(x) .:::> B
(Vx). A(x) A B II- (Vx)A(X).A B
(Hx)A(x) .A B II- (~x). A(x) A B

(Vx). A(x) V B II- (Vx)A(x) .V B
(~x)A(x). V B II- (~x).A(x) V B

I(Vx)A(x) II- (~x) .IA(x)
(Vx).1 A(x) II-I (~x)A(x)

(LA·)
(LC*)
(LC*)
(LA*)
(LA·)
(LA*)
(LC*)
(LA*)
(LK*)
(LM*)
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The proofs of these are left as exercises (see Exercises Bl and B2). The
systems in which they hold are indicated at the right.

2. The Herbrand-Gentzen theorem. This is the theorem which Gent
zen called his extended principal theorem ("erweiterter Hauptsatz"). This
theorem is, however, not closely related to ET (which is what corresponds
to Gentzen's "Hauptsatz" in the present connection).l It is, however, closely
related to the principal theorem of Herbrand [RTD]. It is therefore appro
priate to call the new theorem the Herbrand-Gentzen theorem. Its state
ment is as follows:
Theorem 2. Let r be an elementary theorem of a system LX· which is

based on LC. Let the constituents of r be in prenex normal form. Then
there exists a r' which is an elementary theorem of LX (and hence is algebraic)
such that r can be obtained from r' by quantification and structural rules only.
Proof. By Theorems B5 and B6, 5C2, 5C4, and 5E6 we can suppose that

we are dealing with Formulation II, that the prime statements contain no
quantifiers, and that the applications of .K. are initial, with principal con
stituent containing no quantifiers. Let Il be a demonstration of r con
forming to these conditions. We show that whenever a quantification
inference is followed immediately (except for structural inferences) by an
algebraic inference, we can interchange the two. Using the notation of Sec.
5Dl, which does not show the sides on which the constituents occur, a
quantification rule is a rule R1 of the form

(10)

in which Q is the principal constituent and P the subaltern; an algebraic
rule R 2 with two premises will be of the form

~1' U1 ~2' U2

~l' ~2' M
(11)

in which M is the principal constituent and U1 , U2 the subalterns; an alge
braic rule with one premise will be obtained by simply omitting the right
hand premise and also dropping ~2 in the conclusion.2 A situation where
R 2 immediately follows R1 in Il will be an instance of the scheme

~l' P
~l,Q

~2' Q, U1 (~3' U2)

~2' (~3)' Q, M

(12)

1 In Gentzen, ET was a postulate and his Hauptsatz was to the effect that any proof
could be transformed into one in which ET was not used. Thus, in order to prove the
theorem analogous to the one at present under discussion, he had to begin by an appeal
to the Hauptsatz to be sure that there was a proof without a cut. Here, however, that
conclusion follows by definition.

2 If one were to admit as algebraic rules such a rule as ~., which may have more than
two premises, the necessary changes would be easily made.



352 QUANTIFICATION [CHAP. 7

(13)

where the double horizontal line indicates a change by (at most) structural
rules. By the proof of the inversion theorem this can be replaced by the
following scheme:1

~l' P

4]i, U1 (~3' U2)

~2' (~3') M, P
~2' (~3') M, Q

(If necessary the characteristic variable in P can be changed by Theorem
AI.)

Applying this process as long as there are such pairs R1 , R 2 , we must
eventually2 reach a demonstration where there is no quantifier inference
over an algebraic one.

Then, since quantification and structural rules are one-premise rules, we
can start at r and work upward in Il until we reach a r' which is the con
clusion of an algebraic rule. Then, by the restrictions assumed in the first
paragraph, r' will not contain any quantified constituents.3 Thus r' has
the properties required in the theorem, Q.E.D.

3. The Skolem normal form. An ob of HK* is said to be in Skolem
normal form when it is in a prenex normal form in which every existential
quantifier precedes every universal quantifier.4 If the system HK* contains
unrestricted predicate variables (Sec. A4, Remark 3; see Exercise A4), then
we shall see here that, given any proposition A, there is an AS in Skolem
normal form such that

rA ~ rAs

Suppose first that A is (Vx)B(x). Let

A * = (Vx). B(x) ::> ~(x) • ::>. (Vy)~(y)

(14)

where ~ is a predicate variable not occurring in A. Then we have A ~ A*
as follows:

I
A

B(a) lIe

2
(Vx) .B(x) ::> ~(x) lIe

B(a) ::> ~(a) Pe

~(a) IIi
(Vy)~(y) P.-2

A* 1

A::>A*Pi-1

1 We can suppose that the structural inferences shown do not include an application
of .W* with Q as principal constituent. Such a .W. can be passed below the algebraic
inference before we begin; for the latter already admits Q as parameter, and all rules are
such that if they admit one parameter they will admit any number of repetitions of it.

2 Ifwe define the order of.1 as the total number of pairs R 1, R 2 such that R 1 is a quanti
fication inference, R 2 is an algebraic inference, and R 1 is (not necessarily immediately)
over R 2, then the process diminishes the order and must eventually reduce it to zero.

3 Ifwe were to omit the rest,rictions on .K., one could invoke Theorem 5CI to eliminate
any such constituents.

4 The case where either or both of these kinds of quantifiers are totally missing is to be
included.
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Conversely, if we substitute B(a) for ~(a) in A *, \\re get an A' such that
A' ~ A. If we define

AS == (~x)(Vy): B(x) => ~(x) .=>. ~(y)

then AS = A *, and consequently (14) is satisfied.
The relation between A and AS so defined is more specific than (14). In

fact, if we define

A(=)B (15)

as meaning that

A~B

and that there is a B', obtained from B by substituting for the predicate
variables, such that

B' ~A

then we have shown that A (=) AS.
The relation (15) is not an equivalence, but it is reflexive and transitive,

and it has the properties

A =B-+A(=)B-+.rA~rB

A (=) B-+f(A) (=)f(B)

(16)

(17)

where f is any directly monotone unary operation. Thus we can use the
process just described to prove the following:
Theorem 3. Let A be formed by prefixing p universal and q existential

quantifiers to a proposition M, and let the system admit unrestricted predicate
variables. Let r = p + q. Then there exists an AS of the form

(~Xl) . · . (~xr)(VYl) .. · (VYfJ)M*

where M* is formed by algebraic operations from M and predicate variables,
such that

A (=)As

Proof. If A is already in Skolem normal form, there is nothing to prove.
We show that, using the method of the introductory discussion, and an
induction on the number of universal quantifiers which precede an existen
tial quantifier, we can find AS. In this we understand that, for any C, CP is
the result of substituting the apparent variables Xi' y, z, indicated in the
quantifiers preceding OP, for corresponding real variables ai' b, c.

Now suppose that

A == (~Xl) ••• (~xm)Af (m < p)

Al == (Vz)BP

AI == (Yz) .BP => ~(z) .=>. (Vy)~(y)

where ~ is a predicate variable depending on the ai' ... , am and not appearing
in B. Let Aa be obtained from A 2 by replacing B by a B* such that

Let

B(=)B* (18)
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Then we have by the preliminary discussion

Since B has a positive position in A 2' it follows by (1 7) that

Hence by (7)

and thus by (17)

A(=)A*

If we take B* to be BS [which is defined and satisfies (18) by the inductive
hypothesis], then when we transfer the quantifiers of A * to the beginning
by Theorem 1, we shall have, by (16), an AS which satisfies the conditions
of the theorem, Q.E.D.

Note that there is some latitude in the choice of B*, and this allows a more
specific characterization of AS to be made. This will not be gone into here.

4. The completeness theorem. Godel [VAL] showed that HK * is com
plete in the sense that a proposition which is valid in every enumerable
model is demonstrable. This is necessarily a nonconstructive result, because
Church [NEP] proved that HK* is recursively undecidable; and if there
were a constructive method of deciding whether or not a proposition A is
valid in every model, then it would furnish a constructive decision method.
As such a nonconstructive result, it lies outside the scope of this book; but
there are two reasons for including it nevertheless. The first of these is the
fundamental nature of the theorem in relation to large areas of currently
active investigation in mathematical logic; the second is that Rasiowa and
Sikorski [GTh] have presented a proof which ties in very closely with the
methods of this book. It thus forms an ideal transition from the founda
tions of mathematical logic to its superstructure.

Let us recal1 the proof tableau of Sec. B6. We modify it so as to apply
without the assumption that n is void. \Ve do this as follows. Since in
LK the rule *P is reversible, we can move XII forward until it is immediately
after VII. rrhen the rules I to VII and XII will remove all algebraic outside
operations, and VIII will simply introduce an F on the right. The algorithm
will either close or get through to X. Now the terms of t(q) form an
enumerable set; let t l , t2 , ••• be a fixed enumeration of them. Suppose we
modify X and XI by dropping A(t1 ), A(t 2 ), ••• , A(tr-l) and letting tr be the
first term in the fixed sequence of terms which has not been tried as subaltern
for that particular (Vx)A(x) or (~x)A(x) in the branch between that node
and the top of the tableau. In order to prevent stalling on the wrong
alternative, we provide that X and XI be applied alternately.

Now suppose we start the algorithm with an elementary statement r 0

which we call the head of the tableau. If the algorithm leads to a closed
tableau, then we have constructively a proof of r o. We shall have a proof
of the Godel completeness theorem if \\'e deduce from the fact that the
tableau does not close a direct interpretation over an enumerable model in
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which r 0 is invalid. In view of the Remark of Sec. B5, we can conclude this
from the following converse to Theorem B9:
Theorem 4. (Nonconstructive.) The statement r o is demonstrable in

LK(D) unless there is a countervaluation for r o.
Proof. For the system LK(D) the algorithm has the following charac

teristics. There is always an applicable rule unless the constituents of the
datum are entirely elementary. Second, there are no alternative splittings;
if the tableau splits, it splits conjunctively and into at most two subtableaux.
Consequently, each branch of the tableau will determine a sequence il' i 2'

is, ... , where i k = 0 if at the kth step there was only one result, or if there
were two, the left-hand result was taken; and i k = 1 if at the kth step there
were two results and the right-hand one was taken. If the tableau does not
close, then there are two possibilities. It may be that in the kth step of
some branch we reach ark which has all its constituents elementary but is
not quasi-prime; or there may be a branch which continues indefinitely
without ever reaching a quasi-prime statement.1 Let Il be a branch satisfying
one of these conditions, and let its statements in order be r 0' r 1 , r 2' ...•

The sequence will be finite in the first possibility, infinite in the second.
Next we determine two classes IDl, 91 of elementary propositions. Let 9J1

consist of all elementary propositions which appear as left constituents of
some r k in Il, and let 91 be those which appear as right constituents in some
r k • Then we shall show that (a) the classes 9J1 and 91 are nonoverlapping,
and (b) any valuation in which all the members of IDl have the value 1 and
all those in 91 the value 0 is a countervaluation for r o.

As to statement (a), the algorithm has the property that when an ele
mentary constituent appears on either side in any r i' it remains on the same
side of all r; for j > i. Hence, if IDl and 91 had a member in common, some
r k would be quasiprime, which is a contradiction.

To take care of statement (b), let us call a constituent of r k which is a
right constituent with value 1 or a left constituent with value 0 a positive
constituent; one with the opposite character, a negative constituent. By
our construction all elementary constituents are negative. Let us define
the order of a constituent as the number of operational steps used in its
construction. If r 0 is valid, there will be a positive constituent in it; let us
call it A. The algorithm is such that A will remain on the same side until
it becomes the principal constituent. Let this happen at r k • If A is of
any of the forms B ::::> C, B A C, B V C, I B, (Vx)B(x) on the right, or
(~x)B(x) on the left, then the subaltern in r k+1 will be of lower order. If A is
of the form (~x)B(x) on the right, then, since such a constituent is never
eliminated, Il is infinite. Since (~x)B(x) is positive, there will be a B(t i ) which
is positive, and eventually there will be ark' where A is principal constituent
and B(t i ) is a subaltern. The situation is dual to this if A is (Vx)B(x) on the
left. Thus, in all cases, if there is a positive constituent in roof order n,
there will be one of order n - 1 further down, then of order n - 2 below

1 We can even use an argument similar to that of usual proof of the Bolzano-Weierstrass
theorem to determine such a sequence uniquely. For having determined il' ... , ik , we
take i k+1 = I if the tableau splits at that point and the left-hand subtableau closes;
otherwise we take i k+1 = O. The nonconstructive element enters because the closing of
the subtableau is an indefinite question.
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that, and ~o on.. Eventually there will be a positive elementary constituent,
which is impossible. This contradiction has come from assuming that r 0

was valid. Hence r 0 is invalid, Q.E.D.

EXERCISES

*1. What sort of normal form can replace the prenex normal form in systems based
onLA1

2. Show that the Herbrand-Gentzen theorem is true for LAm' LMm, LJmprovided
the rule *V is deleted, but that if *V is admitted, the following is a counterexample:

B V G, (Vx). B :::, A(x) n· (Vx)A(x), G

(Kleene [IMM, pp. 460-463]. His counterexample, which is Example 1 of Sec. Bl,
does not work for LAm.)

3. Show that the Skolem normal form can be further specialized to a "normal
alternation," Le., a union of propositions each of which is in Skolem normal form
with only one universal quantifier (Hilbert and Bernays [GLM.I, p. 159]).

S. SUPPLEMENTARY TOPICS

1. General historical and bibliographical comment. This chapter
is a revision of chap. 3 of [TFD]. The main part of it extends to the theory
of quantification, the general method established in the previous chapters.
The references given Sees. IS5, 5S1, and 6S apply in large part to the present
chapter.

The sources in regard to the method of treating bound variables have
been given in the main text, Sec. A2. Various alternative ways of doing
this are discussed, with critical comments, in Church [1ML 2 , p. 290]. See
also Quine [MLg], [MeL]. Quine is especially clear in explaining the transla
tion of quantification into ordinary discourse.

The present treatment (Sec. B5) of the classical evaluation contains improve
ments over that of [TFD], sec. 1116. The idea of model, as described in the
remark at the end of Sec. B5, is fundamental in modern semantical epitheory
(Sec. 3S3), and the pioneers in that development have formulated it very
precisely. There is thus no novelty in Sec. B5. However, in current \vork,
the term 'valuation' is not always used in exactly the same sense as in Sec.
B5.

The result of Theorem BIO was obtained independently by several dif
ferent persons. The first publication of the result, obtained by the use of
the Gentzen technique, was in Kleene [ILg]; at about the same time Mostow
ski [PND] derived the results by another method. Both of these refer to
previous proofs of nondeducibility using arithmetic models. The present
proof was taken from [TFD], where it was in turn taken, after correction of
some errors, from a draft originally prepared for [PFD]. For other examples
of intuitionistic nondeducibility, see Exercise B4.

For the history of proof tableaux see Sec. IS5. The present treatment
merely adjoins rules for quantification, based on those given by Beth [SCI],
to those given earlier. For alternative procedures, intended to accomplish
the same purpose as the Beth algorithm, see Stanley [EPQ], Quine [PPQ].

The systems of predicate calculus appearing in current treatments of
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mathematical logic are mostly systems HX* and usually HK:. Informa
tion on the history of these systems is given in Church [IML 2, chaps. 3 and
4, especially sec. 49]. Systematic presentations of the system HK: are
found, for example, in Church [loco cit.], Hilbert and Ackermann [GZT],
Hilbert and Bernays [GLl\1:], and Kleene [IMM].

For system HK; see especially Quine [MLg 2], where there is a sketch of
the history on pp. 88ff. This history goes back to 1935. The idea that
free variables are, semantically considered, to be regarded as bound by a
universal quantifier, and that therefore free variables, in principle, should
not appear in the elementary theorems of a logic, was widely, if not generally,
recognized before that time. Thus one finds the idea in Jaskowski [RSF,
sec. 5]; free variables are excluded from the elementary theorems in Church
[SPF]; and one of the announced purposes of early work in combinatory
logic (even in Schonfinkel [BML]) was to show that one can form a logic in
which one does not admit-in the elementary statements, of course, for it is
not advocated that they be abolished as an epitheoretical device-variables
of any kind. The present treatment is an outgrowth of this point of view.
Thus the name 'np' comes from [UQC], and 'no' from [AVS], and the proof
of admissibility of nh was modeled on the proof in [PEl]. That there is a
great resemblance of the resulting theory to that of Quine is due to a process
of convergence (in the biological sense); the exact relation between the two
approaches is left as an exercise (Exercise C8).

The prenex normal form is a standard technique of predicate calculus.
An account of it will be found in any treatise. For the history see Church
[IML 2, p. 292].

The term 'Herbrand-Gentzen theorem' was proposed by Craig [LRN].
In that paper and others he has proved a number of extensions of the theorem.
The sources of the theorem are given in the text.

On the Skolem normal form see Hilbert and Bernays [GLM.I, p. 159] and
Church [IML 2, sec. 42]; these give references to sources.

On the Godel completeness theorem see Sec. 3S1.
2. Further developments. The literature connected with the predicate

calculus is so extensive that it is futile to do more than comment on a sample
of the developments; the selection is necessarily somewhat arbitrary. For
those involving semantical or nonconstructive methods see Sec. 383.

For a long time the study of the predicate calculus was dominated by the
decision problem (Entscheidungsproblem). This is the problem of finding a
constructive process which, when applied to a given proposition of HK*,
will determine whether or not it is an assertion. (This is the syntactical
form of the problem; there is also a semantical form where assertibility is
replaced by validity in any evaluation. The two are equivalent by the
Gadel completeness theorem.) Since a great variety of mathematical
problems can be formulated in the system, this would enable many important
mathematical problems to be turned over to a machine. Much effort in the
early 1930's went into special results bearing on this problem. In 1936,
Church showed in his [NEP] and [CNE] that the problem was unsolvable.
Inasmuch as the other systems can be mapped in HK* (see Exercise C6),
the decision problem is unsolvable for all the systenls HX*.

Since Church's result, the decision problem has become rather a specialized
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domain of investigation. Two kinds of results continue to be obtained:
first, solutions of special cases (such as the case where only unary predicates
are present or where, in the Skolenl normal form, r ::;: 2), and second, reduc
tions of the general problem to cases where the proposition to be investigated
is of a special form (e.g., the Skolem normal form with r = 3 and a single
binary predicate). Monographs on both of these aspects now exist: for the
first aspect see Ackermann [SCD], for the second Suranyi [RTE]. Consider
able information about the problem is given in Church [IML2, chap. 4]
and in Hilbert and Ackermann [GZT4, sec. IV II].

Systems formulated in the predicate calculus as basis have been the sub
ject of systematic study, notably by Tarski and others. On these see Sec. 3S3.

Another question connected with the predicate calculus is the elimin
ability of descriptive functions. We have admitted here the possibility of
term operations Q. Theories exist in which there are functions from prop
ositions to terms, or rather, since these operations are like quantifiers in
that they bind a variable, from propositional functions to terms. Among
these are the description operator; this forms from A(b) the term

(tx)A(x)

which is interpreted as the unique object a such that ~A(a). Another
example is the Hilbert € operator, where

(€x)A(x)

is a term interpreted as some a for which I-A(a) (if any exists). For the € opera
tions one postulates

A(t) ::;: A((€x)A(x))

and then in the classical system one would have the quasi definitions

(Vx)A(x) == A((€x) IA(x» (~x)A(x) == A((€x)A(x))

These operations are related. Theorems of eliminability of these various
notions are of some importance. Presumably the Gentzen technique would
help a great deal in their proofs. For the € operator this is proposed in
Exercise B13. For descriptions see Hilbert and Bernays [GLM.I, sec 7];
Asser [AFP]; Hailperin [RID], [TRQ]; Johansson [CCA]; LeBlanc and
Hailperin [NDS]; Montague and Kalish [RDN]; Rosser [CQN], [LMt, chap. 8];
Schroter [TBA]; Schutte [EBA]. In the reduction theory of the decision prob
lem there are results regarding the eliminationof descriptive functions generally.

A number of persons have been interested in formulations of predicate
calculus in which there are several different sorts of terms, or more generally,
variables ranging over domains which are restricted in some way. On this
topic see Herbrand [RTD, sec. III 3]; Schmidt [DTM], [ZBM]; Wang [LMS];
Hintikka [RTT); Quine [UUS]; Hailperin [TRQ]; Lightstone and Robinson
[STr]; Gilmore [ALM].

It has occurred to several persons to ask whether we could not have
lattice formulations of quantification. Of course we can; the cylindrical
algebras of Tarski and Henkin and the polyadic algebras of Halmos are
examples of such systems. On the former see Tarski [NMB]; Henkin [ACQ],
[SAT], [RTC]; Henkin and Tarski [CAl]. On the latter a general exposition
is in Halmos [BCA], a technical summary in Halmos [PBA], and a detailed
account in Halmos [ALg]. See also Galler [CPA].



Chapter 8

MODALITY

Since the dawn of logic, logicians have noticed that there is a distinction
between truths which seem to come to us as a matter of necessity and others
which are so just because they happen to be. Some logicians, from Aristotle
down, have attempted to take account of this difference. There has thus
arisen a branch of logic, called modal logic, in which such distinctions are
made.

Modal logic is a rather specialized branch of logic. It therefore lies for
the most part outside the scope of this book. But there is some interest,
even for the foundations, in the fact that it can be treated mathematically.
Moreover, its treatment by the methods of this book enables one to gain a
deeper insight into the significance of those methods. This chapter is
devoted to as much of a discussion of modal logic as helps to attain that
objective.

A. FORMULATION OF NECESSITY

In this section we examine the meaning of necessity, and then set up an
L system conforming to the semantic analysis.

1. The analysis of necessity. We must begin by divesting ourselves of
any feelings of metaphysical or psychological compulsion that we have in
regard to logical necessity. Such feelings may exist, but we must regard
them as just as irrelevant here as in the previous chapters. We seek here,
as there, a fully objective notion.

To attain this, we recall that we have a formal theory whenever we have a
category (f of elementary statements and some means of generating a sub
class 1: of (f which we call the elementary theorems. We have a formal
theory with negation if we have a second subclass 6 of (f satisfying condi
tions which we studied in Chap. 6. In the same way conventions which
determine not only 1: but a subclass 91 of 1: give us a theory with necessity.
If the theory is a deductive theory, this means that we have two sets of
deductive rules, an inner set which determines 91 and an outer set which
determines 1:, these being such that whenever the inner rules apply, the
outer ones do also. It does not make any difference what metaphysical or
psychological notions we associate with 91 and 1:.

If the necessary statements are identified with the 91 in such a situation,
then there are several potential applications. If we were formalizing an

359
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~ IH- ~ ~ 11-' ~ (1)

with the understanding that the rules of the inner level are to apply to the
left-hand statement (1), those of both levels to the right-hand statement.

experimental science, we might consider the necessary statements to be
those obtained by the theory alone, while 1: might contain statements ob
tained by certain experiments. Again, if we were studying biophysics, we
might consider 91 to be the statements of the basic physics we are accepting,
while 1: was based on the addition to these of certain biological principles.
If we were studying theoretical physics, we might consider the statements
established on purely nlathematical grounds to be in 91. These are all
applications in the field of experimental science. But we can conceive of
applications to mathematics itself. Thus, if we were studying elementary
geometry, we might put in 91 those statelnents which are obtained from the
axioms of incidence alone, or those invariant of an arbitrary projective
transformation. Finally, we might put in 91 those statements obtained in a
strictly constructive manner, while in 1: a classical logic ,vas admitted.

These examples not only show that one may conceive of necessity in an
objective manner, but they suggest certain generalizations. For one thing,
there may be cases where distinctions of more than two levels exist. This,
however, does not appear to introduce anything new in principle. More
interesting is the question of whether one could get an analysis of possibility.
Evidently, if negation is present, one could define a possible statement as
one whose negation is not necessary. But one should be able to define
possibility directly. Thus in relation to Euclidean geometry one could
define the necessary statements to be those of absolute geometry, whereas
our intuition would say that the possible statements should include those of
hyperbolic and elliptic noneuclidean geometry. This example suggests
that we might define necessity and possibility with reference to a set 1:1'
1:2 , ••• of theories by saying that the necessary statements are those that
hold in all the 1:i and the possible statements are those that hold in some
1:i • In such a case necessity has something of the character of a universal
quantifier, possibility that of an existential one. As the example indicates,
possible statements may be incompatible with one another.

In this chapter we shall ignore these generalizations l and pass on to for
malize the notion of necessity described in the third preceding paragraph.

2. The formalization of necessity. We proceed in the manner of Sec.
6A. It is not necessary to dwell on the preliminary steps, which are the
same here as there; we can suppose that we are dealing with propositions,
rather than statements, and that we have a unary operation, indicated by
the prefix 'D',t such that DA is an assertion just when A is necessary.

In order to formulate L rules, we distinguish two levels of the system, an
inner level and an outer level. As elementary statements we take the follow
ing two forms:

1 The suggestion of the preceding paragraph in regard to possibility has never been
satisfactorily worked out. Conjectures about possibility in [TFD] have turned out to be
false, and the possibility proposed in [ETM] is merely that in which the possible state
ments form a subclass of (f more inclusive than X. Possibility is treated as dual of
necessity in Ohnishi and Matsumoto [GMM].

tIn [TFD] the prefix' #' was used, but' 0' is more in agreement with standard practice.
Confusion with the infix '0' used in Sec. 2D 1 is hardly likely.
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We shall use the infix 'U-' in cases where it is not specified whether the inner
or the outer system (i.e., level) is intended; in any context all occurrences of 'U-'
are to be replaced by the same one of 'U+ " 'U-".

In seeking to find a justification for the rules relating to (1), we confine
attention to the singular case, because we have found that that is the case
which one justifies semantically; the justification in the multiple case is then
to be sought by interpretation of the multiple system in the singular one.

We then inquire under what circumstances we can conclude

(2)

According to the interpretation we associate with (2), this will mean that
there is a deduction of some kind leading from the premises

to

(3)

(4)

But by the interpretation in Sec. 1, (4) will mean that there is a deduction,
valid in the inner system, leading to

I-B (5)

But the deduction is valid in the inner system only if (a) it is conducted
according to the rules of the inner system and (b) its premises are true in the
inner system. Now the ith premise (3) does not say that Ai is an assertion
of the inner system, but only that it is an assertion of the outer system. Thus
a deduction from (3) to (5) conducted according to the rules of the inner
system will be a valid deduction of (5) in the inner system only if each A i is
of the form DAi. Thus the rule for the introduction of DB on the right
should be of the form

D~ IH- B --. D~ II- DB (6)

where D~, in analogy with the I ~ of Chap. 6,1 is the prosequence formed
from ~ by changing every constituent A to DA. t

Now for rules of introduction on the left, we ask what inference we can
draw from I- OA. The basic semantical principle is that this has the same
meaning as if it had been just introduced. But in that case the premise
would be I-A; hence one can draw any inference from I- DA that one can
draw from I-A, leading to the rule

~, A II- B --. ~, DA II- B (7)

Thus (6) and (7) are suitable singular rules. But the multiple form of (6),
even in the form

D~ 11+ B, 03 --. D~ II- DB, D3
1 See Exercise 6B 7.
t Note that if the '0' were omitted before the '.I' in (6), we should derive

BII- DB

(8)

which is contrary to the interpretation we have for 0 B. One should note, by examining
the above discussion, why such a conclusion is a fallacy.
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would not be acceptable; for by its aid we should have

A UtA, DB DB II+A, DB
A V DB IH-A, DB
D(A V DB) 11+ A, DB
D(A V DB) n- DA, DB
D(A V DB) n- DA V DB

The conclusion of this proof would not be derivable in the singular system,l
and thus the interpretation of the multiple system in the singular one would
be invalid. On the other hand, there is no objection to the multiple form
of (7). Thus we find the following rules appropriate:

Y Rules for necessity

~,A II-~

~,DA II-~

D~ IItB

D~ Ir DB

The system formed by adjoining these rules to the system LX will be called
the system LXY. If quantifiers are present, this will be indicated in the
usual fashion; they do not appear to cause any essential difficulty.

B. THE L THEORY OF NECESSITY

This section will be devoted to a brief study of the L theory of necessity.
The study will be confined to the inversion and elimination theorems, on the
one hand, and a theorem on representation of the outer system in the inner
system, on the other. One could go on to deduce decidability theorems,
etc., but this will not be done here.

1. The inversion and elimination theorems. Our first inquiry will be
as to the extent to which the inversion and elimination theorems are affected
by the new rules.

In the case where the M of the inversion theorem or the A of the elimina
tion theorem are nonmodal, Le., not of the form DB, I maintain that the
proofs of these theorems are not affected at all. For, since the rule Y* does
not admit any nonmodal parameters, it will be impossible for this rule to
occur in the ill of the inversion theorem or the il 2 of Stages 1 and 2 of ET.2

The rule *Y is regular. Thus there is no difficulty in these stages of the
proof. This part of the argument is true even if Y * is replaced by (8).

If the rule R of the inversion theorem is Y *, then there can be no singular
inferences applied in ill (since M is itself parametric on the right) and hence,
in particular, no instances of Y *. Thus the replacement of M (that is,
D B) by B will invalidate no inferences in ill' Therefore Y* is directly
invertible, although the direct inversion may not be completed on account
of a violation of condition (a). If the rule R is *Y, then replacement of DB
by B may invalidate any inferences by Y * which there may be in ill. Thus

lOne can show this either directly or by using a valuation over a Boolean algebra with
two points <X and {3, taking 00 = O<X = 0, 0{3 = {3, 01 = 1, and interpreting U- as meaning
~ between the Boolean meet of the left constituents and the right constituent. (Take A =

<x, B =p.)
2 In Stage 2 of ET either Uk or mk is nonvoid, and then constituents are nonmodal.
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(2)

(1)

~, AI' .. · , Am 11-' ~

Let Il be a proof in the outer system that

*Y is not directly invertible. We have the same difficulty on both sides if
Y* is replaced by (8) (but not if arbitrary parameters are allowed on the
right).

Now let us look at ET. Stages 1 and 2 where A is nonmodal have been
taken care of. Suppose A is 0 B. The situation is then analogous to the
treatment of A :::> B in LAm. We consider Stage 2 first. There can be no
instance of Y *, except one which introduces A, in 1l2 ; for either there is a
parametric instance of A (in IDk ) or we have a singular system and a non
modal constituent on the left (in Uk). For the same reason either we have a
singular system or no other singular rule can be used in 1l2 • Thus all rules
in 112 satisfy (r6), and the proof of Stage 2 goes through . We can therefore
suppose that ~' (in ET, Sec. 5D2) is of the form 0 m and 3 is void. Then
the replacements we have to make in the proof of Stage 1 do not invalidate
any of the inferences of Stage 1, and the proof of Stage 1 also goes through.

It remains to consider Stage 3. If the hypotheses of Stages 1 and 2 are
satisfied, we have an argument of the following sort:

om IH- B ~, B II- ~

om II- OB ~, DB II- ~ ET
~,ow II-~)

This can be replaced as follows:

om IH- B

om II- B ~, B II- ~ ET
~,DWII-~

Here the first step on the left is necessary only when the conclusion is in the
outer system; in that case it follows by deductive induction since all the
postulates of the inner system hold in the outer. We thus have the following:
Theorem 1. The elimination theorem holds for all the systems LXY; further,

the rule Y * is directly invertible.
Remark. The proof fails if Y * is replaced by (8); this is because we cannot

be sure, when A == DB, that A does not occur in the 03 of some other
application of Y *.

2. Representation of the outer system in the inner. The theorem
which we shall now prove contains Theorems 5E4, 6B9, and 7B8 and Exer
cises 6B9 and 7B9 (with some auxiliary argument) as special cases.
Theorem 2. Suppase ET holds in the inner system, and the outer system is

obtained by adjoining to the inner system rules of the forms

~ 11-' Ai' 3 i = 1,2, ... , m
~II-' B,3
~, BII-'~

~II-'~

If (1) or (2) is applied at a node of Il, let

C == Al :::>. A 2 :::>•• • • :::>. Am :::> B

(3)
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and let C* be obtained by closing C with respect to all characteristic variables
appearing in Il below that node. Let 9J1 be a prosequence consisting of all
such C·. Then

X, 9J1 IH- ~ (4)

Proof. Let Il == r l , r 2' ••• , r n be the given proof of (3), and let 9J1k be
the C* which have been introduced in Il in the nodes at or above r k • If
r k is

let r k be
Xk, 9J1k IH- ~k

We show by a deductive induction that r kholds for all k.
If r k is quasi prime of type (pI), or of type (p2) where the axiom is an

axiom of the inner system, then r k is also quasi prime, 9J1k is void. If r k

is quasi prime of type (p2), using an axionl E of the outer systenl, then we have
a case of (1) with m = 0, and r' can be derived by successive applications of
*n from the quasi-prime statement

Xk , E litE, 3k
Here 9J1k consists solely of E*. This also applies whenever r k is derived by
(1) with m = o.

If r k is derived by a rule R which is nonmodal and valid in the inner
system, or if R is • Y, let the premise(s) be r ii' r i2 •••• ' Then rkcan be ob
tained from r~I' r~2' ... by the same rule R. The addition of 9J1k as addi
tional parameters does not invalidate the inference, since none of them can
contain the characteristic variable, if any, of R.

If rk is obtained by rule Y *, then rk is obtained thus:

Xk Ilf D
Xkll-'DD

The inference is valid if we change 11-' to IH-. From this we obtain ri by .K.
Suppose rk is obtained by (1). Then by the inductive hypothesis and *K

Xk , IDlk - 1 lit Ai' 3 i = 1, 2, ... rn (5)
Let

Ci == A i+l =>. A i + 2 =>••••• => Am => B

Then we shall see that for all i,

Xk , 9J1k- l , Ci IH- B, 3 (6)

In fact, since Cm == B, this statement is quasi prime for i = m; supposing
it true for a given i, we have

Xk , 9J1k - 1 Ilf Ai' 3 Xk , 9J1k - 1 , Ci Ilf B, 3 .P
Xk , 9J1k - l , Ci-I lit B, 3

Thus (6) is true for all i, in particular for i = O. Hence, by successive
applications of *n,

This is ri,
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Suppose r k is obtained by (2); then the inference is

~k,BII-'~

~k' AI' · .. , Am 11-' ~

By the inductive hypothesis
~k' IDlk- 1, B lit ID

But in LA, hence in the inner system, we have

AI' ... ', Am' G IH- B

From the last two statements and ET for the inner system we have

~k' IDlk - l , G, AI' ... , Am IH- ~

From this we have r k by applications of *". This completes the proof
of the theorem. Note that ET is not needed in the outer system.

The following corollaries are obtained by taking LM* as the inner system
and LJ*, LD* as the outer system. These corollaries could be obtained
from H formulations by the deduction theorem, but their relation to modal
logic is not without interest.
COROLLARY 2.1. If (3) holds in LJ*, then (4) holds with LM* taken as the

inner system if 9J1 consists of suitable closures of all F :::> Ai' where AI' ... ,
An are all the principal constituents of the various instances of Fj.

COROLLARY 2.2. If (3) holds in LD*, then (4) holds with LM* taken as the
inner system, provided IDl contains suitable closures of instances of the law of
excluded middle.
For an inference by Nx can be obtained thus:

~, A II- ~ ~, I A II- ID
~, A V I A II- ~ (2)

~II-~

In case the inner system is taken to be LAI *, we have also the following:
COROLLARY 2.3. If (3) holds in Lel *, then (4) holds as stated in LAI *, with IDl

consisting of suitable closures of instances of Peirce's law.
For an inference by Px can be obtained thus:

~,A:::> BII-' A
~ 11-' A :::> B.:::> A ~, A 11-' A

~,A :::> B • :::> A .:::> A 11-' A *p
~ 11-' A (2)

An analogue of Corollary 2.2 can, of course, be obtained for LK*.

C. THE T AND H FORMULATIONS OF NECESSITY

1. The T formulation. The T rules for necessity, which are obtained
from the L rules in a manner analogous to that used in the previous chapters,
are as follows:

Ye OA
A

Yi (0)
A

OA
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Here the '(D)' over the 'A' in Yi indicates that A is derived from necessary
premises by the rules of the inner system. It is convenient to call TXY the
system formed by adjoining these rules to TX.

It is hardly necessary to give a formal proof that these rules are equivalent
to the L rules in the same sense as in the corresponding places in the previous
chapters. Instead we shall state a definition and derive some particular
results.
DEFINrrroN 1. We define strict implication, denoted by the infix ' ~ " thus:

A ~ B == D(A :::> B)

Theorem 1. The following hold, whatever the underlying system 6.

(a) I- DA ~ A

(b) I-DA ~ DDA
(c) I-A~B.~.DA~DB

Further, we have, if G is .0,

(d) If I-A, then I- DA
Proof. We have (a) by Ye and Pi and Vi; (d) by Vi. To derive (b) and

(c) we use schemes as follows:

1
DA Yi

DDA Pi-l

DA :::> DDA .
DA ~ DDA YI

2
DA

Ape

A ~ B:::>. DA ~ DB Pi-l

A ~B.~. DA ~ DB Yi

1
A~B

A:::> B Ye

B Y.
-- I
DB .

DA :::> DB PI.-2

DA ~ DB YI

An H formulation having the same assertions as TXY will be called a
system HXY. It is convenient to extend this term so as to include not
only the system based on modus ponens (Ph) alone, but also on a rule Yh,
analogous to IIh, as follows:

Yh
I-A

I-DA

We treat first the case where there is no rule but Ph, because previous proofs
then apply without revision.
Theorem 2. With respect to Ph as sole rule, a set of prime assertions for HXY

consists of those of the form DA, where A is a prime assertion of HX together
with those in the schemes (a) to (c) of Theorem 1 and the scheme

(a') I-DA:::> A
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Proof. Let the system described in the theorem be called H 2. Then all
the prime propositions of H 2 are assertions of HXY by Theorem 1. [Note
that (a') follows directly from Ye and Pi.] Since Ph is the same as Pe, it is
an admissible rule for HXY. By deductive induction every assertion of
H 2 is also one for HXY.

To prove the converse we must show that the rules of TXY are admissible
for H 2. This is clear for Pe, since it is the same as Ph. For the nonmodal
rules it was shown in the previous chapters. For Ye it follows immediately
from (a') and Ph.

It remains to consider Yi. rro establish this, note first that the rule

I-A ~ B I-A
rB

is admissible by Ph and (a'). Suppose then that A is deduced in H 2 from
premises of the form DC. Let B1, B 2, ••• , B n be the stages in such a deduc
tion. We shall see that, for every k, D B k is an assertion of H 2. If B k is
of the form DC, then I- DBk follows by (b) and Ph'. This includes all
cases where B k is a premise or a prime assertion other than (a'). If B k is an
instance of (a'), then DB is an instance of (a). If B k is obtained by Pe, let
the premises be B i and B; == B i :::> B k • Then we have I- DBk from I- DBi

and I- DB; by (c) and Ph', Q.E.D.
Theorem 3. With respect to the rules Ph and Yh, a set of prime assertions

for HXY consists of those of HX together with

(a') I-DA:::> A
(b') I- DA :::> DDA
(c') I-A ~ B.:::>:DA .-3.DB

Proof. Let the present system be H 3, that of Theorem 2 be H 2. Then
the prime assertions of H 2 follow in H 3 by Yh. Those of H 3 are valid in
H 2 by (a') and Pe; further, Yh, which is a special case of Yi, is admissible
in H 2•

S. Supplementary Topics

1. Historical and bibliographical comment. The immediate sources
for this chapter are [TFD], chap. 5, and [ETM]. I have purposely refrained
from discussing further developments of the subject on the ground that the
interest is rather too special for a book of this sort.

For ancient modal logic see the historical works mentioned in Sec. IS3,
particularly that of Bochenski.

Modern modal logic was initiated by Lewis, although there is said to have
been some anticipation by MacColl. (For references see under these authors
in Church [BSL].) Lewis presented one version of his system in his [SSL].
Further developments were in his part of Lewis and Langford [SLg]. At
the end of that book he presented five systems, SI to S5, which, in their
numerical order, were of increasing strength. He expressed himself as
unable to decide which of his systems "expresses the acceptable principles of
deduction."

After Lewis, work on modal logic was done by a number of scholars,
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including Becker, Parry, Wajsberg, Feys, McKinsey, Tang, Ruth Barcan,
Moh, von Wright, H. A. Schmidt, Hallden, Lemmon, and Anderson. Hallden
has a whole series of systems going beyond Lewis, and he and some others
have interpolated additional ones in the series. All these systems are based
on HK. The only nonclassical modal logic that I know of is Fitch [IML].
For a general survey of what might be called the classical approach to
modality see Prior [FLg, chap. 111.1] (the postulate lists in the appendix are
particularly useful); Lemmon [NFL]. Schmidt [VAL, secs. 161-192] gives
an extensive detailed treatment of modal logic; he does not, however, estab
lish contact with work of other authors. Becker [ELg] may also still be
useful.

Godel [IIA] pointed out that there was a close relation between Lewis's
system S4 and the system HJ. He showed that HJ could be interpreted in
HKY; and the schemes (a) to (c) of Theorems C2 and C3 are due to him.
For further studies along this line see McKinsey and Tarski [TSC], Maehara
[DIL]. Topological connections with closure algebras have been made by
Tang [APG], McKinsey and Tarski [ATp], and others.

The system arrived at here by a semantical approach is equivalent to the
Lewis system S4. Other semantical approaches have also arrived at S4, or
in some cases S5. Thus McKinsey [SCS] arrives at S4; Carnap [MNc] at S5.

The Gentzen methods in connection with modal logics have been studied
also in Ohnishi and Matsumoto [GMM]. According to them, the system in
which one replaces Y* by (8) of Sec. A leads to the Lewis system S5. They
formulate Gentzen rules for several modal systems, including possibility as
well as necessity; establish equivalence with the more usual H formulations;
and prove ET for a number of them. rrheir second paper claims a proof of
ET for S5.

Kripke has recently made a profound study of modal logics using tech
niques allied to those of Gentzen and Beth. See his [CTM], [SAM].

Lattice systems related to modal logics have been considered by a few
authors, e.g., Porte [RLM]; Rasiowa and Sikorski [ALL], [ETN]; Rubin
[RCA]; and the papers cited above under topological applications.

There are several vexatious questions in regard to the interpretations of
quantifiers in modal logic. There is a fairly extensive literature relating to
this, of which the follo,ving are samples: Hintikka [MRM]; Kanger [MSP],
[NQM]; Kripke [SAM]; Myhill [PAF]; Quine [PIM].
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Composition, 102

of shuttle algorithms, 76
Composition property, 250, 275-276

modified, 332
Compound propositions, 185
Compound statements, 171, 1M!)
Computing automata, 12:1
Concatenation, 51

associativity of, 63
Concatenative system, 52
Confusion of bound variables, 116
Congruence, 197
Conjunction, 96

symbols for, 35
Conjunction connective, 172
Conj unction rule, 193
Conjunctive normal form, 300
Conjunctor, 86
Connection, 33
Connectors, 33
Consequence, 252
Consequence relations, 47
Consequent, 191

of command, 70
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Conservation property, 225, 227, 276, 278,
332

Consistency, 87, 95, 100, 255
in mathematics, 11
of a theory., 46

Constant proposition, 319
Constant term, 319
Constituents, 191, 196

eliminated, 208
Construction sequence, 41
Constructions, 39-42, 83, 102
Constructive approach to logical calculus,

245
Constructive epitheorem, 96
Constructiveness, 9, 15, 124

extended senses, 124
Constructivism, 15
Contensive statement, 45
Contensive theory, formalized, 14
Contensivism, 8, 13-14

(See also Intuitionism; Platonism)
Continuous function, 3
Continuum hypothesis, 23
Contracted constituents, 231
Contraction, 107,231
Contraction rule, 186, 193, 231

(See also *W *)
Contraposition, 287
Contrary-to-fact conditions, 251
Convex sets, 129
Copi, 1. M., 5n.
Counteraxioms, 255, 262, 305, 318, 320
Counterbasis in Boolean algebra, 298
Counterpomt in Boolean algebra, 296
Countervaluation, 334
Counting, process of, 12
Couturat, L., 159, 308
Critical contensivism, 8-9

(See also Intuitionism)
Croisot, R. (see Dubreil-Jacotin et al.)
Cup (infix), 162
Curry, H. H., citations, 369, 373-375
Curry and Feys, citations. :l69, 375

(See alsu [CLg])
Cut rule, 188, 250
Cylindrical algebras, 358

D (infix), 106-107
Data of construction, 102, 239
Davis, M., 84, 123
Decidability, 95, 100, 234-235

in Boolean algebra, 291
of distributive lattice, 137
of semilattices, 133

Decidable theory, 46
Decision problem, 87, 357ff.
Dedekind, R., 24, 63, 89, 123, 159, 161, 246
Deducibility, 225, 242, 252, 275-276

formal, 97ff., 173

Deducibility, L*, 331
Deducibility theorems, 225-244, 250, 331

336,345
Deduction, 198

regular, 199
Deduction theorem, 95, 180-181, 184, 249
Deductive induction, 100
Deductive rules, 46
Deductive theories, 46-47
Definability theorem, 121
Definiendum, 106-107
Definiens, 106-107
Defining axioms, 107
Definitional extension, 107

standard, 108
Definitional identity, 109
Definitional reductions, 107

rule of, 107
standard, 108

Definitions, revision of, 121
Degree, of functor, 33

of proof tree, 206
Dekker, J. C. E., 123

(See also Myhill and Dekker)
.1, 162, 196
Demonstrability, ~55

Demonstration, 46, 199
Demonstration scheme, 99
De Morgan, A., 163
De Morgan formulas, 293
Derivational formal system, 80
Derivational rules, 322
Designatum, 33
Descendant relationship, 105, 199
Description operator, 358
Descriptive functions, 358
Descriptive functors, 315n.
Designated values, 175
Designation relation, 34
Designation rule, 92
Destouches, J. L., 161
Determinative rules, 46
Detlovs, V. K., 82, 110
Detlovs' theorem, 82, 84
Development, alternative, 298

conjunctive, 298
term of, 298

[DFS], 25, 33n., 83, 121, 374
Diagram as interpretation, 129ff.
Dialectica, 85n.
Diamond and McKinsey, 305, 375
Dilworth, R. P., 139, 141, 161-163

(See also Ward and Dilworth)
Direct clauses, 83
Direct consequence, 48
Direct interpretation, 59
Direct inversion, 205
Direct refutability, 262
Directly invertible relation, 205



Disjunction, 154
Disjunctive sum, 154
Disposition statements, 251
Distributive lattices, 136-138

finite, 144
Distributive law, 136, 159, 195

Peirce's proof of, 160
for subtractive lattice, 145

Divisibility interpretation of logical alge-
bras, 128

[DNF], 306, 370, 374
Dopp, Jo, 121
Dot notation, 35-37, 82
Double negation, 284, 286
Double quotes versus ~ingle, 31
[DSR], 69, 83, 374
[DTC], 68no, 121, 374
Dual automorphism, 293
Duality, in Boolean algebra, 293.1J.

in lattice, 134
Dubislav, ,\to, 20, 121
Dubreil-Jacotin, Mo Lo, 159-160, 162
Dubreil-Jacotin et aI., 159-160, 162
Duplication algorithm, 71, 75, 78
Durchschnitt, 161
Dyson and Kreisel, 250

el , e2, 316
e, 316-317, :120
(f, 45, 316
(f(u), 317
E, 113
El' E 2 , 0 0 0 , 316
E form of algebra, 175
E system, 283
EA form of propositional algebra, 175
EA validity defined, 181
EC form of propositional algebra, 175
EC system, 182
efq (ex falso quodlibet), 264, 285, 306-307
E,T,283
EK algebra, 289
Element, idea of, 296

of phrase, 33
Elementary deductions, 202
Elementary deductive theory, 47no
Elementary prime statement, 202
Elementary propositions, 185, 316

morphology and, 190-191
Elementary statements, 45, 50, 322

of metamathematics, 88
Elementary systems, 68
Elementary theorems, 45, 316
Elements, class of, 67

in interpretations, 174
Eliminated constituents, 208
Eliminated proFosition, 208
Elimination of • W., 275
Elimination problem in Booleanalgebra, 302
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Elimination theorem, 22, 188, 208-213,
250, 265-267, 329, 363, 368

EM, 283
Empiricism, 16
Encyclopaedia Britannica, 20
Encyclopedia Americana, 20
Endomorphism, 101, 174
Entailment, 251
Entailment implications, 251
Entity, 86
Epi- (prefix), 122
Epimenides, 5, 26
Epistatements, 93, 311, 313
Epistemological paradox, 7
Epitheorems, 93, 180

constructive, 96
nonconstructive, 95

EpitheoretlC generalization, 98
Epitheoretics, 122
Epitheory, 93-124, 311

nature of, 93-101
€ (infix), 316
(€), 104
Epsilon operator, 358
Epsilon theorem, 342
Equality, predicate calculus with, 348
Equation in Boolean algebra, 301
Equational formulation, lattice, 134

semilattice, 133
Equational system, 64
Equiform inscriptions, 30, 170
Equisignificance in logical algebra, 170
Equivalence, between formulation types

for L systems of negation, 267-271
between formulations of negations, 267
as operation in propositional algebra, 161
pure, 158
between singular and multiple formula-

tion, 271-275
Equivalence operation, 35
Equivalent in definitional extension, 109
Error, 88
ET, 215, 277, 279

(See also Elimination theorem)
ET', 215
[ETM], 250, 36Ono, 367, 374
EtWaB, 86
Eubulides of Miletus, 6
Eutactic system, 58, 60, 62
Ex falso quodlibet (efq), 264, 285, 306-307
Examples on nature of mathematics,

11-13
Excluded middle, law of, 260, 285
Exclusive sum, 154
Existential quantification, 323
Exner and Rosskopf, 82
Explicit, in definitional extensions, 109
Expressions, mention of, 30.lJ.

words as, 30
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Extension, 94
of theory, 46

Extension theorems, 324-327
Extremal clause, 83

F,32
F., 259, 262, 277, 326
F, ~59, 306, 316
~, 255, 257, 262, 318
F formulation, 261-262, 278n.

equivalence to other formulations, 267-
271

F transformation, 269
Ffa operator, 82
Falsity, 255
Fevrier, Paulette, 161
Feys, R., 19, 25, 243, 306, 368

(See also Curry and Feys)
Fi,280
Ficken, F. A., 370
Findlay, J., 121
'Finitary,' introduction of, 27
Finitary intuitive reasonings, 11
Finite Boolean algebra, 296-297, 308
Finite distributive lattice, 144
Finite interpretations, 296
Finite operations, derivational rules for,

322
Fitch, F. B., 19, 24-25, 251n., 368
Fj, 259, 262, 276, 326
FN formulation, 261-262

equivalence to other formulations, 267
271

Formal deducibility, theory of, 173
Formal objects, 50, 51, 54

simplifications of, 67
Formal statement, 45
Formal systems, 28-92

ob systems and, 83, 85
Formal theory, 85
Formal variables, III
Formalism, 8, 10, 14,27
Formalization, 61-62
Formalized contensive theory, 14
Formation rules, 53
Forms, law of, 301n.
Formulation I, 199, 232, 249
Formulation IK, 201, 232
Formulation II, 199, 351
Formulation 11K, 201
Formulation III, 231-234
Formulation IV, 233
Formulations, modified, 264

singular and multiple, 329
Foster, R. L., 163
IV-demonstrations, 233
Fowler, H. W., 115
Fra.enkel, A. A., 5n., 20-23, 26, 121, 161

(See also Bemays and Fra.enkel)

Fra.enkel and Bar-Hillel, 20-23, 26, 121, 161
Free Boolean algebra, 300
Free Boolean extension, 300
Free modular lattice, 139
Free occurrence, 318, 321-322
Free system, 127
Free variables, 112, 115
Frege, Gottlob, 4n., 9, 12n., 17n., 21-22,

61n., 82, 84, 89, 123, 160, 246, 248,
307, 311n.

Frink, 0., 308-309
Function, closure of, 32

functor and, 33
Functional abstraction, 116
Functional calculus, 343
Functionality, 82
Functors, 32, 86

degree and closure of, 33
mention of, 34
singulary,33n.
special, 35
technique for, 34-37

g,316
Galler, B. A., 358
r, 194, 196
[GDT], 184, 263, 374
Gegalkine, 161
Geiger, M., 4n.
General system, 127
Generalization, 323

epitheoretic, 98
inductive, 99
schematic, 98

Generalized arithmetic, 85
Generating specifications, 83
Gentzen, G., 25-26, 83, 124, 165, 175-177,

188, 245-260, 305-306, 351n.
Geometry, 2

compared to logic, 2
Gergonne, J. D., 162
Gilmore, P. C., 27, 358
[GKL], 86, 374
Glivenko, M. V., 159, 162, 248, 279, 306

307
Glivenko theorem, 279, 288, 309
Godel, Kurt, 11, 15, 18, 22-23, 26, 88, 95,

120, 123-124, 184, 250, 279, 309, 349,
354, 368

completeness theorem of, 95, 121, 354,
357

incompleteness theorem of, 11, 16, 27,
95, 120, 123

GOdel number, 58
GOOel representation, 58
Gonseth, F., 5n., 85n.
Goodstein, R. L., 19, 27, 123-124
Grammatical category, 32, 43
Grammatics, 32-34, 82, 91, 314ff.



Grassman, H., 24
Greek letters, use of, 74, 104, 198
Grelling paradox, 6
Group, 64, 155
Group theory, word problem of, 84
Groupe logique, 161
Grzegorczyk, A., 24

H form of algebra, 175
H formulations, 178-183, 283-287, 311

history of, 247f., 308!.
of necessity, 366
of quantification, 343-348, 357

H systems, 283
HA form of propositional algebra, 175
HA systems, 178-180

history of, 248
matrix interpretation, 184

Hailperin, T., 349, 358
(See also Leblanc and Hailperin)

Halbverband, 161
Hallden, S., 368
Halmos, P. R., 66n., 358
Hardy, G. H., 16n.
Harrop, R., 253, 309
Hauptaatz (Gentzen) theorem, 250

(See also Elimination theorem)
Hausdorff, F., 23
He form, propositional algebra, 175
He system, 182, 184, 248, 285-286

history of, 248
HE system, 285-286
Henkin, L., 22, 83, 161, 321, 324
Henkin et al., 161
Henkin and Tarski, 358
Herbrand, J., 83, 123, 161, 351, 358
Herbrand-Gentzen theorem, 351-352, 356-

357
Hermes, H., 19-20, 83, 159, 161, 247-248
Hermes and Kothe, 159, 378
Hermes and Scholz, 19-21, 248, 307
Hertz, P., 83, 246-247
Heterological adjectives, 6
Heyting, A., 9, 15, 26, 124, 183, 245, 248,

305-307
Heyting algebra, 163
Heyting lattice, 162
Hilbert, David, 11, 15-17, 19,22-27,61

62, 83, 85-89, 120, 122, 183, 246-249,
288, 307, 342, 348, 358

Hilbert and Ackermann, 19, 22, 26, 348,
357-358, 373

Hilbert and Bemays, 19, 23, 25-27, 83,
183, 246, 248-249, 307, 314, 324, 342,
356-358

Hintikka, K. J. J., 358, 368
Hi~, H., 309
HJ, 283, 307, 309

standard formulation, 285
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HK, 286, 309
completeness, 300
standard formulation, 286jJ.

HK*, 312, 352
HM, 283ff., 307

standard formulation, 285
Homomorphism, 101, 174, 325
Howard, W., 304
HS system, 288
Huntington, E. V., 88n., 159-160, 295, 304,

308
Husserl, E., 123
HX·, 343-344, 349
HX:, 344
HX;, 346
Hypothesis of the stage, 208

I, 118
I', 118
[IAL], 25, 246, 250, 374
Ideal, 140
Idempotency, 126
Idempotent laws, 135
Identity, definitional, 109
[1FT], 25, 83, 86, 245, 252, 374
Immediate descendant, 199
Implication, 252

analysis of, 97ff.
theory of, 165-253
weakened, 25Off.

Implication rule, 193
Implicative lattices, 140, 143-144, 161

classical, 149, 157-158, 289
Implicative operation, 35
Implicative semilattices, 141, 147-148
Independence of operations, 280
Indetermmates, 112

adjoined, 99
Induction, types of, 100
Inductive class, 38, 83
Inductive clauses, 83
Inductive definition, 83
Inductive generalizations, 99
Inductive step, 100
Inferences, direct inversion of, 203

permutability of, 206-208
Inferential extension, 94
Inferential methods, 25
Infinity, axiom of, 18

nonenumerable, 68
Infixes, 34-36, 126, 316

symbols for, 35, 51
Initial specifications, 83
Inner system, representation of outer sys-

tem in, 363-365
Inscriptions, 16, 30, 169
Instantiation, 323
Intermediate logic, 309
Interpretant, 48, 59
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Interpretation, 48-49, 59-60
auxiliary, 174
direct, 59
full, 48
normal, 172
partial, 48
versus representation, 57

Intersection, 161
Intuitionism, 9-10, 13, 15, 23, 26
Intuitionistic negation, 259, 261
Intuitionistic nondeducibility, :J56
Intuitionistic propositional algebra (see HJ)
Invariance assumption, 320
Invariance condition, 114, 115
Inversion, direct, of inferences, 203
Inversion principle (Lorenzen), 173, 247
Inversion theorem, 203, 249, 264, 327-329,

362
Irregular rule, 198
Isomorphism, 174

.Japanese logic, 306

.JaSkowski, H., 249, 309, 349, 357

.Jespersen, 0., 86
,Jevolll:J, \V. S., 158, 161
Johansson, I., 259, 260n., 286, 306-307, 358
,Join, 161
.Jonsson and Tarski, 164
.Jordan, P., 161, 16:l
.Jordan, Z., 24
.J0rgeIlKon, J., 21, 158
Journal of Symbolic Logic, 20, 23
.Journals, abbreviations for, 369
.Junctors, 86

K, 118
K', 118
.K., 186, 192, 199-200,237,326,351

initial applications of, 230, 238
restrictions of, 230, 275

Kalish, D. (see Montague and Kalish)
Kamke, E., 23
Kanger, S., 288, 306-307, 368
Kemeny, J. G., 82
Kempner, A. J., 26
Ketonen, D., 199, 202, 224, 249
Klecne, S. C., 19, 25-27, 41n., 70n., 83, 85,

100, 110, 121-123, 199, 249, 309, 329,
341, 356

Klein, Fritz, 159, 161
Kneale, \V., 249
Kodifikat, 25
Kothe, G., 159
Kolmogorov, A. X., 162, 2£)9, 279. :JOfl,

:l07, 309
Konsequenzlogik, Lorenzen's, 245, 247
Kotarbinski, T., 21, 24, 34n.
Kreisel, G., 27,' 124, 250, 309, 375

(See also Dyson and Kreisel)

Kripke, S. A., 243, 250, 253, 260, 279, 306,
368

Kronecker, L., 26
Kuroda, Sigekata, 22

L deducibility, 225-244
L formulation, 259

history of, 249
L system, 198-199, 311

absolute, 185
intuitive introduction of, 184-190, 257-

261
modified, 198n.
morphology of, 190-192, 261-262
for necessity, 362-365
for negation, 261-278
theoretical formulation, 192ff., 262-264

LI-L4, 134, 156
L* deducibility, 331-333
L* systems, 312, 321

morphology of, 317ff.
theory o~ 324-342

LA system, 185, 188, 317
LA} system, 190, 249
LAm system, 190, 232, 277

elimination theorem for, 213
LA * system, 312, 321, 323, 330, 335
Labeling of tree diagram, 40
Litdrierc, .J., 19-20,25, 121, :l7H
LLAG], 32n., 41n., 63, 82, 374
.A*, 187, 193,200,201,326, :l27
..\B, 132, 162
AB', 132
AC, 132, 160
Ae, 176
Ai, 176
AK, 131, 160, 179
AK', 131, 160, 179
AS, 131, 180
AW, 132, 160
Lambda conversion, 24, 117
Lambda operation, 116, 121
A.x(M), 115
Landau, E., 24, 63
Langford, C. H., 158

(See allw Lewis and Langford)
Language, 29

communicative, 30
linear, :JO
natural, 30

Lattice(s), 131-139, 161
absolute implicative, 162
absolute subtractive, 162
classical implicative, 149, 157-158, 289
elassical subtractivp. 149-163, 289
defined, l:l4
distributive, 136-138
duality in, 134
finite distributive, 144



Lattice(s), Heyting, 162
history of, 158-159
implicative, 140, 143-144, 161
modal, 368
relatively pseudocomplemented, 162-163
residuated, 162-163
special elements of, 138-139

Lattice-ordered groups and semigroups, 163
Law of forms, 301n.
LC, 189-190, 277

completeness of, 224
LCI' 190, 249
LeI, 223, 227
LCm, 190, 249, 277
LC·, 312, 321
LD, 260-263, 279
LDm , 263, 279
LD·, 321, 323, 330, 332
LDi,332
LE, 260-263, 277, 279

completeness of, 275
LEt ,279
LE·, 321, 330
LeBlanc, H., 19-21, 82
LeBlanc and Hailperin, 358
Ledley, R. S., 309
Leibniz, G. W. von, 158
Left constituent, 191
Left-facing point, 36
Left prosequence, 191
Leggett, H. '\T., 4n.
Lemmon, E. J., 368
Lesieur, L. (see Dubreil-Jacotin et al.)
Lesniewski, S., 24, 158, 252
Letters, 30

use of, viii, 126
Levy, Azriel, 22
Lewis, C. 1., 20-21, 27, 367, 381
Lewis and Langford, 158, 367
[LFS], 82, 90-92, 374
Liar paradox, 5, 9, 26, 123
Lightstone, A. H., 358
Lightstone and Robinson, 358
Like constituents, 191
Lindenbaum, Adolf, 174n.
Lindenbaum algebra, 174
Lindenbaum interpretation, 174
Linear language, 30
Linear spaces, 129
W system, 260-263, 317
W· system, 321, 323, 330
LK system, 261, 263, 277

completeness of, 275
LK· system, 312, 321, 330
[LLA], viii, 25-26, 44, 64, 149, 153, 158,

161, 287-288, 294-295, 305-307, 310,
374

LM system, 259, 261, 263, 283
LM· system, 321, 323, 330
[LMF], 31n., 82, 90, 374

INDEX 399

Lowenheim, L., 324
Lowenheim-Skolem theorem, 6-7, 95, 121
Logic, application of, 24

basic, 24
as branch of mathematics, 1-2
combInatory, 17
compared to geometry, 2
mathematical, 1-3
mathematics and, 3, 16-18, 27
philosophical, 1
traditional, 310

Logical algebras, 125-131
assertional versus relational, 166-168
associative laws of, 133
interpretatio& of, 127, 145
relational, 125-164

Logical antinomies, 3-8
Logical calculus, approaches to, 245
Logical consequence, 10
Logical paradoxes, 3-8
Logicism, 16-18
Logique et analyse, 20
Logistic calculus, 21
Logistic system, 86
Lorenzen, P., 19, 22, 25, 27, 83, 97, 124,

160, 173, 243, 245, 247, 253
inversion principle, 173

[LSF], 91, 374
[LSG], 82, 84, 374
~ukasiewicz, J., 21, 34n., 84, 175n., 184,

246, 248, 252, 288, 295, 305, 307-309
I..ukasiewicz and Tarski, 84, 175n., 184,

246, 248, 305
I..ukasiewicz notation, 34, 36n., 44
I..ukasiewicz presentation, 57
~ukasiewicz representation, 58, 61
I..ukasiewicz standard presentation, 57
LX· system, 312, 321, 323, 332, 334, 343,

351
LXY system, 362
Lyndon, R. C., 23

MacColl, Hugh, 367
McKinsey, J. C. C., 161-162, 280, 368

(See also Diamond and McKinsey)
McKinsey and Tarski, 161, 368
MacLane, S., 121
Maehara, S., 249-250, 342, 368
Malcev, A. I., 121
Many-sorted predicate calculus, 358
Mapping, 95, 101
Marcus, R. B. (see Barcan)
Marker, place, 75
Markov, A. A., 28, 81-82, 84
Markov algorithm, 70, 84, 110, 123, 139

composition of, 73-74
equivalence, to recursiveness, 82

to Turing machine, 82
reduction to (semi)shuttlealgorithm, 76,78
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Markov's thesis, 7On., 123
Markwald, \V., 19

(See also Hermes and Markwald)
Martin, R., 82, 90
Mathematical logic, defin~d. 2

nature of, 1-3
relation of, to mathematics, 3
(See also Logic)

Mathematical Reviews, 369
Mathematics, consistency in, 11

nature of, 8-16, 26
examples of, 11-13

relation of, to logic, 2-3, 16-18, 27
Matrix, normal, 175
Matrix interpretation, 129, 175, 309
Matsumoto, K. (see Ohnishi and Mat-

sumoto)
Maximal branch, 102
Meet, Birkhoff term, 161
Meet or conjunction, symbols for, 35
Menger, K., 122, 159, 162
Mention, of expressions, 30

of functors, 34
Meredith, C. A., 184
Meta-, prefix, 86, 89, 122
Metalanguage, 31, 89, 92
Metamathematics, 15, 86, 120

elementary, 88
elementary statement of, 88

Metametalanguage, 31, 92
Metaphysical assumptions, 10, 13-16
Metasemiosis, 61
Metasystem, 61, 92
Metatheoretics, 122
Metatheory, 120, 122
Mihailescu, E. G., 158
Minimal negation, 259-261, 3Q6
Minkowski, H., 161
Mitteilungszeichen, 87, 89
Mixed system, 191
Modal logic, 251, 359
Modality, 359-368

outer syst~m represented in inner, 36:l
365

Model, interpretations and, 60
in quantification, 336

Modified composition property, 332
Modified formulations, 264
Modular lattice, 138

(See also Lattice)
Modus ponens, rule of, 140, 159, 165, 178
Moh Shaw-Kwei, 368
Moisil, G., 161, 253, 306
Molinaro, M., 160
Monotectonic construction, 41
Monotectonic system, 60, 62
Monotone equivalence, 104
Monotone operation, 103
Monotone quasi orderin~, 104

Monotone relations, 104-105
Montague and Kalish, 358
Monteiro, A. A., 149, 163
Moolean algebra, 163, 309
Morgan, A. De (see De Morgan)
Morphology, 51

of L systems, 190-192, 261-262
of L* systems, 317ff.

Morris, C. W., 82
Mostowski, A., 19, 34n., 121, 124, 349, 356

(See also Tarski et al.)
[MSL], 82, 90, 374
(It), 104:
Mu function, III
Multiple formulations, equivalence to sin-

gular, 219-224, 250, 271-275
Multiple prosequence, 191
Multiple-valued logic, 309
Myhill, J., 121, 124, 368
Myhill and Dekker, 123

N fomlulation, 261-262, 278
equivalence to other formulations, 267-271

N systems, 248
*N., 259, 261-263, 326
Nagel, E., IOn., J9, 121
Nagel and Newman, 19, 121
Nagornii, N. M., 81, 85
[NAL], 160,374
Natural induction, 100
Natural language, 30
Natural numbers, 42

nature of, 11-12
Natural systems, 248
NB,284
NB', 284, 287
~C, 284, 287-28B
Nd,280
Ne,280
~ecessity, analysis of, 359

formalization of, 360
J-I formulation of, 366-367
L system rules for, 362-365
L theory of, 362
T formulation of, 365-366

Necessity operation, 35
Nectors, 86
Negation, 254-310

analysis of, 96, 255ff.
classical, 260-261, 288-305
double, 284, 286
formalization of, 257-261
H formulations of, 283
intuitionist ie, 259
L systems for, 261ff.
ITlinimal, 259, 261, 306
nature of, 254-261
strict, 260-261
T formulations of, 280-283



Negation operation, 35, 257ff.
Negative occurrence, 216
Neumann, J. von, 17n., 22, 160

(See al80 Birkhoff and von Neumann)
Newman, J. R., 19, 121

(See also Na~el and Newman)
Ni,280
NI',284
Nj,280
NJ,249
Nk, 280, 282
NKCi),284
Nod~s of tree diagram, 40, 102
Noether, E., HiD
Nominalism, 16, 27
Nonconstructive epitheorem, 95
Nondcmonstrability, 255
Nonderivability, 333

in absolute implicative lattice, 149
in absolute Skolem lattice, 147
intuitionistic, 335, 356
LA, 195
LA·, 335

Nondesarguesian ~eometry, 2
Nonenlunerable infinity, 68
Nonmodnlar lattice, 139
Nonstop commandA, 70
Normal algorithrn (see Markov alKorithm)
Normal construction sequence, 41
Normal form, alternative and disjunctive,

300
conjunctive, 300

Normal form theorem, Ill, 308
Normal matrix, 175
Notre Dame J otlrnal of Log/ie, 20
Noun, 32-33
Novikov, P. S., 19, 84
[NRG], 249-200, 274
NH, 284, 307
H-tuplt' plplllt'nt:-l, 67
(v), 104
Null ('la~R, 2fl2, 316
Null dornain, 349
Null set or premiseA, 252
Null system, 316
Nunlber theory, examples from, 206
Numbers, natural, 11, 42
NW,284
Nx rule, 260, 262, 279, 326

o alphabet, 51, 7H
o languap:e, 51, 53
o letter, 51, 62
o Aentence, 171
() symbols, 51
.0., 188
0.316
0, 191,316,318
Ob pxtenRion, 94
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Oh systelll, 04, 86
compared to syntactical RYAt~m, 6o-6:l
history of term, 83, 85

Object, noun and, 33
(See also Ob system)

Ohject language, 31
Obs, 54, 171, 182, 311

of 6, 316
Obs 0 and 1, 138
Occurrence, of atoln8, in propositign8, 318

in terms, 317-318
defined, 7On., 102
free and bound, 318, 321-322
in prosequences, 321
in a statement, 322

(OFP], 26-27, 84, 120, 374
OIl;M6wara, T., 162
Ogden and Richards, 82
Ohnishi, M., 250
Ohnishi and Matsumoto, 36On., 368
0,316
WI' WI' 316
"1," 167
Onomaticalsystem, 92
Onomatics, 92
Open-set interpretations, 129
Operational extension, 94
Operational rules, 188, 192
Operations, 33

independence of, 280
interpretation of, 172-173
quasi-definable, 292

Operators, 33, 86
Or as binary infixed connector, 35, 96
Order of commands in algorithm, 74
Order interpretation of 10J!ical al~ebraR, 128
Ore, 0., 162

PI postulate, 140
P2 po~dlllat{', 141
• P., 187, 193,200-201,2:11, 2fl9, :J26
(pI), 192,202
(pI'), 202
(p2), 192
~, 316
'l\(q),320
~(u), 320
Pantactic systenl, 58
'Paradox,' 4
Paradoxes, 3-8, 26
Parameter, 197
ParametriC' ancestor or d~Acendant, 199
Parametric conAt itu{'ntR, 197
ParentheRi8, 34
Parry, W. T., :l68
Partial recurAive definitional extenRion, Ion
Partially ordered Ret8, 163
Partially orrlered AyRtem, 126
PH, 183
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PB', 183
[PBP], 86, 374
PC, 183
Pc, 182
Pc axiolH scheme, 24~

Pe rule, 176, 178, 180
Peano, G., 21-22, 24, 160-162
Peano pORtulates, 24, 45
[PEl], 249, 357, 374
Peirce, C. S., 123, 158, 160- 161, 163, 246,

248, 311n.
Peirce's law, 147, 157, 182, 193, 195, 238,

248
Perm (axion1 scheme), 159, 295
Pernlutability of inferences, 206
Permutation rule, 186, 192
Peter, R., 123
[PFD], 245, 305-306, 356, 374
Ph, 344
Ph', 367
Phase of shuttle algorithlu, 75
<1>,316

4>1' ep2' 316
Philosophical logic, 1
Phrases, 32-3:3
110, 344, 357
Ill' 344
112, 344
.n., 327, 330

.n, 323, 326
n.,328

IIh, 344
rIP, 344, 357
PI', 2~4

Pi rule, 176
PI scherne, 98, 179, 183
PK, 179, 183

independenee scherTlc, 183
Pk rule, 182
PK(1),284
PI(., 239
(PK)., 238
Place Inarker, 75
Platonisn'l, 8, 12-14, 26, 29

(See also Contensivisln)
Ply operation, 139

interpretation of, 172
notation for, 162
postulates for, 140

Point, in Boolean algebra, 296
left- or right-facing, :l6
scope of, 36

Puint notation, 35-37
Point-set topology, 129
Polish logic, 24
Polyadic algebras, 358
Polytectonic construction, 41

PoretskiT, P., 308
Porte, J., 80n , 84, 288, 296, 305, 368

Positive occurrence, 216
Possibility, analysis of, 360
Post, E. L., 4611,., 47, 80n., 83-~4, 308-309
Post algebras, 163, 309
Post algorithm, 80
Post completeness, 47-4~, 83, 95
Post consistency, 83
Post system, 80
Postulate syst~mR, 10
Post,ulates, 46
Pragmatics, 90
Predicate, 315

verb and, 33
Predicate calculus, :l43

applied, 321
with equality, 348
first-order, 21
with generalization, 344
proper, 344, 346, 357
pure, 346

Predicate constant, 321
'Predicate indeterminate,' 32111.
Predicate syn1bol, 65
Predicate variable, 321
Predicational types of systernR, 64
Predicators, 33, 315
Prefixes, 34
Prernises, 46

null set of, 252
Prenex normal fornI, 349.0., 357
Presentation of system, 56

(prime), 289
Prime assertion, 283
Prime statement, 192, 202, 322

elementary, 202
Primitive constants, 315-316
Primitive frame, 46, 51
Primitive operations, 54, 317
Primitiv~ predicates, 317
Prin1itivp predicators, 316
Prinlitive propositional eonstant, :321
Primitive recursion Rcheme, 110
Primitive terul oporators, 316
Principal constituent, 197, 239
Principal operation, 107
"Principia Mathematica," 6, 1211., 17n., 19,

22, 84, 89, 95, 159-160, 246, 295, 304,
307, 314n., 390

Prior, A. N., 19, 248, 368
Product, 161
Projective geOlnetry, 129
Proof, 87
Proof scheme, 99
Proof tableaux, 235, 250, 336-340, 356
Proper cornbinations, 101
Proper cornponent, 102
Proper definitional extension, 1O~
Proper obs, 113
Proppr prediC'Rto C'alC'ulus, 344, 346, 357



Proposition, 86, 168-169, 311, 316
clause and, 33
constant, 319
defined, 171
elementary versus compound, 185
Aliminaterl, 208
morphology and, 190-191
in quantification, defined, 318
real, 319
rules for, in quantification, 317-321
substitution prefixes in, 319

Propositional algebras, 175-184
absolute, 181
classical, 55

finite form, 56
classical positive, 182
(See also H systems)

Propositional connectives, 172-173, 311
Propositional constant, primitive, 321
Propositional function, 315n.
Propositional interpretation, 168-172
Prosequences, 191

occurrence in, 321ff.
Provable wef, 87
PS, 180, 183
Pseurlocornplement, 285
Pseudocomplernented latt,iC'e, 2Sr,
Pure predicatp calcuhlA, 346
Purely syntactical statmnC'nt, HI
Putnam, H , :jtl9
PW, 183, 194
Px, 193, 223, 260n., 326

ql' Q2' ••. , a16
q,317
Quantification, 311-35H

H formulations of, 343
L formull1tions of, 321-324
rules for terrns anti propositions in, 317

321
T forlnulation of, 342
vacuous, :lI9, 344

Quantification rules, 323
Quantifiers, defined, 311

modal, 368
semantics of, 312

Quantum mechanics, 160, 163
Quasi atoms, 113
Quasi-definable operation, 292
Quasi definitions, 280, 292-296
Quasi-ordered systern, 64, 199r,.
Quasi-parametric ancestor, 204
Quasi-prime staternents, 202
Quasi-prineipal constituents, 197, 2:U-232
Quasi quotation, 31n.
Quine, W. V., 17, 19,22-26,3111.,62,82,

121, 308, 348-349, 356-35H, 36H
Quotation functions, 31
Quotation markA, viii, 31. 82
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(rl), 197
(r2), 197
(r3), 197
(r4), 197-199
(r4)', 198
(r4)", 199
(r5), 197
(r6), 198
(r7), 198
R, 103-104
Ro' 104
r,316
RI-R8 (axiom schemes), 153-156
Ramified theory of types, 22
Ramsey, F. P., 7, 12n., 17
Range, in quantificat.ion, 347

of statenlent, 322
Rank in proof tree, 206
Rasiowa, H., 121, 342, 354
Rasiowa and Sikorski, 121, 368
Rd (see Rule of definitional redllC'1 ion)
[RDN1, 85-86, 373, 374
Real proposition, 319
Real term, 319
Real variables, 314, 316
Recursive, in definitional extension, 109
Recursive arithnletic, 24
Recursive functions, 122ff.
Recursively enulllerable Ret, 12;l
Referati"JnJj Zhurnal M athematika, 20
Refutability, 255, :105

C'lassical, 261
cornplete, 260-261
direct, 262
silnple, 259, 261

RogtIlar deduction, 199
Regular interpretations, 174
Regular rule, 19H
Rejection, a05
Relation algebra, 163
Relation interpretation of logical algebras,

127
Relational logical algebra, 125-164

relation to assertional, 166-168
Relational system, 64
Relatively pseudocomplemented lattice,

162-163
Replacement, 103
Replacement theorem, 121, 215-216
Representation of a system, 57
Representation theorem in Boolean algebra,

297
R~sitIuated lattice, 162-163
R~Kol\ltion probl~lll in Boolpan algpbra,

:102
H~striction of • K., 275
Restrictions, singularity, 323
rev., 369
[rev C], 3311,., 115, 375
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[rev R], 911,., 375
(p), 104
Richard paradox, 6
Richards, 1. A. (see Ogden and Richards)
Right constituent, 191
Right-facing point, 36
Right prosequence, 191
Rigor, mathematical, 3, 7, 13-14
Ring, defined, 153
Ring logics, 163
Robinson, A., 121, 124, 358

(See also Lightstone and Robinson;
Tarski et al.)

Robinson, T., 253
Rogers, H., Jr., 123
Rosenbloom, P. C., 19, 44, 83, 163, 308

309
Rosser, J. B., 9n., 19,23,44, 84, 120-1~1,

296, 304, 348, 358, 375
Rosser and Turquette, 309
Rosskopf, M. F. (see Exner and Rosskopf)
Rp (see Replacement theorem)
Rubin, J. E., 161, 368
Ruekverlegung der Einsetzungen, 115
Rule of definitional reduction, 107
Runes, D., 20
Russell, Bertrand, 4n., 5n., 6, 12n., 22, 27,

61n., 84, 159-160, 246, 295, 304,
306-307

(See also "Prmcipia Mathematica")
Russell paradox, 4, 26
Russian transliterations, 369

S, 118
S transformation, 270
5,316
6,311,316
6 deduction, 199
6 derivation, 193
6 system, 255
'6 transformation, 267
6' system, 255
6 *, primitive ideas of, 317
6(u), formulation of, 317
Sam, 52-53, 94

generalized, 54
Schematic definitional extension, 108
Schematic generalization, 98
Schilpp, P. A., 4n.
Schmidt, H. A., 19-20, 25-26, 64, 184, 249,

251, 279, 288, 309, 358, 368
Schnitt rule, 188, 247, 250
Schbnfinkel, M., 357
Scholz, H., 19-21, 34n., 88, 307

(See also Hermes and Scholz)
Schroder, E., 22, 159-163, 246, 30H
Schroter, K., 83, 248, 307, 358
Schutte, K., 19, 22, 25, 27, 348, 358
Semantic tableaux, Beth's, 25, 237

(See also Proof tableaux)

Sen1sntical paradox, 7
Semantical study in quantification, 312-313
Semantics, 90-91
Semideductive theory, 47
Semigroups, 163
Semi-inductive class, 47
Semilattices, 131, 161

equational formulation of, 133
implicative, 141, 147-148

Semimodel, 60
Semiotic systems, 90
Semiotics, 29, 90
Semiregular rule, 198
Semishuttle algorithm, 75

equivalence to Markov algorithm, 76
Sentence, 33--34, 45, 53, 86, 168-171

defined, 170
versus statement, 34, 170

Sentential concepts defined, 110
Sentential functor, 315
Separated set, 283
Separation property, 225-227, 250, 276,

332
Set difference, 150
Set theory, 17

axion1atic, 21-22
rSFL], 86, 374
Shanm, N. A., 27, 124,309
Sheffer, H. M., 294
Sheffer stroke function, 294
Shuttle algorithms, 74-79, 85

composition of, 76
equivalence to Markov algorithm, 78

Shuttles, 74
Sierpinski, W., 23
(a), 104
Lo,344
L1,344
L 2,344
*L*, 327, 330
L*, 323,326
L*,328
Lp,344
Sikorski, R., 121, 310, 354

(See also Rasiowa and Sikorski)
Simp (axiom scheme), 159, 295
Simple absurdity, 260-261
Simple refutability, 259-261
Simultaneous substitution, 119
Single quotes versus double, viii,31
Singular (prosequence, elementary state-

ment, system), 191
Singular formulations, equivalence to mul-

tiple, 219-224, 250, 271-275, 329
Singular functor, 33n.
Singular prosequence, 191
Singularity restrictions, 323
Skolem, T., 22, 24, 121, 123-124, 141, 144,

159, 161



Skoleln lattices, 139-149, 161-162
classical, 149-15N
nonderivability in, 147

Skolem nornlal forol, 352-357
Skolem paradox, 6
rSLD], 244, 279, 306, 370, 375
Slupecki, J., 24, 34

(See also Borkowski and Slupecki)
Snleaton, Amethe, 372
Smullyan, R. M., 25, 121
SobocifiBki, B., 34n., 296, 308
Special functors, 35
Specker, E. P., 23, 26
Speech, autonyulOUl:i Illode of, 30
Stage, hypothesis of, 208
Standard A language (see A language)
Standard formulations, HD, HO, HE, HK,

286
HJ,285
HM,285

Standard I..ukasiewicz representation, 58
Standard presentation, 56
Standardized definitional extension, 108
Standardized definitional reduction, 108
Stanley, R., 356
Starting command, 72, 75
Starting shuttle, 75
Statement, 33, 86, 170

auxiliary, 191, 322
eleolentary, 322
occurrence in, 322
prime, 322
range of, 322
versus sentence, 34
strictly semantical, 91

Statement extension, 94
Statement function, 315
LSTC], 86, 375
Stegmuller, W., 82
Stenius, E., 26
Stone, M. H., 161, 164
Stone representation theorem, 164, 297, 308
Stop commands, 70
Strawson, P. F., 20
Strict implication, 306
Strict system, 285
Strictly semantical 8tatement, 91
Stroke function, 294
Structural induction, 100
Structural rules, 186, 192
Studia Logrea, 20
Subaltern constituents, 197
Subconstruction, 102
Subformula property, 225n.
Subnectors, 33
Subnexus, 33
Substitution, of algorithms, 76

for predicate variables, 321
in statements, 322
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~ubstitution prefix, in propositions, 319
320

in terms, 31N
Substitution rule, 69
Substitution theorem, 324
Substitutive variables, 112, 114-115
Subtableau, 237
Subtheory, 46
Rubtractive lattice, 140, 144, 148, 157, 161,

162
classical, 149-163
topological interpretation of, 146

Subtree, 102
Suffixes, 34
Sum (axiom scheme), 159, 161, 295
Suppes, P., 19, 23, 82, 121

(See also Henkin et al.)
Suranyi, J., 341, 358
"Syll," 247
Symbols, viii, 29-30, 106

as binary infixes, 51
concatenation of, 51
defined and illustrated, 35

Sylnmetric difference, 154
Syntactical system, 51-54, 83, 85

concatenative, 52
versus 0 b system, 60-63

Syntactics, 90-91
Syntax language, H9
System, defined, 50

versus theory, 83
Systems, 50-64

elementary, 68
formal, 50
interpretation of, 59-60
predicational types of, 64-67
representation of, 57
special forms of, 64-70

Sza".",53

t, 316
X, 45, 316
T form of algebra, 175
T formulations, 165, 175-178,216--219

equivalence to L, 216--219, 281, 342-343
history of, 248}].
of necessity, 365-366
of negation, 280ff.
of quantification, 342ff.

T systems (see T formulations)
TA form in propositional algebra, 175
TA system, 165, 176-178, 248-249,

317
TA*,342
Table, interpretation through, 129
Tableau (see Proof tableaux; Semantic

tableaux)
Takeuti, G., 22
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Tang, T. C., 368
Tantet (tantet), 52-53
Tarski, A., 19, 26, 47n., 49, 83-84, 88, 91,

121-124, 161-164, 17511,., 184, 246,
248-249, 305, 358

(See also Henkin et al.; Henkin and
Tarski; Jonsson and Tarski;
McKinsey and Tarski)

Tarski et al., 121, 124
Tarski and Woodger, 47, 124,249,305
Tarski-Bernays theorem, 248
(7), 104
Taut (axiom scheme), 159, 295
Tautology, 26, 59

(See also Classical valuation)
TC form in propositional algebra, 175
TC system, 182
TC*, 342
[TCM], 86, 375
TD formulation, 280
TE forlnulation, 280
[TEA], 81, 110,375
Tectonics, 63, 92
Terln, 86, 316

of development, 298
Terln extensions, 315
Term functors, 315
Term operators, 315
Tenn variable8, 314-317
Terminology, noteH on, 85-86
Terminus, 102
Terms, in quantification theory, 311

rules for, in quantification, 317-321
Tettle (tetel), 52-53
[TFD], 25, 32n., 44, 64, 82-83, 85-86, 120,

122, 190,244-245, 247-250, 255n., 260,
288, 305-307, 320, 323, 356, 360n.,
367,375

Theorems, conventions 1egarding, 198-199
Theoretical extension, 94
Theory, 45-49

extension of, 46
interpretation of, 48
versus system, 83

Theory proper, 51
Theory of types, 17, 21, 23
Thesis, 87
Thiele, H., :J41
III-demonstrators, 233
Time intuition, 10
TJ formulation, 280
TK formulation, 280
TK·, 342
TM formulation, 280
'Token,' 86
Topological space, 146
Topology, point-set, 129
Traditional logic, 310
Transformation rules, 53

Transliterations, 369
Tree diagrams, 40, 102
'TreilUs,' 161
Truth of elementary statement, 45
Truth criteria, fundamental, 96
Truth tables, 137

0-1, 297
t(u),317
Turing nlachine, 79, 82, 85
Turnstile, 84
Turquette, A. R. (see ROSSfW and Turquette)
TX·, 343
TXY, 366
Type theory, 21-22

U,316
U constants, 111,316
U language, 28-31, 42, 50, 5:J, 82, 86, 93,

170-171, 315
U variables, Ill, 316
U verb, 50
[UDB], 44, 375
Ultimate ancestor, 199
Ultimate definiens, 106-107
Ultinlate descendant, 199
Umegawa, T., 250, 309
Unary functors, 33
Undecidability in prpdicatp ('aleuluH, :Hi7
Union, 161

synlbols for, 35
Unit clenlent in lattice, 138-139
Universal algorithrn, 81, 85
Universal category, 113
Universal predicate, 113
Unrestricted operational rule, 230
Unrestricted predicate variable, 321
[lJQC], 357, 375

.v., 187, 193,200,326,327
Vacuous quantification, 319, 344
Validity of interpretation, 48
Valuation, 59, 356
Value, 32
Variables, 121

bound, 313ff.
classification of, 111-119
real and apparent, 314, 319)].

Vaught, R. L., 121
VB, VB', VC (postulateR), 134
Ve rule, 176
Verbal function, 315
rerband, 161
Verbs, 33, 315
Verein'igung, 161
Vi (rule), 176
VK, 134, 160, 179
VK', 134, 160, 179
Void ('JaRs, individual, 320



VS (postulate), 134, 179
VW (postulate), 134

*W*, 186, 192, 196,200-201,320,323
omission of, 243
reduction of, 231

W (combinator), 118
W elimination, 275
Waisman, F., 20
Wajsberg, M., 243, 246-250, 280, 305-307,

368
Wang, H., 22, 358
Ward, Morgan, 161-163
Weakened implications, 250.lJ.
Weakening rule, 186, 193, 230

(See also *K* )
Wefs (well-formed expressions), 54, 87
Weyl, H., 20, 26
Whitehead, A. N., 4n., 6, 22, 84, 158-160,

246, 295, 304, 308
Whitehead and Russell (see "Principia

Mathematica")
Whitney, H., 162
Wilder, R. L., 19-20, 26
Wittgenstein, Ludwig, 17
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Woodger, J. H. (see Tarski and Woodger)
Word problem of group theory, 84
W or-ds as expressions, 30
""right, G. H. von, 368

~, special rules for, 191, 279
*Y * rules, 362
Yanovskaya, S. A., 21
Ye,365
Yh,366
Yi,365
Yield sign, 84

X, special rules for, 191

3, special rules for, 191
Z,24
Zeitschrift fur rnathematische Logik und

Grundlagen der Mathematik, 20
Zentralblatt fur Mathematik und ihre Grenz-

gebiete, 20
Zermelo, E., 17n., 22
0, 1, 138, 316
Zero element in lattice, 138-139
Zhegalkin, 1. 1., 161
Zubieta, R. G., 324



LIST OF ADDITIONAL SYMBOLS
Symbols, operators, or expressions that do not lend themselves to alphabetizing are
placed here, in approximate order of first appearance in the text. Their meaning is
usually explained on first mention.

36n., 70 ~. 188,193,200, + 75, 153, 162
35,68,70,97 214,276 144

~ 35 *~ 188 (-h 144
& 35,96 Ir 185, 360 ( -)2 144

35, 108-109, I~L 217 n 161-162
317 II-T 217,280 u 162
35, 126, 162, I~m 219 • 312
316 I~l 219 [ ] 104, 114, 117

(=) 353 11-' 360 [/] 318
S 35, 126, 162, 1 35, 257-258 V 116,311-312

166 ::::> 35, 139, 162, ~ 116,311-312

S 35, 162 165, 172 0 316
c 162 ::::>% 116 C 316

I 294 (,I) 35, 158 0 319
I ... 1-, I a ~ 314, 322 V 35, 126, 161- ~ 366

I···I-L 342 162, 172 t 358
I ... ~T 342 A 35, 51, 55, n

I···I-H 344 126, 162, 172 V 297
i=l

~ 35, 65, 84, I 35, 55, 257-
165 258, 279 n

A 298
1-0 185,191,318 0 35, 65, 360- i=l

361, 366
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