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Preface 

r 

Some of the central questions of mathematical logic are: What is a 
mathematical proof? How can proofs be justified? Are there limitations 
to provability? To what extent can machines carry out mathematical 
proofs? 

Only in this century has there been success in obtaining substantial 
and satisfactory answers, the most pleasing of which is given by Godel's 
completeness theorem: It is possible to exhibit (in the framework of 
first-order languages) a simple list of inference rules which suffices to 
carry out all mathematical proofs. "Negative" results, however, appear 
in Godel's incompleteness theorems. They show, for example, that it is 
impossible to prove all true statements of arithmetic, and thus they reveal 
principal limitations of the axiomatic method. 

This book begins with an introduction to first-order logic and a proof of 
Godel's completeness theorem. There follows a short digression into model 
theory which shows that first-order languages have some deficiencies in 
expressive power. For example, they do  not allow the formulation of 
an adequate axiom system for arithmetic or analysis. On the other hand, 
this difficulty can be overcome-even in the framework of first-order 
logic-by developing mathematics in set-theoretic terms. We explain the 
prerequisites from set theory that are necessary for this purpose and then 
treat the subtle relation between logic and set theory in a thorough manner. 

Godel's incompleteness theorems are presented in connection with 
several related results (such as Trahtenbrot's theorem) which all exemplify 
the limitations of machine oriented proof methods. The notions of com- 
putability theory that are relevant to this discussion are given in detail. The 
concept of.computability is made precise by means of a simple programming 
language. 



The development of mathematics in the framework of first-order logic (as 
indicated above) makes use of set-theoretic notions to an extent far beyond 
that of mathematical practice. As an alternative one can consider logical 
systems with more expressive power. We introduce sbme of these systems, 
such as second-order and infinitary logics. In each of these cases we point 
out deficiencies contrasting first-order logic. Finally, this empirical fact is 
confirmed by Lindstrom's theorems, which show that there is no logical 
system that extends first-order logic and at the same time shares all its 
advantages. 

The book does not require special mathematical knowledge; however, it 
presupposes an acquaintance with mathematical reasoning as acquired, for 
example, in the first year of a mathematics or computer science curriculum. 
Exercises enable the reader to test and deepen his understanding of the text. 
The references in the bibliography point out essays of historical importance, 
further investigations, and related fields. 

The original edition of the book appeared in 1978 under the title 
" Einfiihrung in die mathematische Logik." Some sections have been revised 
for the present translation; furthermore, some exercises have been added. 
We thank Dr. J. Ward for his assistance in preparing the final English 
text. Further thanks go to Springer-Verlag for their friendly cooperation. 

Freiburg and Aachen 
November 1983 
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CHAPTER I 

Introduction 

Towards the end of the nineteenth century mathematical logic evolved into 
a subject of its own. It was the works of Boole, Frege, Russell, and Hilbert, 
among others,' that contributed to its rapid development. Various elements 
of the subject can already be found in traditional logic, for example, in the 
works of Aristotle or Leibniz. However, while traditional logic can be 
considered as part of philosophy, mathematical logic is more closely related 
to mathematics. Some aspects of this relation are: 

( 1 )  Motivation and Goals. Investigations in mathematical logic arose mainly 
from questions concerning the foundations of mathematics. For example, 
Frege intended to base mathematics on logical and set-theoretical principles. 
Russell tried to eliminate contradictions that arose in Frege's system. 
Hilbert's goal was to show that "the generally accepted methods of mathe- 
matics taken as a whole do not lead to a contradiction" (this is known as 
Hilbert's program). 

( 2 )  Methods. In mathematical logic the methods used are primarily 
mathematical. This is exemplified by the way in which new concepts are 
formed, definitions are given, and arguments are conducted. 

( 3 )  Applications in Mathematics. The methods and results obtained in 
mathematical logic are not only useful for treating foundational problems; 
they also increase the stock of tools available in mathematics itself. There are 
applications in many areas of mathematics, such as algebra and topology. 

Aristotle (384-322 B.c.), G. W. Leibniz (1646-1716), G. Boole (1815-1864), G. Frege (1848- 
1925), D. HiIbert (1862-1943), B. Russell (1872-1970). 
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However, these mathematical features do not result in mathematical 
logic being of interest solely to mathematicians. For example, the mathe- 
matical approach leads to a clarification of concepts and problems that also 
are of importance in traditional logic and in other fields, such as epistemology 
or the philosophy of science. In this sense the restriction to mathematical 
methods turns out to be very fruitful. 

In mathematical logic, as in traditional logic, deductions and proofs are 
central objects of investigation. However, it is the methods of deduction 
and the types of argument as used in matlzematical proofs which are con- 
sidered in mathematical logic (cf. (1)). In the investigations themselves, 
mathematical methods are applied (cf. (2)). This close relationship between 
the subject and the method of investigation, particularly in the discussion 
of foundational problems, may create the impression that we are in danger 
of becoming trapped in a vicious circle. We shall not be able to discuss this 
problem in detail until Chapter VII, and we ask the reader who is concerned 
about it to bear with us until then. 

1 An Example from Group Theory 

In this and the next section we present two simple mathematical proofs. 
They serve as illustrations of some of the methods of proof as used by 
mathematicians. Guided by these examples we raise some questions which 
lead us to the main topics of the book. 

We begin with the proof of a theorem from group theory. We therefore 
require the axioms of group theory, which we now state. We use 0 to denote 
the group multiplication and e to denote the identity element. The axioms 
may then be formulated as follows: 

(Gl)  For all x,  y, z: ( x  0 y)  0 z = x 0 (J' " z). 
(G2) For all x :  x o  e = x. 
(G3) For every x there is a y such that x 0 y = e.  

A group is a triple (G, o G ,  e G)  which satisfies (Gl), (G2), and (G3). Here G 
is a set, eG is an element of G, and oG is a binary function on G, i.e., a function 
defined on all pairs of elements from G, the values of which are also elemeks 
of G. The variables x,  y, z range over elements of G, 0 refers to o G ,  and e 
refers to eG. 

As an example of a group we mention the additive group of reals (R, +, O), 
where R is the set of real numbers, + is the usual addition, and 0 is the real 
number zero. On the other hand, (R, ., 1) is not a group (where . is the usual 
multiplication). For example, the real number 0 violates axiom (G3): there 
is no real number r such that 0 .  r = 1. 

We call triples such as (R, +, 0) or (R, ., 1) structures. In Chapter 111 we 
shall give an exact definition of the notion of structure. 



$2. An Example from the Theory of Equivalence Relations 

Now we prove the following simple theorem from group theory: 

1.1 Theorem (Existence of a Left Inverse). For every x there is a y such that 
y o x  = e.  

PROOF. Let x be chosen arbitrarily. From (G3) we know that, for a suitable y, 

Again from (G3) we get, for this y, an element z such that 

(2) y o z  = e. ,. 
We can now argue as follows: 

(by (G2)) 

(from (2)) 
(by (GI)) 
(by (G 1)) 
(from (1)) 
(by (GI)) 
(by 
(from (2)). 

Since x was arbitrary, we conclude that for every x there is a y such that 
y o x  = e. 

The proof shows that in every structure where (GI), (G2), and (G3) are 
satisfied, i.e., in every group, the theorem on the existence of a left inverse 
holds. A mathematician would also describe this situation by saying that the 
theorem on the existence of a left inverse follows from, or is a consequence of 
the axioms of group theory. 

42. An Example from the Theory of 
Equivalence Relations 

The theory of equivalence relations is based on the following three axioms 
(xRy is to be read "x is equivalent to y"): 

(El) For all x: xRx. 
(E2) For all x and y: If xRy, then yRx. 
(E3) For all x, y, z :  If xRy and yRz, then xRz. 

Let A be a nonempty set, and let RA be a binary relation on A, i.e., 
RA c A x A. For (a,  b) E RA we also write aRAb. The pair ( A ,  RA) is another 
example of a structure. We call RA an equivalence relation on A,  and the 
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structure ( A ,  R A)  an equivalence structure if ( E l ) ,  (E2), and (E3)  are satisfied. 
For example, (Z, R,) is an equivalence structure, where Z is the set of integers 
and 

R ,  = {(a,  b)la, b E Z and b - a is divisible by 5).  

On the other hand, the binary relation R,, on Z, which holds between two 
integers if they are relatively prime, is not an equivalence relation over Z. 
For example, 5 and 7 are relatively prime, and 7 and 15 are relatively prime, 
but 5 and 15 are not relatively prime; thus (E3)  does not hold for R,,. 

We now prove a simple theorem about equivalence relations. 

2.1 Theorem. If x and y are both equivalent to a third element, they are 
equivalent to the same elements. More formally, for all x and y, ifthere is a u 
such that xRu and yRu, then for all z, xRz  $and only i f y R z .  

PROOF. Let x and y be given arbitrarily; suppose that for some u 

(1) xRu and yRu. 

From (E2)  we then obtain 

(2) u R x  and uRy. 

From xRu and uRy we deduce, using (E3), 

and from yRu and u R x  we likewise get (using (E3))  

(4) yRx. 

Now let z be chosen arbitrarily. If 

( 5 )  xRz  

then, using (E3), we obtain from (4) and (5 )  

yRz. 

On the other hand, if 

(6) y Rz  

then, using (E3), we get from (3 )  and (6) 

xRz. 

Thus the claim is proved for all z. 

As in the previous example, this proof shows that every structure (of the 
form (A,  RA))  which satisfies the axioms ( E l ) ,  (E2), and (E3), also satisfies 
Theorem 2.1, i.e., that 2.1 follows from ( E l ) ,  (E2), and (E3). 



$3. A Preliminary Analysis 

$3. A Preliminary Analysis 

We sketch some aspects which the two examples just given have in common. 
In each case one starts from a system cD of propositions which is taken to be a 
system of axioms for the theory in question (group theory, theory of equiv- 
alence relations). The mathematician is interested in finding the propositions 
which follow from a, where a proposition t+b is said to follow from @ if t+b 
holds in every structure which satisfies all propositions in cD. A proof of t+b 
from a system cD of axioms shows that t+b follows from cD. 

When we think about the scope of methods of mathematical proof, we 
are led to ask about the converse: J 

(*) Is every proposition t+b which follows from cD also provable from 
cD? 

For example, is every proposition which holds in all groups also provable 
from the group axioms (GI), (G2), and (G3)? 

The material developed in Chapters I1 through V and in Chapter VII 
yields an essentially positive answer to (*). Clearly it is necessary to make the 
concepts "proposition", "follows from", and "provable", which occur in 
(*), more precise. We sketch briefly how we shall do this. 

(1) The Concept "Proposition". Normally the mathematician uses his 
everyday language (e.g., English or German) to formulate his propositions. 
But since sentences in everyday language are not, in general, completely 
unambiguous in their meaning and structure, we cannot specify them by 
precise definitions. For this reason we shall introduce a formal language L 
which reflects features of mathematical statements. Like programming 
languages used today, L will be formed according to fixed rules: Starting 
with a set of symbols (an "alphabet"), we obtain so-called formulas as finite 
symbol strings built up in a standard way. These formulas correspond to 
propositions expressed in everyday language. For example, the symbols of 
L will include V (to be read "for all"), A ("and"), + (" if . .  . then"), = 
("equal"), and variables like x, y, and z. Formulas of L will be expressions 
like 

vx x - x, x = y, X -- z, 

and 

vx vy Vz((x = y A y -- z) + x -- z). 

Although the expressive power of L may at first appear to be limited, we 
shall later see that many mathematical propositions can be formulated in L. 
We shall even see that L is in principle sufficient for all of mathematics. The 
definition of L will be given in Chapter 11. 
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( 2 )  The Concept "Follows From" (the Consequence Relation). Axioms 
(G1)-(G3) of group theory obtain a meaning when interpreted in structures 

G G of the form (G,  0 , e ). In an analogous way we can define the general notion 
of an L-formula holding in a structure. This enables us (in Chapter 111) to 
define the consequence relation: $follows jrom (is a consequence of)  cD if 
and only if $ holds in every structure where all formulas of cD hold. 

(3) The Concept "Proof ". A mathematical proof of a proposition $ from 
a system cD of axioms consists of a series of i~ferences which proceeds from 
axioms of cD or propositions that have already been proved to new proposi- 
tions, and which finally ends with $. At each step of a proof the mathematician 

,9 writes something like "From . . . and - one obtains directly that - , 
and he expects it t o  be clear t o  anyone that the validity o f . .  . and of 
entails the validity of -. 

An analysis of examples shows that the grounds for accepting such 
inferences are often closely related to the meaning of connectives, such as 
"and", "or", or "if-then", and quantijiers, "for all" or "there exists", which 
occur there. For example, this is the case in the first step of the proof of 1.1, 
where we deduce from "for all x there is a y such that x 0 y = e" that for the 
given x there is a y such that x 0 y = e. Or consider the step from (1) and (2) 
to (3) in the proof of 2.1, where from the proposition "xRu and yRu" we 
infer the left member of the conjunction, "xRu", and from "uRx and uRy" 
we infer the right member, "uRy", and then using (E3) we conclude (3). 

The formal character of the language L makes it possible to represent these 
inferences as formal operations on symbol strings (the L-formulas). Thus, 
the inference of "xRu" from "xRu and yRu" mentioned above c~rresponds 
to the passage from the L-formula (xRu A yRu) to xRu. We can view this 
as an application of the following rule: 

(+) It is permissible to pass from an L-formula of the form (cp A $) 
to the L-formula cp. 

In Chapter IV we shall give a finite system S of rules which, like (+), corre- 
spond to elementary inference steps the mathematician uses in his proofs. A 
formal proof of the L-formula $ from the L-formulas in cD (the "axioms") 
consists then (by definition) of a sequence of formulas in L which ends with 
$, and in which each L-formula is obtained by application of a rule from S 
to the axioms or to preceding formulas in the sequence. 

Having introduced the precise notions, one can convince oneself by 
examples that mathematical proofs can be imitated by formal proofs in L. 
h$oreover, in Chapter V we shall return to the question (*) and answer it 
positively, showing that if a formula $ follows from a set cD of formulas, then 
there is a proof of $ from cD, even a formal proof. This is the content of the 
so-called Giidel completeness theorem. 
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$4. Preview 

Godel's completeness theorem forms a bridge between the notion of proof, 
which is formal in character, and the notion of consequence, which refers 
to the meaning in structures. In Chapter VI we shall show how this connec- 
tion can be used in algebraic investigations. 

Once a formal language and an exact notion of proof have been introduced, 
we have a precise framework for mathematical investigations concerning, 
for instance, the consistency of mathematics or a justification of rules of 
inference used in mathematics (Chapters VII and X). 

Finally, the formalization of the notion of proof creates the possibility of 
using a computer to carry out or check proofs. In Chapter X we shall discuss 
the range and the limitations of such machine-oriented methods. 

In the formulas of L the variables refer to the elements of a structure, for 
example, to the elements of a group or the elements of an equivalence 
structure. In a given structure we often call elements of the domain A j r s t -  
order objects, while subsets of A are called second-order objects. Since L 
only has variables for first-order objects (and thus expressions such as 
"Vx" and "3x" apply only to the elements of a structure), we call L a j r s t -  
order language. 

Unlike L, the so-called second-order language also has variables which 
range over subsets of the domain of a structure. Thus a proposition about a 
given group which begins "For all subgroups. . ." can be directly formulated 
in the second-order language. We shall investigate this language and others 
in Chapter IX. In Chapter XI1 we shall be able to show that no language with 
more expressive power than L enjoys both an adequate formal concept of 
proof and other useful properties of L. From this point of view L is a "best- 
possible" language, and so we succeed in justifying the dominant r61e which 
the first-order language plays in mathematical logic. 



CHAPTER I1 

Syntax of First-Order Languages 

In this chapter we introduce the first-order languages. They obey simple, 
clear formation rules. In later chapters we shall discuss whether and to what 
extent all mathematical propositions can be formalized in such languages. 

1 Alphabets 

By an alphabet A we mean a nonempty set of symbols. Examples of alphabets 
are the sets A, = (0, 1,2 , .  . . , 91, A, = {a, b, c, . . . , x, y, z} (the alphabet of 
lower-case letters), A, = (0, j, a, d, x, f ,  ), (1, and A, = {c,,, cl ,  c,,. . .}. 

We call finite sequences of symbols from an alphabet A strings or words 
over A. A* denotes the set of all strings over A. The length of a string ( E A* 
is the number of symbols, counting repetitions, occurring in (. The empty 
string is also considered to be a word over A. It is denoted by 0, and its 
length is zero. 

Examples of strings over A, are 

softly, xdbxaz. 

Examples of strings over A, are 

Suppose A = { I ,  I]), that is, A consists of the symbols1 a ,  := I and a, := 1 1 .  
Then the string / / I  over A can be read three ways: as a la la , ,  as a,a,, and as 

Here we write "a, := 1 "  instead of "a, = 1" in order to make it clear that a ,  is dejined by the 
right-hand side of the equation. 
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a,a,. In the sequel we shall allow only those alphabets A where any string 
over A can be read in exactly one way. The alphabets A ,, . . . , A, given above 
satisfy this condition. 

We now turn to questions concerning the number of strings over a given 
alphabet. 

We call a set M countable if it is not finite and if there is a suriective map 
a of the set of natural numbers N = (0, 1,2, . . .) onto M. We can then 
represent M as {a(n)ln E N} or, if we write the arguments as indices, as 
{a, In E N). A set M is called at most countable if it is finite or countable. 

1.1 Lemma. For a nonempty set M the following are equivalent: 

(a) M is at most countable. 
(b) There is a surjective map a :  N + M. 
(c) There is an injective map /?: M -+ N. 

PROOF.' We shall prove (b) from (a), (c) from (b), and (a) from (c). 
(b) from (a): Let M be at most countable. If M is countable (b) holds by 

definition. For finite M, say M = {a,, . . . , a,) (M is nonempty), we define 
a : N + M b y  

i f0  I i I n ,  
a(i) := {b 

otherwise. 

a is clearly surjective. 
(c) from (b): Let a :  N -+ M be surjective. We define an injective map 

/?: M + N by setting, for a E M, 

/?(a) := the least i such that a(i) = a. 

(a) from (c): Let /?: M + N be injective and suppose M is not finite. We 
must show that M is countable. To do this we define a surjective map 
a :  N + M inductively as follows: 

a(0) I =  the a E M with the smallest image under /? in N, 
a(n + 1) := the a E M with the smallest image under /? greater 

than /?(a(O)), . . . , /?(a(n)). 

Since the images under /? are not bounded in N, a is defined for all n E N, 
and clearly every a E M belongs to the image of a. . 

Every subset of an at most countable set is at most countable. If M ,  and 
M, are at most countable, then so is M,  u M,. The set R of real numbers 
is neither finite nor countable: it is uncountable. 

The goal of our investigations is, among other things, a discussion of the notion of proof. 
Therefore the reader may be surprised that we use proofs before we have made precise what a 
mathematical proof is. As already mentioned in Chapter I, we shall return to this apparent 
circularity in Chapter VII. 
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We shall later show that finite alphabets suffice for representing mathe- 
matical statements. Moreover, the symbols may be chosen as "concrete" 
objects such that they can be included on the keyboard of a typewriter. 
Often, however, one can improve the transparency of an argument by using 
a countable alphabet such as A,, and we shall do  this frequently. For some 
mathematical applications of methods of mathematical logic it is also 
useful to consider uncountable alphabets. The set {c, I r E R), which contains 
a symbol c, for every real number r, is an example of an uncountable alphabet. 
We shall justify the use of such alphabets in VII.4. 

1.2 Lemma. If A is an at  most countable alphabet, then the set A* of strings 
over A is countable. 

PROOF. Let p, be the nth prime number: p, = 2, p, = 3, p, = 5, and so on. 
If A is finite, say A = {a,, . . . , a,), where a,, . . . , a, are pairwise distinct, 
or if A is countable, say A = {a,, a,, a,, . . .), where the a, are pairwise 
distinct, we can define the map 8 :  A* + N by 

i o + l  . i ,+  1 p ( 0 )  = 1, p(aio. .  . a,,) = p, . . . . p,  . 

Clearly p is injective and thus (cf. l.l(c)) A* is at most countable. Since 
a,, a, a,, a, a, a,, . . . are all in A* it cannot be finite; hence it is countable. 

1.3 Exercise. Let a :  N -+ R be given. For a, b E R such that a < b show that 
there is a point c in the interval I = [a, b] such that c $ {a(n) 1 n E N). Con- 
clude from this that I ,  and hence R also, are uncountable. (Hint: By induction 
define a sequence I = I, 3 I, 3 . . . of closed intervals such that a(n) $ I,, ,, 
and use the fact that on,, I, # @.) 

1.4 Exercise. Show that if M ,  and M, are countable sets and M I  c M, c 
M,, then M, is also countable. 

1.5 Exercise. (a) Show that if the sets M,, M,, . . . are at most countable 
then the union U,,, M i  is alsqat most countable. 

(b) Use (a) to give a different proof of Lemma 1.2. 

$2. The Alphabet of a First-Order Language 

We wish to construct formal languages in which we can formulate, for 
example, the axioms, theorems, and proofs about groups and equivalence 
relations which we considered in Chapter I. In that context the connectives, 
the quantifiers, and the equality relation played an important r61e. Therefore, 
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we shall include the following symbols in the first-order languages: i (for 
"not"), A (for "and"), v (for "or"), + (for "if-then"), tt (for "if and only 
if"), V (for "for all7'), 3 (for "there exists"), E (as symbol for equality). To 
these we shall add variables (for elements of groups, elements of equivalence 
structures, etc.) and finally parentheses as auxiliary symbols. In order to 
formulate the axioms for groups we also need certain symbols peculiar to 
group theory, e.g., a binary function symbol, say 0, to denote the group multi- 
plication, and a symbol, say e, to denote the identity element. We call e a 
constant symbol, or simply, a constant. For the axioms of the theory of 
equivalence relations we need a binary relation symbol, say R. 

Thus, in addition to the "logical" symbols such as " i " and " A ", we 
shall need a set S of relation symbols, function symbols, and constants which 
varies from theory to theory. Each such set S of symbols determines a 
first-order language. 

We summarize: 

2.1 Definition. The alphabet of a jirst-order language contains the following 
symbols : 

(a) Vo,Vt9V2,... (variables); 
(b) 1, A v , tt (not, and, or, if-then, if and only if); 
(c) v, 3 (for all, there exists); 
(d) = (equality symbol); 
(el 1, ( (parentheses); 
(f) (1) for every n 2 1 a (possibly empty) set of n-ary relation symbols; 

(2) for every n 2 1 a (possibly empty) set of n-ary function symbols; 
(3) a (possibly empty) set of constants. 

We shall denote by A the set of symbols listed in (a) through (e), and by 
S the set of symbols from (f). S may be empty. The symbols listed under (f) 
must, of course, be distinct from each other and from the symbols in A. 

S determines a first-order language (cf. $3). We call As := A u S the 
alphabet of this language and S its symbol set. 

We have already become acquainted with some symbol sets: S,, := ( 0 ,  e) 
for group theory and S,, := { R )  for the theory of equivalence relations. For 
the theory of ordered groups we could use (0, e, R) ,  where the binary relation 
symbol R is now taken to represent the ordering relation. In certain theo- 
retical investigations we shall use the symbol set S , ,  which contains the 
constants c,, c,, c2, . . . , and for every n 2 1 the countably many n-ary 
relation symbols R t ,  R:, R;, . . . and n-ary function symbols f ;, f ;, f ; ,  . . . . 

Henceforth we shall use the letters P, Q, R, . . . to stand for relation 
symbols, f ,  g, h, . . . for function symbols, c, co, c,, . . . for constants, and 
x, y, z,  . . . for variables. 
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$3. Terms and Formulas in First-Order Languages 

Given a symbol set S, we call certain strings over A, formulas of the first-order 
language determined by S. For example, if S = S,, we want the strings 

to be formulas, but not 

The formulas e E e and e 0 u,  = u, have the form of equations. Mathe- 
maticians call the strings to the left and to the right of the equality symbol 
terms. Terms are "meaningful" combinations of function symbols, variables, 
and constants (together with commas and parentheses). Clearly, to give a 
precise definition of formulas and thus, in particular, of equations, we must 
first specify more exactly what we mean by terms. In mathematics terms 
are written in different notations, such as x + e, g(x, e), gxe. We choose a 
parenthesis-free notation system, as in gxe. 

To define the notion of term we give instructions (or rules) which tell us 
how to generate the terms. (Such a system of rules is often called a calculus.) 
This is more precise than a vague description, and simpler than an explicit 
definition. 

3.1 Definition. S-terms are precisely those strings in A3 which can be obtained 
by finitely many applications of the following rules: 

(Tl)  Every variable is an S-term. 
(T2) Every constant in S is an S-term. 
(T3) If the strings t,, . . . , t,-, are S-terms and f is an n-ary function symbol 

in S, then ft, . . . t,-, is also an S-term. 

We denote the set of S-terms by T ~ .  

Iff is a unary and g a binaryJunction symbol and S = { f ,  g, c, R}, then 

is an S-term. First of all, c is an S-term by (T2) and v, and v4 are S-terms by 
(TI). If we apply (T3) to the S-terms u4 and c and to the function symbol g, 
we see that gu4c is an S-term. Another application of (T3) to the S-term gu4c 
and to the function symbol f shows that fgu4c is an S-term, and a final 
application of (T3) to the S-terms u, and fgu4c and to the function symbol 
g shows that gu, fgu4c is an S-term. 

We say that one can derive the string gu, ,fgv4c in the calculus of terms 
(corresponding to S). The derivation just described can be given schematically 
as follows: 
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1. c (T2) 
2. v, (TI) 
3. u, (TI) 
4. gv4c (T3) applied to 3 and 1 using g 
5. fgv4c (T3) applied to 4 using f 
6. gv, fgu4c (T3) applied to 2 and 5 using g. 

The string directly following the number at the beginning of each line can 
be obtained in each case by applying a rule of the calculus of terms; applica- 
tions of (T3) use terms obtained in preceding lines. The information at the 
end of each line indicates which rules and preceding terms were used. Clearly, 
not only the string in the last line, but all strings in preceding lines can be 
derived and hence are S-terms. 

The reader should show that the strings gxgx fy and gxg fxfy are S-terms 
for arbitrary variables x and y. Here we give a derivation to show that the 
string oxoey is an &-term. 

1. x (TI) 
2. Y (TI) 
3. e (T2) 
4. oey (T3) applied to 3 and 2 using 0 

5. oxoey (T3) applied to 1 and 4 using 0. 

Mathematicians usually write the term in line 4 as e 0 y, and the term in 
line 5 as x 0 (e 0 y). For easier reading we shall sometimes write terms in this 
way as well. 

Using the notion of term we are now able to give the definition of formulas. 

3.2 Definition. S-formulas are precisely those strings of A,* which are obtained 
by finitely many applications of the following rules: 

(F l )  If to and t,  are S-terms, then to -= t ,  is an S- formula. 
(F2) If to, . . . , t n - ,  are S-terms and R is an n-ary relation symbol from S, 

then Rt, . . . tn- ,  is an S-formula. 
(F3) If cp is an S-formula, then i cp is also an S-formula. 
(F4) If cp and $ are S-formulas, then (cp A $), (cp v $), (cp + $), and (cp ++ $) 

are also S-formulas. 
(F5) If cp is an S-formula and x is a variable, then Vxcp and 3xcp are also 

S-formulas. 

S-formulas derived using (F l )  and (F2) are called atomic formulas because 
they are not formed by combining other S-formulas. i c p  is called the 
negation of cp, and (cp A $), (cp v $), and (cp $) are called, respectively, 
the conjunction, disjunction, and implication of cp and $. 

We use LS to 'denote the set of S-formulas. LS is the jirst-order language 
corresponding to the symbol set S (often called the language of first-order 
predicate calculus corresponding to S). 
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Instead of S-terms and S-formulas, we often speak simply of terms and 
formulas when the reference to S is either clear or unimportant. For terms 
we use the letters t ,  to, t,, . . . , and for formulas the letters cp, $, . . . . 

We now give some examples. Let S = S,, = {R). We can express the 
axioms for the theory of equivalence relations by the following formulas: 

One can verify that these strings really are formulas by giving appropriate 
derivations (as was done above for terms) in the calculus of S,,-formulas. 
For the first two formulas we have, for example, 

(1) 1. Ruouo ( F a  
2. Vu, Ruou, (F5) applied to 1 using V, u,. 

(2) 1. Ruoul (F2) 
2. Rv,vo (F2) 
3. (Ruou, -+ Ru,uo) (F4) applied to 1 and 2 using -+ 

4. Vul(Ruou, + Rulvo) (F5) applied to 3 using V, u, 
5. Vv, Vu,(Rvou, -, Ru,uo) (F5) applied to 4 using V, 0,. 

In a similar way the reader should convince himself that, for unary f,  binary g, 
unary P, ternary Q, and variables x, y, and z, the following strings are 
{ f ,  g, P, Q)-formulas : 

(1) Vy(Pz + Qxxz); 
(2) (Pgxfy -t 3x(x - x A x = x)); 
(3) Vz Vz 32 Qxyz. 

In spite of its rigor the calculus of formulas has "liberal" aspects: we can 
quantify over a variable which does\ not actually occur in the formula in 
question (as in (I)), we can join two identical formulas by means of a .con- 
junction (as in (2)), or we can quantify several times over the same variable 
(as in (3)). 

For the sake of clarity we shall frequently use an abbreviated or modfied 
notation for terms and formulas. For example, we shall write the S,,-formula 
Ruovl as voRul (compare this with the notation 2 < 3). Moreover, we shall 
often omit parentheses if they are not essential in order to avoid ambiguity, 
e.g., the outermost parentheses surrounding conjunctions, disjunctions, etc. 
Thus we may write cp A $ for (cp A $). In the case of iterated conjunctions 
or disjunctions we shall agree to associate to the left, e.g., cp A $ A x will be 
understood to mean ((cp A $) A x). The reader should always be aware that 
expressions in the abbreviated form are no longer formulas in the sense of 
3.2. We emphasize once again that we need an exact definition of formulas 
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in order to have a precise notion of mathematical statement in our analysis 
of the notion of proof. 

Perhaps the following analogy with programming languages will clarify 
the situation. When writing a program one must be meticulous in following 
the grammatical rules for the programming language, because a computer 
can process only a formally correct program. But programmers use an 
abbreviated notation when devising or discussing programs in order to 
express themselves more quickly and clearly. 

We have used - for the equality symbol in first-order languages in 
order to make statements of the form cp = x = y ("cp is the formula x = y") 
easier to read. 

For future use we note the following: 

3.3 Lemma. I f  S is at most countable, then T S  and L~ are countable. 

PROOF. If S is at most countable, then so is As and hence by 1.2 the set A$. 
Since T S  and LS are subsets of A$ they are also at most countable. On the 
other hand T S  and LS are infinite because T S  contains the variables u, ,  u , ,  
u , ,  . . . , and LS contains the formulas v,  = u,,  u ,  - u , ,  u ,  - u , ,  . . . (even if 
s = 0). 

With the preceding observations the languages L S  have become the 
object of investigations. In these investigations we use another language, 
namely everyday English augmented by some mathematical terminology. 
In order to emphasize the difference in the present context, the formal 
language LS, being discussed, is called the object language; the language 
English, in which we discuss, is called the metalanguage. In another context, 
for example, in linguistic investigations, everyday English could be an object 
language. Similarly, first-order languages can play the r81e of metalanguages 
in certain set-theoretical investigations (cf. VII.4.3). 

Historical Note. G. Frege [lo] developed the first comprehensive formal 
language. He used a two-dimensional system of notation which was so 
complicated that his language never came into general use. The formal 
languages used today are based essentially on those introduced by G. Peano 
L-221. 

$4. Induction in the Calculus of Terms and in 
the Calculus of Formulas 

Let S be a set of symbols and let Z c A,* be a set of strings over As. In the 
case where.Z = T S  or Z = LS we described the elements of Z by means of a 
calculus. Each rule of such a calculus either says that certain strings belong 
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to Z (e.g., the rules (TI), (T2), (Fl), and (F2)), or else permits the passage 
from certain strings l o , .  . . , in - ,  to a new string i  in the sense that, if 
t o , .  . . , in - ,  all belong to Z,  then t also belongs to Z. The way such rules 
work is made clear when we write them schematically, as follows: 

t o ,  t n - 1  

i  
By allowing n = 0, the first sort of rule mentioned above ("premise-free" 
rules) is included in this scheme. 

Now we can write the rules for the calculus of terms as follows: 

(T3) t o T . . . > t n - ~  , iff E S and f is n-ary. 
f t  0 . . . t n - ,  

When we define a set Z of strings by means of a calculus C we can then prove 
assertions about the elements of Z by means of induction over C. This principle 
of proof corresponds to induction over the natural numbers. If one wants to 
show that all elements of Z have a certain property P, then it is sufficient to 
show that 

(for every rule 

(*) 
i o ~ . . . ~ i n - ~  

i '  
of the calculus C, the following holds : whenever io ,  . . . , in - , 
are derivable in C and have the property P ("induction hypo- 
thesis"), then also has the property P. 

Hence in case n = 0 we must show that i  has the property P. 
This principle of proof is evident: in order to show that all strings de- 

rivable in C have the property P, we show that everything derivable by 
means of a "premise-free" (i.e., n = 0 in (*)) rule has the property P, and 
then that P is preserved under application of the remaining rules. The method 
can also be justified using the principle of complete induction for natural 
numbers. For this purpose, one defines in the obvious way the length of a 
derivation in C (cf, the examples of derivations in §3), and then argues as 
follows: If the condition (I) is satisfied for P, one shows by induction on n 
that every string which has a derivation of length n has the property P. 
Since every element of Z has a derivation of some finite length, P must then 
hold for all elements of 2. 

In the special case where C is the calculus of terms or the calculus of 
formulas, we call the proof procedure outlined above proof by induction on 
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terms or on formulas, respectively. In order to show that all S-terms have a 
certain property P it is sufficient to show: 

(TI)' Every variable has the property P. 
(T2)' Every constant in S has the property P. 
(T3)' If the S-terms to , .  . . , t,-, have the property P, and iff E S is n-ary, 

then fro . . . t,-, also has the property P. 

In the case of the calculus of formulas the corresponding conditions are 

(Fl)' Every S-formula of the form to - t ,  has the property P. 
(F2)' Every S-formula of the form Rt, . . . t,- , has the property P. 
(F3)' If the S-formula cp has the property P, then i cp also has the property P. 
(F4)' If the S-formulas cp and $ have the property P, then (cp A $), (cp v $), 

(cp + $), and (cp t-' $) also have the property P. 
(F5)' If the S-formula cp has the property P and if x is a variable, then Vxcp 

and 3xcp also have the property P. 

We now give some applications of this method of proof. 

4.1 Lemma. (a) For all symbol sets S the empty string is neither an S-term 
nor an S-formula. 

(b) (1) 0 is not an Sgr-term. 
(2) o o v l  is not an Sgr-term. 

(c) For all symbol sets S, every S-formula contains the same number of right 
parentheses " ) " as left parentheses " (". 

PROOF. (a) Let P be the property on A3 which holds for a string ( iff ( is 
nonempty. We show by induction on terms that every S-term has the property 
P, and leave the proof for formulas to the reader. 

(TI)' and (T2)': Terms of the form x or c are nonempty. 

(T3)': Every term formed according to (T3) begins with a function symbol, 
and hence is nonempty. (Note that we do not need to use the induction 
hypothesis.) 

(b) We leave (1) to the reader. To prove (2), let P be the property on 
which holds for a string < over AsEr iff ( is distinct from oou,. We shall 

show by induction on terms that every Sgr-term is distinct from oou,. The 
reader will notice that we start using a more informal presentation of in- 
ductive proofs. 

t = x, t = e: t is distinct from the string oou,. 

t = otlt2: If 0tlt2 were o o u ,  then, by (a), we would have t, = 0 and t, = 0,. 
But t ,  = 0 contradicts (1). 

(c) First one shows by induction on terms that no S-term contains a left 
or right parenthesis. Then one considers the property P over A$, which 
holds for a'string i over As iff i has the same number of left parentheses as 
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right parentheses, and one shows by induction on formulas that every 
S-formula has the property P. We give some cases here as examples: 

cp = to - t,, where to and t ,  are S-terms: By the observation above there 
are no parentheses in cp, thus P holds for cp. 

cp = -I$, where $ has the property P by induction hypothesis: Since cp 
does not contain any parentheses except those in $, cp also has the property P. 

cp = ($ A x), where P holds for $ and x by induction hypothesis: Since 
cp contains one left parenthesis and one right parenthesis in addition to the 
parentheses in $ and X, the property P also holds for cp. 

cp = Vx$, where $ has the property P by induction hypothesis: The proof 
here is the same as in the case cp = -I$. 

Next we want to show that terms and formulas have a unique decomposi- 
tion into their constituents. The following two lemmas contain some pre- 
liminary results needed for this purpose. We refer to a fixed symbol set S. 

4.2 Lemma. (a) For all terms t and t', t is not a proper initial segment o f t '  
(i.e., there is no ( distinct from such that t( = t'). 

(b) For all formulas cp and cp', cp is not a proper initial segment of cp'. 

We confine ourselves to the proof of (a), and consider the property P, 
which holds for a string q iff 

(*) for all terms t', q is not a proper initial segment oft' and t' is not 
a proper initial segment of q. 

Using induction on terms, we show that all terms t have the property P. 
(a) will then be proved. 

t = x: Let t' be an arbitrary term. By 4.l(a), t' cannot be a proper initial 
segment of x, for then t' would have to be the empty string 0. On the other 
hand, one can easily show by induction on terms that x is the only term which 
begins with the variable x. Therefore, t cannot be a proper initial segment oft'. 

t = c :  The argument is similar. 

t = fro . . . t ,-,  and (*) holds for t o ,  . . . , t,-, : Let t' be an arbitrary-fixed 
term. We show that t' cannot be a proper initial segment of t. Otherwise 
there would be a ( such that 

Since t' begins with f (for t begins with f), t' cannot be a variable or a constant, 
thus t' must have been generated using (T3). Therefore it has the form 
ftb . . . tb-I for suitable terms tb . . . tb- ,. From ( 1 )  we have 



. Induction in the Calculus of Terms and in the Calculus of Formulas 

and from this, cancelling the symbol f ,  we obtain 

Therefore to is an initial segment of tb or vice versa. Since to satisfies (*) by 
induction hypothesis, neither of these can be a proper initial segment of the 
other. Thus to = tb. Cancelling to on both sides of (3) we obtain 

Repeatedly applying the argument leading from (3) to (4) we finally obtain 

= i. 
This contradicts (1). Therefore t' cannot be a proper initial segment of t. 
The proof that t cannot be a proper initial segment of t' is analogous. 

Applying 4.2 one can obtain in a similar way 

4.3 Lemma. (a) If t o ,  . . . , t , - ,  and tb, . . . , tk-, are terms, and if to . . . tn- ,  = 

tb . . . ta- ,, then n = m and ti = tj for i < n. 
- (b) If' cp,, . . . , cpn- ,  and cpb, . . . , cpk-, are formulas, and $' cpo . . . cp,-, - 

cpb . . . cpk- ,, then n = m and cpi = cp; for i < n. 

Using 4.2 and 4.3 one can then easily prove 

4.4 Theorem. (a) Every term is either a uariable or a constant or a term ofthe 
form f t ,  . .  . t,- ,. In the last case the function symbol f and the terms 
to , .  . . , tn-  are uniquely determined. 

(b) Every formula is of the form ( 1 )  to EE t l ,  or (2) Rt ,  . . . t,- ,, or (3) 1 cp, or 
(4) (cp A *), or ( 5 )  (cp v $), or (6) (cp -+ $1, or (7) (cp * *),or (8) vxcp, or 
(9) 3xq, where the cases (1)-(9) are mutually exclusive and the following 
are uniquely determined: the terms to and t, in case (I), the relation symbol 
R and the terms t o , .  . . , t,- , in case (2), the formula cp in (3), the formulas 
cp and $ in (4), (5) ,  (6), and (7), and the variable x and the formula cp in (8) 
and (9). 

Theorem 4.4 asserts that a term or a formula has a unique decomposition 
into its constituents. Thus, as we shall now show, we can give inductive 
dejnitions on terms or formulas. For example, to define a function for all 
terms it will be sufficient 

(TI)" to assign a value to each variable; 
(T2)" to assign a value to each constant; 
(T3)" for every n-ary f and for all terms t o ,  . . . , tn- ,  to assign a value to the 

term f to  . . . t,-, assuming that values have already been assigned to 
the terms t o ,  . . . , tn- ,. 

Each term is assigned exactly one value by (TI)" through (T3)". We show this 
by means of induction on terms as follows. 
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t = x:  By 4.4(a) t is not a constant and does not begin with a function 
symbol. Therefore, it is assigned a value only by an application of (TI)". 
Thus t is assigned exactly one value. 

t = c :  The argument is analogous to the preceding case. 

t = ft, . . . t ,-,, and each of the terms t o , .  . . , t,-, has been assigned 
exactly one value: To assign a value to t we can only use (T3)", by 4.4(a). 
Since, again by 4.4(a), the ti  are uniquely determined, t is assigned a unique 
value. 

We now give some examples of inductive definitions. 
The function var (more precisely, var,), which associates with each 

S-term the set of variables occurring in it, can be defined as follows: 

4.5 Definition. 
var(x) := {x} ; 

var(c) := @; 

var( ft, . . . t,-,) := var(t,) v . . . u var(t,- ,). 

The function SF, which assigns to each formula the set of its subformulas, 
can be defined by induction on formulas as follows: 

SF(to E t,) := {t,, E t i ) ;  

SF(Rt, . . . t,- ,) := (Rt, . . . t,- ,); 

S F ( i  cp) := {i cp} u ~ ~ ( c p ) ; '  

SF((cp A $1) := {(cp A $11 u SF(cp) u SF($);. 
similarly for (cp v $), (cp + $), and (cp o $); 

SF(Vxcp) := {Vxcp) u SF(cp); 
similarly for 3xcp. 

,4 means of defining the preceding notions by calculi is indicated in the 
following exercise. 

4.6 Exercise. (a) Let the calculus C, consist of the following rules: 

Y ti - , i f f  E S is n-ary and i < n. 
X X '  Y f t o . . . t n - 1  

Show that, for all variables x and all S-terms t, xt is derivable in C, iff x E var(1). 
(b) Give a result for S F  analogous to the result for var in (a). 

4.7 Exercise. Alter the calculus of formulas by omitting the parentheses in 
3.2(F4), e.g., by writing simply "cp A $" instead of "(cp A $)". So, for example, 
x := 30, Pv, A Qv, is a {P, Q)-formula in this new sense. Show that the 
analogue of 4.4 no longer holds, and that the corresponding definition of 
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SF(x) can yield both SF(X) = {x, Pu, A Qv,, Pu,, Qv,) and SF(X) = 

(x, 30, Pu,, Pu,, Qu,), so that SF is no longer a well-defined function. 

4.8 Exercise (Parenthesis-Free, or So-Called Polish Notation for Formulas). 
Let S be a symbol set and let A' be the set of symbols given in 2.l(a)-(d). Let 
A$ = A' v S. Define S-formulas in Polish notation (S - P-formulas) to be 
all strings over A$ which can be obtained by finitely many applications of 
the rules (Fl), (F2), (F3), and (F5) from 3.2, and the rule (F4)': 

(F4)' If cp an $ are S - P-formulas then A cp$, v cp$, +cp$, and c*cpt+b are 
also S - P-formulas. 

Prove the analogues of 4.3(b) and 4.4(b) for S - P-formulas. 

$5.  Free Variables and Sentences 

Let x, y, and z be distinct variables. In the {R)-formula 

cp := 3x(Ryz -- A Vy( iy  - E v Ryz)) - - -- - 

the occurrences of the variables y and z marked with single underlining are 
not quantified, i.e., not in the scope of a corresponding quantifier. Such 
occurrences are called free, and as we shall see later, the variables there act 
as parameters. The occurrences of the variables x and y marked with double 
underlining shall be called bound occurrences. (Thus y has both free and 
bound occurrences in cp.) 

We give a definition by induction on formulas of the set of free variables 
in a formula cp; we denote this set by free(cp). Again we fix a symbol set S. 

5.1 Definition. 

free(t, = t,) := var(t,) u var(t,); 

f ree( i  cp) := free(cp) ; 

free((cp * $)) := free(cp) u free($) for * = A ,  v, -+, t-'; 

free(3xcp) := free(cp) - {x). 

The reader should use this definition to determine the set of free variables 
in the formula cp at the beginning of this section (S = {R)). We do  this here 
for a simpler example. Again let x, y, and z be distinct variables. 

free((Ryx -+ Vy i y E z)) = free(Ryx) u free(Vy i y = z) 

= {x, y) u (free(iy - z) - {y}) 

= {x, Y} u ((41, z) - {J'}) = {x> Y? z). 
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Formulas without free variables ("parameter-free" formulas) are called 
sentences. For example, 3uo i u ,  = u0 is a sentence. 

Finally, we denote by L: the set of S-formulas in which the variables 
occurring free are among vo, . . . , v,-,: 

L: := {cp 1 cp is an S-formula and free (cp) c {co, . . . , un-  ,}}. 

In particular L: is the set of L-sentences. 

5.2 Exercise. Show that the following calculus C,, permits to derive precisely 
those strings of the form xcp for which cp E LS and for which x does not occur 
free in cp. 

, if to, t ,  E T~ and x $ var(to) u var(t,); 
X t o = t ,  

if R E S is n-ary, to, . . . , t,- , E T S,  and 
X R t o . ,  . tn- , '  x $ var(to) u . . . u var(t,-,); 



CHAPTER I11 

Semantics of First-Order Languages 

Let R be a binary relation symbol. The {R)-formula 

is, at present, merely a string of symbols to which no meaning is attached. 
The situation changes if we specify a domain for the variable v, and if we 
interpret the binary relation symbol R as a binary relation over this domain. 
There are, of course, many possible choices for such a domain and relation. 

For example, suppose we choose N for the domain, take "Vv," to mean 
"for all n EN" and interpret R as the divisibility relation R N  on N.  Then 
clearly (1) becomes the (true) statement 

jor all n E N, RNnn, 

i.e., the statement 

every natural number is ~liz~isible by itself: 

We say that the formula Vv, Ru,u, holds in ( N ,  RN) .  But if we choose the 
set Z of integers as the domain and interpret R as the " smaller-than" relation 
Rz on L, then (1) becomes the (false) statement 

jor all a E Z ,  Rzaa, 

i.e.. the statement 

fi?r every integer a, u < a. 

We say that the formula Vv, Rv0u0 does not hold in ( Z ,  Rz). If we consider 
the formula 

3vo(Ru,vo A Rvov,) 
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in (Z, Rz), we must also interpret the free variables t., and v, as elements of 
Z. If we interpret t., as 5 and v, as 8 we obtain the (true) statement 

there is an integer a such that 5 < a and a < 8. 

If we interpret c ,  as 5 and v, as 6 we get the (false) statement 

there is an integer a such that 5 < a and a < 6. 

The central aim of this chapter is to give a rigorous formulation of the 
notion of interpretation and to define precisely when an interpretation yields 
a true (or false) statement. We shall then be able to define in an exact way 
the consequence relation, which was mentioned in Chapter I. 

The definitions of "term ", "formula ", "free occurrence ", etc., given in 
Chapter 11, involve only formal (i.e., grammatical) properties of symbol 
strings. We call these concepts syntactic. On the other hand the concepts 
which we shall introduce in this chapter will depend on the meanings of 
symbol strings also (for example, on the meaning in structures, as in the 
case above). Such concepts are called semantic concepts. 

1 Structures and Interpretations 

If A is a set and n 2 1, an n-ary firnction on A is a map whose domain of 
definition is the set An of n-tuples of elements from A, and whose values lie 
in A. By an n-ary relation Q on A we mean a subset of An. Instead of writing 
(a,, . . . , an- ,) E Q, we shall often write Qa, . . . a,- ,, and we shall say that 
the relation Q holds for a,, . . . , an- ,. 

According to this definition the relation "smaller-than" on Z is the set 
{(a, b) 1 a, b E Z and a < b). 

In the examples given earlier, the structures ( N ,  R ~ )  and (Z, Rz) were 
determined by the domains N and Z and by the binary relations R N and 
Rz as interpretations of the symbol R. We call (N, RN) and (Z, Rz) {R}- 
structures, thereby specifying the set of interpreted symbols, in this case {R). 

Consider once more the symbol set S,, = { o ,  e) of group theory. If we 
take the real numbers R as the domain and interpret 0 as addition over IW 
and e as the element 0 of R, then we obtain the S,,-structure (R, +, 0). In 
general an S-structure 2I is determined by specifying: 

(a) a domain A, 
(b) (1) an n-ary relation on A for every n-ary relation symbol in S ,  

(2) an n-ary function on A for every n-ary function symbol in S, 
(3) an element of A for every constant in S. 

We combine the separate parts of (b) and give: 

1.1 Definition. An S-structure is a pair 2I = ( A ,  a) with the following prop- 
erties: 
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(a) A is a nonempty set, the domain or universe of 2I. 
(b) a is a map defined on S satisfying: 

(1) for every n-ary relation symbol R in S, a(R) is an n-ary relation on A, 
(2) for every n-ary function symbol f 'in S, a( f )  is an n-ary function on A, 
(3) for every constant c in S, a(c) is an element of A. 

Instead of a(R), a( f'), and a(c), we shall frequently write Ru, f u ,  and c', 
or simply RA, fA ,  and cA. For structures 8, 23,. . . we shall use A, B, . . . to 
denote their domains. Instead of writing an S-structure in the form 2I = (A, a), 
we shall often replace a by a list of its values. For example, we write an 
{R, j ;  g}-structure as 2I = (A, Ru, f u, gu). 

In investigations of arithmetic the symbol sets 

S,,:= {+, ., 0, 1) and S,: := {+, ., 0, 1, <}  

play a special r61e, where + and . are binary function symbols, 0 and 1 are 
constants, and < is a binary relation symbol. Henceforth we shall use 'J1 to 
denote the Sar-structure (N, + N ,  .N,  ON, IN), where + N  and . N  are the usual 
addition and multiplication on N and ON and l N  are the numbers zero and 

N N one, respectively. 91' := ( N, + , . , ON, 1 ', < '), where i denotes the 
usual ordering on N, is an example of an Sa:-structure. Similarly we set ' ' OR l', <"). We shall often % := (R, +', .', OR, 1') and '9' := (R, + , . , , 
omit the superscripts ',' from + ', + ', . . . , IN, 1'. It will, however, be clear 
from the context whether, for example, + is intended to denote the function 
symbol, the addition on N, or the addition on R. 

The interpretation of variables is given by a so-called assignment. 

1.2 Definition. An assignment in an S-structure 2I is a map p:  { u ,  In E N) + A 
of the set of variables into the domain A. 

Now we can give a precise definition of the notion of interpretation: 

1.3 Definition. An S-interpretation 3 is a pair (8, /?) consisting of an S- 
structure 2I and an assignment /? in 2I. 

When the particular symbol set S in question is either clear or unim- 
portant we shall speak simply of structures and interpretations instead of 
S-structures and S-interpretations. 

a 
If p is an assignment in 8, a E A, and x is a variable, then let p - be the 

X 

assignment in 2I which maps x to a and agrees with p on all variables distinct 
from x :  
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In the introduction to this chapter we gave some examples showing how 
an S-formula can be read in everyday language once an S-interpretation has 
been given. It is useful to practice reading formulas under interpretations. 

For example, if S = S,:, and the interpretation 3 = ( 8 ,  b) is given by 

(*I 2I = ( N ,  +;,0, 1, <) and fl(v,) = 2n forn 2 0, 

then the formula v2 . (c, + u2) = v4 (actually. u2 + u1v2 = v4) reads 
"4. (2  + 4) = 8", and the formula Vv, 3u1u0 < u1 (actually Vu, 3v1 < v,v,) 
reads "for every natural number there is a larger natural number". 

1.4 Exercise. Let 3 be the interpretation defined above in (*). How do  the 
following formulas read with this interpretation? 

3uouo + c, - v,; 3uoco. u, = v,; 3u,u0 - u,; 

Vu, 3v1u0 zz u,; Vv, Val 3v2(vo < u2 A u2 < 0,). 

1.5 Exercise. Let A be a finite nonempty set and S a finite symbol set. Show 
that there are only finitely many S-structures with A as domain. 

1.6 Exercise. For S-structures 2I = ( A ,  a) and 23 = (B, b), let 2I x 23 be 
the S-structure with domain A x B := {(a, b)la E A, b E B}, which is deter- 
mined by the following conditions: 

for n-ary R in S and (a,, b,), . . . , (a,- ,, b,- ,) E A x B, 

Ru "(a,, b,) . . . (a, - , , b, - ,) iff (R'a, . . . a, - , and ~ " b ,  . . . b, - ,) ; 

for n-ary f i n  S and (a,, b,), . . . , (a,- ,, b,- ,) E A x B, 

for c in S, 

c'x" .- .- (P, cW), 

Show: 

(a) If the S,,-structures 2I and 23 are groups, then 2I x 23 is also a group. 
(b) If 'U and 23 are equivalence structures, then 'LI x 23 is also an equivalence 

structure. 
(c) If the S,,-structures 2I and 23 are fields, then 'U x 23 is not a field. 

52. Standardization of Connectives 

When we define the notion of satisfaction in the next section we shall refer 
to the meaning of the connectives "not ", "and", "or ", "if-then", and "if and 
only if ". In ordinary language their meanings vary. For example, "or" is 
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sometimes used in an inclusive sense and at other times in the exclusive sense 
of "either-or". However, for our purposes it is useful to fix a standard 
meaning: We shall always use "or" in the inclusive sense, that is, a compound 
proposition whose constituents are connected by "or" is true (has the truth- 
value T) iff at least one of the constituents is true; it is false (has the truth-value 
F) iff both constituents are false. For example, we specify in 3.2 that a formula 
(cp v $) is assigned the truth-value T under an interpretation 3 if and only 
if cp is assigned the truth-value T under 3 or t+b is assigned the truth-value T 
under 3. On account of our fixed standard meaning we therefore have that 
(cp v $) is assigned the truth-value T under 3 if and only if at least one of the 
formulas cp, $ is assigned T under 3. 

According to our convention the truth-value of a proposition compounded 
by "or" depends only on the truth-values of its constituents. Thus we can 
use a function 

o : {T, F)  x {T, F)  + {T, F)  

to capture the meaning of "or"; the table of values ("truth-table") is as 
follows: 

T F T  
F T T  
F F F  7 

Similarly we proceed with the connectives "and", "if-then", "if and only 
i f"  and "not ". The truth-tables for the functions A ,  4, +b, and i are: 

T T T T T  T F 
T F F F F  I l l  F I T  
F T F  T F  
F F F T T  1 1 / 

These conventions correspond to mathematical practice. 
Connectives for which the truth-values of compound propositions depend 

only on the truth-values of the constituents are called extensional. Thus we 
use the connectives "not", "and", "or", "if-then", and "if and only if" 
extensionally. In colloquial speech, however, these connectives are often 
not used extensionally. Consider, for example, "John fell ill and the doctor 
gave him a prescription", and "The doctor gave John a prescription and he 
fell ill". By contrast with the extensional case, the truth-value of these 
compound statements also depends on the temporal relation expressed by 
the order of the two components (intensional usage). 
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When we restrict ourselves to using the connectives extensionally, we 
sacrifice certain expressive possibilities of informal language. Experience 
shows, however, that this restriction is unimportant as far as the formulation 
of mathematical assertions is concerned. Furthermore, we shall see in the 
following exercise that all other extensional connectives can be defined from 
the connectives we have chosen. 

2.1 Exercise. For n 2 1 let 8, be the alphabet (1, A ,  v,  +, -, ), () u 
{p,, . . . , pn - ). We define the formulas of the language of propositional 
calclillrs (with the propositional variables p,, . . . , p ,  ,) to be the strings cc over 
B, which can be obtained by means of the following rules: 

cc 
- (i < n), and B for * = A ,  V,  +,-. 
Pi l a  (a * 8) 

For an n-tuple s = (so, . . . , s,- ,) of truth-values T, F, a so-called assignment, 
let a[s] E {T, F)  be defined by induction as follows: 

piCsI = si (i < n); 

l a c s ]  = i(a[s]); 

(2 * B)[s] = I(a[s], B[s]) for * = A ,  v,  +, ~ t .  

a[s] is called the truth-value of cc with respect to the assignment s. 

(a) Show that for every s = (so, s,) E {T, Fl2,  

((PO A PI) v (PO A ~ P , ) > C ~ I  = so .  

(b) An n-ary truth-fitnction is a map f :  {T, F)" + {T, F). Show that for 
every n 2 1 there are exactly 2," n-ary truth-functions. 

(c) Show that for every n-ary truth-function f there is a formula cc in the 
propositional calculus in which the symbols A ,  +, and - do not occur, 
such that for all s E {T, F}", j'(s) = a[s]. Prove the corresponding result 
for V ,  +, and - instead of A ,  +, and i+. 

(d) Analogously, one defines the language of propositional calculus with 
propositional variables p,, p,, p,, . . . , and considers corresponding 
assignments s = (so, s,, s,, . . .) of the truth-values T and F. Show that 
if at most the variables p,, p,, . . . , p,-, occur in a formula cc of this 
language, then a[s] depends only on so,  . . . , s,- ,. 

$3. The Satisfaction Relation 

The satisfaction relation makes precise the notion of a formula being true 
under an interpretation. Again we fix a symbol set S. By "term", "formula", 
or "interpretation" we always mean "S-term", "S-formula", or "S-inter- 
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pretation". As a preliminary step we associate with every interpretation 
3 = (a, 8) and every term t an element 3(t) from the domain A :  

3.1 Definition. (a) For a variable x let 3 ( x )  := /?(x). 
(b) For a constant c E S, let 3 ( c )  := cu. 
(c) For an n-ary function symbol f ' ~  S and terms t o , .  . . , t,-, let 

As an illustration, if S = S,, and 3 = (%,, 8)  with '3, = ( R ,  +, 0 )  and 
fi(vo) = 2 and fi(v,) = 6, then 3(u0 0 (e 0 v,)) = 3(u0) + 3(e v , )  = 2 + 
(0  + 6 )  = 8. 

Now, using induction on formulas cp,  we give a definition of the relation 
3 is a model oj'cp, where 3 is an arbitrary interpretation. If 3 is a model of cp 
we also say that 3 satisjies cp or that cp holds in 3, and we write 3 != cp. 

3.2 Definition of the Satisfaction Relation. For all 3 = (8, 8)  we let 

3t= to = t ,  iff 3 ( t 0 )  = 3 ( t , ) ,  

3 t= Rt,  . . . t ,-,  iff R"3(t0) . . . 3(t,- ,) (i.e., R' holds for 

! 
3(to),  . . . 7 3 ( 4 -  111, 

3kicp  iff not 3 t= cp,  

3 I= ( c p  A $1 iff 3 t= cp and 3 t= $, 

3 != ( c p  V $1 iff 3 != c p o r 3 ~  $, 

3 != (CP + $1 iff if 3 !-= cp then 3 != $, 

3 t= ( c p O $ )  iff 3 != cp if and only i f 3  t= $, 

a 
3 t= 3xcp iff there is an a E A such that 3 - != cp. 

X 

a 
(For the definition of 3 - see $1.) 

X 

Given a set @ of S-formulas, we say that 3 is a model of @ and write 
3 t= cD if 3 t= cp holds for all cp E cD. 

By going through the individual steps of definition 3.2 the reader should 
convince himself that 3 t= cp if cp becomes a true statement under the inter- 
pretation 3. The steps in 3.2 involving quantifiers are illustrated by the 
following example. Again let S = S,, and 3 = (So ,  p) with So  = ( R ,  +, 0)  
and P(x) = 9 for all x. Then we have 

iff for all r E R, r + 0 = r. 
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3.3 Exercise. Let P  be a unary relation symbol and f  be a binary function 
symbol. For each of the formulas V v ,  f v o v l  - v,, 3 v o V v l  f v o v l  = v,,  and 
3vo(Poo A V v ,  P f v o v , )  find an interpretation which satisfies the formula 
and one which does not satisfy it. 

3.4 Exercise. A formula which does not contain 1, -, or -+ is called 
positive. Show that for every positive S-formula there is an S-interpretation 
which satisfies it. (Hint: One can, for example, use a one-element domain.) 

$4. The Consequence Relation 

Using the notion of satisfaction we can state exactly when a formula is a 
consequence of a set of formulas. Again we assume a symbol set S is given. 

4.1 Definition of the Consequence Relation. We say that cp is a consequence 
of'@ (written: @ F cp) iff every interpretation which is a model of @ is also a 
model of cp.' 

Instead of "{$) F cp" we shall write "$ k cp". We have already sketched 
some examples of the consequence relation in Chapter I. Now we can 
formulate 1.1.1. (existence of a left inverse) as follows: 

@,, F V v o  3 v 1 v 1  0 v ,  - e, 

where 

Ogr = { V U , V U ~  V v 2 v o O ( v 1  0 v 2 )  -- (VOO L ~ ~ ) O U ~ ,  

V v o v o  e E u,, V U ,  3v1v0 0 v 1  = e}. 

To show that a formula cp is not a consequence of a set of formulas @, it 
is sufficient to give an interpretation which satisfies every formula in @ but 
fails to satisfy cp. 

For example, one shows 

(1) not @,, F V v ,  Vv , v ,  0 v ,  = v ,  0 v ,  

by giving as an interpretation a nonabelian group 8 with an arbitrary 
assignment of variables to elements of 8. Analogously, one can use an abelian 
group to show 

(2) not @,,F i V v , V v , v ,  o v ,  = v ,  0 v,. 

We use the symbol I== for both the satisfaction relation (3 k= cp) and for the consequence 
relation (Q k= cp). The symbol preceding "b" (either for an interpretation, such as 3, or  for a 
set of formulas, such as Q) determines the meaning. 
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With (1) and (2) we see that 

not @ k  cp 

does not necessarily imply 

@k l c p .  

In Chapter I it became clear-both by examples and in an informal way- 
that when cp can be proved from a system of axioms @ then cp is a consequence 
of @. There we raised the question as to what extent the consequences of a 
system of axioms can be obtained by mathematical proofs. The precise 
definitions of concepts given in this chapter and the next lay the foundation 
for a rigorous discussion of this question. In Chapter V we shall obtain the 
fundamental result that the consequence relation @ k  cp can always be 
established by means of a mathematical proof. We shall see that such a proof 
consists of very elementary steps which, moreover, can be described in a 
purely formal way (that is, syntactically). 

Using the notion of consequence we are now able to define the notions of 
validity, satisjiability, and logical equivalence. 

4.2 Definition. A formula cp is valid (written: k cp) iff /21 k  cp. 

Thus a formula is valid when it holds under all interpretations. For 
example, all formulas of the form (cp v i cp) or 3x x r x are valid. 

4.3 Definition. A formula cp is satisfiable (written: Sat cp) iff there is an inter- 
pretation which is a model of cp. A set of formulas @ is satisfiable (written: 
Sat 0) iff there is an interpretation which is a model of all the formulas in 0. 

4.4 Lemma. For all @ and all cp, 

In particular, cp is valid i f l  i cp is not satisjiable. 

iff every interpretation which is a model of @ is also a model of cp, 

iff there is no interpretation which is a model of @ but not a model of cp, 

iff there is no interpretation which is a model of @ u {icp),  

iff not Sat @ u {icp). 

4.5 Definition. Two formulas cp and I) are logically equivalent iff cp k  $ and 
$k cp. 

Thus two formulas cp and $ are logically equivalent iff they are valid 
under the same interpretations, that is, iff k cp tt I). 
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It is immediately evident, from the definition of the notion of satisfaction 
together with the truth-tables for connectives that the following formulas are 
logically equivalent : 

VXCP and i 3 x  i cp. 

Therefore, we can dispense with the connectives A ,  -+, and tt, and the 
quantifier V. More precisely, we define a map * by induction on formulas, 
which associates with every formula cp a formula cp* such that cp* is logically 
equivalent to cp and does not contain A ,  +, tt, or V: 

cp* := cp if cp is atomic, 

((p v $)* := cp* v $*, 

((p A $)* := l ( l c p *  v 1 $*), 

((p + $)* := l c p *  v $*, 

(Vxcp)* := 1 3x 1 cp*. 

Using (+) one can easily prove that * has the desired properties. 
In general a formula cp is easier to'read than the corresponding formula 

cp*, as is clear from (+). But because of the logical equivalence of cp and cp* 
we do not lose expressive power when we exclude the symbols A ,  +, tt, and 
V from our first-order languages. This will simplify our investigations of the 
languages; in particular, proofs by induction on formulas will be shorter. 
Thus we make the following conventions: 

( 1 )  In the sequel we restrict otrrselves to,fi?rmulas in which A ,  +, -, and V 
do not 0 ~ ~ 1 1 1 . .  That is, in the common alphabet A of the first-order 
languages (cf. 11.2.1.) we omit the symbols A . +, ++, and V. In the defini- 
tion 11.3.2. of formulas we restrict cases (F4) and (F5) to the introduction 
of formulas of the form (cp v *) and 3xq, respectively. Finally, in the 
definition of the notion of satisfaction we eliminate the cases correspond- 
ing to A ,  +, ++. and V. 

(2) Nevertheless we shall sometimes retain the symbols A ,  +, tt, V when 
writing formulas. Such "formulas cp in the old style" should now be 
understood as abbreviations for cp*; for example, Vx(Px A Qx) should 
be understood as an abbreviation for i 3x i i(i P x  v i Qx). 
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4.6 Exercise. For arbitrary formulas cp, $, and % show that 

(a) (cp v $It= z i f f c p t = ~ a n d $ t =  z. 
(b) i=(cp-+$)iffcpF $. 

4.7 Exercise. (a) Show that 3x Vyq F Vy 3xcp. 
(b) Show that Vy 3x Rxy i= 3x V J ~  Rxy does not hold. 

4.8 Exercise. Prove : 

(a) i= Vx(cp A $) o Vxcp A Vx$, 
(b) i= 3x(q v $1 - 3xcp v 3x$, 
(c) i= Vx(q v $1 - cp v Vx$, if x + free(cp), 
(d) i= 3x(q A $) - cp A 3x$, if x + free(q). 
(e) Show that one cannot do without the assumption "x + free(cp)" in (c) 

and (d). 

4.9 Exercise. Let cp and $be formulas such that F (cp o $). Let X' be obtained 
from the formula x by replacing all subformulas of the form cp by $. 

(a) Define the map ' by induction on formulas. 
(b) Show that for all x, I=(X o x ' ) .  

Historical Note. The precise development of semantics is due essentially 
to A. Tarski [27]. The notion of logical consequence was already present 
in work of B. Bolzano [3]. 

55. Coincidence Lemma and Isomorphism Lemma 

It seems intuitively clear that the satisfaction relation between an S-formula 
cp and an S-interpretation 3 depends only on the interpretation of the 
symbols of'S occurring in cp, and on the variables occ~rrring.free in cp. The 
following lemma gives an exact formulation. 

5.1 Coincidence Lemma. Let 3, = ('ill,, D l )  be an S,-interpretation and 
C 
3, = ('ill,, 0,) be an S,-interpretation, both with the same domain, i.e., 
A ,  = A , .  P u t  S := S,  n S,. 

(a) Let t be an S-term. I f  3, and 3, agree2 on the S-sj)rnbols occurring in  t 
anll on the uariables occzirring in t, then 3 , ( t )  = 3,(t). 

(b) Let cp be an S:fOrmlrlu. I f ' s ,  and 3, agree on the S-symbols und on the 
vuriables occurring jkee in cp, then 3, + cp iff 3, cp. 

3, and 3, agree on k E S Or On S if kPI' = kP12 Or P,(X) = PZ(x), respectively. 
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PROOF. (a) We use induction on terms. 

t = x :  By hypothesis, /?,(x) = /?,(x) and therefore 

t = c :  Similarly. 

t = f't,. .. tn- ,  ( ~ E S  n-ary and t o , .  .. , tn- ,  E TS): 

31(f'tO . . . tn- 1) = f''l(3 ,(to), . . . , 31(tn- 1)) 

= f 'l(3,(t0), . . . , 3,(tn_ ,)) (by induction hypothesis) 

= f "'(3,(to), . . . , 3,(tn- ,)) (by hypothesis f" = f 'z) 
= S2(  f'tO . . . tn-  i). 

(b) We use induction on S-formulas. 

cp = Rt, . . . tn- ,  (R E S n-ary and to,  . . . , tn- ,  E TS): 

3, k Rt, . . . tn- ,  iff ~ ' ~ 3 , ( t ~ ) .  . . 3 , ( tn -  ,) 

iff Ra13,(t0) . . . 3,(tn- ,) (by (a)) 
iff RN23,(to) . . . s2 ( tn -  ,) (by hypothesis R" = Ra2) 

iff 3, F Rt, . . . tn- ,. 
cp = t ,  r t,: Similarly. 

cp = 1$: 

3, F i$ iff not 3, F $ 
iff not 3, F $ (by induction hypothesis) 
iff 3, I= i$. 

cp = (* v x): Similarly. 

cp = 3x$: 
a 

3, k 3x$ iff there is an a E A ,  such that 3, - F $ 
X 

a 
iff there is an a E A,(= A,) such that 3, - k $ 

X 

a a 
(by the induction hypothesis applied to $, 3, - and 3, ; note that, because 

X X 

a a 
free(*) c free(cp) u {x), the interpretations 3, - and 3, - agree on all 

X X 

symbols occurring in $ and all variables occurring free in $) 

iff 3, k 3x*. 

In particular, the coincidence lemma says that, for an S-formula cp and 
an  S-interpretation 3 = (a, P), the validity of cp under 3 depends only on 
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the assignments for the finitely many variables occurring free in cp (and, of 
course, on the interpretation of the symbols of S in 2l). If these variables are 
among v,, . . . , vn- ,, i.e., if cp E Ls, it is at most the /3-values a i  = /3(vi) for 
i = 0, . . . , n - 1 which are significant. Thus, instead of (2l, /3) F cp, we shall 
often use the more suggestive notation 

2l F cpCa,,. . . , an- 11. 

(Similarly, for an S-term t such that var(t) c {v,, . . . , vn-  ,} we shall write 
C t [a,, . . . , an- ,] instead of 3(t).) When cp is a sentence, i.e., cp E L i ,  we can 

choose n = 0 and write 

without even mentioning an assignment. In that case we say that 2l is a model 
of cp. For a set of sentences 0 , s  F 0 means that 2l F cp for every cp E 0. 

5.2 Definition. Let S and S' be symbol sets such that S c Sf;  let 2l = (A, a) 
be an S-structure, and 2l' = (A', a') be an Sf-structure. We call 2l a reduct of 
2l' (more precisely, the S-reduct of 2l') iff A = A' and a and a' agree on S. In 
this case 2l' is called an expansion of a ,  and we write 2l = W r S. 

For example, the S2-structure 'JZ' (the ordered field of real numbers) is an 
expansion of the Sar-structure 'JZ (the field of real numbers): 'JZ = 'JZ' 1 Sar. 

If 2l = 2l' r S, then it follows from the coincidence lemma that for cp E L" 
and a,, . . . , an- ,  E A, 2l F ..[a,,. . . , an- ,] iff 2l' I= cp[a,, . . . , an- ,I. To 
see that this holds we choose /3: {v,: n E N) -+ A so that /3(vi) = a, for i < n, 
and we apply the coincidence lemma for 3, = (2l, /3) and 3, = (21f, /3); 
3, and 3, agree on the symbols occurring in cp and on the variables occurring 
free in cp. 

. The definitions of interpretation, consequence, and satisfiability refer to a 
fixed symbol set S. Using the coincidence lemma we can remove this reference 
to S. Let us consider, for example, the notion of satisfiability. If 0 is a set of 
S-formulas and S' 3 S, then 0 is also a set of S'-formulas. As a set of S- 
formulas, 0 is satisfiable if there is an S-interpretation which satisfies it, 
and as a set of S'-formulas it is satisfiable if there is an S'-interpretation which 
satisfies it. We have 

5.3 Lemma. 0 is satisfiable with respect to S iff 0 is satisfiable with respect 
to S'. 

PROOF. If 3' = (W, /3') is an S'-interpretation such that 3' F 0 ,  then by 5.1 
the S-interpretation (2l' r S, P') is a model of 0 .  On the other hand, if 
3 = ( a ,  /3) is an S-interpretation which satisfies 0 ,  we choose an S'-structure 
2l' such that a' r S = 2l. (The symbols in S' - S can be interpreted arbi- 
trarily.) By 5.1 the S-interpretation (a ' ,  P) is then a model of @. 
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We conclude this section with a result about isomorphic structures. 

5.4 Definition. Let 2l and 8 be S-structures. 

(a) A map x:  A + B is called an isomorphism of' 2l onto 8 (written: 
x :  IU z 8 )  iff 

(1) 71 is a bijection of A onto B; 
(2) for n-ary R E S and a,, . . . , a,-, E A, 

Raao . . . a,-, iff RSx(ao) . . . 71(a,- ,); 

(3) for n-ary f' E S and a,, . . . , a,-, E A, 

(4) for every c E S, x(c") = c". 

(b) 2l and 8 are said to be isomorphic (written: 2l r 8 )  iff there is an iso- 
morphism x: 2l 8. 

For example, the S,,-structure (N ,  +, 0) is isomorphic to the S,,-structure 
(G, +', 0) consisting of the even natural numbers with ordinary addition 
+'. The map 71: N + G such that x(n) = 2n is an isomorphism of (N, +, 0) 
onto (G, + ', 0). 

The following lemma shows that isomorphic structures cannot be 
distinguished by means of first-order sentences. 

5.5 Isomorphism Lemma. I f  2l and 8 are isomorphic S-structures, then for 
all S-sentences cp 

PROOF. Let x: 2l s 8. For the intended proof by induction it is convenient 
to show not only that the same S-sentences hold in 2l and 8 ,  but also 
that the same S-formulas hold if one uses corresponding assignments: 
With every assignment fl in IU we associate the assignment := x o /? in 8 ,  
and for the corresponding interpretations 3 = (2l, fl) and 3 "  := ( 8 ,  /Y) we 
shall show: 

(i) For every S-term t, 71(3(t)) = 3"(t). 
(ii) For every S-formula cp, 3 F cp iff 3 "  F cp. 

This will complete the proof. 

(i) can easily be proved by induction on terms. (ii) is proved by induction 
on formulas cp simultaneously for all assignments P in 2l. We only treat the 
case of atomic formulas and the steps involving i and 3. 
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cp = to = t , :  
3 F to E t l  iff 3(to) = 3( t l )  

iff 7c(3(t0)) = 7c(3(tl) (since 7c: A + B is injective) 

iff 3"(t0) = 3"(t,) (by (i)) 
iff 3 "  to  E t,. 

cp = Rto . . . tn- ,  : 

3i= Rt , . . .  tn - ,  iff Ru3(t0) . . . 3(tn-  ,) 
iff Rs7c(3(to)) . . . 7c(3(tn - ,)) (because n : IU B) 
iff Rs3"(t0) . . . 3"(tn- ,) (by 6)) 
iff 3" F Rt, . . . t,- ,. 

cp = -I$: 

3 1 iff n o t 3  F $  
iff not 3 "  F $ (by induction hypothesis) 
iff 3 "  i= -I*. 

a 
3 i= 3x$ iff there is an a E A such that 3- i= $ 

X 

iff there is an a E A such that 3 - k $ 3 "  
(by induction hypothesis) 

.(a> iff there is an a E A such that 3 "  - F $ 
X 

(since (3 ~r = 3n T) 
b 

iff there is an element b E B such that 3 "  - F  $ 
X 

iff 3 "  p 3x$. 

(since 7c: A + B is surjective) 

0 

From the proof we infer 

5.6 Corollary. I j 'n:  2l r 23, then for cp E L s n d  ao,  . . . , an- E A, 

2l i= d a o ,  . . . ,a,-  ifS 8 i= cpCx(ao), . . . ,n(a,- ,)]. 0 

5.5 tells us that isomorphic S-structures cannot be distinguished in Lg. 
Conversely one could ask whether S-structures in which the same S-sentences 
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are satisfied are isomorphic. In Chapter VI we shall see that this is not always 
the case. For example, there are structures not isomorphic to the S,,-structure 
% of natural numbers in which the same first-order sentences hold. 

5.7 Exercise. Prove the analogue of 5.3 for the consequence relation. 

5.8 Exercise. Let S be a finite symbol set and let 2l be a finite S-structure. 
Show that there is an S-sentence cp, the models of which are precisely the 
S-structures isomorphic to IU. 

5.9 Exercise. Show: 

(a) The relation < (" less-than ") is elementarily definable in (R, +, ., 0), i.e., 
there is a formula cp E L(2t . ' .  O1 such that for all a, b  E R, (R, +, ., 0) F 
cp[a, b] iff a < b. 

(b) The relation < is not elementarily definable in (R, +, 0). (Hint: Work 
with a suitable automorphism of (R, +, 0), i.e., a suitable isomorphism of 
(R, +, 0) onto itself.) 

5.10 Exercise. Let 1 be a nonempty set. For every i E 1, let 21i be an S- 
structure. We write n,,, IUi for the direct product of the structures 21i, 
i E 1, that is, the S-structure 2l with domain nicl Ai := {glg: I + UiEI  A , ,  
and for all i E 1, g(i) E A , ) ,  which is determined by the following conditions 
(for g E n,,, Ai we also write (g(i)li E 1)): 

For n-ary R in S and for go, . . . , g,-, E niEI A , ,  
'U R g O . . . g n - ,  iff f o r a l l i ~ I , R " ~ ~ , ( i )  . . . g n - , (  i); 

for n-ary f i n  S and g o , .  . . , gn- ,  E niEI A , ,  

f'(go3 . . . ? g n - l ) : =  (f"'(go(i)> . . . , g n - l ( i ) ) l i ~ l ) ;  

for c in S, 

c.' := (c'lli E I). 

(a) Show that if t is an S-term such that var(t) c {v,, . . . , vn-,) and if 
90 , .  . ., 911-1 E ni,, Ai, then 

t"Cgo3 . . ., gn- 1 1  = (t''CgO(i), . . . ,  Sn- l ( i ) I l i ~  1) .  

Formulas which are derivable in the following calculus are called Horn 
,formulas. 

(i) -- , if cp is atomic; 
cp 

(ii) -- , if cp is atomic; 
l c p  

(iii) ,ifcpo, . . .  
( 'PO " . . .  " (Pn-l)+(Pn 

, cp, are atomic and n 2 1 ; 
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cp (vi) - . 
3xcp 

Horn sentences are Horn formulas containing no free variables. 
(b) Show that if cp is a Horn sentence and if every IUi is a model of cp, then ni,, 21i k cp. (Hint: State and prove the corresponding result for Horn 

formulas.) 

5.11 Exercise. A set @ of sentences is called independent if there is no cp E @ 
such that @ - {cp) k cp. Show that the axioms for groups (cf. p. 32) and the 
axioms for equivalence relations (cf. p. 16) are independent sets of sentences. 

$6. Some Simple Formalizations 

As we saw in $4, the axioms for group theory can be formulated, or as we 
often say, formalized, in a first-order language. As another example of 
formalization we give the cancellation law for group theory: 

To say that the cancellation law holds in a group 8 means that 8 cp, and 
' to  say that it holds in all groups means that @,, k cp. 

The statement "there is no element of order two" can be formalized as 

*:= i 3 u O ( i u O  = e A u o o v o  = e). 

The observation that there is no element of order two in (Z, +, 0) thus 
means that (Z, +, 0) is a model of *. 

For applications of our results it is helpful to have a certain proficiency 
in formalization. The following examples should serve this purpose. As the 
exact choice of variables is unimportant (for example, instead of using the 
formula cp above we could have used 

to formalize the cancellation law) we shall denote the variables simply by 
x, y, z, . . . , where distinct letters stand for distinct variables. 
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6.1 Equivalence Relations. The three defining properties of an equivalence 
relation can be formalized with the aid of a single binary relation symbol as 
follows: 

Vx Rxx,  Vx Vy(Rxy + Ryx), Vx V y  Vz((Rxy A Ryz) -+ Rxz). 

The theorem mentioned in Chapter I 

If x and y are both equivalent to a third element then they are 
equivalent to the same elements, 

can be reformulated as 

For all x and y, if there is an element u such that x is equivalent 
to li  and y is equivalent to u, then for all z, xis equivalent to z iffy 
is equivalent to z, 

and then formalized as 

Vx Vy(3u(Rxzi A Ryu) + Vz(Rxz - Ryz)). 

6.2 Continuity. Let p be a unary function on Rand let A be the binary distance 
function on R, that is, A(r,, r , )  = J r ,  - r ,  1 for r,, r ,  E R. Using the function 
symbols f '  (for p )  and d (for A) we can treat ( R ,  +, ., 0, 1 ,  <, p, A) as an 
S,: v {f;'d)-structure. The continuity of p on R can be stated as follows: 

(*) For all x and for all E > 0 there is a 6 > 0 such that for all y, if 
A(x, y )  < 6 then A ( P ( ~ ) ,  P ( Y ) )  < E.  

Concerning the restricted quantifiers "for all E > 0'' and "there is a 6 > 0" 
that appear in (*) it is useful to observe that a statement of the form 

for all x such that . . . , we have - 

can be formalized 

and a statement of the type 

there is an x with . . . such that - 

can be formalized 

Thus, using the variables u and v for c and 6 we can give the following 
formalization of (*): 

Vx Vu(0 < ti + 3v(0 < v A Vy(dxy < v + df'xj'y < u))). 

6.3 Cardinality Statements. The sentence 
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is a formalization of "there are at least two elements". More precisely, for 
all S and all S-structures 2l, 

2l F c p , ,  iff A contains at least two elements. 

In a similar way, for n  2 3, the sentence 
- ( P , n : = 3 V o . . . 3 V n - l ( l V o E  V 1  A . . .  A l u g =  U n - l  A . . .  A l U n - 2 = U , - 1 )  

states that there are at least n  elements, and the sentences 

say that there are fewer than n  elements and exactly n  elements, respectively. 
If we now put 

then the models of 0, are precisely the infinite structures, that is, for all S 
and all S-structures 2l, 

IU k 0, iff A contains infinitely many elements. 

6.4 The Theory of Orderings. A structure IU = ( A ,  <") is called an ordering 
if it is a model of the following sentences: 

1 x  < x,  

v y  V Z ( ( X  < y A J' < Z )  + X < z ) ,  

< y  v x  = y  v y < x) .  

(R, cR)  and (N ,  cN) are examples of orderings. If C denotes the set of 
complex numbers and <' is defined by 

z ,  <'z ,  iff z , ,  z2 E R and z ,  <'z,  

then (C, <') is not an ordering because the third axiom in @,,, is violated. 
If for a structure 2l = ( A ,  <") we set 

field <' = { a €  AIfor some b E A, a  < 'borb  <'a),3 

then, for (C, cG), field cG = R and (field < G ,  <') is an ordering. We say 
that <' is a partially defined ordering on A  if (field <', <') is a model of 
, e if (A, <') satisfies 

Of course not to be confused with the notion of field as in 6.5 
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6.5 The Theory of Fields. As symbol set let us take S,, = {+, ., 0, 1). An 
S,,-structure is afield if it satisfies the following sentences: 

Orderedjelds are S,:-structures which satisfy the following sentences: 

@fd< 

the sentences in Of, and O,,,, 

vx vy Vz(x < y + x + z < y + z), 

VxVyVz((x < y A O < z ) + x . z  <y.z) .  

/ 

vx vy VZ(X + y) + z = X + (y + z), vx x + 0 = X, 

vx vy Vz(x . y) . z - x . (y . z), v x x . 1  = x, 

vx 3y x + y = 0, Vx(1x = 0 -t l y  x .  y = I), 

v x v y x + y = y + x ,  v x v y x . y  = y.x, 

6.6 Exercise. Formalize the following statements using the symbol set of 
6.2 : 

(a) Every positive real number has a positive square root. 
(b) If p is strictly monotone then p is injective. 
(c) p is uniformly continuous on R. 
(d) For all x, if p is differentiable at x then p is continuous at x. 

6.7 Exercise. Let S,, = {R}. Formalize 

(a) R is an equivalence relation with at least two equivalence classes. 
(b) R is an equivalence relation with an equivalence class containing more 

than one element. 

6.8 Exercise. Use 5.10 to show : 

(a) If, for every i E I, 21i is a group then ni,, 21i is a group. 
(b) There is no set of axioms for the theory of orderings and for the theory 

of fields which consists of Horn sentences only. 

6.9 Exercise. A set M of natural numbers is called a spectrum if there is a 
symbol set S and an S-sentence cp such that 

M = { n  E N (cp has a model containing exactly n elements) 

Show: 

(a) Every finite subset of {1,2, 3, . . .) is a spectrum. 
(b) For every m 2 1, the set of numbers > 0 which are divisible by m is a 

spectrum. 
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(c) The set of squares > 0 is a spectrum. 
(d) The set of nonprime numbers > 0 is a spectrum. 
(e) The set of prime numbers is a spectrum. 

$7. Some Remarks on Formalizability 

In the preceding section we had a number of examples showing how mathe- 
matical statements can be formalized by first-order formulas. However, the 
process of formalization is not always as simple as it was in those cases. In 
this section we discuss some of the typical difficulties which can arise. 

7.1 Partial Functions. When we defined the notion of structure we stipulated 
that function symbols be interpreted by total functions, i.e., in the case of an 
n-ary function symbol, by a function that is defined on all n-tuples of elements 
of the domain. If, for example, in the field of real numbers, we regard division 
on R as a function then we do not have a structure in our sense (because the 
quotient is undefined if the divisor is zero). The following are possible 
solutions to this difficulty: 

(1) The division function can be extended to a total function. For example, 
one can define r/O := 0 for all r E R and take this into consideration when 
formulating statements about the division function. 

(2) Instead of the division function, one can consider its graph, that is, the 
ternary relation {(a, b, c) E R3 1 b # 0 and a/b = c). In VIII.l we shall 
describe how statements about functions can be translated into state- 
ments about their graphs. The remarks made there for total functions 
can easily be modified to cover the case of partial functions. 

(3) One can develop semantics for first-order languages which also include 
partial functions. However, this approach leads to a complicated logical 
system without yielding anything essentially new, as we see from (1) 
and (2). 

7.2 Many-Sorted Structures. The structures we have hitherto considered 
have only one domain and in this sense consist of elements of only one sort. 
On the other hand, some important structures in mathematics contain 
elements of different sorts. Planes in affine spaces consist of points and lines, 
and vector spaces consist of vectors and scalars. Taking vector spaces as an 
example, we give two possibilities for treating many-sorted structures. 

(1) Many-Sorter1 Languages. We regard a vector space 23 as a "structure 
with two domains" (as a so-called two-sorted structure): 

23 = (F, V, + F ,  .F, OF, IF, @", e", *F,'), 
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where F is the set of scalars, (F, +F, .F, OF, IF) is the field of scalars, V is the 
v ' set of vectors, (V, @", e ) 1s the additive group of vectors, and *F.V is the 

multiplication of scalars and vectors defined on F x V. 
In order to describe such two-sorted structures we introduce a two-sorted 

language, that is, a language built up in the same way as the languages we 
have used so far, but having two sorts of variables, namely u,, u,, u,, . . . 
(for elements of the first domain, in the case above, scalars) and v,, v,, v,, . . . 
(for elements of the second domain, in the case above, vectors). 

A quantified variable always ranges over the corresponding domain. To 
illustrate this we formalize some of the axioms for vector spaces. 

(a) Associativity of scalar addition : 

(p) Associativity of vector addition : 

Vv, Vv ,  Vu, v, @ (v, @ v,) = (v, @ v,) @ 0,. 

(y) Associativity of scalar multiplication of vectors: 

(2) Sort Reduction. It is also possible to use our one-sorted first-order 
languages to treat many-sorted structures, namely, by a so-called sort 
reduction. We demonstrate this method briefly for the case of vector spaces. 
Let _F and - V be two new unary relation symbols. We regard a vector space 
as a { F ,  _V, ++, ., 0, 1, 6, e, *)-structure 

23 = (F u V, _F", 1/", +", .", O", I", @", e", *"), 

where_FS := F and - V" := V, and the functions +", .", @",and *"are arbitrary 
extensions of +F, .F, OV and *F"' to (F  u V) x (F u V). The introduction 
of the "sort symbols" _F and J! enables us to speak of scalars and vectors. We 
exemplify this by reformulating the many-sorted vector axioms given above: 

(a) Vx Vy Vz((Ex A Ey A Ez) + (x + y) + z - x + (y + z)). 
(0) VX vy VZ((~/X A /y A - VZ + (X @ y) @ Z X @ (y @ z)). 
( Y )  VX vy  VZ((EX A Ey A 412) + (X . y) * z EE X * (y * z)). 

Since all quantifiers are "relativized" to f o r  1/, it makes no difference how 
the functions + F, . . . are extended. 

7.3 Limits of Formalizability. The question of the limits of formahzability, 
which is ultimately the question of the expressive power of first-order 
languages, will be treated in detail in Chapter VI and Chapter VII, $2. Here 
we discuss two examples. 

(1) Torsion Groups. A group 8 is called a torsion group if every element of 
8 has finite order, i.e., if for every a E G there is an n 2 1 such that a" = eG. 
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An ad hoc formalization of this property would be 

However, in first-order logic we may not form infinitely long disjunctions. 
Indeed we shall later show that there is no set of first-order formulas, the 
models of which are precisely the torsion groups. 

(2) Peano's Axioms. We consider the question whether there is a set of 
S,,-sentences the models of which are the structures isomorphic to % = 
(N, +, ., 0, 1). For simplicity we shall start our discussion with the structure 
%, = (N, a, 0), where a is the successor function on N (a(n) = n + 1 for 
n E N). 112, is a {o, - 0)-structure, with _a ("successor") a unary function 
symbol. The results can easily be extended to %, cf. Exercise 7.5. 

%, satisfies the so-called Peano axiom system: 

(a) 0 is not a value of the successor function a. 
(/?) a is injective. 
(y) (the so-called induction axiom). For every subset X of N: if 0 E X and if 

o(n) E X whenever n E X, then X = N. 

(a) and (/?) may easily be formalized in L'",O) by 

(PI) Vx i g x  = 0; 
(P2) vx Vy(gx - _ay + x = y). 

The induction axiom (y) is a statement about arbitrary subsets of N. For an 
"ad hoc" formalization of this axiom we would also need to quantify over 
variables for subsets of the domain. In such a language, (y) could be formal- 
ized thus : 

(P3) is a so-called second-order formula (cf. IX.1). 
The following theorem shows that (P1)-(P3) characterize the structure 

%, up to isomorphism: 

7.4 Dedekind'sTheorem. Every structure 2l = (A, aA, OA) which satisfies 
(PI)-(P3) is isomorphic to %,. 

In VI.4 we shall show that no set of first-order {a, 0)-sentences has (up to 
isomorphism) just %, as a model. Thus the induction axiom cannot be 
formalized in L". O1. 

The proof'oj' Dedekind's theorem depends essentially on the fact that in 
structures QI which satisfy (P3), the following kind of inductive proofs can 
be given: In order to show that every element of the domain A has a certain 
property P, one verifies that OA has the property P and that if an element a 
has the property P then _aA(a) does also. 
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Suppose 2l = OA) is a structure which satisfies (P1)-(P3). The 
isomorphism n:  %, z 2l, which we need, must have the following properties: 

(i) n(ON) = OA ; 
(ii) n(aN(n)) = - aA(n(n)) for all n E N, 

that is, 

(i)' n(0) = OA ; 
(ii)' n(n + 1) = aA(n(n)) for all n E N. 

We define n by induction on n, taking (i)' and (ii)' to be the definition. Then 
the compatibility conditions for an isomorphism are trivially'satisfied and 
we need only show that n is a bijective map from N onto A. 

Surjectivity of n: By induction in 2l (IU satisfies (P3)) we prove that every 
element of A lies in the image of n. By (i)', OA is in the image of n. Further, if 
a is in the image of n, say a = n(n), then aA(a) = _aA(n(n)); hence by (ii)', 
aA(a) = n(n + I), and it follows that _aA(a) is also in the image of n. - 

Injectivity of n: By induction on n we prove 

(*I For all m E N, if m # n then n(m) # n(n). 

n = 0: If m # 0, say m = k + 1, then n(m) = n(k + 1) = aA(n(k)), and 
since 2l satisfies the axiom (PI), _aA(n(k)) # OA. Hence, by (i)', n(m) # n(0). 

The induction step: Suppose (*) has been proved for n and suppose 
m # n + 1. If m = 0, we argue as in the case n = 0 that n(n + 1) # n(m) = OA. 
If m # 0, say m = k + 1, then k # n and so, by the induction hypothesis, 
n(k) # n(n). By the injectivity of _aA (2l satisfies (P2)) it follows that aA(n(k)) # 
aA(n(n)); - hence from (ii)' we have n(k + 1) # n(n + I), i.e., n(m) # 
n(n + 1). 

7.5 Exercise. Let n be the following system of second-order S,,-sentences: 

VX((X0 A Vx(Xx + Xx + 1)) + v y  Xy), 

A .A OA, lA)  is a model of I l  and if _aA:  A + A is given by (a) If 2l = (A, + , , 
aA(a) = a + A  lA, then ( A ,  _aA, OA) satisfies the axioms (P1)-(P3). 

(b) Show that % = (N, +, ., 0 , l )  is characterized by n up to isomorphism. 
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$8. Substitution 

In this section we define how to substitute a term t for a variable x in a formula 
cp at the places where x occurs free, thus obtaining a formula $. We wish to 
define the substitution in such a way that cp expresses the same about x as 
+ does about t .  First we give an example to illustrate our objective and to 
show why a certain amount of care is necessary. 

Let 

In % the formula cp says that x is even; more exactly, 

(%, fl) l= cp iff fl(x) is even. 

If we replace the variable x by y in cp we obtain the formula 32 z + z = y, 
which states that y is even. But if we replace the variable x by z ,  we obtain 
the formula 32 z + z - z, which no longer says that z is even; in fact, this 
formula is valid in % regardless of the assignment for z (because 0 + 0 = 0). 
The meaning is altered in this case because at the place where x occurred 
free, the variable z gets bound. On the other hand, we obtain a formula which 
expresses the same about z as cp does about x if we proceed as follows: First 
we introduce a new bound variable u in cp, and then in the formula 
l u  u + u = x thus obtained we replace x by z. It is immaterial which variable 
u (distinct from x and z) we choose. However, for certain technical purposes 
it is useful to make a fixed choice. 

In the preceding example we replaced only one variable but in our exact 
definition we specify the procedure for simultaneously replacing several 
variables: With a given formula cp, pairwise distinct variables xO, . . . , x,, 
and arbitrary terms to, . . . , t , ,  we associate a formula 

which is said to be obtained from cp by simultaneous substitution of t o , .  . . , t, 
for x,, . . . , x,: The reader should note that the xi need be replaced by t i  
only if 

xi E free(q) and x i  # ti. 

In the following inductive definition this is explicitly taken into account in 
the quantifier step; in the other steps it follows immediately. 

It will become apparent that it is convenient to first introduce a simul- 
taneous substitution for terms. Let S be a fixed symbol set. 
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8.1 Definition 

For easier reading we use square brackets here and in what follows. 

8.2 Definition 

(e) Suppose xi,, . . . , xis_ ,  (i, < . . . < is- ,) are exactly the variables xi 
among the x,, . . . , x, such that 

xi E free(3xcp) and xi # t i .  

Then set 

where u is the variable x if x does not occur in tio, . . . , t is_ ,; otherwise u 
is the first variable in the list v,, v,, v,, . . . which does not occur in cp, 
tio 3 . . ' 9 ti. _ 

(By introducing the variable u we ensure that no variable occurring 
In ti,, . . . , ti,-, falls within the scope of a quantifier. In case there is no 
xi such that xi E free(1xcp) and xi # ti we have s = 0, and from (e) we 
obtain 

- - 

which is 3 x q ,  as we shall see in 8.4(b).) 
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EXAMPLES. For binary P and , j '  we have 

At the places where xi occurred free in cp, we now find in 

the term t i .  Hence, if free(cp) c {x,, . . . , x,) then we expect that 

will hold for an interpretation 3 = (2l, /?) iff cp holds in 2l, provided we use 
the assignments 3(to) for x,, . . . , 3(tr) for x,. An exact formulation of this 
property is given in the following "substitution lemma" 8.3. Later we shall 
frequently refer to this lemma whereas we shall rarely return to the technical 
details of definition 8.2.4 Before stating the lemma we generalize the definition 

a 
of 3 -. Let x,, . . . , xr be pairwise distinct and suppose 3 = (a, /?) is an 

X 

interpretation, and a,, . . . , a, E A ;  then the assignment 

p ao . . .  
X,, . . . X, 

in 2l and the interpretation 

are given by 

and 

As the substitution lemma the further results of this section are intuitively clear. The proofs 
are straightforward but lengthy and may be skipped by a reader already familiar with proofs 
by induction on terms and formulas. 
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8.3 Substitution Lemma. (a) For every term t ,  

(b) For everyfbrmula cp, 

PROOF. By induction on terms and formulas in accordance with the defini- 
tions 8.1 and 8.2. We treat some typical cases. 

t = x: If x # x,, . . . , x,, then, by 8.l(a) 

and therefore 

If x = xi, then 

and hence 

to . . . t, 
3 k [Rtb . . . t l -  ,] iff 3(R) holds for 3 tb 

Xo . . . X, ( ::::: :,) -. .  

3(to) . . . 3(tr) 
iff 3(R) holds for 3 (tb) . . . 

X o  . . . X, 

iff 3 300) . . . 3(t,) (R) holds for 
X o  . . . X, 

iff 3 3@0) . . . Wr)  k Rtb . . .  t ; - , .  
Xo . . . X, 
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cp = 3x$: As in 8.2(e), let xi,, . . . , xis_,  be exactly those variables xi for 
which xi E free(3x*) and xi # ti. Then, for u chosen as in 8.2(e), 

a ti, . . . t i  u 
iff there is an a E A such that 3 - I= $ s- 1 

u Xi, . . . Xi,_ ,X 

a a a 
3- (t i, ) .  .. 3-( t i , - , )3-(u)  

u u 
iff there is an a E A such that 

Xi, . . . Xi,- ,X 
I= $ 

(by induction hypothesis) 

[ c ~ ] 3 ( t ~ ~ )  . . .  3(ti  )a 
iff there is an a E A such that 3 - s -  1 

Xi, . . . Xi,- ,X 
I= $ 

(by the coincidence lemma, since ~i does not occur in tio, . . . , ti,- ,) 

iff there is an a E A such that 3 3(ti0) . . . 3(ti,_ ,)a 
Xio . . . Xi, - X 

I= $ 

(by the coincidence lemma, since either u = x or u does not occur 
in *I 

iff there is an a E A such that 
3(ti0) . . . 3(ti,_ 

Xio . . . Xi, - X 

(note that x # xi,, . . . , x # xi,_ l, because xi,, . . . , xi,_, E free(3x$)) 

iff 

iff 

(since for i # io, . . . , is- ,, xi $ free(3x$) or xi = ti). 

In the following lemma we collect several "syntactic" properties of 
substitution. 

8.4. Lemma. (a) For every permutation 7c of the numbers 0, . . . , r, 
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(b) If 0 < i < r and xi = ti, then 

X 
I n  particular, cp - = cp. 

X 

(c) For every variable y, 

(i) if y a var ( t ::::::) then (y a var(tO) u . . . u var(t,)) or (y a var(t) 

and y # xo, . . .  , y  # x,); 

(ii) ifv free(cp :: : :) then (y t var(to) u . . . u var(tr)) or (y a free(cp) 

and y # xO, . . . ,  y # x,). 

PROOF. By induction, using 8.1 and 8.2. We give two typical cases of (c). 

t = x: Suppose 

In case x # xo, . . . , x # x, we have 

to . . . t, 
X = x; 

Xo . . . X, 

hence y = x and so (yavar(x) and y # x,, ..., y # x,). In case x = xi we 
have 

hence by assumption y a var(ti), that is, y a var(tO) u . . . u var(t,). 

cp = 3x$: Let s, io, . . . , z , - ,  ' and u be as in definition 8.2(e). Suppose 

Then 

tio . . . ti, - 
y # u and y a free ): 

Xio . . . Xi,- ,X 

thus, by induction hypothesis, y # u and (y a var(tio) u . . . u var(tis_ ,) u {u} 
ory E free(*), y # x,, . . . , y # x.  I S -  I) y # x). Since for i # i,, . . . , is-, we 
have xi $ free(*) or xi = ti, it follows that y a var(to) u . . . u var(t,) or 
y E free(*), y # xo, . . . , Y # x,. 
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8.5 Corollary. Suppose free(cp) c {x,, . . . , x,}, where we continue to assume 
that x,, . . . , x, are distinct. Then, for terms t o , .  . . , t ,  such that var(ti) c 

{u,, . . . , 0,- the formula 

t o . .  . t ,  
cp 

Xo . . . X, 

is in L,.  In particular, 

is a sentence. 

We call the number of connectives and quantifiers occurring in a formula 
cp the rank of cp, written rk(cp). More precisely: 

8.6 Definition. 

rk(cp) := 0, if cp is atomic, 

r k ( i  cp) := rk(cp) + 1, 

rk(cp v $) := rk(cp) + rk($) + 1, 

rk(3xcp) := rk(cp) + 1. 

From the definition of substitution one obtains immediately: 

8.7 Lemma. 

The quantifier "there exists exactly one" can be conveniently formulated 
with the use of substitution. Let cp be a formula, x a variable, and y the first 
variable which is different from x and does not occur free in cp. Then we 

Y write 3='xcp ("there is exactly one x such that cp") for 3x(q A Vy(cp - + 
X 

x - y)). It can easily be shown that for every interpretation 3 = (%, /3), 

a 3 k I='xcp iff there is exactly one a E A such that 3 - k cp. 
X 

8.8 Exercise. For n r 1 give a similar definition of the quantifiers "there 
exist exactly n" and "there exist at most n". 



56 111. Semantics of First-Order Languages 

8.9 Exercise. Let P andf  be binary and set x = v,, y = v,, u = v,, v = v,, 
and w = v,. Show, using definition 8.2 that 

U U U  
3~ ~ ~ ( P x u  A PyV) - = 3~ ~ ~ ( P x u  A PyU), 

XJ'V 

v f u v  
@I 3x ~ ~ ( P x u  A PyV) = 3~ ~ ~ ( P x v  A PyfUV), 

U V 

u x f'uv 
3~ ~ J ~ ( P x u  A PyV) = 3w ~ ~ ( P w x  A PL,~uv) ,  

X U U 

x f'xy 
(d) [Vx jy(Pxy A Pxu) v 3ufuu = x] = v v  3w(Pvw A Pvfxy) 

X U 

8.10 Exercise. Show that if x,, . . . , x, $ var(to) u . . . u var(t,) then 

8.11 Exercise. Give a calculus in which the derivable strings are exactly those 
of the form 

(Hint: For (a) and (c) in 8.1 one can choose the following rules: 

S,- 1 XO . . . X, t o . .  . t, s;-, 
, if f E S and f is n-ary. 

fs0 .  . . S,- I XO . . . X, t o . .  . t ,  j's,!, . . . s;- 1 



CHAPTER IV 

A Sequent Calculus 

In Chapter I we discussed the way in which a mathematician proceeds to 
develop a particular mathematical theory: In order to obtain an overview 
of the theory, he tries to find out what propositions follow from its axioms. 
To show that a proposition follows from the axioms he supplies a proof. 
Now that we have an exact definition of the notion of consequence, we are 
sufficiently equipped to give a more thorough discussion of the goals and 
methods in mathematics. If S is a symbol set and 0 is a set of S-sentences, 
we let be the set of S-sentences which are consequences of 0. A mathe- 
matical proof of an S-sentence cp from the axioms in @ shows that cp belongs 
to OP. For example, consider the set @,, of axioms for groups, where S = S,,. 
The proof of 1.1.1 then shows that the S,,-sentence Vx 3y y o x = e belongs 
to 0;. However, in view of the goals of the mathematician and the scope 
of his methods, a central question is whether every sentence in 0' can be 
proved from the axioms in @. In order to answer this we must analyse the 
notion of proof. But even if we limit ourselves to statements which can be 
formulated in first-order logic, we encounter difficulties at the very outset 
of such an attempt. The difficulties arise from the fact that mathematicians 
do not have an exact, fixed notion of proof. A mathematician does not learn 
what a proof is from a list of permissible inferences; rather he gets acquainted 
with this notion by doing concrete proofs in the course of his mathematical 
education. Furthermore, the collection of commonly accepted methods of 
proof is continually being expanded by the addition of new variants. Last, 
but not least, the development of new theories often includes the invention 
of new proof techniques. 

In view of this situation we shall not attempt to give an exact description 
of the whole spectrum of mathematical arguments. Rather we shall look at 
some concrete proofs and try to abstract from them certain basic constituents. 
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From these constituents we shall build up a precise notion of proof. It will 
turn out that they are sufficient to reconstruct all types of mathematical 
arguments. Thus we proceed as we did when we introduced the precise 
notion of mathematical statement, where instead of trying to give an exact 
description we used the first-order languages to give a clearly defined frame- 
work. In the case of first-order languages we shall merely be able to 
make it plausible that, in spite of their limited expressive power, these 
languages are in principle sufficient for the purpose of mathematics (cf. 
VII.2). By contrast, we can really prove that every sentence in cDF is provable 
from sentences in 0 in the precise sense. 

How can we single out basic constituents of mathematical deductions? 
If we analyse the proofs in Chapter I, for example, we see that those steps 
which are directly related to the meaning of the connectives, the quantifiers, 
and the equality symbol seem very elementary. We mention three examples. 
In a proof one can proceed from statements cp and $, which have already 
been obtained, to the conjunction (cp A $); similarly one can proceed from 
Pt to lx Px and from Px and x - t to Pt. We can represent these rules 
schematically as follows: 

cp> $ Pt Px, x - t 
(cp $1' 3x Px' Pt 

Written in this way, these constituents of proofs can be regarded as syntactic 
operations on strings of symbols. Adhering consistently to this point of view, 
we shall set up a list of deduction rules (in Sections 2 and 4) in this way 
obtaining a calculus 6. We shall motivate its form in $1. In $6 (with a preview 
in $1) we shall give the fundamental definition for the notion of a formula cp 
being formally provable from a set 0 of formulas. This definition will be based 
on the notion of derivability in 6. Formal provability is the syntactic counter- 
part of the semantic notion of consequence. 

Throughout this chapter we fix a symbol set S. 

1 Sequent Rules 

A mathematical proof proceeds from one statement to the next until it 
finally arrives at the assertion of the theorem in question. The individual 
statements depend on certain hypotheses. These can either be hypotheses of 
the theorem or additional hypotheses temporarily assumed in the course of 
the proof. For example, if one wants to prove an intermediate claim cp by 
contradiction one adds i c p  to the hypotheses; if a contradiction results 
then cp has been proved, and the additional assumption i cp is dropped. 

This observation leads us to describe a stage in a proof by listing the 
corresponding assumptions and the respective claim. If we call a nonempty 
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list (sequence) of formulas a sequent, then we can use sequents to describe 
stages in a proof. For instance, the stage with assumptions cp, . . . cp,-, and 
claim cp is rendered by the sequent cp, . . . cp,- ,cp. The sequence cp, . . . cp,-, 
is called the antecedent and cp the succedent of the sequent cp, . . . cp,- ,cp. 
From 11.4.3 it follows that the formulas which constitute a sequent are 
uniquely determined. In particular, the antecedent and the succedent are 
well-defined. 

In terms of sequents, the indirect proof sketched above can be represented 
schematically as follows: 

Thus (+) describes the following argument: If under the assumptions 
qo, . . . , cpn- and (the additional assumption) i c p  one can obtain both the 
formula $ and its negation ?$ (that is, a contradiction), then from the 
assumptions cp,, . . . , cp,-, one can infer cp. 

In the following we shall use the letters T, A , .  . . to denote (possibly 
empty) sequences of formulas. Then we can write sequents in the form 
l-cp$, A$, . . . and the scheme (+) as 

(As in (+), we use spaces between elements in a sequent merely for easier 
reading.) 

According to the concepts which we have developed so far, each step in 
a proof leads from certain stages already attained to a new one and hence 
from sequents to a new sequent. Thus it seems natural to represent deduction 
rules such as (+ +) as rules of a calculus 6, which operates on sequents 
(sequent calculus). Our conception of 6 is based upon [16]. For comparison 
the reader can find calculi of a different nature in [25]. 

Before listing the rules of 6 in the next section, some further remarks will 
be helpful. 

If, in the calculus 6, there is a derivation of the sequent rcp, then we write 
I- Tcp and say that rcp is derivable. 

1.1 Definition. A formula cp is formally provable or derivable from a set @ of 
formulas (written: @ b cp) if and only if there are finitely many formulas 
cp,, . . . , cp,-, in @ such that t cp, . . . cp,- ,cp. 

A sequent Tcp is called correct if T F cp, more precisely, if {* I is a member 
of T} k= cp. Since the rules of 6 are modelled after usual mathematical 
inferences, it will turn out that they are correct, i.e., when applied to correct 
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sequents they yield a correct sequent. As a result, every formula which is 
derivable from 0 also follows from 0. We convince ourselves of the correct- 
ness of each rule as soon as we introduce it. 

$2. Structural Rules and Connective Rules 

We divide the rules of the sequent calculus 6 into the following categories: 
structural rules (2.1, 2.2), connective rules (2.3, 2.4, 2.5, 2.6), quantzjier rules 
(4.1, 4.2), and equality rules (4.3,4.4). We start with the two structural rules. 

2.1 Antecedent Rule (Ant). 

cp i f  every member o f  I- is also a member of r' ( b r i e j y :  i f  I- c T'). rr cp' 

Note that a formula which occurs more than once in I- need only occur 
once in I-'. 

2.2 Assumption Rule (Ass). 

-, if cp is a member of r. 
rcp 

CORRECTNESS. (Ant): If a sequent Tcp is correct and r c T', then since 
r F cp, also r' k cp. (Ass) is correct since 0 k cp always holds for cp E 0. 

(Ass) reflects the trivial fact that one can conclude cp from a set of assump- 
tions which includes cp. (Ant) expresses the fact that one can re-order or add 
to assumptions. 

The first negation rule incorporates the commonly used method of proqf 
b y  cases. In order to conclude cp from I- one first considers the case where a 
condition $ holds and then treats the case where -I$ holds. That is, one 
first has $ and then i $ as an additional assumption. We can translate this 
argument into a rule for sequents as follows: 

2.3 Proof by Cases Rule (PC). 

I- $ c p  

l* cp 

CORRECTNESS. Suppose r $ F cp and I- i k cp hold. We must show that 
r F cp. Let 3 be any interpretation such that 3 F r, i.e., 3 F x for every 
member x of r. Either 3 k= $ or 3 F i*. If 3 F then since I-* F cp it 
follows that 3 k= cp. If 3 i$ one obtains the same result because 
I - l * i = c ~  

As the second rule concerning negation we take the schema (+ +) given ;,. X I .  
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2.4 Contradiction Rule (Ctr). 

l- l c p  $ 

l- 1 0  l* 

CORRECTNESS. Let r i cp k $ and r i cp k I $. Then there is no interpre- 
tation satisfying r icp ;  hence any interpretation satisfying I' must satisfy cp, 
i.e., r cp is correct. 

2.5 v -Rule for the Antecedent ( v A) 

The proof that this rule is correct is similar to that for (PC). 

2.6 v -Rules for the Succedent ( v S )  

' 

CORRECTNESS. Suppose I- k cp and let 3 k r. Then 3 k cp and hence both 
3 F (cp v $) and 3 I= ($ v 40). 

F' 

i 2.7 Exercise. Decide whether the following rules are correct: 

. (a) I- a1 $1 (b) l- cpl $1 

$3. Derivable Connective Rules 

Using the rules of 6 which we have formulated so far, we derive a number 
of sequents and introduce the notion of a derivable rule. In our first example 
we show that all sequents of the form (cp v 1 cp) are derivable. Our notation 
is similar to that used for derivations in previous calculi (cf. Chapter 11, $3). 

1. cp cp (Ass) 

2. cp (cp v i cp) ( v S) applied to 1 

(*) 3. l c p  l c p  (Ass) 

4. 1 cp (cp v 1 cp) ( v S) applied to 3 

5. (cp v i cp) (PC) applied to 2 and 4. 
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We consider the rule (TND) ("Tertium non datur" or "Law of the excluded 
middle ") 

(cp v 7 ) '  

which is not a rule of 6. If we add (TND) to 6 we do not enlarge the set of 
derivable sequents. For if we are given a derivation of a sequent which uses 
rules of 6 together with (TND), we can insert lines 1-4 of (*) directly before 
every sequent (cp v icp), which originally was introduced by (TND). In 
this way we obtain a derivation in 6. 

Rules for sequents, whose use in a derivation can be eliminated by a 
derivation schema like (*), and which therefore do not enlarge the set of 
derivable formulas, will be called derivable rules. Thus (TND) is a derivable 
rule. The use of such derivable rules contributes to the transparency of 
derivations in the sequent calculus. In the remainder of this section we give 
some useful examples, also including derivable rules with premises. 

3.1 Second Contradiction Rule (Ctr'). 

JUSTIFICATION. (The justification shows that the rule is derivable. In this 
case we have to show how one can use rules of G to obtain the sequent cp 
from (the ") r $ and r i $.) 

1. r $ premise 

2. r i premise 

3. r i cp $ (Ant) applied to 1 

4. r i cp i $ (Ant) applied to 2 

5. r cp (Ctr) applied to 3 and 4. 

3.2 Chain Rule (Ch). 

JUSTIFICATION. 

1 .  l- cP premise 

2. l- cp $ premise 

3. l- i cp cp (Ant) applied to 1 
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4. r lcp l c p  (ASS) 

5. r i c p  $ (Ctr') applied to 3 and 4 

6. I- $ (PC) applied to 2 and 5. 

3.3 Contraposition Rules (Cp). 

l- cp $ .  ( C )  r i p $ ;  (d) I- v l$ 

( a ) r  l+ i c p  j cp r ~ $ 4 0  r $ l c p '  

JUST~FICATION OF (a) 

1. r cp $ premise 

2. l- i $ cp (Ant) applied to 1 

3. r l$ cp (ASS) 

4. r i $ cp i cp (Ctr') applied to 2 and 3 

5. r l$ lcp lcp (ASS) 

6 .  r i$ i c p  (PC) applied to 4 and 5. 

premise 

premise 

(Ass) 

(Ant) applied to 2 

(Ass) 

(Ctr') applied to 5 and 4 

( v A) applied to 6 and 3 

(Ch) applied to 1 and 7. 

3.5 " Modus ponens " . 
r (cp + $1 r ( l c p  v $1 
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The following justification of 3.5 is analogous to the one given for 3.4. 

premise 

premise 

(Ant) applied to 2 

(Ass) 

(Ctr') applied to 3 and 4 

(Ass) 

( v A) applied to 5 and 6 

(Ch) applied to 1 and 7. 

Using the preceding rules we obtain: 

3.6 Lemma. Thef;7l lo~~ing sequents are derivable 

PROOF. For (al): 

1. cp cp (Ass) 

2. cp (cp v $) ( v S) applied to 1. 

(a2), (b), and (c) can be proved similarly by using ( v S), 3.4, or 3.5, respec- 
tively. 

3.7 Exercise. Show that the following rules are derivable. 

l- $ that is, l- $ 
l- (cp A $1' r l ( l c p  v l $ ) '  
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54. Quantifier and Equality Rules 

Now we give two sequent rules of 6 which involve the existential quantifier. 
The first is a generalization of a scheme already mentioned in the introduction 
to this chapter. 

4.1 Rule for 3-Introduction in the Succedent (3 S). 

(3s) says, in essence, that we can conclude 3xq from r if we have already 
obtained the "witness7' t for this existence claim. 

t 
CORRECTNESS. Suppose I- k q -. Let 3 be an interpretation such that 

X 

3 + T. By assumption 3 k cpL holds. Then by the substitution lemma, 
X 

3(t) 3 --- F cp and hence 3 k 3xq also. 
X 

0 

The second 3-rule is more complicated, but it incorporates a method of 
argument that is used frequently. The aim is to prove a claim $ from assump- 
tions cpO, . . . , cp,- , ,  3xq. (On our formal level to achieve the corresponding 
aim requires a derivation of the sequent 

(*> ' P o . .  . 'Pn-I~x(P $ 
in the sequent calculus.) 

According to the hypothesis 3xq, one assumes one has an example- 
' denoted by a new variable y-which "satisfies cp" and uses it to prove $. 

(In the sequent calculus this corresponds to a derivation of 

Y 
' P o . .  . ' P 1 1 - 1 ' P -  $ 3  

X 

where y is not free in (*).) Then one regards $ as having been proved from 
cpo, . . . , (P,- 3xV1. We can reproduce this argument in the sequent calculus 
by a rule which allows us to proceed from (**) to (*): 

4.2 Rule for 3-Introduction in the Antecedent (3A). 

r $ 
X 

if y is not free in r 3xq $. r 3x(p $ ' 

Cf. the proof of 1.1.1. with the use of y in line (1). 
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4' CORRECTNESS. Suppose T cp-  k $, y  is not free in r 3xcp $, and the 
X 

interpretation 3 = (91, p) is a model of 3xcp. We must show that 3 k $. 
a 

First, there is an a E A such that 3 - k cp. Using the coincidence lemma 
X 

we can conclude 3 - - k cp. (For x = y  this is clear; for x # y  note ( 3: 
that y + free(cp) since otherwise y~free(3xcp) contrary to assumption.) 

a 
Because 3 - ( y )  = a we have 

Y  

a Y 
and hence by the substitution lemma 3 - k cp -. From 3 k r and y  + free(r) 

Y  X 
a Y 

we get 3 - k r, again by the coincidence lemma; since Tcp - k $ we obtain 
Y  X 

a 
3 - k $ and therefore 3 k $ because y  + free($). 

Y  

The condition on y  in (3A) is essential. For example, the sequent 
Y  [ x  - f y ]  - y  = f y  is correct; however, the sequent 3x x = f y  y  = jy, 
X 

which we could obtain by applying (3A) while ignoring this extra condition, 
is no longer correct. This can be verified, say, by an interpretation with 
domain N, which interprets,f as the successor function n H n + 1 and y  as 0. 

t 
From a formula cp-  it is not in general possible to recover either cp 

X 

f y  Y  or t. For instance, the formula RJji can be written as Rx- or as Rfx-. 
X X 

Therefore, in applications of the rules (IS) and (]A), we shall explicitly 
mention cp and t or cp and y if they are not clear from the notation. 

The last two rules of 6 arise from two basic properties of the equality 
relation. 

4.3 Reflexivity Rule for Equality (-). 
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4.4 Substitution Rule for Equality (Sub). 

t 
CORRECTNESS. (=): trivial. (Sub): Suppose r F cp - and suppose 3 satisfies 

X 

t r and t t .  Then 3 k cp - and hence, by the substitution lemma, 
X 

3(t) 3(t1) 3 --- k cp; therefore since 3(t) = 3(t1) we have 3- F cp. A further 
X X 

t ' 
application of the substitution lemma yields finally that 3 p cp -. 

X 

4.5 Exercise. Decide whether the following rules are correct: 

fv  
cp- 

X .  

r Vxq 
, iff is unary, and f and y do not occur in r Vxcp. 

$5. Further Derivable Rules and Sequents 

X 
Since cp - = cp, we obtain from 4.1 and 4.2 (for t = x and y = x) 

X 

(b) rcp * .  . 
r 3xcp $' 

if x is not free in r $. 

A corresponding special case of (Sub) is 

5.2. 

r (D 
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We conclude with some derivable sequents dealing with the symmetry 
and the transitivity of the equality relation and its compatibility with func- 
tions and relations. 

5.5. For every R E S, R n-ary, 

5.6. For every f E S, f n-ary, 

JUSTIFICATION OF 5.3 THROUGH 5.6 

5.3: Let x be a variable not occurring in t o  or t,. 

1. to E to (=) 

to 
2. to -- t ,  t ,  E to (Sub) applied to 1 using to = to = [ x  = to] -. 

X 

5.4: Suppose x is a variable not occurring in t o ,  t , ,  or t 2 .  

1. to -- t ,  to -- t ,  (Ass) 

t  1 
2. to -- t ,  t ,  E t2 to E t2 (Sub) applied to 1 using to -- t ,  = [to r x] -. 

X 

5.5: For simplicity we assume that n = 2. Let x be a variable which does not 
occur in t o , t l ,  & , o r  t i .  

1. Rtotl  Rtot l  (ASS) 

2. Rtot l  to -- tb Rtb t ,  (Sub) applied to 1 using 

3. R to t l  to = tb t l  = t; Rtb t ;  (Sub) applied to 2. using 

tl Rtbt, = [Rtbx] -. 
X 

5.6 can be treated similarly. 
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5.7 Exercise. Show that the following rules are derivable: 

(all  I- "', 
r l 1 ~ 1 ~  r V X ~  

that is, 
t t ; (a21 

I- c p -  rep- cp ' 
X X 

r e :  $ 
Y 

X 
c p x  

(bl) (b2) if y is not free in Vxcp;  r vxv $ '  r V X ~ '  

' ' (b4) I- 
(b3) r vxv $ ? 

' if x is not free in r V X V '  

$6. Summary and Example 

For the reader's convenience we list all the rules of 6 together: 

(Ctr) r i c p  -I$ 
r cp 

t 
r c p x  X $ I- cp-  

X 

(IA) r 3~~ ,+v if y is not free in I x c p  $ (IS) r IXV 

In 1.1 we defined a formula cp to be derivable (formally provable) from 0 
(written: 0 k cp) if there are formulas cp,, . . . , cp,..., in 0 such that 
I- cp, . . . cp,- ,cp. From this definition we immediately obtain: 

6.1 Lemma. For all 0 and cp, 0 k- cp if and only if there is a finite subset Qo 
of' Q, such that 0, I- cp. 
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We have already more or less proved the correctness of 6: 

6.2 Theorem on the Correctness of 6. For all @ and cp, if @ I- cp, then @ t= cp. 

PROOF. Suppose @ I- cp. Then for a suitable r from @ (that is, a I- whose 
members are formulas from 0) we have I- r cp. As we showed, every rule 
without premises yields only correct sequents, and the other rules of 6 
always lead from correct sequents to correct sequents. Thus, by induction 
over 6, we see that every derivable sequent is correct, hence also r cp. There- 
fore r F cp and so @ F cp. 

We shall prove the converse of 6.2, namely, "if @ cp then @ I- cp", in 
the next chapter. In particular, it will follow that if cp is mathematically 
provable from 0, and hence @ != cp, then cp is also formally provable from 0. 
However, because of the elementary character of the rules for sequents, a 
formal proof is in general considerably more complicated than the corre- 
sponding mathematical proof. As an example we give here a formal proof 
of the theorem Vx 3y y 0 x - e (existence of a left inverse) from the group 
axioms cpo = Vx Vy Vz (x 0 y) o z r x o (y z), cpl = Vx x 0 e - x, and cp2 = 

Vx 3y x 0 y = e. For simplicity we shall write xy instead of x 0 y. The reader 
should compare the formal proof below with the mathematical proof of the 
same theorem in 1.1.1. The chain of equations given there corresponds to the 
underlined formulas in the derivation. For easier reading we use the de- 
rivable rules: 

I- to -- t l  I- to -- t l  
( S Y ~ )  and (Trans) I- t, - t o  I- t ,  - t 2  

The reader can easily justify them by means of 5.3, 5.4, and (Ch). 

1. cpo (P1 cpz 
2. cpo cpl cp* 

3. cpo cp, (P2 

4. cpo cpl cp2 e = yz 

5. cpo cpl cp2 yz = e 
6. cpo cpl cp2 yz - e 

Vx xe = x (Ass) 
(yx)e - yx 5.7(al) 

applied to 1 
setting t = yx 
( S Y ~ )  
applied to 2 

YX - (yx)(yz) (Sub) 
applied to 3 

e - yz 5.3 and (Ant) 
(Ant) and 
(Ch) applied 
to 5 and 4 

Vx Vy Vz (xy)z - x(yz) (Ass) 
Vu Vz (yu)z = y(uz) 5.7 (al) 

applied to 7 
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14. cpo cpl cp2 yz - e x(yz) - (xy)z 

15. cpo cpl cp2 yz = e YX - y((xy)z) 

16. cp, cp, cp, yz r e xy - e yx - y(ez) 

17. cpo cp, cp, yz = e xy = e (ye)z - ~ ( e z )  

20. cpO cp, cp, yz - e xy = e y e  5 y yx - yz 

21. cpo cp, cp2 yz = e xy - e ye r y 

9. cpo c p ~  cp2 Yz 5 e Vz (yx)z = ~ ( x z )  5.7(al) 
applied to 8 
setting t = x 

10. cpo 401 (42 YZ = e (yx)(yz) - y(x(yz)) 5.7(al) 
applied to 9 
settingt = yz 

11. cpo V I  cp2 Yz = e YX - Y(X(YZ)) (Trans) 
applied to 6 
and 10 

12. cpo cp, cp, yz = e x(yz) = (xy)z yx - y((xy)z) (Sub) 
applied to 11 

13. cpo c p ~  cp2 Yz - e ( x Y ) ~  = ~ ( Y z )  5.7(a2) 
applied 
three times 
to 7 
Gym) 
applied to 13 
(Ch) applied 
to 14 and 12 
(Sub) 
applied to 15 
5.7(al) 
applied 
three times 
to cpo; like 
steps 7-10 
Gym) 
applied to 17 
(Trans) 
applied to 16 
and 18 
(Sub) 
applied to 19 
5.7(al) 
applied to I 
setting t = y, 
and (Ant) 
(Ch) applied 
to 21 and 20 
(Sub) and 
(Ant) applied 
to 22 
(3s) applied 
to 23 
(3A) applied 
to 24 
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32. cpo cpl  cp2 XY = e 

34. cpo cp l  cp2 

5.7(b3) 
applied to 25 
(Ass) 
(3 S) applied 
to 27 
(3A) applied 
to 28 
5.7(b3) 
applied to 29 
5.7(b2) 
applied to 30 
(Ant), (Ch) 
applied to 3 1 
and 26 
(3A) and 
5.7(b3) 
applied to 32 
(Ant) and 
5.7(b4) 
applied to 33 

6.3 Exercise. Following the proof of 1.2.1, give a derivation for the sequent 

$0 $2 VX VY ( ~ ~ ( R X U  A Ryu) -r Vz (Rxz - Ryz)), 

where $, , $,, and $, are the axioms for equivalence relations (cf. 111.6.1). 

$7. Consistency 

The syntactic concept F of derivability corresponds to the semantic concept 
I= of consequence. As a syntactic counterpart to satisfiability we define the 
concept of consistency. 

7.1 Definition. (a) @ is consistent (written: Con @) if and only if there is no 
formula cp such that @ I- cp and @ F 1 cp. 
(b) @ is inconsistent (written: Inc @) if and only if @ is not consistent (that 
is, if there is a formula cp such that @ F cp and @ F i cp). 

First we show that from an inconsistent set one can derive any formula. 

7.2 Lemma. For a set of formulas @ the following are equivalent: 

(a) Inc @, 
(b) For all cp, @ F cp. 
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PROOF. (a) follows immediately from (b). Suppose, on the other hand, that 
Inc @ holds, i.e., @ F $ and @ F i $ for some formula $. Let cp be an arbi- 
trary formula. We show @ t- cp. First of all there exist I-, and I-, consisting 
of formulas from @ and derivations 

By combining these two derivations and adding to the resulting derivation, 
we obtain 

n. I-2 l$ 

n + 1. TIT2 $ (Ant) applied to m 

n + 2.  TIT2 i $ (Ant) applied to n 

n + 3 .  TIT2 cp (Ctr') applied to n + 1 and n + 2. 

Thus we see that @ k cp. 

7.3 Corollary. For a set ofjbrmulas @ the following are equivalent: 

(a) Con @ 
(b) There is a fbrmula cp which is not derivable from @. 

Since @ F cp if and only if @, F cp for a suitable finite subset @, of @, we 
obtain : 

7.4 Lemma. For all @, Con @ i f  and only i f  Con @,for  all finite subsets @, 
of @. 

7.5 Lemma. Every satisjiable set of formulas is consistent. 

PROOF. Suppose Inc @. Then for a suitable cp both @ k cp and @ F i c p ;  
hence, by the theorem on the correctness of 6, @ k cp and @ k i c p .  But 
then @ cannot be satisfiable. 

Later we shall need 

7.6 Lemma. For all @ and cp, 

(a) if not @ k cp, then Con @ u {i cp}; 
(b) if Con @ and @ k cp, then Con @ u {cp) ; 
(c) i f  Con @, then Con @ u {cp} or Con @ u {i cp). 
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PROOF. (a) Suppose not @I- cp, but @ u { i c p )  is inconsistent. Then for a 
suitable l- consisting of formulas from @, there is a derivation of the sequent 
l- i c p  cp. From this we obtain the following derivation: 

Hence @ I- cp, a contradiction. 
(b) Interchange the r6les of cp and i cp in (a) and note that @ t- i cp does 

not hold. 
(c) This follows directly from (a) and (b). 

In this chapter we have referred to a fixed symbol set S. Thus when we 
spoke of formulas we understood them to be S-formulas, and when dis- 
cussing the sequent calculus 6 we actually referred to the particular calculus 
6, corresponding to the symbol set S. In some cases it is necessary to treat 
several symbol sets simultaneously. Then we insert indices for the sake of 
clarity. To be specific, we use the more precise notation @ t-, cp to indicate 
that there is a derivation in 6, (consisting of S-formulas) whose last sequent 
is of the form l- cp, where l- consists of formulas from @. Similarly, we write 
Con, @ if there is no S-formula cp such that @ t-, cp and @ t-, i q2 

In the next chapter we shall need: 

7.7 Lemma. For n E N, let S, be symbol sets such that So c S1 c S2 c . . . , 
and let @, be sets of S,-,formulas such that Consn @,and Qo c @, c @, c . . . . 
Let S = U,,, S, and @ = U,,, @,. Then Con, @. 

PROOF. Assume the hypotheses of the theorem, and suppose Inc, @. Then, 
by 7.4, Incs Y must hold for a suitable finite subset Y of @. There is a k such 
that Y c @, and hence Inc, a,; in particular, 0, I-, u0 - 0, and @, t- , i uo 
= uo. Suppose we are given S-derivations for these two formulas. Since they 
contain only a finite number of symbols, all the formulas occurring there are 
actually contained in some ~ ~ m .  We may assume that m 2 k. Then both 
derivations are derivations in the Sm-sequent calculus and therefore Inc, @,. 
Since 0, c @, we then obtain Inc, vm @,, which contradicts the hypothmeses 
of the theorem. 

The reader should note that for two symbol sets S' 3 S, and for @ c LS and cp E LS, it is con- 
ceivable that @ F,. cp but not @ k s  cp, for it could be that formulas from L ~ '  - LS are used in 
every derivation of cp from @ in G,., and that (later on in the proof) these formulas are then 
eliminated from the sequents, say by application of the rules (Ctr), (PC), or (3s). In V.4. we shall 
show that this cannot, in fact, happen. 
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7.8 Exercise. Define (3V) to be the rule 

(a) Determine whether (3V) is a derivable rule. 
(b) Let 6' be obtained from the calculus of sequents B by adding the rule 

(3V). Is every sequent derivable in G'? 



CHAPTER V 

The Completeness Theorem 

The subject of this chapter is a proof of the completeness of the sequent 
calculus, i.e., the statement: 

(*) For all @ and cp, if @ k cp then @ I- cp. 

In order to verify (*) we show 

(**> Every consistent set of formulas is satisfiable. 

From this, (*) can be proved as follows: We assume for @ and cp that @ k cp, 
but not @ F cp. Then @ u (7 cp} is consistent (cf. Chapter IV, 7.6(a)) but not 
satisfiable, a contradiction to (**). 

To establish (**) we have to find a model for any consistent set @ of 
formulas. In $1 we shall see that there is a natural way to do this if @ is 
maximally consistent and if it contains witnesses. Then we reduce the general 
case to this one: In $2 for at most countable symbol sets, and in $3 for arbi- 
trary symbol sets. 

Unless stated otherwise, we refer to a fixed symbol set S. 

1 Henkin's Theorem 

Let @ be a consistent set of formulas. In order to find a model 3 = ('ill, P) of 
@, one can only use the "syntactical" information given by the consistency 
of @. Hence we shall try to obtain a model using syntactical objects as far 
as possible. A first idea is to take as domain A the set of all S-terms, to define 
P by ,6(vi) = ui ( i  E N) and R", say for unary R, by R" = {t  E A 1 Rt E @}. 



$1 .  Henkin's Theorem 77 

Then, if for instance Rx E @ and Rx -* Ry E @, we should have Ry E @, and 
if 3x Rx E @ there should be a "witness" t, i.e. a term t such that Rt E @. 
We see that in order to get a model of @ in this way, @ has to satisfy certain 
closure conditions. These are made precise in the following definition. It 
will turn out that they are sufficient to carry out the above idea. 

1.1 Definition. Let @ be a set of formulas. 

(a) @ is said to be maximally consistent if and only if Con @, and if every 
formula cp with Con @ u {cpj already belongs to @. 

(b) @ contains witnesses if and only if for every formula of the form 3xcp 

there exists a term t such that 3xcp -, cp - E @. ( 3 
If 3 is an interpretation, then the set @ = {cp E L ~ )  3 + cp) is maximally 

consistent: Since 3 + @, @ is satisfiable and hence by IV.7.5 it is consistent. 
Further, if Con @ u {cp), then i cp $ @; hence 3 + cp and so cp E 0. 

Conversely, with every maximally consistent set @ which contains wit- 
nesses we shall associate an interpretation 3, as outlined above such that 
3, + @. (Thus it turns out that every such @ is satisfiable.) 

1.2 Lemma. Let @ be maximally consistent and contain witnesses. Then, for 
all cp and $: 

(a) If @ t cp, then cp E @. 
(b) Either cp E 0 or l c p  E 0. 
(c) (cp v $ ) ~ @ f a n d o n l y i f c p c p @ o r $ E @ .  
(d) Z f ( c p - , $ ) € @ a n d c p E @ , t h e n $ € @ .  

t 
(e) 3xcp E @ if and only if there is a term t such that cp - E @. 

X 

PROOF. (a) If @ t cp, then by IV.7.6(b), Con @ u {cp), and hence cp E @ since 
Q is maximally consistent. 

(b) By IV.7.6(c) we have Con @ u {cp) or Con @ u {icp),  and therefore 
cp E @ or i cp E @. Since @ u {cp, i cp) is inconsistent, cp and i cp cannot 
both belong to 0. 

(c) Suppose first that ( v ) E .  If cp $ @ then i c p  E @. Since 
I-(cp v $) i cp $ (cf. IV.3.6(b)), we have @ t $ and from (a), $ E @. On the 
other hand, if, for example, cp E 0, then by IV.3.6(al), @ t (cp v $), and so 
by (a), (cp v $1 E @. 

(d) Assume that (cp -, $) (i.e. ( i c p  v $)) and cp belong to @. Since 
I - ( i c p  v $)q$ (cf. IV.3.6(c)), we obtain by (a) that $ belongs to 0. 

(e) First suppose that 3xcp E @. Since @ contains witnesses, there is a term 
r 

t such that E @, and therefore cp - E @ by (d). On the other 
X 

t 
hand, if cp - E @, then @ I- 3xcp (use (3s)) and by (a), 3xcp E @. 

X 
0 
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From 1.2 we shall obtain the result that for an interpretation 3 ,  the state- 
men t 

(*) 3kcp iff c p ~ @  

holds for all cp (and hence 3 k @) provided we can establish (1) and (2): 

(1) (*) holds for atomic cp. 
(2) For every element of the domain of 3 there is a term t such that 3(t) = a. 

Taking up our original idea we construct an interpretation 3 satisfying 
(1) and (2). For the domain of 3 we intended to take the set of terms, and to 
arrange the interpretation so that 3(t) = t (cf. (2)) and ( 3  k Rt, . . . t n - ,  
iff Rt, . . . t n - ,  E @) (cf. (1)). A slight difficulty arises concerning equations: 
If to - t ,  E @, then on account of (*), 3(to) = 3(t,) must hold even if to and 
t ,  are distinct terms. We overcome this difficulty by defining an equivalence 
relation on terms and then using the equivalence classes rather than the 
individual terms as elements of the domain of 3 .  

In the remainder of this section let @ be a maximally consistent set con- 
taining witnesses. We proceed to define the interpretation 3, = (%,, P,). 
First of all, we introduce a binary relation - on the set T~ of S-terms: 

1.4 Lemma. (a) - is an equivalence relation. 
(b) - is compatible with the symbols in S in the following sense: I f  

to  -- tb, . . . , tn- , - tb- ,, then for n-ary Y E  S, 

and for n-ary R E S, 

The proof uses the rule (=) and IV.5.3-5.6. We give two cases as examples: 

(1) - is symmetric: Suppose to - t,, that is, to = t, E @. By IV.5.3 we obtain 
@I- t ,  = to;hence,by 1.2(a),tI - t o ~ @ , i . e . , t ,  - to.  

(2) Let f be an n-ary function symbol from S, and assume to - 4 , .  . . , 
- t - t i.e., to r tb E @, . . . , tn-  , = f k -  , E @. Then by IV.5.6, 

@l- jio ... t n - ,  E jib ... t ;  ,, and by 1.2(a), Ji, .. . tn - ,  - j ib .  .. tb- ,. 0 
Let I be the equivalence class of t ,  

f := {t' E ~ ~ ( t  - f'}) 

and let T, be the set of equivalence classes, 
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T, is not empty. Define the S-structure 2, over T,, the so-called term structure 
corresponding to 0 ,  by the following clauses: 

1.5. For n-ary R E S, 
1 - R "to . . . in-, iff Rt, . . . tn- ,  E E. 

1.6. For n-ary f E S, 

f lm(iO, . . . , in- := f to . . . tn- ,. 
1.7. For c E S, 

- c=" := C, 

By 1.4 the conditions in 1.5 and 1.6 are independent of the choice of the 
representatives to, . . . , t,- ,, hence Rx" and f '" are well defined. 

Finally, we fix an assignment P, by 

We call 3@ = (2,, Pa) the term interpretation associated with E. 

1.9 Lemma. (a) For all t, 3,(t) = f. 
(b) For every atomic formula cp, 

PROOF. (a) By induction on terms. The lemma holds for t = x by 1.8 and for 
t = c b y 1 . 7 . I f t  = f t  , . . .  t ,-,, then 

3*(f t o  . . . t n -  1) = f 1"(3,(to), . . . , 3*(tn- 1)) 

= f 1 ( f 0  . . . , ) (by induction hypothesis) 

= f t  o . . . t n - ,  (by 1.6). 

3 ,kto= t ,  iff &,(to)= 3,(tl) 
iff lo = f, (by ( 4 )  
iff t o -  t ,  
iff to = t ,  E E .  

3,k Rto . . .  t n P 1  iff ~ ' " i ~  . . . in-, 
iff R t o . . . t n - l ~ E  (by 1.5). 

1.10 Henkin's Theorem. Let E be a maximally consistent set containing 
witnesses. Then for all cp, 

(*) 3,I=cp i$f c p ~ @ .  



80 V. The Completeness Theorem 

PROOF. We show (*) by induction on the number of connectives and quanti- 
fiers in cp, in other words, by induction on rk(cp) (cf. 111.8.6). If rk(cp) = 0, then 
cp is atomic, and (*) holds by 1.9(b). The induction step splits into three 
separate cases. 

3,k i$ iff not 3,k $ 
iff $ $ @  (by induction hypothesis) 
iff i $ ~ @  (by 1.2(b)). 

(2) cp = ($ v x): 

3, I= ($ v X) iff 3, k $ or 3, F x 
iff $ E @ or x E @ (by induction hypothesis) 

iff ($ v X) E @ (by 1.2(c)). 

i 
iff there is a term t such that 3, - k $ 

X 

3,(0 iff there is a term t such that 3, ---- k $ 
X 

(by 1.9(a)) 

1 
iff there is a term t such that 3, k $ - (by the substitution lemma) 

X 

t 
iff there is a term t such that $ -- E @ 

X 

(by induction hypothesis since rk = rk($) < rk(cp) (cf. 111.8.7)) 

iff 3x$ E @ (by 1.2(e)). 0 

1.11 Corollary. Let @ be a maximally consistent set containing witnesses. 
Then 3, k @ and therefore @ is satisjiable. 0 

$2. Satisfiability of Consistent Sets of Formulas 
(the Countable Case) 

By 1.1 1, every maximally consistent set of formulas containing witnesses is 
satisfiable. We prove that any consistent set @ of formulas is satisfiable by 
showing how to extend it to a maximally consistent set containing witnesses. 
In this section we settle the case of symbol sets which are at most countable. 
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In the following let S be at most countable. First we treat the case where only 
finitely many variables occur free in 0, i.e., where free(@) := u,,, free(cp) is 
finite. 

2.1 Lemma. Let @ c L~ be consistent and let free(@) bejinite. Then there is a 
consistent set Y such that @ c Y c LS and Y contains witnesses. 

2.2 Lemma. Let Y c L~ be consistent. Then there is a maximally consistent 
set O with Y c O c LS. 

2.1 and 2.2 enable us to extend a consistent set @ of formulas in two stages 
to a maximally consistent set of formulas containing witnesses. First of all, 
we extend @ to Y according to 2.1, and then Y to O according to 2.2. O is 
maximally consistent, and it contains witnesses because Y does. Hence by 
1.11, O is satisfiable, and, since @ c O, @is also satisfiable. To summarize we 
obtain: 

2.3 Corollary. Let @ be consistent, and let free(@) be jinite. Then @ is 
satisjiable. 0 

It still remains to prove 2.1 and 2.2. 

PROOF OF LEMMA 2.1. By 11.3.3, LS is countable. Let 3xo cp,, 3x,  cp,, . . . be a 
list of all formulas in LS which begin with an existential quantifier. Inductively 
we define formulas $, , $,, . . . , which we add to @. For each n, $, is a "witness 
formula" for 3xn cp, . 

Suppose $, is already defined for m < n. Since free(@) is finite, only 
finitely many variables occur free in @ u {$, 1 m < n )  u {3x,cpn). Let y, be a 
variable distinct from these. We set 

Now let 

Y := @ u {l,b0, . . .}. 

Then @ c Y and Y clearly contains witnesses. It remains to be shown that 
'I! is consistent. For this purpose put 

0, := @ u {$,lm < n ) .  

Then @, c @, c @, c . . .  and Y = U,,, @,. By IV.7.7 (for S = So = 

S ,  = . . .) the proof will be complete if we can show that each @, is consistent. 
We proceed by induction on n. 

Since @, = a, Con @, holds by hypothesis. For the induction step we 
assume that @, is consistent. Suppose, for a contradiction, that On+,  = 
Q, u {$,) 'is inconsistent. Then for every cp there exists l- over @, such 
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that t- r $,cp, i.e., 
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Thus there is a derivation, 

which, if cp is a sentence, we can extend as follows: 

(Ch) (with (Ant)) applied to m + 2 
and m 

(analogously) 

(3A) applied to m + 4 (y ,  does not 
occur free in r 3 x ,  cp, cp) 

(PC) applied to m + 5 and m + 3 

Hence we have @, t- cp. But then @, is inconsistent, as can be seen by taking 
cp = 30, u, r u, and cp = i 3v0 u, - 0,. This contradicts the induction 
hypothesis. 

PROOF OF LEMMA 2.2. Suppose Y is consistent and let cp,,  c p , ,  c p z ,  . . . be an 
enumeratiop of LS. We define sets of formulas On inductively as follows: 

and 

On u {cp , }  if Con On u {cp , }  
On+ ,  := { 

on otherwise, 

and we set 

First of all, Y c O. Clearly all 0, are consistent, and hence by IV.7.7, O is 
consistent as well. Finally, O is maximally consistent. For if cp E LS, say 
cp = cp,, and if Con O u {cp , } ,  then, since On c O, we obtain Con On u {cp , }  
and hence cp, E On+ ,, i.e., cp, E O. 
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Now we drop the assumption that free(@) is finite. 

2.4 Theorem. If S is at most countpble and @ c LS is consistent, then @ is 
satisjiable. 

PROOF. We reduce 2.4 to 2.3. Let co, c,, . . . be distinct constants which do 
not belong to S, and set 

For cp E LS denote by n(q) the smallest n such that free(cp) c {vo, . . . ,on- ,). 
Let 

(1) cp' := cp co . . . C,(,)- 1 and @':={cpfIcp~@). 
u o . . .  - 1 

First, by 111.8.5, 

Now it will suffice to show that 

(3) Con,, @', 

for then we know from the special case proved in 2.3 that @' is satisfiable, 
say by some interpretation 3' = ('U', pl). Using the coincidence lemma we 
can, by (2), assume that pl(v,) = c:', i.e., 3'(un) = 3'(c,) for all n E N. Then 
from (1) and the substitution lemma it follows that 3' is a model of @; hence 
@ is satisfiable. 

We prove (3) by showing that every finite subset @b of @' is satisfiable, 
and thus, by IV.7.5, consistent (with respect to S'). Let W0 = {cpb, . . . , cpA-, 1 , 
where <pO, . . . , cp,-, E 0. Since {cp, , . . . , cp, - ,) is a subset of @ it is consistent 
(with respect to S), and since only finitely many variables occur free therein, 
it is satisfiable (cf. 2.3). 

Choose an S-interpretation 3 = (a, p) such that 

and expand 'U to an S'-structure 'U' with c:' = 3(un) for n E N. From (I), 
(*), and the substitution lemma, it then follows that the Sf-interpretation 
(a', p') which results is a model of W0. 

The following exercise shows that the assumption "free(@) is finite" in 
2.1 is necessary. 

2.5 Exercise. Let S be arbitrary and let 

Show that Con @ holds and that there is no consistent set in L, which in- 
cludes @ and contains witnesses. 
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2.6 Exercise (A Special Case of the So-called Herbrand Theorem). Let S be 
a symbol set, and let cp and $ be quantifier-free formulas in which there is at 
most one free variable, namely x. Show that if 

then there is an n 2 1 and there are S-terms t o , .  . . , t,- ,, so,  . . . , s,-, such 
that 

(Hint:  Give an indirect proof making use of the set 

53. Satisfiability of Consistent Sets of Formulas 
(the General Case) 

In this section we no longer assume that S is countable. The r61e of 2.1 and 2.2 
will be taken over by 3.1 and 3.2. 

3.1 Lemma. Assume @ c LS and Cons @. Then there is an Sf 3 S and a Y 
such that @ c Y c LS' and Con,, Y, and Y contains witnesses with respect 
to S' (i.e.,,for euerj~,forrniila o f  the,form 3xcp E LS' there is a term t E T ~ '  such 

that 3xcp -+ cp - E Y ). ( 3 
3.2 Lemma. Assiime Y c LS and Con, Y. Then there is a set O sz~ch that 
Y c O c LS and O is maximally consistent with respect to S. 

We obtained 2.3 from 2.1 and 2.2; likewise we have from 3.1 and 3.2 the 
following: 

3.3 Corollary. If  @ c LS and Con, @, then @ is satisjiable. 

The following consideration will lead to a proof of 3.1. 
Let S be an arbitrary symbol set. Associate with every cp E LS a constant 

c, such that c, & S and c, # cj, for cp # $. Defining 

S* := S u { ~ , ~ , J 3 x c p  E LS) 
and 

c3x, 3xcp -+ cp --- 13xq E L" 
X 

one obtains for @ c L ~ :  
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3.4. I f  Con, @, then Con,, @ u W(S). 

PROOF. Suppose Cons@ holds. We show that every finite subset @: of 
@ u W(S) is consistent with respect to S* by proving that it is satisfiable. 

Let 

where @, c @, 3xoq0 , .  . . ,3x,-,q,-, E LS, and where ci stands for c,.~,~ 
For a suitable finite subset So c S, we have 

Further, since Con, @ holds, so does Con, @, , and hence, ofcourse, Con,, Qo. 
Because free(@,) is finite, it follows from 2.3 that @, is satisfiable. 

Let 3 = ( a ,  f l )  be an S-interpretation which satisfies @, and fix an element 
a in A. In order to satisfy @: we extend 3 to an S*-interpretation 3 *  as 
follows: For i < n we choose ai  E A such that 

and ai  = a otherwise. We extend 'U to an S*-structure 'U* by setting 

for i < n and interpreting the remaining constants of the form c,,, by a. Let 
3 *  = (a* ,  p). Since no constant c,,, occurs in 0 0 ,  it follows from 3 I= @, 
that 3* + 0, .  Furthermore 

ai (and this shows that 0: is satisfiable). In fact, if 3* + 3xiqi then 3 *  - + qi 
Xi 

by (*). Since ai  = 3*(ci) it follows by the substitution lemma that 3 *  k 

PROOF OF LEMMA 3.1. Let @ c L, and suppose Con, @. We define a symbol 
set S' and Y c L ~ '  with the following properties: 

(a) S c S' and @ c Y. 
(b) Con,. Y.  
(c) Y contains witnesses. 

For this purpose we define symbol sets S, and sets @,of formulas by induction 
on n: 

So := S and Sn+ I := (Sn)*. 

:= @ and @,+ I := 0, u W(Sn). 
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(Concerning the definition of (S,)* and W(S,), cf. the definitions of S* and 
W(S) preceding 3.4.) 

From the constrcction it follows that 

0, c LSn for n E N, 

We set S' := on,. S, and Y := U,,. @,. Then (a) holds. Using 3.4 one can 
easily show Consn @, by induction on n, and hence by IV.7.7, that Con,. Y. 
Therefore (b) also holds. Finally, Y contains witnesses: Suppose, for example, 
3xcp E LS'. Then, for a suitable n, 3xcp E L,". Thus for some constant c E S,, ,, 
the formula is an element of W(S,) and hence an element 

of Y.  0 

PROOF OF LEMMA 3.2. In the proof of 2.2 we made essential use of the count- 
ability of LS. For arbitrary S we no longer have this property at our disposal. 
We resort to Zorn's lemma, which we now state in a form suited to our 
purposes. The reader can find a proof of this lemma in books on set theory. 

Let M be a set and let U be a nonempty set of subsets of M. B is called a 
chain in U, if 'U c U, B # 12(, and if for Vo, V, E B we have Vo c V, or 
V, c Vo . Then Zorn's lemma says 

3.5. If for every chain B in U the union IJ,,, V belongs to U, then there is 
at least one maximal element in U, i.e., an element U ,  for which there is no 
U, E U such that Uo 5 U,. 

Now, for arbitrary S, let Y c LS and Con Y. Set M := LS and 

Clearly Y E U, so U is not empty. Let B be a chain in U. O ,  := um,, @ is an 
element of U because Y c O ,  c LS and Con, O,. (The consistency of 0, can 
be proved as follows: If O, is a finite subset of O,, say 0, = {cp,, . . . , cp,_ ,}, 
then there are @,, . . . , @,-, E B with cpi E Qi for i < n. Since B is a chain, 
we can number the Qi such that 0, c @, c . . . c @,- ,. Thus O, c @,- ,, 
and by Con, @,-, we have Con, O, .) 

Now we can apply Zorn's lemma (3.5) to U, thereby obtaining a maximal 
element O in U. From the definition of U we know that Y c O c Ls and 
Con, O. On  the other hand O is also maximally consistent. For if cp E LS and 
Con, O u {cp}, then O u {cp} E U; but since O is maximal, O = O u {cp}, in 
other words, cp E O. 
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54. The Completeness Theorem 

As already mentioned in the introduction to this chapter, we can obtain 
the completeness of the sequent calculus from 2.3 (for at most countable S) 
and from 3.3 (for arbitrary S): 

4.1 Completeness Theorem. For @ c LS and cp E LS, if @ q, then 
@ F s  CP. 

From 4.1 together with the theorem on correctness (IV.6.2) we have: 

F O ~ @ E L ~  and cp€LS, @k=q  i f f @ k s c p ,  

and from 3.3 and IV.7.5 we obtain: 

For @ c LS, Sat @ iff Con, @. 

In 111.5 we saw that the concepts of consequence and of satisfiability are 
actually independent of the particular choice of S. It follows from the results 
above that the concepts of derivability and consistency are also independent 
of S (cf. the footnote on page 74). Thus we can simply write ''k- " and 
"Con", omitting the subscript. 

4.2 Theorem on the Adequacy of the Sequent Calculus. 

(a) @ k q if @ F cp. 
(b) Sat @ iff Con @. 

4.3 Exercise (cf. exercise 111.2.1). If one transfers the rules (Ass), (Ant), (PC), 
(Ctr), ( v A), and ( v S) from the sequent calculus to the language of proposi- 
tional calculus (with propositional variables p , ,  p , ,  p , ,  . . . and connectives 
i and v),  one obtains a sequent calculus for propositional logic. For a set 
@ u {cc} of formulas in propositional logic let @ t cc have a definition similar 
to the definition for first-order logic. Further, write @ k= a if for every assign- 
ment s such that P[s] = T for all P E @, also a[s] = T. 

Prove the completeness theorem (and the correctness theorem) for 
propositional logic: 

@ k= cc iff @ I- cc. 

Historical Note. The completeness theorem is due to Godel [ll]. The 
program of setting up a calculus of reasoning was first formulated and 
pursued by Leibniz, although traces of it may be found in the works of 
earlier philosophers (e.g., Aristotle and Lull). At the beginning of this 
century, Russell and Whitehead developed a calculus, and within it, gave 
formal proofs for a large number of mathematical theorems. Then in 1928, 
Godel proved the completeness theorem. The method of proof used in this 
section is due to Henkin [13]. 



CHAPTER VI 

The Lowenheim-Skolem Theorem and 
the Compactness Theorem 

The equivalences of I- and + and of Con and Sat, respectively, form a bridge 
between syntax and semantics which allows us to transfer properties of t- 
to I= and of Con to Sat. In this way we shall prove several important results 
concerning and Sat, and at the same time we shall acquire a deeper insight 
into the expressive power of first-order languages. 

1 The Lowenheim-Skolem Theorem 

The domain of the model 3, defined in V.l consists of equivalence classes 
of terms. We use this fact to obtain the following theorem: 

1.1 LiiwenheimSkolem Theorem. Every satisfiable and at most countable 
set offormulas is satisfiable over a domain which is at most countable. 

PROOF. First let @ be an at most countable set of S-sentences which is satis- 
fiable and hence consistent. Since each S-formula contains only finitely 
many S-symbols, there are at most countably many S-symbols in @. Therefore 
we may assume, without loss of generality, that S itself is at most countable. 
Since Sat @ holds, so does Con @, and the proofs in V.l and V.2 show that 
there is an interpretation which satisfies @ and whose domain A consists of 
classes f of terms, where t ranges over T ~ .  Because TS is countable (cf. II.3.3), 
A is at most countable. This argument can easily be transferred from sets of 
sentences to sets of formulas; for, if @ is a set of S-formulas and 



92. The Compactness Theorem 89 

where c,, c,,  . . . , are new constants, then @ and @' are satisfiable over the 
same domains (cf. the proof of V.2.4). 

Vx Vy x r y is a sentence which has only finite models. For a unary 
function symbol,f, the sentence Vx Vy (,fx - j'y -+ x = y) A i V x  3 y . f ' ~  = x 
has only infinite models (since there is no function on a finite set which is 
injective but not surjective). 

If one re-examines the proof of the completeness theorem for the case of 
uncountable symbol sets, one obtains the following generalization of 1.1, 
which we formulate for readers who are familiar with the concept of 
cardinality : 

1.2 Downward LowenheimSkolem Theorem. Every satisfiable set of~formulas 
@ c L~ is sattsfiable over a domain o f  cardinality not greater than the cardi- 
nality of LS.  

In 1.1 (and 1.2) a certain weakness of first-order languages is already 
apparent. In the case of the symbol set S,:, for example, there cannot exist 
a set @ of sentences which characterizes the ordered field %< = 

(R, +, ., 0, 1, <) up to isomorphism (in the sense that exactly '9' and the 
structures isomorphic to %' are the models of @). Any such set @ of SG- 
sentences would be at most countable and satisfiable (since '9' I= @ must 
hold); then by 1.1 there would be an at most countable structure 'U such that 
'U I= @. But this could not be isomorphic to %< since R is uncountable. 

In analysis '9' is characterized up to isomorphism, say, by the axioms for 
ordered fields and the axiom on Dedekind cuts. Since the former can be 
formulated in LSZr, we see that the axiom on Dedekind cuts cannot be 
phrased in terms of SG-formulas. 

1.3 Exercise. If @ is an at most countable, satisfiable set of formulas and if 
the equality symbol does not occur in any formula of @, then @ is satisfiable 
over a countable domain. (Hint:  In the proof of Henkin's theorem use the 
set of terms instead of the set of classes of terms as the domain of 3,.) 

1.4 Exercise. Show that every at most countable set of formulas which is 
satisfiable over an infinite domain is satisfiable over a countable domain. 

52. The Compactness Theorem 

From the definition of t and Con we obtained directly (cf. IV.6.1 and 
IV.7.4): 

(a) @ I- q iff there is a finite @, c @ such that @, I- cp. 
(b) Con @ iff for all finite @, c 0, Con @, . 
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Using the adequacy theorem V.4.2 we can rephrase these results for the 
corresponding semantic concepts: 

2.1 Compactness Theorem 

(a) (,for the consequence relation) 

@ + cp iff there is ajinite @, c @ such that @, + cp. 

(b) (,for satisfiability) 

Sat @ iff for all finite 0, c @, Sat @,. 

The compactness theorem is so called because, in terms of a suitable 
topological reformulation, it says that a certain topology is compact (cf. 
Exercise 2.5). 

Wenow use thecompactness theorem to obtain variantsof the Lowenheim- 
Skolem theorem. 

2.2 Theorem. Let @ be a set of formulas which is satisjiable over arbitrarily 
largejinite domains (i.e., for every n E N there is an interpretation satisjjing 
@ whose domain isjinite and has at least n elements). Then @ is also satisjiable 
over an injinite domain. 

PROOF. Let 
Y :=@ u {cp,,12 i n}  

( ~ 2 .  was introduced in 111.6.3). Every interpretation which satisfies Y is a 
model of @ and has an infinite domain. Therefore we need only prove that Y 
is satisfiable. By the compactness theorem it is sufficient to show that every 
finite subset Y o  of Y is satisfiable. For each such Y o  there is an no E N such 
that 

(*) Y o  c @ u {cp,,12 - I n I no}. 

According to the hypothesis of the theorem there is an interpretation 3 
which satisfies @ and whose domain contains at least no elements. By (*), 
3 is also a model of Y o .  0 

2.3 Upward Liiwenheim-Skolem Theorem. Let @ be a set of formulas which 
is satisfiable over an injinite domain. Then for every set A there is a model o f  
@ which contains at least as many elements as A. ( W e  say that M has at least 
as many elements as A if there exists an injective map of A into M. )  

PROOF. Let @ c L" For each a E A let c ,  be a new constant (i.e., (; $ S) 
such that c, # c, for a # b. First, we show that the set 

of S u {c,la E A)-formulas is satisfiable. Because of the compactness 
theorem we can restrict ourselves to showing, for every finite n-tuple of 
distinct elements ao ,  . . . , a,-, E A, that 
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is satisfiable (cf. the argument in the previous proof). By hypothesis, there is 
an S-interpretation 3 = (23, P )  which satisfies @ and whose domain is 
infinite. Therefore there are n distinct elements bo ,  . . . , b , - ,  in B. We let 
c* ai := bi for i < n. Then the interpretation ((23, c :~ ,  . . . , can_ ,  * ), f l )  satisfies the 
set (+). Since every finite subset of Y is satisfiable, we can find an inter- 
pretation 3' which satisfies Y and hence also @. Let D be the domain of 3'. 
For a, b E A such that a # b we have 3' k= i c ,  = c,,. Hence 3'(ca) and 
3'(cb) are distinct elements of D. Therefore the map n :  A -+ D, where n(a) = 
Cl'(c,), is injective. Thus D has at least as many elements as A. 

The same idea is used in the proof of the following theorem, which we 
state here for readers familiar with the concept of cardinality. 

2.4 Theorem of LBwenheim, Skolem, and Tarski. Let @ be a set of formulas 
which is satisJiable over an injinite domain and let K be an injinite cardinal 
greater than or equal to the cardinality of @. Then @ hasa model of cardinality K .  

PROOF. Let @ and ti be given as in the statement of the theorem. Let A be a 
set of cardinality ti. We may assume that @ c L~ for a symbol set S of 
cardinality I ti. Then the symbol set S u (c,la E A} given in the proof of 
2.3 has cardinality ti as does the set of S u {c,la E A)-formulas. Again, let 
Y = @ u { i c ,  = cbla, b E A, a # b ) .  By 1.2 there is a model 3' of Y (and 
hence also of @) whose domain D has cardinality 5 ti. On the other hand, 
since i c ,  = c, E Y for distinct a, b E A, D has cardinality 2 K ;  hence its 
cardinality is exactly K .  0 

2.5 Exercise. Let S be a symbol set. For every satisfiable set @ of S-sentences 
let CU, be an S-structure such that CU, k @. Further, write 

X := {CU, I @ c L: , Sat @), 

and for every S-sentence cp set X, := {CU E X 1% + cp}. 
(a) Show that the system {X, 1 cp E L!) is basis for a topology on X. 
(b) Show that every set X, is closed. 
(c) Use the compactness theorem to show that every open covering of X has 

a finite subcovering, so that X is (quasi-)compact. 

53. Elementary Classes 

For a set @ of S-sentences we call 

Mods @ := {CU 1 is an S-structure and CU k @) 

the class of models of @. Instead of "ModS{cp)" we sometimes write 
"Mods q". 
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3.1 Definition. Let R be a class of S-structures. 

(a) R is called elementary iff there is an S-sentence cp such that R = Mods cp. 
(b) R is called A-elementary iff there is a set @ of S-sentences such that 

R = Mods @. 

Every elementary class is A-elementary. Conversely, because 

every A-elementary class is the intersection of elementary classes. 

From an algebraic point of view we can formulate the question of the 
expressive power of first-order languages as follows: Which classes of 
structures are elementary or A-elementary, i.e., which classes can be axio- 
matized by a first-order sentence cp or by a set @ of first-order sentences? 

Let us give some examples. 

3.2. The class ofJields (considered as S,,-structures) and the class of ordered 
Jields (considered as S,:-structures) are elementary. For example, the first 
class can be represented in the form ModSar cp,, where cp, is the conjunction 
of the field axioms in 111.6.5. Similarly, the class of groups, the class of equiu- 
alence structures and the class of partially deJined orderings (cf. 111.6.4) are 
elementary. 

Let p be a prime number. A field 5 has characteristic p if 

1 5 +  . . .  + 1 5 =  05 - 
p-times 

that is, if 5 satisfies the sentence 

. - I  + .. .  + 1 G O .  xp.-, " , 
p-times 

If there is no prime p for which 5 has characteristic p, 5 is said to have 
characteristic 0. For every prime p the field Z/(p) of the integers modulo p 
has characteristic p. The field '% of real numbers has characteristic 0. 

M0dsar(vF A xp) is the class ofJields of characteristic p. Hence this class 
is elementary. The class offields if characteristic 0  is A-elementary; it can be 
represented as ModS,,({cpF} u {i xpIp is prime)). The following considera- 
tion will show that it is not elementary. Let cp be an &,-sentence which is 
valid in all fields of characteristic 0, that is, 

By the compactness theorem there is an no (depending on cp) such that 

(40,) u { i xplp is prime, p < no3 k= cp. 
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Hence cp is valid in all fields of characteristic 2 no. 
Thus we have proved: 

3.3 Theorem. An &,-sentence which is valid in allJields of characteristic 0 is 
valid in allJields whose characteristic is suficiently large. 

We conclude from this that the class of fields of characteristic 0 is not 
elementary, for otherwise, there would have to be a sentence cp which is 
valid precisely in the fields of characteristic 0. 

As an instance of 3.3 one obtains the well-known algebraic result that two 
polynomials p(x) and o(x), whose coefficients are integral multiples of the 
unit element and which are relatively prime over all fields of characteristic 
0, are also relatively prime over all fields of sufficiently large characteristic. 
In order to verify this, one rewrites the statement that p(x) and o(x) are 
relatively prime as an S,,-sentence. In the case p(x) := 3x2 + 1 and o(x) := 
x3 - 1 one can take the sentence 

' 6  Here . . . -  x . x . x -  I "  stands for " . . . +  I = x . x . x "  (the symbol - 
does not belong to S,, !). 

3.4. The class of Jinite S-structures (for a Jixed S), the class of Jinite groups, 
and the class of finite Jields are not A-elementary. The proof is simple: If, for 
example, the class of finite fields were of the form Modsar @, then @ would 
be a set of sentences having arbitrarily large finite models (e.g., the fields of 
the form Z/(p)) but no infinite model. That would contradict 2.2. 0 

On the other hand, exercise 3.6 below shows that the corresponding 
classes of inJinite S-structures (groups, fields) are A-elementary. 

3.5. The class of torsion groups is not A-elementary. We give an indirect 
proof, assuming (for a suitable set @ of S,,-sentences) Modsgr @ to be the 
class of torsion groups. Let 

Y : = @ u  { l x c . . . o x  e l n 2  1). - 
n-times 

Every finite subset Yo of Y has a model: Choose an no such that 

Y 0 c @ u { ~ x o  o x - e l l  < n < n o } ;  
n-times 
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then every cyclic group of order no is a model of Yo if x is interpreted by a 
generating element. Now let ( 6 ,  P) be a model of Y. Then P(x) does not 
have finite order, showing that 6 is a model of @ but not a torsion group. 

3.6 Exercise. Let R be a A-elementary class of structures. Show that the 
class R w of structures in R with infinite domain is also A-elementary. 

3.7 Exercise. If A is a class of S-structures, @ c L! and R = Mods @, then 
@ is said to be a system of axioms for R. Show: 

(a) R is elementary if and only if there is a finite system of axioms for R. 
(b) If R is elementary and R = Mods @ then there is a finite subset @, of 

@ such that R = Mods @, . 

3.8 Exercise. A set @ of S-sentences is called independent if no cp E @ is a 
consequence of @ - ( c p ) .  Show: 

(a) Every finite set @ of S-sentences has an independent subset @, such that 
Mods @ = Mods QO. 

(b) If S is at most countable then every A-elementary class of S-structures 
has an independent system of axioms. (Hint: Start by defining an axiom 
system cp,, cp,, cp,, . . . such that k c p i + ,  -+ cpi for i E N.) 

3.9 Exercise. Let @be  the finite system of axioms for vector spaces expressed 
in terms of S = {F - , -, V +, ., 0, 1, 8, e, *) (cf. 111.7.2). Show: 

(a) For every n the class of n-dimensional vector spaces is elementary. 
(b) The class of infinite-dimensional vector spaces is A-elementary. 
(c) The class of finite-dimensional vector spaces is not A-elementary. 

54. Elementarily Equivalent Structures 

We begin by introducing two new concepts. 

4.1 Definition. (a) Two S-structures CU and 23 are called elementarily equiu- 
alent (written: CU - 23) if for every S-sentence cp we have CU k cp iff 23 cp. 

(b) For an S-structure CU let Th(CU) := { c p  E L: I CU k cp).  Th(CU) is called the 
(first-order) theory of CU. 

4.2 Lemma. For S-structures CU and 23, 

23 = CU 18 23 k Th(CU). 
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PROOF. If 23 = 'U then, since 'U + Th('U), also 23 + Th('U). Conversely, if 
23 + Th('U) then, given an S-sentence cp, we examine the two possibilities: 
(i) If 'U + cp then cp E Th(Ql) and hence 23 + cp. (ii) If not + cp, then 
i cp E Th('U); thus 23 + i cp and therefore not 23 + cp. 

In the following let 'U be a fixed S-structure. We consider 

(1) the class {23 123 z 'U) of structures isomorphic to 'U; 
(2) the class of structures which satisfy the same sentences as 'U, i.e., the 

class (23 123 = Ql) of structures elementarily equivalent to 'U. 

From the isomorphism lemma 111.5.5 it follows directly that isomorphic 
structures are elementarily equivalent, that is, 

4.3 Theorem. (a) 1f"U is infinite then the class (23 (23 E 'U} is not A-elementary; 
in other words, no injinite structure can be characterized up to isomorphism 
in a first-order language. 

(b) The class (23 123 - 'U} is A-elementary; in fact (23 123 = 'U) = 

Mods Th('U). Moreover, (23 123 = 'U} is the smallest A-elementary class 
which contains 'U. 

From 4.3 together with (+) we obtain the result that for infinite 'U the 
class (23 123 z 'U) must be a proper subclass of (23 123 = 'U} ; in particular: 

4.4 Corollary. For each injinite structure there exists an elementarily equiv- 
alent, nonisomorphic structure. 

PROOF OF 4.3. (a) We assume 'U to be infinite and @ to be a set of S-sentences 
such that 

@ has an infinite model, and hence by 2.3, it has a model 23 with at least as 
many elements as the power set of 'U. Hence 23 is not isomorphic to 'U, in 
contradiction to (*). 

(b) From 4.2 it follows immediately that (23123 = 'U} = Mods Th('U). 
Now, if Mods @ is another A-elementary class containing 'U, then 'U + @ 
and therefore 23 + @ for every 23 such that 23 - Ql; hence (23123 = 'U) c 
Mods @. 

4.3(b) shows that a A-elementary class contains, together with any given 
structure all elementarily equivalent ones. In certain cases one can use this 
fact to show that a class R is not A-elementary. To do this one simply specifies 
two elementarily equivalent structures, one of which belongs to 53, and the 
other does not. We illustrate this method in the case of archimedean fields. 
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An ordered field 5 is called archimedean if for every a E F there is a 
natural number n such that 

a < F I F +  . . . +  I F .  - 
n-times 

For example, the ordered field of rational numbers and the ordered field %' 
of real numbers are archimedean. We show that there is an ordered field 
elementarily equivalent to !I< which is not archimedean. Then we shall 
have obtained : 

4.5 Theorem. T h e  class o f  archimedean fields is not A-elementary. 

PROOF. Let 

Y = Th(!I') u (0 - < x , 1  < x , 2  < x, ...), 

where Q , i ,  2,.  . . stand for the S,,-terms 0, 1, 1 + 1 , .  . . . Every finite subset of 
Y is satisfiable, for example, by an interpretation of the form (!I<, P), where 
P(x) is a sufficiently large natural number. By the compactness theorem 
there is a model (23, p) of Y. Since 23 + Th(%'), 23 is an ordered field 
elementarily equivalent to %<, but (as shown by the element Pf(x)) it is not 
archimedean. 

The application of the compactness theorem in the preceding proof is 
typical and has already been used several times (cf. 2.3, 3.5). In each case the 
problem consists in finding a structure with certain properties which can 
be expressed in first-order language by means of a suitable set Y of formulas. 
To prove satisfiability of Y one employs the compactness theorem. In the 
preceding proof Y contains (in addition to Th(%<)) formulas which 
guarantee that there is an element which violates the archimedean ordering 
property. The compactness theorem says in this case that, from the existence 
of ordered fields with arbitrarily large "finite" elements, one can conclude 
the existence of an ordered field with an "infinitely large" element. We shall 
give some further examples. 

The axiom system H from 111.7.5 characterizes the structure % up to 
isomorphism. However, % cannot be characterized up to isomorphism by 
means of first-order formulas (cf. 4.4). Hence the induction axiom, being the 
only second-order axiom of H, cannot be formulated as a first-order formula 
or as a set of first-order formulas. 

A structure which is elementarily equivalent, but not isomorphic, to 
% is called a nonstandard model of arithmetic. The proof of 2.3 shows that 
there exists an uncountable nonstandard model of arithmetic. We now prove: 

4.6 Skolem's Theorem. There is a countable nonstandard model of arithmetic. 

PROOF. Let 

Y :=Th(%) u { i x  r - 0, i x  = - I ,  i x  = 2 , .  . .}. 
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Every finite subset of Y has a model of the form (%, P), where P(x) is a 
sufficiently large natural number. By the conipactness theorem there is a 
model (a, p) of Y, which by the Lowenheim-Skolem theorem we may 
assume to be at most countable. 'U is a structure elementarily equivalent to 
%. Since for m # n the sentence i m - = - n belongs to Th(%), 'U is infinite and 
hence it is countable. % and 'U are not isomorphic, since an isomorphism 7c 
from % onto 'U would have to map n = n*n to - n' (cf. (i) in the proof of III.5.5), 
and thus P(x) would not lie in the image of 7c. 

Considering the set Th(%') u { i x  = 0, - i x  = - 1 i x  = 2, . .  .), we 
obtain analogously: 

4.7 Theorem. There is a countable structure elementarily equivalent to %' 
which is not isomorphic to %<. ( I n  other words, there is a countable nonstandard 
model of Th(%').) 

What do nonstandard models of Th(%) or Th(%') look like? In the 
following we gain some insight into the order structure of a nonstandard 
model 'U of Th(%') (and hence also into the structure of a nonstandard 
model of Th('JL); cf. exercise 4.9). 

In %< the sentences 

Vx(0 - - x v 0 - < x), 

hold. They say that 0 is the smallest element, 1 the next smallest element after 
0, 2 the next smallest element after 1, and so on. Since these sentences also 
hold in 'U, the "initial segment" of 'U looks as follows: 

In addition, 'U co.ntains a further element, say a, since otherwise 'U and '% 
would be isomorphic. Furthermore, % and hence cU satisfy a sentence cp 
which says that for every element there is an immediate successor and for 
every element other than 0 there is an immediate predecessor. From this it 
follows easily that A contains, In addition to a, infinitely many other elements 
which together with a are ordered by < A  like the integers: 

If we consider the element a + A  a we are led to further elements of A :  
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The reader should give a proof of this and also verify that between every two 
copies of (Z, <") there lies another copy. 

The examples in this and the previous section show that there are impor- 
tant classes of structures which cannot be axiomatized in a first-order 
language. On the other hand, this weakness of expressive power also has 
agreeable consequences. For example, the argument establishing that the 
class of archimedean fields is not axiomatizable yields a proof of the existence 
of non-archimedean ordered fields; and the fact that the class of fields of 
characteristic 0 cannot be axiomatized by means of a single &,-sentence is 
complemented by the interesting result 3.3. Using similar methods, one can 
obtain structures elementarily equivalent to the ordered field %' of real 
numbers which contain, in addition to the real numbers, infinitely large 
elements and infinitely small positive elements (infinitesimals). Such struc- 
tures can be used in a development of analysis which avoids the E - 6- 
technique (nonstandard analysis; cf. [14], [23]). Thus we see that the first- 
order languages turn out to be a useful tool in various areas of mathematics. 
Semantic investigations of this kind belong to the subject called model 
theory. We refer the reader to [4] for further information. 

4.8 Exercise. Show that a sentence which is valid in all non-archimedean 
ordered fields is valid in all ordered fields. 

4.9 Exercise. Let the S,,-structure 'U be a model of Th(%). Let the binary 
relation < A  be defined as follows: 

For all a, b E A, a < A  b iff a # b and there is c E A such that 
a + A ~ =  b. 

Show that ('U, <A) is a model of Th(%'). 

4.10 Exercise. If QI is a model of arithmetic (that is, 'U k Th(%)) and if 
a, b E A, then a is said to be a divisor of b (written: a 1 b) if a .A c = b for a 
suitable c E A. Let Q be a set of prime numbers. Show that there is a model 
'U of arithmetic which contains an element a whose prime divisors are just 
the members of Q, that is, for every prime p: 

l A  + . . .  + l A l a  iff ~ E Q .  - 
p-times 

Conclude that there are uncountably many pairwise nonisomorphic count- 
able models of arithmetic. 

4.11 Exercise. Let QI = (A ,  <A)  be a partially defined ordering (cf. 111.6.4). 
We say that <* (or also ( A ,  <A)) has an i~Zfinite descending chain, if there 
areelementsa,,al,a,, . . .  inthefieldof <Asuchtha t . . .  <Aa ,  < A a l  <Aa,. 
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Show: 

(a) (N, <') contains no infinite descending chain; on the other hand, if A 
is a nonstandard model of Th(%'), then (A, <A)  contains an infinite 
descending chain. 

(b) Let < E S and @ c L:. Assume that for every m E N there is a model 2I 
of @ such that (A ,  <A)  is a partially defined ordering and the field of 
< A  contains at least m elements. Then there exists also a model 23 of @ 
such that (B, < B )  is a partially defined ordering containing an infinite 
descending chain. 



CHAPTER VII 

The Scope of First-Order Logic 

In the introductory chapter we realized that investigations into the logical 
reasoning used in mathematics require an analysis of the concepts of mathe- 
matical proposition and proof. In undertaking such an analysis, we were 
led to introduce the first-order languages. Further we defined a notion of 
formal proof which corresponds to the intuitive concept of mathematical 
proof. The completeness theorem then shows that every proposition which 
is mathematically provable from a system of axioms (and thus follows from 
it) can also be obtained by means of a formal proof, provided the proposition 
and the system of axioms admit a first-order formulation. 

In this chapter we discuss what has been achieved so far and what impli- 
cations this has for the foundations of mathematics. To start our discussion 
let us consider the following questions: 

(1) One goal of our investigations was a clarification of the notion of proof. 
However, we carried out mathematical proofs before the notion of proof 
was made precise. Are we not trapped in a vicious circle? Further, even 
if there are no problems of this kind in our approach, how can we then 
justify the rules of the sequent calculus G? 

(2) We realized, particularly in Chapter VI, that the first-order languages 
have certain deficiencies in expressive power. Hence the question: What 
effect does the restriction to first-order languages have on the scope of 
our investigations? 

We deal with the second question in $2. There we shall see that the first- 
order languages are in principle sufficient for the mathematics of today. 
Hence the following discussion, pertaining to the first question, applies, in 
fact, to the whole of mathematics. 
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1 The Notion of Formal Proof 

In answering question (1), we want to show that no mathematical proofs are 
needed to introduce the notion of formal proof. In our discussion we also 
investigate the nature of the sequent rules and consider possible means of 
justifying them. 

In $2 we shall argue that a finite set S of concretely chosen symbols 
suffices to represent the statements and arguments arising in mathematics. 
Therefore in this discussion we can specify the symbols as concrete signs; 
thus terms, formulas, and sequents are concrete strings of symbols and not 
abstract mathematical entities such as are, for example, formulas in a 
language whose symbol set is {c, 1 r E [W) (cf. 11. 1). 

The notion of formal proof is based on the manipulation of symbol 
strings such as terms, formulas, and sequents. These manipulations are 
governed by a series of calculi, like the calculus of terms and the sequent 
calculus. The application of rules in these calculi consists of simple syntactic 
operations. We illustrate this in the case of the sequent calculus. To clarify 
the aspect we have in mind let us start by a comparison with the rules of 
chess. 

The rules of chess permit certain operations on concrete objects, the chess 
pieces. Applying a rule, that is, making a move, consists of proceeding from 
one configuration of pieces to another. Each individual rule of chess is so 
simple that everyone who knows the rules-even if he is not a chess player- 
can carry out moves by himself, or can check moves to determine whether 
they were made according to the rules. 

A similar situation pertains in the case of sequent rules. Clearly the rules 
are motivated by the intended meanings (of 1, v , =, . . .), but their applica- 
tion does not require any knowledge of these meanings: one merely performs 
concrete syntactic operations on strings of symbols. Anyone who knows the 
rules-even if he is not a logician or a mathematician-can apply them and 
can check whether an application has been carried out correctly. Admittedly, 
when dealing with sequents, we have often relied on mathematical proposi- 
tions (for example, we invoked the unique decomposition of a sequent into 
formulas when speaking of the succedent). But this can be avoided if, when 
applying a rule, we not only note the sequent, but also keep a record of how 
the symbol strings in it were obtained. We give some examples. 

(a) Let 0, and 0, be sequents which occur in a derivation. One reads from 
the record accompanying the derivation that 0, was obtained by forming 
a string from (P,, . . . , (P, and that 0, was obtained similarly from 
$ho, . . . , $,. If one wants to apply the rule ( v A), for example, one must 
first check whether n = m 2 1, and whether the symbol strings cpi and 
$i agree for every i # n - 1. If so, one can apply ( v  A) by forming the 
symbol, string (P, . . .  (P,-,((P,-, v $,-,)q, from the components 
( P o , .  . . , ( P n - 2 ,  ( P n - l ,  $,-I,  qn, (, V ,  and ). Moreover, one notes in the 
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record that this symbol string was obtained from the components 
4'0,. . ., ( P n - 2 ,  ( ~ n - I  V d 'n - l ) ,  and (Pn 

(b) An application of the rule (-) consists of writing down a sequent of the 
form t - t ,  where the term t ,  for its part, has to be given by means of a 
derivation in the calculus of terms (cf. 11.3.1). 

(c) Similarly, when one uses the rule (3A) to proceed from the sequent 
Y Y l- cp - $ to the sequent l- 3 x c p  $, one must supply a derivation of cpxycp  - 
X X 

in the substitution calculus (cf. 111.8.1 I), and, for every x in l- 3 x c p  $, one 
must supply a derivation of y x in the calculus of nonfree occurrence for 
variables (cf. 11.5.2) in order to show that the condition " y  is not free in 

Y l- 3 x c p  $" is fulfilled. Then, starting from the sequent I- cp - $, one needs 
X 

only to write down the sequent l- 3 x c p  $. 

From these examples it becomes clear that an application of the sequent 
rules consists of purely syntactic manipulations which can be carried out 
without any reference to mathematical arguments. Since, by definition, a 
formal proof is just a sequence consisting of sequents, each of which is 
obtained by an application of a sequent rule to preceding sequents, it is 
obvious from our previous remarks that no mathematical proofs are needed 
in order to introduce the notion of formal proof. Thus our approach is not 
circular. The proofs we have given before defining the notion of formal 
proof, and the mathematical arguments we have used in building up the 
semantics, merely served the purpose of gaining insight into first-order 
languages and of motivating our development. 

However, a word of warning is in order when considering this reduction 
of the notion of proof to a triviality by the calculus of sequents: We have seen 
that no mathematical talent, only patience, is needed to verify a formal proof 
in accordance with the rules; but it is a completely different matter to under- 
stand the idea of a proof, not to speak of developing such ideas oneself. 
Likewise, in chess there is also a great difference between knowing the rules 
and being able to checkmate a skillful opponent. Thus when determining 
the notion of formal proof we did not really touch upon the more creative 
part of mathematical activity (and this includes not only the development of 
proof ideas, but also the introduction of adequate concepts, setting up suitable 
systems of axioms, and finding new interesting conjectures). 

Does our formal notion of proof provide a justzjication of common 
mathematical reasoning? Certainly not; for we have merely imitated 
methods of proof in the framework of a precisely defined language. However, 
we can at least claim that the sequent rules correspond to the normal usage 
of connectives, quantifiers, and equality in mathematics. For example, the 
v -rules reflect the use of the inclusive "or ", according to which the disjunc- 
tion of two propositions is true if and only if at least one of the propositions 
is true. Admittedly, such usage of "or" rests on certain assumptions; for 
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example, it must be meaningful to speak of the truth or falsehood of a 
mathematical proposition, and every such proposition must be either true 
or false (tertium non datur). In traditional mathematics (which in this 
regard is also called classical mathematics) these assumptions are accepted. 
Thus the rules of the sequent calculus are based upon the classical usage of 
the logical connectives. 

Some mathematicians engaged in foundational questions, among them 
intuitionists, do not share the classical point of view. An intuitionist associates 
with the assertion of a mathematical proposition the requirement that it be 
proved in a "constructive" way. For instance, an existential statement must 
be proved by presenting an example, and a disjunction must be proved by 
establishing one of its members. To illustrate this we consider the following 
two statements. 

A :  Every even number 2 4  is the sum oftwo primes (Goldbach's 
conjecture); 

not A: Not every even number 2 4  is the sum of two primes. 

From the classical point of view (A or not A) is true. However, an intuitionist 
cannot assert (A or not A) since neither the proposition A nor the proposition 
(not A) has hitherto been proved (even using classical methods). 

This example already shows that mathematics as pursued by an in- 
tuitionist, the so-called intuitionistic mathematics (cf. [17]), differs consider- 
ably from classical mathematics. Intuitionists investigate "mental mathe- 
matical constructions as such, without reference to questions regarding the 
nature of the constructed objects, such as whether these objects exist inde- 
pendently of our knowledge of them" (cf. [17], p. 1). By contrast, some 
mathematicians adopt the classical point of view from the conviction that 
"the objects in mathematics, together with the mathematical domains, 
exist as such, like the platonic ideas" ([24], p. l), i.e., that propositions 
concerning these objects describe properties which either do or do not hold, 
and hence are either true or false. 

We see from this discussion that the possibilities for justifying methods 
of mathematical reasoning (and specifically for justifying a proof calculus) 
depend essentially on epistemological assumptions. We shall continue to 
adopt the classical point of view. 

52. Mathematics Within the Framework of 
First-Order Logic 

In this section we wish to discuss the latter question raised at the beginning 
of the chapter: How serious is the restriction to first-order languages? 

To treat this question we start with the example of arithmetic. In this 
case, the weakness of the expressive power of first-order languages manifests 
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itself in the fact that the structure 'JZ, = (N, o, 0) (cf. 111.7.3) cannot be charac- 
terized up to isomorphism in L'".''. On the other hand, according to 
Dedekind's theorem, %, can be characterized in a second-order language by 
the Peano axioms (cf. 111.7.4): 

Let us call a structure which satisfies (P1)-(P3) a Peano structure. Then we 
can formulate Dedekind's theorem as follows: 

2.1. Any two Peano structures are isomorphic. 

Since Peano structures cannot be characterized in the first-order language, 
one might suspect that the result 2.1 cannot be formulated in the framework 
given by first-order logic, and in particular, that its proof in 111.7.4, which 
involves (P1)-(P3), cannot be carried out within this framework. Never- 
theless this can be achieved as we now show. 

First let us note that in 2.1 a statement is made about {CT, 0)-structures. 
We want to interpret 2.1 as a statement about a domain which comprises 
as elements all Peano structures and also with any two such structures an 
isomorphism between them. Furthermore this domain should contain the 
elements and subsets of Peano structures, since these also play a r81e in the 
formulation of (P1)-(P3) and in the proof of 2.1. 

In order to avoid drawing arbitrary boundaries and to enable us to 
apply our discussion to other propositions besides 2.1, we shall consider as 
domain the totality of all objects which are treated in mathematics; this we 
shall call the (mathematical) universe. The universe contains not only 
"simple" objects, such as the natural numbers or the points of the euclidean 
plane, but also "more complicated " objects, such as sets, functions, structures, 
or topological spaces. A mathematician assumes in his arguments that this 
universe has certain properties: for example, that for every two objects al  
and a, the set {a, ,  a,) exists, likewise for any two sets M I ,  M ,  the union 
M I  u M , ,  and for every injective functionf the inversef ' .  Mathematical 
statements can then be regarded as propositions about the universe. From 
this point of view, 2.1 says that for every two Peano structures 'U and 23 in 
the universe there is another object in the universe which is an isomorphism 
between 'U and 23. 

Now it is possible to present in a suitable first-order language a rather 
simple set of sentences expressing all the properties of the universe which 
mathematicians use. Proposition 2.1 can also be formalized in this language. 
In other words, 2.1 can be formalized as a proposition about the universe 
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in a first-order language L~ appropriate to the universe, just as the proposi- 
tion "there is no largest real number" can be formalized as a proposition 
about the structure (R, < ") in the language L"' appropriate to (R, < "). 

We carry out some steps of this idea more carefully: A preliminary analysis 
of the totality of mathematical objects leads us to a symbol set which is 
suitable for the universe. In a second step we present parts of a system @, 
of axioms which express those properties of the universe used in mathematics. 
(A complete presentation of such a system @, follows in $3.) Finally, we 
indicate how to obtain a first-order formalization of 2.1. 

When introducing the universe, we spoke of "simple" objects (numbers, 
points,. . .) and "complex" objects (sets, functions, . . .). For the sake of 
simplicity we make use of the empirical fact that the whole spectrum of 
"complex" objects can be reduced to the concept of set. (We shall carry out 
this reduction for ordered pairs and functions.) We call the "simple" objects 
urelements. Thus, the universe contains only urelements and sets. The sets 
consist of elements which are either urelements or else sets themselves. 
Therefore @, essentially collects basic properties of sets and hence is called 
a system o/' axioms for set theory. 

We use the unary relation symbols _U (". . . is an urelement") and 
(". . . is a set") to distinguish between urelements and sets, and we use the 
binary relation symbol - E for the relation "is an element of .  . ." . Thus we are 
led to the symbol set S := {_U, M, 5). 

Now we give four axioms from @, which formalize simple properties of 
the universe. 

(AO) Vx(Ux v Mx) 
"Every object is an urelement or a set ". 

(Al) Vx i (Ux A _Mx) 
"No object is both an urelement and a set ". 

(A2) Vx Vj>((_Mx A _My A Vz(z 5 x - z _E y)) -+ x = y) 
"Two sets which contain the same elements are equal". 

(A3) Vx Vy 3z(Mz - A Vu(u 5 z ++ (11 - x v u - y))) 
"For every two objects x and y, the pair set {x, y) exists". 

The set z, whose existence is guaranteed by (A3), is uniquely determined 
by (A2). Repeated application of (A3) yields the existence of the set {{x, x), 
{x, y ) ) .  This set is normally written (x, y) and called the ordered pair of x 
and y. It is not difficult to show from (A0)-(A3) that 

(x, y) = (x', y') iff x = x' and y = 2'. 

Ordered triples can then be introduced by 
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In order to obtain formalizations which are easier to read, we introduce a 
number of abbreviations. 

( c )  x c  y fo rMx A _My A V z ( z 5 x - + z g y ) .  
( " x  is a subset of y")  

(Instead of treating " x  c - y" as an abbreviation for a formula of L~ we could 
have added the binary relation symbol c to S and expanded @, by adding 
the axiom 

V x  V y ( x  5 y - ( M x  - A M J J  - A V z ( z  5 x -+ z  g y))). 

Both approaches are equivalent, as we shall see in VIII.!.) 

(OJP) OJPzxy for M z  - A Vu(u  5 z  o ( M u  A (Vo(u 5 u o u = x)  
V VU(U 5 U ++ ( 0  r X V U = y) ) ) ) )  

(" z  is the ordered pair of x and y" ) 

( O T )  0-Tuxyz for M u  A 3u(&Puuz A E u x y )  
( "u  is the ordered triple ( x ,  y, z )  as defined above") 

( E )  E u x y  for M u  A 3z(z  5 u A - O P z x y )  
("The ordered pair (x, y )  is an element of 11") 

( F )  f u  for M u  A V z ( z  5 u -+ 3 x  3 y g P z x y )  A 

V x  V y  Vy l ( (Euxy  A Euxy')  -t y - y') 
("u is a function, that is, a set of ordered pairs (x ,  y) ,  where y is the 

value of u at x" ) .  

By means of ( F )  the concept of function is reduced in the usual manner to 
that of set: a function f : A -t B is considered as the set {(x,  f (x ) )  I x E A) ,  
which is also referred to as the graph of,f. 

( D )  Quu for - Fu A M u  A V x ( x  5 u o ~ ~ E U X J J )  
("u is the domain of the function u" )  

(&) R_uv for _Fu A M u  A V y ( y  5 u - 3 x E u x y )  
("v is the range of the function u"). 

For simplicity we regard a { g ,  0)-structure as an ordered triple (x ,  y, z )  
consisting of a set x ,  a function y :  x -+ x, and an element z  of x. Then the 
following abbreviation "PSu"  expresses that u is a Peano structure, whereby 
parts (I), (2) ,  and ( 3 )  areformulations of the Peano axioms (Pl), (P2) ,  and 
(P3) ,  respectively. 

( P S )  f l u  for 3 x  3y  3z(O_Tuxyz A M x  A z  5 x 
A F ~  - A D y x  A 3v(Ryv A u c : x ) ~  

( 1 )  V w  i E y w z  A 

(2) v w  ~ w ' v v ( ( E y w u  A Eyw'v) -t w - w') A 

( 3 )  VX' ( (X '  5 X A Z 5 X' 

A b'w Vv((w g x' A Eywu) -t u 5 x')) -t x' = x)). 
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The final abbreviation "Iwuu'" - states the property that w is an isomorphism 
of the Peano structure u onto the Peano structure u': 

( I _ )  _Iwuuf for - PSu A PSu' - A Fw 
A 3x 3y 32 3x' 3y' 3z'(O_Tuxyz A OTu'x'y'z' - 
A Dwx - A Rwx' 
A Vr Vs Vv'((_Ewrv1 A _Ewsv1) -+ r - s )  
A Ewzz' A Vu Vv' Vr((_Eyur A _Ewvv1) -+ 3r1(Ewrr' - A Ey'v'r'))). 

Thus the following is a formalization of 2.1 

Clearly, (+) is a {Q, M, 5)-sentence. So we have attained our goal of 
formulating 2.1 within a first-order language. This was possible because we 
did not distinguish between different types of mathematical objects, such 
as natural numbers and sets of natural numbers, but simply treated all 
objects in the universe as first-order ones (compare (P3) and (3) in (PS)) .  
We can achieve even more: Recall that the system @, (which we have given 
only in part) captures all properties of the universe needed for mathematical 
reasoning. By rewriting in L~ the proof of Dedekind's theorem 2.1 (cf. 1II.7), 
one can obtain aproof that leads from axioms of @, to the assertion (+) using 
only sequent rules. Hence we have: 

This procedure can be generalized : 
Experience shows that all mathematical propositions can be formalized in 

LS (or in variants of it), and that mathematically provable propositions have 
formalizations which are derivable from @,. Thus it is in principle possible to  
imitate all mathematical reasoning in LS using the rules of the sequent calculus. 
In this sense,Jirst-order logic is suficient for mathematics. At the same time 
this experience shows that the properties of the universe which are expressed 
in @, are a sufficient basis for a set-theoretic development of mathematics. 
Thus 0, is aformalization of the set-theoretic assumptions about the universe 
upon which the mathematician ultimately relies. Since these set-theoretic 
assumptions can be viewed as the background for all mathematical con- 
siderations, we call @, , in this connection, a system of axioms for background 
set theory. 

On the other hand, @, itself, like any other system of axioms, can also 
be the object of mathematical investigations. For example, one can ask 
whether @, is consistent or study the models of @,. Such a model has the 
form 2I = ( A ,  _UA, _MA,  gA) and is, like every structure, an object of the 
universe, that is, an object in the sense of background set theory. The same 
is true of the domain A.  Thus as an object of the universe, A is distinct from 
the universe. (In particular the universe is not the domain of a model of @, .) 
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Nevertheless, in a model 'U = ( A ,  _UA, MA, g A )  of @,, all set-theoretical 
statements hold which are derivable from @, ; but note that, for example, 
a b (for a ,  b E A) does not mean that a is an element of b, i.e., that a E b 
holds. 

Let us emphasize once again that @, plays two rales: It is both an object 
of mathematical investigations and a formalized description of basic proper- 
ties of the universe. In other words, it is both a mathematical object and a 
framework for mathematics. 

Thus we have two levels, "object set theory" and "background set theory", 
which must be carefully distinguished. Many paradoxes arise from a con- 
fusion of these two levels. In we shall discuss this in more detail. For the 
present we merely mention Skolem's paradox. It is well known that there are 
uncountably many sets (for example, there are uncountably many subsets of 
N). This fact can be formalized by a sentence cp, which is derivable from @, . 
By the Lowenheim-Skolem theorem there is a countable model 'U of @, 
and hence of cp. The countable model 2l thus satisfies a sentence which says 
that there are uncountably many sets in 'U! 

53. The Zermelo-Fraenkel Axioms for 
Set Theory 

We now present in full a system of axioms for set theory. For a more detailed 
exposition we refer the reader to [8] or [9]. 

In $2 we assumed that the universe consists only of sets and urelements, 
and we saw with the help of set-theoretic definitions for concepts such as 
"ordered pair" and "function" that this assumption is really no restriction. 
Furthermore, experience has shown that one can even replace the urelements 
arising in mathematics by suitable sets. Hence in what follows we shall 
assume that the universe consists only of sets. Later, as an example, we shall 
give a set-theoretic substitute for the natural numbers. 

Since we are abandoning the use of urelements, the symbols U and M 
become superfluous. Therefore we formulate the axioms in L'", where the 
variables are intended to range over the sets of the universe. The resulting 
system of axioms, called ZFC, is originally due to germelo and Fraenkel, 
and includes the axiom of choice. - 

ZFC contains the axioms EXT (the axiom of extensionality), PAIR (the 
pair set axiom), SUM (the sum set axiom), POW (the power set axiom), INF 
(the axiom of'infinity), AC (the axiom of choice), and the axiom schemes SEP 
(separation axioms) and REP (replacement axioms).' 

EXT: Vx Vy(Vz(z E x - z E y )  -+ x = y).  
(Two sets ;hich contain the same elements are equal.) 

Often one also includes the so-called axiom of regularity. 
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SEP: For each q(z, x,,, . . . , x,- ,)* and arbitrary distinct variables x, y 
which are also distinct from z and the xi,  the axiom 

Vxo . . .  V X , - ~  ~ x ~ J ' ~ z ( z _ E ~ c * ( z ~ x  A ~ ( Z , X ~ , .  .., X.-1))). 

(Given a set x and a property P which can be formulated by an 
(5)-formula, the set {z E X I Z  has the property P) exists.) 

PAIR: VxVy 3zVw(wgzo(w - x v w - y)). 
(Given two sets x, y, the pair set (x, y} exists.) 

SUM: Vx 3y Vz(z - E y ++ 3w(w 5 x A z 5 w)). 
(Given a set x, the union of all sets in x exists.) 

POW: vx 3y Vz(z 5 y 0 Vw(w 5 z -+ w E_ x)). 
(Given a set x, the power set of x exists.) 

In order to formulate the remaining axioms more conveniently, we in- 
troduce some defined symbols. The considerations in VIII.l show that 
formulas which contain these symbols can be regarded as abbreviations of 
{s)-formulas. The symbols and their definitions are: 

@ (constant for the empty set): 

Vy(% - y o V z  i z  E y). - - 

c - (relation symbol for the subset relation): 

VX Vy(x y ++ VZ(Z 5 X -+ Z 5 y)). 

{, - - } (function symbol for pairing): 

Vx Vy Vz({x, - y) - = z o Vw(w 5 z o (w r x v w = y))). 

(For the term {y, y} we often write the shorter form {y}.) - - 

g (function symbil for the union): 

VxVyVz(xg y - z o v w ( w ~ z c - , ( w g x  - v W E  y))). 

n - (function symbol for the intersection): 

V X V ~ V Z ( X ~ ~  Z + + ~ W ( W E Z ~ ( W E X  A  WE^))). 

P (function symbol for the power set operation): - 
vx Vy(Px y ++ Vz(z E - y ++ z 5 x)). 

The remaining axioms of ZFC are as follows: 

INF: 3x(@ _E x A Vy(j1 g x + j1 u- { y )  5 x)). 
( ~ h & e  exists an infinite set, -namely a set containing a ,  { a } ,  
m, UzvI, . . . .P 

Here and in the following we write $(yo,.  . . , y,_,) to indicate that the variables occurring 
free in $ are among the distinct variables yo ,  . . . , y,- ,. 

At a first glance it might be more natural to demand that there exists a set containing 0, {a), 
{{a)), . . . . This is Zermelo's original version. However, our formulation of INF  (due to von 
Neumann) has become customary because of numerous advantages. 
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REP: For each q(x, y, x,, . . . , x,_,) in L'" and all distinct variables u, v 
which are also distinct from x, y, x,, . . . , x,-, the axiom 

(If for parameters x,, . . . , x,-, the formula q(x, y, xo,  . . . , x,- l )  
defines a map x H y, then the image of a set is again a set.) 

AC: V x ( ( 1 a g x  - A VuVu((u5x A u g x  A i u - v ) + u f i v = % ) )  - 
-+ 3 y  Vw(w 5 x -+ 3='zz 5 w n - y)). 

(Given a set x of nonempty pairwise disjoint sets, there exists a set 
which contains exactly one element of each set in x.) 

Within the framework of ZFC one can now introduce the notions of 
ordered pair, ordered triple, function, etc. as we did in the preceding section. 
Moreover, as already mentioned above, experience shows that ZFC also 
permits one to substitute suitable sets for urelements, as we demonstrate 
below in the case of the natural numbers. Thus the insight stated (for @,) in 
the previous section also applies to ZFC: All mathematical propositions can 
be formalized in L(", and provable propositions correspond to sentences 
derivable from ZFC. 

We now effect a set-theoretical substitute for the natural numbers. 
Moreover in our present framework we exhibit a Peano structure which 
can play the r61e of %,. 

The sets 0 := a, 1 := { a } ,  2 := { a ,  { a } ) ,  . . . will play the r61e of the 
natural numbers 0, 1, 2 , .  . . . Thus 0 = a ,  ! = {(I), 2 = (0, I}, and in 
general = {(),A, . . . , 11 - 1). Let us call a set inductive if it contains a ,  and - 
if whenever it contains x it also contains x u {x) ; then the smallest inductive 
set assumes the r61e of %. It remains to show that the statement "there is a 
smallest inductive set" is derivable in ZFC. We give a guideline as to how to 
proceed. By INF there exists an inductive set, say x. Using SEP we obtain 
the set 

w := { z  1 z E x and for all inductive y, z E y), 

which can be shown to be the smallest inductive set. The function v: w -+ o, 
where v(x) = x u {x) for x E o) (i.e., the function v = {(x, x u {x))lx E w)) 
plays the r61e of the successor function. One can then see that (w, v, 0) is a 
Peano structure. 

We close our presentation of ZFC with an important methodological 
aspect by briefly discussing the so-called continuum hypothesis. This hypo- 
thesis was stated at the end of the nineteenth century by G. Cantor and has 
had a crucial influence on the development of set theory. 

Two sets x, yare said to be of the same cardinal it^) (written: x -- y) if there 
is a bijection from x to y. A set isjnite if and only if it is of the same cardinality 
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as an element of o; it is countable if it is of the same cardinality as w. The set 
R of real numbers (the "continuum") is uncountable (cf. exercise 11.1.3). 

Now the continuum hypothesis states: Every infinite subset of R is either 
countable or of the same cardinality as [W. 

Using canonically defined symbols B, Fin, . . . , this statement can be 
formulated in L'C1 in the following form: 

VX((X c - [W - A i Fin x) -t (Count x v x - [W)). 

This formula is denoted by "CH" (Continuum Hypothesis). The question 
whether the continuum hypothesis holds corresponds to the question whether 
CH is derivable from ZFC. 

K. Godel showed in 1938: 

3.1. I f  ZFC is consistent then not ZFC k i C H ,  

and P. Cohen showed in 1963: 

3.2. I f  ZFC is consistent then nor ZFC k- CH. 

Thus if we assume that ZFC is consistent (cf. §4), then neither CH nor 
i C H  is derivable from it. 

According to previous remarks, ZFC embodies our knowledge of the 
intuitive concept of set which mathematicians in fact use. In the light of the 
results of Godel and Cohen we see that our concept is so vague that it does 
not definitely decide the truth or falsehood of the continuum hypothesis. 
One can even show (cf. X.7) that it is not possible to give "explicitly" an 
axiom system Y for set theory, which decides every set-theoretic statement $ 
(in the sense that either Y I- $ or Y I- i $). 

$4. Set Theory as a Basis for Mathematics 

In this section we supplement our previous discussion by treating three 
aspects: In 4.1, taking ZFC as an example, we show how the question of the 
consistency of mathematics may be made precise by the use of suitable 
first-order axioms sufficient for mathematics. In 4.2 we discuss misunder- 
standings which may arise from a confusion of object set theory with back- 
ground set theory. Finally, in 4.3 we show how first-order logic, like every 
other mathematical theory, can be based on set theory. 

4.1. In the preceding sections we have emphasized the experience that 
provable mathematical statements can be formalized by (€1-sentences - 
which are derivable from ZFC. Taking this for granted, suppose it were 
possible in mathematics to prove both a statement and its negation. Let cp 
be a formalization of this statement. Then both ZFC k cp and ZFC I- i c p  
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would hold and thus ZFC would be inconsistent. Therefore, a proof that 
ZFC is consistent could be regarded as strong evidence for the consistency 
of mathematics. In fact, the question of the consistency of ZFC is one of the 
key problems of foundational investigations. In an explicit formulation it 
asks: Is there a derivation in the sequent calculus of a sequent of the form 
cpo . . . A icp), where cp,, . . . , cp,-, are ZFC axioms? In this form, 
the problem is obviously of a purely syntactic character. Therefore one might 
hope to solve it by elementary arguments concerning the manipulation of 
symbol strings by sequent rules. (Hilbert also demanded a proof of such an 
elementary nature to recognize "that the generally accepted methods of 
mathematics taken as a whole do not lead to a contradiction".) However, by 
Godel's Second Incompleteness Theorem, such a consistency proof for ZFC is 
not possible (cf. X.7). A proof is not even possible ifone admits all the auxiliary 
means of the background set theory described by ZFC.4 Nevertheless, the 
fact that ZFC has been investigated and used in mathematics for decades 
and no inconsistency has been discovered, attests to the consistency of ZFC. 

In the following considerations we assume ZFC to be consistent. 

4.2. We investigate the relationship between background set theory and 
object set theory by first discussing Skolem's paradox (cf. 42). In terms of 
ZFC the paradox can be formulated as follows: ZFC, being a countable, 
consistent set of sentences, has a countable model 2I = (A, gA) according to 
the Lowenheim-Skolem theorem. On the other hand, 2I satisfies an (5)-  
sentence cp (derivable from ZFC) which says that there are uncountably 
many sets in A. If for simplicity we again use defined symbols, we can write 

cp = 3x i3y(Function y A Injective y A Domain of y = x 
A Range of j1 c o) .  - 

cp symbolizes the property of the universe that there exists an uncountable 
set (and hence also that uncountably many sets exist). Since 2I is a model 
of ZFC, we have 2I I= cp, i.e., there is an a E A (for x )  such that 

(*I 2I I= 13y(Function jr A . . . A Range of y c @)[a]. 

The set { b  E A I b gA a} is at most countable because it is a subset of A. 
Therefore in the universe there exists an injective function whose domain is 
{ b  E A l b  gA a )  and whose range is a subset of o. This does not contradict 
(*). For (*) merely says that in 2I there is no injective function defined on a 
with values in or more exactly, that there is no b E A such that FunctionA b,  
InjectiveA b,  and DomainA b c A gA; in other words, a is uncountable in 2l. 

We see from this example that it is necessary to distinguish carefully 
between the set-theoretical concepts (which refer to the universe) and their 
meaning in a model. 

Since on the basis of background set theory we proved the correctness of the sequent calculus 
(cf. IV.6.2, 7 3 ,  the preceding remark says in particular that on this basis one cannot show that 
ZFC is satisfiable, i.e., one cannot prove the existence of a model (A, E ~ )  of ZFC in the universe. 
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Let us consider another example. The set of sentences 

Y : = Z F C u  { c , g g ( r ~  R) u { i c ,  = c , l r , s ~  R , r  # s) 

is satisfiable, as one can easily show using the compactness theorem. Let 
23 = (B, E ~ )  - be a model of Y (more exactly, the (5)-reduct of a model of Y). 
Then {b E B 1 b gB wB) - is an uncountable set. On the other hand, wB 

- (being 
the set of natural numbers in 23) is CountableB (that is, CountableBgB). 

As before let a =  (A, gA) be a countable model of ZFC. Then 
{a E A I a gA _ Q A )  is countable because it is a subset of A, and we obtain: 

(1) There is no bijection of {b E B I b gB gB} onto {u  E A I a g A  wA), - 

since one set is uncountable whereas the other one is countable. At first 
glance ( I )  seems to contradict Dedekind's theorem, according to which 
every two Peano structures are isomorphic. To analyze the situation, we 
take a formalization I) of this theorem as an {€)-sentence - 

I) := Vx Vy((Peano structure x A Peano structure y) 
-r x isomorphic to y). 

Then we have 

(2) ZFC t I). 

However, (1) and (2) do not contradict each other. (2) merely says that 
in each individual model C of ZFC every two Peano structures are isomorphic 
(in the sense of C), whereas (1) speaks of Peano structures in different models. 

4.3. We provide a set-theoretic development of first-order logic, i.e., we show 
that its concepts can be based on the concept of set, as we have done already 
for functions and Peano structures. To be specific, we restrict ourselves to 
the symbol set S = {P', P', . . .), where Pn is n-ary. Our first goal is to give a 
set-theoretic substitute for S-formulas. 

As a substitute for the variables v,,, v , ,  . . . we use the elements 0, 1, . . . of 
o. The rbles of the symbols 1, v ,  3, - are assumed by the ordered pairs 

:= (0, ) y := (0, L), 2 := (0, 2) and := (0, j), respectively. For the 
Pn (for n 2 1) we take the ordered pairs _Px := (1, x), where x E w - ((2). 
(Similarly, one could, for example, let ordered pairs (2, x) with x E w stand 
for function symbols. In order to represent symbol sets with uncountably 
many elements, one could use an appropriate set of larger cardinality 
instead of w.) 

Now formulas of the form vn - v, correspond to triples (x, =,, y) with 
X, y E O. These triples are the elements of the set 

Ordered pairs of the form (p, z) ,  where x E wand z is a function from x into w, 
play the role of formulas of the form Pnvmo.. . urn ,_,. (For instance, the 
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formula p3v,v,v, corresponds to the ordered pair ( ~ 3 ,  - Z) with z = ((0, I), 
(1, $), (2, 9 1 . )  - Thus we are led to the set 

A t P : =  { ( f X ,  z ) l x ~  wand z: x + o ) .  

Likewise, one can define the set of all S-formulas set-theoretically to be the 
smallest set A which satisfies the conditions: 

( 1 )  A te  u At P c A ;  
(2) 1 f . y ~  A then (7, y )  E A ;  
(3) if y,  z E A then ( y ,  y , z )  E A ; 
( 4 )  if x E o and y E A then (3, x, jt) E A. 

One can now give a natural set-theoretic description of the notions of 
sequent and derivation, developing in this way the whole syntax set- 
theoretically. Semantic concepts such as the notions of structure or of 
consequence can also be introduced set-theoretically. By doing this one can 
obtain a set-theoretic formulation of the completeness theorem. All con- 
siderations can be carried out in L"' on the basis of ZFC. In particular, the 
completeness theorem can be formalized as an {€)-sentence - and can be 
derived from ZFC. 

What benefits do we obtain from such a set-theoretical treatment? We 
mention three points. 

(1) The mathematical development of first-order logic (as given in the first 
six chapters) can be founded upon the axiomatic basis of ZFC. 

(2) The set-theoretic treatment enables us to deal with uncountable symbol 
sets in a precise manner. Appropriate variations of this approach make 
it possible to define other languages, e.g., languages with infinitely long 
formulas of the form cp, v cp, v cp2  v . . . (Chapter IX). 

(3) In our discussion concerning the formal notion of proof and the scope 
of first-order logic, we did not appeal to the completeness theorem. 
The reason for this was to avoid becoming trapped in a vicious circle 
since the completeness theorem itself requires a proof. In a set-theoretical 
framework one can investigate more closely the assumptions which 
are needed for a proof of the completeness theorem. Doing this one finds 
that a considerably weaker axiom system than ZFC is sufficient for the 
proof (cf. [I]). 

4.4 Exercise. A reader who has been confused by the discussion in this 
chapter says, "Now I'm completely mixed up. How can ZFC be used as a 
basis for first-order logic, while first-order logic was actually needed in order 
to build up ZFC?" Help such a reader out of his dilemma. (Hint: Again be 
careful in distinguishing between the object and the background level.) 



CHAPTER VIII 

Appendix 

In this chapter we note some results which will be needed in Part I1 and 
which are also of independent interest. 

1 Extensions by Definitions 

We have chosen the symbol set {< )  for the theory of partially defined 
orderings and the symbol set (0, e )  for group theory. The field of a partially 
defined ordering and the inverse operation in a group are examples of 
relations or functions for which we have no symbol in { < }  and ( 0 ,  e ) ,  
respectively, although such symbols would facilitate the formulation of 
propositions. In this section we show that the use of additional symbols 
does not increase the expressive power of a language provided they are 
"definable". The field of a partially defined ordering and the inverse opera- 
tion in a group will turn out to be definable in this sense. For motivation we 
first discuss these examples in more detail. 

When one adds to the symbol set {<  ) a unary relation symbol P for the 
field of a partially defined ordering one has the following definition: 

Vx(Px - 3y(x < )) v J1  < x)). 

In L''.') one can write more transparent formalizations, e.g., the third 
axiom for the theory of partially defined orderings (cf. 111.6.4) may now be 
written as follows: 

vx Vy((Px A Py) + (x < y v x - y v y < x)). 



116 VIII .  Appendix 

Similarly, the proposition which says that the field of the ordering relation 
contains at least three elements has aformulation in L'',') which is both short 
and easy to read: 

3~ 34' ~ z ( P x  A Py A PZ A 1 X  }' A 1 X  EF Z A I Z  - J'). 
Thus the introduction of P is convenient for formalizations. On the other 
hand, it cannot be expected that more propositions about partially defined 
orderings can be formulated in L('.') rather than in L"), since every { <, PI- 
formula can be transformed into an equivalent {<}-formula by replacing 
all subformulas of the form Px by 3y(x < y v J' < x). 

Similar considerations apply to definable functions and constants: When 
we add to S,, = { o ,  e) a unary function symbol-' for the group inverse, we 
have the following definition: 

Vx Vy(x-' - 4'-xo y = e). 

Note that the right-hand subformula does indeed define a function in every 
group (regarded as an S,,-structure), since 

In a similar way we can introduce the constant - for the empty set in 
the set theory ZFC by means of the definition 

Vx(@ - - x-vy 1 y g  x); 

for one can show that 

ZFC + 3= 'x  Vy l y  5 x. 

In the sequel cp(vo, . . . , 0,- ,) stands for a formula cp where the variables 
occurring free are among v,, . . . , v n p  ,. 
1.1 Definition. Let @ be a set of S-sentences. 

(a) Let P $ S be an n-ary relation symbol and cp(v,, . . . , u,_ l )  an S-formula. 
Then we say that 

VC', . . . Vv, '(Pv, . . . C., - 1 ct cp(Uo, . . . , U n -  1)) 

is an S-dejirzition of'P in @. 
(b) Let f' $ S be an n-ary function symbol and cp(v,, . . . , u,) an S-formula. 

We say that 

Vv, . . . Vv,- 1 VU"(,fvO . . . C,- 1 -- C., " cp(UO, . . . , U" - 1 ,  u,)) 

is an S-dqfirzitiorz 0f.f in @ provided that 

@ k= Vv, . . . v v n p ,  3 = 'U, cp(v,, . . . , 0,). 

(c) Let c $ S be a constant and cp(v,) an S-formula. We say that 

VV~(C E Uo " (~(v,)) 

is an S-dejnition ~ f ' c  in @ provided that @ t= 3 = ' v ,  cp(vo). 
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We thus say that Vvo(Pvo o 3vl(vo < v, v v, < v,) is a {<)-definition 
of P in @,,,,, Vv, Vv1(v,' r v1 o v, 0 v, = e) is an Sgr-definition of -' in 
0,,, and Vv,(@ = v, o Vvl i v1 5 v,) is an {g)-definition of in ZFC. 

Now assume that a symbol set S and a set 0 of S-sentences are given. 
Suppose that SA 

2 S, and that for every symbol in SA - S exactly one 
S-definition in 0 has been fixed, say, 

for n-ary P E SA - S the S-definition 

(i) VV, . . . VV, - ,(PvO . . . V, - C* cpp(v0, . . . , V, - )), 

for n-ary f E SA 
- S the S-definition 

(ii) Vvo . . . Vv,- Vv,( f v, . . . v,- - V, o cpr(~o, . . . , 0,- 1, v,)), 

and for c E SA - S the S-definition 

(iii) VvO(c r V, C* cpc(vo)). 

Let A be the set of definitions in (i), (ii), and (iii). As in the case of the group 
inverse, the interpretation of the symbols in S" - S is determined in every 
model of @: 

1.2 Lemma. I f  the S-structure 2I is a model of 0 ,  then there is exactly one 
SA-structure 21A such that 

(*I 2 1 A r S = 2 1  and 21A+A. 

PROOF. Suppose 21A r S = 2I and 21A + A. 

Then, by (i), 

(1) 
%A P a o . . . a , - l  iff 21t=cp,[ao ,..., a,-,] 

for n-ary P E SA - S and a,, . . . , a,-, E A ;  

by (ii), 

(2) faA(ao ,..., a,-J = a ,  iff %I= cpr[ao ,..., a,-,,a,] 

for n-ary f E SA - S and a,, . . . , a,- ,, a, E 2I; 

and by (iii), 

(3) 
A 

c' = a iff 2I t= cpc[a] 

for c E SA - S and a E A. 

(I), (2), and (3) show that there is at most one SA-structure 21A satisfying (*). 
On the other hand, (I), (2), and (3) determine an SA-expansion 21A of 2I with 
the property 21A + A. (Indeed, (2) and (3) determine an n-ary function and an 
element of A since by l.l(b), (c) we have 

2I VV, . .  . vv,-1 3=l~,cp,~(v,, .  . . , q - 1 ,  0,) 

and 2I t= 3=1vocp,(vo), respectively.) 
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It is intuitively obvious that the introduction of defined symbols does 
not increase the expressive power: For every formula $ containing defined 
symbols, one obtains an equivalent formula $' without such symbols by 
replacing the new symbols by their defining formulas. This is the content of 

1.3 Theoremon Definitions. Let SA 
2 S and c L;. Let A be a set of 

S-dejinitions in @, one for each symbol in SA - S. Then for each $ EL? 
there is a,formula $' E L: such that 

(a) Given an S-structure 2I with 2I t= @ and a,, . . . , an- ,  E A ,  

( a A  denotes the sA-expansion of 2I, which, by 1.2, is uniquely determined 
by the condition 21A t= A.) 

(b) @ u A t= $ * $'. 

PROOF. AS already mentioned, we obtain t,bv from t,b by replacing all symbols 
from SA - S in $ by their defining formulas. In this process we must take 
into account the possibility that a term may contain nested function symbols. 
Thus, for instance, the formula 

(where f ,  g E SA - S) will be converted into one of the form 

We define ': LSA + L~ by induction on SA-formulas. The definition for 
atomic $ uses induction on m($), where m($) is the number of occurrences of 
symbols from SA in $, including repetitions. 

If m($) = 0 then $' := $. 
If m($) > 0 let x,, x,,  x 2 , .  . . be the enumeration of the variables not 

occurring in $ in the order of the enumeration v , ,  v,, . . . . 

Case I .  $ = Pt, . . . t,-, : 

X, . . . Xn-1  
BP i fP€  SA - S. 

Vo .. .V,-1 

(Since P does not occur in xi = t i ,  m(xi - t i )  < m($)!) 
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Case 2. I) is of the form t' - t". Since m($) > 0, I) is not of the form x - y. 

v * v  := 3Xo . . . 3X, - 3x,((X0 - t o )  A . . . A ( x ,  - 1 E t,, - 1) 
v 

v A ( X ,  = t )  A f x O  . . .  x , - I  E x,), iff E S ,  

X ,  . . . X ,  
A (x ,  E t)' A VJ- i f f  E S ~  - S. 

V ,  . . . V ,  

( 3 )  I) = x -- f tO . . . t n -  or I) = x E c: analogous to (1) or (2) .  

This completes the definition for the atomic case. 
For the induction step we set 

( 1  I))" := l$", ($, v $,)" := (I): v I):), and (3x1))' := 3x1)'. 

Now, upon using this definition, it is not difficult to prove by induction 
that statement (a) of the theorem holds. Furthermore, it is clear that t,hv E L: 
provided I) E L:. It is also clear that for 2I @ and a,, . . . , a , - ,  E A 

( + I  aA t= ($ - $v)Cao, . . . , a, - ,I. 
For (b): Let % be an SA-structure such that % I= @ u A, and let 

b,, . . . , b,- , E B. We must show that 23 t= (I) t, $')[b, , .  . . , b,- ,]. For the 
structure 2I := % r S, we have 21A = % by 1.2. Thus (b) follows from (+). 

Given elementarily equivalent S-structures FU and 23, we have for I) E LEA: 

FUA t= I) iff FU t= 
iff % t= t,hv 
iff !BA t= $ 

Hence we have 

1.4 Corollary. I f ' %  = % then 21A = BA. 

When treating set theory in Chapter VII, we have frequently used defined 
symbols to obtain more appealing formalizations. Now we have justified 
this procedure since, by 1.3(b), a formula I) in the extended language can be 
regarded as an abbreviation for the {g}-formula $'. 
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We point out a further application: An ordering is sometimes considered 
as a structure (A, <), sometimes as a structure (A, I). The theorem on 
definitions implies that the choice of the basic symbols is immaterial, pro- 
vided the symbols are definable from each other. In the case of ordering we 
obtain that L(') and L{<) have the same expressive power. For a precise 
formulation see exercise 1.1 1. 

A symbol set is called relational if it contains only relation symbols. 
Sometimes it is convenient to be able to restrict oneself to relational symbol 
sets. Using the theorem on definitions, we show how function symbols and 
constants can be replaced by relation symbols in order to obtain a relational 
symbol set. The idea is to consider the graph of a function rather than the 
function itself. 

Let S be a symbol set. For every n-ary f E S let F be a new (n + 1)-ary 
relation symbol, and for c E S let C be a new unary relation symbol. Let Sr 

consist of the relation symbols from S together with the new relation symbols. 
Thus Sr is relational. We associate with every S-structure 2I an Sr-structure 
21r by replacing the functions and constants by their graphs: 

( I )  A' := A; 
(2) for P E S, P'" := P'; 
(3) for n-ary f E S let F'~ be the graph of fa,  that is, 

~ ' ~ a ~  . . . a,- ,a, iff fa(ao, . . . , a,- ,) = a,; 

(4) for c E S let Car be the graph of c', that is, 

C'h iff c' = a. 

Correspondingly, one can transform every S-formula into an Sr-formula, 
replacing atomic subformulas such as fxy = z by Fxyz and c = x by Cx; 
nested function symbols are treated as in the proof of 1.3. For instance, if 
$ = fcgx =- c we set I+V = 3y 3z(Cy A Gxz A Fyzy). Then for arbitrary $ 
we have that $ holds in 2I if and only if I+V holds in 21r. A precise statement of 
this relationship is contained in the following theorem; the proof follows 
the outline above and is included for the reader who is interested in seeing 
the details. 

1.5 Theorem. For every $ E  here is $' E Li' such that,for all S-structures 
21andao, . . . ,  a,-, E A :  

PROOF. Instead of proving the theorem directly, we refer to 1.3, now letting 
S u Sr play the r61e of SA and S' the r61e of S. Further let 

@ := {Vvo . . . Vv,-, 3"v, Fvo . . . v,-,v,l f E S and f is n-ary} 
u{3='Vo C v o ) c ~  S), 

A : =  { V v O .  .. V U , - ~  V ~ , ( f u ~ . .  . = v,*FuO. .. V.-~V,)I 
f E S and f is n-ary} u {Vvo(c - vo * Cvo) 1 c E S). 
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For every function symbo1.f and every constant c in S, A contains an Sr- 
definition in @ which says that f and c have graphs F and C, respectively. By 
1.3, for every formula $ E L:"" we have $' EL:*, and for every Sr-structure 
B which satisfies @ and for all bo, . . . , b,-, E B, 

For $ E LS set t,!f := $'. 
Now, in order to prove (+) let 2I be an S-structure. We apply (*) for the 

case 23 := W ( W  satisfies Q!). Since 21rA A, the transition from 21r to 
21rA means that one adds exactly the functions and distinguished elements 
which were eliminated in passing from 2I to W. Hence 21rA r S = 2I. Thus 
f o r $ €  L:andao , . . . ,  a,-, E A, 

2I t= $ [ a o  a -  I iff 21rA r S t= $[ao,. . . , a,- ,I 
iff 21rA + $[ao, . . . , a,- ,] (coincidence lemma) 

iff 21r t= $'[ao, . . . , a, - ,I (by (*I), 

and since $' = $', the theorem is proved. 

Given S-structures 2I and 23 such that 'U' - Br, we have by 1.4 that 
WA - BrA. As 'WA 1 S = 2I and BrA r S = B it follows that 2I = B. Hence 
we have obtained 

1.6 Corollary. For any 'U and '23, W - Br implies 2I - 23. 

The converse of 1.6 can be shown similarly. Define 

A := {VuO.. . Vu,- Vu,(FuO . . . V , - ~ U ,  tt j u g . .  . 0,- -= v,I.f E S is n-ary} 

u (Vvo(Cuo - c = vo) I c E S). 

Then for every new relation symbol in S' - S,  A contains an S-definition in 
the empty set of sentences. Clearly for every S-structure 2I, 21A r Sr 

= 21r. 
Now, if 'U - B, then 1.4 yields 'UA - BA, and hence by the coincidence 
lemma we have 2I" E Br. Together with 1.6 we obtain 

1.7 Theorem. For any 2l and 23, 2I - 23 if and only if'%' = Br. 

We shall use 1.7 in some discussions on elementary equivalence when it is 
convenient to restrict to relational symbol sets. 

1.8 Exercise. In the notation of 1.3, show that Q u A + $ iff Q t= $'. 

1.9 Exercise. Let us call a formula $ term reduced if its atomic subformulas 
are of the form Pxo . . . x,-,, x - p,,f 'xo.. . x,-, - x,, or  c - x. Show that 
every formula is logically equivalent to a term reduced formula with the 
same free variables. 
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1.10 Exercise. Prove theorem 1.5 in the following way: Using 1.9 note that 
one just needs to consider term reduced formulas. Then give an inductive 
definition of t,Y for term reduced formulas. 

1.1 1 Exercise. Show that for any cp E LC ' there is a I) E LL'' and for any 
I) E Lbsl there is a cp E Lb<l such that 

(a) an ordering (A, <A)  satisfies cp if and only if the corresponding ordering 
(A, I A) satisfies I), 

(b) an ordering (A, satisfies I) if and only if the corresponding ordering 
(A, <A)  satisfies cp. 

52. Relativization and Substructures 

If one regards a vector space as a one-sorted structure, then the domain 
consists of scalars and vectors (cf. III.7.2(2)). When formulating the vector 
space axioms in the corresponding language, one must relativize the field 
axioms to the set of scalars and the group axioms (for the vectors) to the set 
of vectors. For the field axiom Vx x .  1 - x this can be done by using the 
relation symbol _F for the set of scalars and reformulating the axiom as 
Vx(Fx + x . 1 = x). Similarly, the S,,-formula 

when relativized to f, becomes 

In a vector space, cpe just says that the field of scalars satisfies cp. This section 
deals with the relation between a formula and its relativization. First it is 
useful to introduce the notion of substructure. 

2.1 Definition. Let 2I and 23 be S-structures. Then 2I is called a substructu1.e 
of 23 (written: 9I c 23) if 

(a) A c B; 
(b) ( 1 )  for 17-ary P E S, P' = P" n An (that is, for all a,, . . . , an- ,  E A, 

Puuo . . . a, - , iff PBa0 . . . a, - ,); 
(2) for n-ary ,f' E s , f u  is thc restriction off'" to An; 

8 (3) for c E S, cu = c . 

For example, 'Jt = (N, + N ,  .N, 0, 1) is a substructure of the field 3 = 

([W, + ", .", 0, 1) of real numbers. 
If '$I c B, then A is S-closed (in B), that is, A # 0, c" E A for c E S, and 

u,, . . . , u,-, E A implies j'"(a,, . . . , an- ,) E A for j ' ~  S. 
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Conversely, every S-closed subset X of B is the domain of exactly one 
substructure of 23, because in this case the conditions in 2.l(b) determine 
exactly one structure with domain X. We denote this substructure by [XI*. 

For example, the set {r E R ( r  2 0)  is S,,-closed in 3 and hence is the 
domain of a substructure of %, but the set {r E Rlr I 0) is not S,,-closed, 
since ( - I ) . ( -  1) is not 1 0 .  

2.2 Lemma. Let 'U and 23 be S-structures such that 2I c 23, and let 
B: {v, I n E N} + A he an assignment. Then, ,for every S-term t and for every 
atomic S;jormula cp, 

The proof by induction on terms is straightforward. 

The result 2.2 does not hold for arbitrary cp: the formula 3x x + 1 = 0 
holds in 3 but not in its substructure %. 

2.3 Definition. Let S be a symbol set and let P be a unary relation symbol. 
By induction we define, for every $ E L ~ ,  the formula E L'"('), the so-called 
P-relativization of $: 

$' := $, if $ is atomic; 

[1 $1' := 1 $'; 

($0 v $ 1 1' := (*: v $3; 
[3x$lP := 3x(Px A $'). 

Thus [vxI)]' = [ T ~ X  TI)]' = ~ 3 x ( P x  A TI)'), and this formula is 
logically equivalent to Vx(Px + $'). Moreover, it is clear that free($) = 
free($'). 

2.4 Relativization Lemma. Let 2I be an S u {PI-structure such that PA c A 
is an S-closed set. Then,for $ E L; , 

2.4 describes the relationship sketched at the beginning of this section: 
A a the relativization $' says the same in 2I as $ does in the substructure [P ] . 

PROOF. We show by induction on $ E LS: 

(*) For all assignments B:  {v, 1 n E N) --+ PA, 

A 2l (CP 1 , B) I= $ iff (a, P )  I= *'. 
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If $ is atomic, then = $, and we obtain (*) from 2.2. For $ = l$, o,r 

$ = ($, v (*) follows directly from the induction hypothesis for I), 
and $,. In case $ = 3x1)~ we argue as follows: 

A 'U ( [ P  1 , p) I= 3x$, iff for some a E PA, 

iff for some a E PA, k $ (by induction 
hypothesis for $,) 

iff for some a E A, (U, p - I= Px A $: ( 3 
iff ( a ,  p) I= 3x(Px A I);). 

2.5 Exercise. Let U and V be distinct unary relation symbols, U, V $ S. 
Assume ( a ,  UA, VA) to be an S u {U, V}-structure such that UA and VA are 
S-closed and UA c VA. Show that for cp E L: 

2.6 Exercise. A formula of the form 3 x o . .  .3x,- , c p  (Vx, . . . Vx,- ,cp), where 
n 2 0 and cp does not contain any quantifiers, is called an existential formula 
(universal formula). Show: 

(a) If a c %, cp is an existential sentence and 2I k cp,  then 23 k cp. 
(b) If 'U c 23, cp is a universal sentence and 23 k cp, then 2I I= cp. 
(c) In the language L S g r  there is no system of axioms for group theory 

consisting only of universal sentences. 

53. Normal Forms 

In this section we show that one can associate with every formula a logically 
equivalent formula which has a special syntactic form. 

Let S be a fixed symbol set. For an arbitrary set 0 of S-formulas let (@) 
be the smallest subset of LS containing 0, and containing with any $ and x 
the formulas --I$ and ($ v x). Note that @ c Lf implies (4)) c L:. 

3.1 Lemma. Let @ c LS. Strppose 'LI and 23 are S-strtrctures, and a,, . . . , 
a , - , € A , b o  , . . . ,  b , - , ~ B . l f '  

(*) (Uk cp[u, , . . . ,  a, - , ]  i j f 2 3 ~  cp[b, , . . . ,  b,-,] 

holrls,fbr all cp E @, then (*) holtis,fbr all cp E <@). 

PROOF. The set of cp for which (*) holds includes @ and with any $ and x also 
contains 7 IC/ and ($ v x). 
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3.2 Lemma. Let 0 = {qO, . . . , cp,,) he a Jinite set of formulas. Then every 
satisjiablejormula in (a) is logically equiualent to a,formula o f  the,form 

where k < 2"+' and for i 5 k and j _< n, $ i , j  = c p j  or $i ,j  = i c p j .  In  par- 
ticulur, there are only jinitely many pairwise logically nonequivalent formulas 
in (0) .  

Thus we see that every formula in (0) is logically equivalent to a dis- 
junction of conjunctions of formulas from {cp , ,  . . . , cp,, i cp,, . . . , i cp,). 

PROOF. We choose an r such that 0 = {cp,, . . . , cp,? c L f .  For a structure 
2I and an r-tuple 6 := (a,, . . . , a,- E A' let 

where 

Then 

(2) 'U t= $(,.sCao, . . . , a , ,  1, 

and is a conjunction of the form in (+). Moreover, for any 23 and 
b,, . . . , hr- 1 € 23, 

(3) 23 k $ ( , . ~ ) [ h o ~  . . . , hr- 11 
iff for i=O,  . . . ,  n :  

'U I= cpi[ao, . . . , a ,  , ]  iff 23 k cpiCbo, . . . , b,- 11 

iff (cf. 3.1) for all cp E (0 ) :  

2I I= cp[ao,. . . , a,-,] iff 23 I= cp[h,,. . . , h r - , I .  

From ( 1 )  it follows that the set 

{I),,,;, 1 %  is an S-structure and a' E A') 

has at most 2"" elements. 
The proof is complete if we can show that every satisfiable cp E (0) is 

logically equivalent to the disjunction x of the finitely many formulas from 
the set 

In a suggestive notation we write 
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To verify the equivalence between cp and X,  assume first that 23 I= 
cp[bo,. . . , br- , I .  Then $(%,i;) is a member of the disjunction 1. Since 23 t= 
$(a, i;)[bo, . . . , br_ ,] (cf. (2 ) )  it follows that 23 ~ [ b , ,  . . . , br- , I .  Conversely, 
if 23 t= x [ b o , .  . . , b,_ ,I,  then by definition of x there is a structure 2I and 
there are a,, . . . , a,-, E A such that 

2I t= cp[ao, . . . , a,- ,I and 23 t= $(a,a',Cbo, . . . , br- 11. 
Then by (3), b,, . . . , b r - ,  satisfy the same formulas of (a) in 23 as 

ao. . .  . , a r - ,  do in 2I. In particular, 23 I= cp[bo, . . . , br-  ,]. 0 

A formula which is a disjunction of conjunctions of atomic or negated 
atomic formulas is called a.formula in disjunctive normal .form. A formula 
which contains no quantifiers is said to be quantifier-free. As a corollary to 
3.2 we obtain 

3.3 Theorem on the Disjunctive Normal Form. If '  cp is quantifier;fl.ee, then cp 
is logically equivalent to a formula in disjunctive normal form. 

PROOF. Let cp be a quantifier-free formula. If cp is not satisfiable then cp is 
logically equivalent to i v0 - v,. If cp is satisfiable and $, , . . . , $, are the 
atomic subformulas in cp, then cp E ( { $ ,  , . . . , $,)). The theorem now follows 
from 3.2. 0 

We turn to formulas which also contain quantifiers. A formula $ is said 
to be in prenex norma1,form if it has the form Qoxo . . . Q,- , x , - ~ $ ~ ,  where 
Qi = 3 or Qi = V for i < m and t,ho is quantifier-free. Q o x o  . . . Q,- , x , _ ~  is 
called the prejix and $, the matrix of $. 

3.4 Theorem on the Prenex Normal Form. Every formula cp is logically 
equivalent to a formula $ in prenex normal form with free(cp) = free($). 

PROOF. First we note some simple properties of logical equivalence. By 
" c p  - $ " we mean that cp and $ are logically equivalent. 

(1) If cp - $, then i c p  - i$. 

(2) If cpo - $0 and cp l  - $1, then (cpo v c p l )  - ($0 v $ 1 ) .  

( 3 )  If cp - $ and Q = 3 or Q = V, then Qxcp - e x $ .  
( 4 )  13xcp - V x  i cp, i Vxcp - 3x i cp. 
( 5 )  If x $ free($), then (3xcp v $) - 3x(q  v $), (Vxcp v $) - Vx(cp v $), 

($ v 3xcp) - 3x($ v cp), and ($ v Vxcp) - Vx($ v cp). 

We shall see how one can transform a given formula into prenex normal form 
by repeated application of (1)-(5). For instance, if cp = i 3 x P x  v V x R x  we 
can proceed as follows: 

i 3xPx v V x R x  - V x  i Px v V x R x  (by (2 )  and (4 ) )  - V x  i Px v VyRy (since V x R x  - VyRy  and by (2) )  - V x ( i  Px v VyRy)  
u u .  . .  . . n .1  

(by ( 5 ) )  
I ,  ,*, - .. 3 ,r,\ 
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In general we argue as follows: For cp E LS let qn(cp) be the quantifier number 
of cp, i.e., the number of quantifiers occurring in cp. Using induction on n, we 
prove : 

( )  For cp with qn(cp) 5 n there is a I) E L' in prenex normal form 
such that cp - I), free(cp) = free($), and qn(cp) = qn(I)). 

We leave the arguments for "free(cp) = free($)" to the reader. 

n = 0: If qn(cp) = 0, cp is quantifier-free and we can set I) := cp. 

n > 0: We show (*), by induction on cp. Suppose qn(cp) < n. The quantifier- 
free case is clear. If cp = i c p '  and qn(cp) > 0, then qn(cpf) = qn(cp) > 0, and 
by induction hypothesis there is a formula of the form QXX which is a prenex 
normal form for cp' (where qn(Qx~)  = qn(cp) and where x may contain 
quantifiers). By (1) and (4), cp - Q- xi^ (where V - '  := 3 and I-'  := V). 
Since q n ( i ~ )  = qn(Qx~)  - 1 = qn(cp) - 1 5 n - 1, there exists a formula 
I) logically equivalent to i~ which is in prenex normal form such that 
qn(I)) = q n ( i ~ ) .  By (3), Q-'XI) is a formula logically equivalent to cp with 
the desired properties. 

Let cp = (cp' v cp") and let qn(cp) > 0, e.g., qn(cpl) > 0. By induction 
hypothesis there is a formula of the form QXX which is a prenex normal form 
for cp'. Let y be a variable which does not occur in QXX or in cp". It is easy to 
show that 

and thus, by (2) and (9, to obtain 

Y 
Since qn(x - v cp") = qn(cp) - 1 n - 1 ,  we can find a formula I) in 

X 

Y prenex normal form which is logically equivalent to (x- v cp"). QyI) has 
X 

the desired properties. 
Let cp = 3xcp'. Since qn(cp') s n - 1 there is a formula I)' in prenex 

normal form which is logically equivalent to cp'. 3x1)' is a formula in prenex 
normal form which, by (3), is logically equivalent to cp and has the same 
quantifier number as cp. 

3.5 Exercise (Conjunctive Normal Form). Show that if cp is quantifier-free, 
then cp is logically equivalent to a formula which is a conjunction of dis- 
junctions of atomic and negated atomic formulas. 
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3.6 Exercise. Let S be a relational symbol set and let cp E L; be of the form 
3xo . . . 3x, Vyo . . . Vy,cl/, where cl/ is quantifier free. Show that every model 
of cp contains an (n + 1)-element substructure which is also a model of cp. 
Conclude that the sentence V x  3y R x y  is not equivalent to any {R)-sentence 
of the above form. 



PART B 



CHAPTER IX 

Extensions of First-Order Logic 

We have seen that the structure % of natural numbers cannot be charac- 
terized in the first-order language corresponding to %. The same situation 
holds for the class of torsion groups. As we showed in Chapter VII, one can, 
at least in principle, overcome this weakness by a set-theoretical formulation: 
One introduces a system of axioms for set theory in a first-order language, 
e.g., ZFC, which is sufficient for mathematics, and then in this system carries 
out the arguments which are required, say, for a definition and characteriza- 
tion of %. However, this approach necessitates explicit use of set theory to 
an extent not usual in ordinary mathematical practice. 

The situation may act as a motivation to consider languages with more 
expressive power which permit us to avoid this detour through set theory. 
For example, in a second-order language we can directly characterize the 
natural numbers by means of Peano's axioms. However, already at this 
stage we wish to remark that in order to set up the semantics of such a 
language and to prove the correctness of inference rules, one has to make 
more extensive use of set-theoretic assumptions (for example, of the ZFC 
axioms) than for first-order logic. 

There is a further reason for introducing and investigating more powerful 
languages. We saw that results such as the compactness theorem are useful 
in algebraic investigations (cf. VI.4). Therefore it seems worthwhile to seek 
other more expressive languages in the hope of obtaining tools for more 
far-reaching applications in mathematics. 

In this chapter we introduce the reader to some of the languages which 
have been considered with these aims in mind. 
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1 Second-Order Logic 

The difference between second-order and first-order languages lies in the 
fact that in the former one can quantify over second-order objects (for 
example, subsets of the domain of a structure) whereas in the latter this is 
not possible. 

1.1 The Second-Order Language L i .  Let S be a symbol set, that is, a set of 
relation symbols, function symbols and constants. The alphabet of L; 
contains, in addition to the symbols of LS, for each n 2 1 countably many 
n-ary relation variables V " ,  Vy,  V ; ,  . . . . To denote relation variables we use 
letters X, Y, . . . . We define the set L; of second-order S-formulas to be the 
set generated by the rules of the calculus for first-order formulas (cf. II.3.2), 
extended by the following two rules: 

(a) If X is an n-ary relation variable and t o ,  . . . , t n _  , are S-terms, then 
Xt, . . . t n - ,  is an S-formula. 

(b) If cp is an S-formula and X is a relation variable, then 3Xcp is an S-formula. 

1.2 The Satisfaction Relation for L;. A second-order assignment y in a struc- 
ture 2I is a map which assigns to each variable v i  an element of A and to each 
relation variable Vy an n-ary relation on A.  We extend the notion of satis- 
faction from LS to L; by taking (a) and (b) into account as follows: If 2I is 
an S-structure, y a second-order assignment in 2I, and 3 = ( a ,  y), then we 
set 

(a') 3 k Xt, . . . t n _ ,  iff y(X) holds for 3(r,), . . . , 3( tn_  ,). 
C 

(b') 3 3Xcp iff there is a C c A n  such that 3 where 3 - = 
X X 

C .  ('LI, :. $) and y is the assignment which maps X to C but which otherwise 

agrees with y . 1 
We write ZI, to denote seconri-order logic, that is, the logical system given 

by the languages L; together with the satisfaction relation for these languages. 
Similarly, we denote first-order logic by 9,. For the present we still use the 
term "logical system" in the naive sense. A precise definition will be given 
in XI1.I. 

1.3 Remarks and Examples 

(1) One defines the free occurrence of variables and relation variables in 
second-order formulas in the obvious way and can then prove the analogue 
of the coincidence lemma. In particular, when cp is an Li-sentence, i.e., a 
formula without free variables or free relation variables, it is meaningful to 
say that % is a model of cp, written 2I cp. 
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(2) Let VXcp be an abbreviation for i 3X i cp. Then 

(3) If X is a unary relation variable, then the following formalizations of 
Peano's axioms, 

(Pl)  vx 1 g x  = 0; 
(P2) Vx Vy(ax = gy + x r y); 
(P3) VX((XO A Vx(Xx + Xgx)) + VyXy), 

which we had in 111.7.3, are ~ / f ~ ~ ) - s e n t e n c e s .  Hence by passing from first- 
order to second-order logic we have gained expressive power since no first- 
order axioms can characterize the structure (N ,  a, 0) up to isomorphism. 

(4) Let S be arbitrary. Then the Li-sentence 

(+) VX Vy(x - y 0 VX(xx 0 Xy)) 

is valid: two things are equal precisely when there is no property which 
distinguishes them (the identitas indiscernibilium of Leibniz). Thus in the 
development of L i  we could have done without the equality symbol using 
(+) to express equality. 

(5) When setting up the second-order languages we could have introduced, 
in addition to relation variables,,function variables which can also be quan- 
tified. This procedure would increase convenience, but not the expressive 
power of the languages. We illustrate this by means of an example (cf. the 
elimination of function symbols in VIII. 1). 

Let g be a unary function variable and let cp be the "second-order formula" 

Vg(Vx Vy(gx = gy + x E5 y )  -, vx 3y x - gy). 

Then (for the natural extension of the notion of satisfaction) the following 
holds: 

2I k cp iff every injective function from A to A is surjective 
iff A is finite. 

Considering the graph of a unary function instead of the function itself, 
we can use a binary relation variable and rewrite cp as 

VX((Vx 3 =  ' y  Xxy A vx vy Vz((Xx2 A Xyz) + x - y)) -, vx 3y Xyx). 

Call this formula cp,,,. cp and cp,,, have the same models. Therefore, 

2I k cp,,, iff A is finite. 

In later examples we shall often use function variables to obtain formulas 
which are easier to read. 
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(6) In 9,, one can introduce operations such as substitution and relativiza- 
tion (cf. VIII.2.3) by definitions analogous to those for 9,. One can also 
verify basic semantic properties such as the analogue of the isomorphism 
lemma. 

The situation is different when we consider deeper semantic properties 
such as the completeness theorem, the compactness theorem and the 
Lowenheim-Skoiem theorem: the price we have to pay for being able to 
quantify over second-order objects is the loss of all these central properties. 

1.4 Theorem. The compactness theorem does not hold for Z I I .  

PROOF. The following set of sentences is a counterexample: 

This set is not satisfiable, but, of course, every finite subset is satisfiable. 0 

1.5 Theorem. The Lowenheirn-Skolem theorem does not hold for Z, , .  

PROOF. We give a sentence cp,,, E Lf such that for all structures 2I, 

a I= Vunc iff A is uncountable. 

Then cp,,, is satisfiable but it has no model that is at most countable. 
To define cp,,, we use an Lf-formula cpfi,(X) with just one free unary 

relation variable X, for which 

( y )  I= c p i  iff y(X) is finite. 

It is easy to obtain such a formula by modifying cp,,, as given above. Clearly 
a set A is at most countable if and only if there is an ordering relation on A 
such that every element has only finitely many predecessors. So let us define, 
using a binary relation variable Y, 

cpr  ,,,, := 3 Y(Vx 1 Yxx A vx vy Vz((Yxy A Yyz) + Yxz) 
A vx Vy(Yxy v x - y v Yyx) 
A vx 3X((pfi,(X) A Vy(Xy 0 Yyx))). 

Then we have 

2I I= cpSctbl iff A is at most countable 

and hence we can set qunc := i c p S c t b l  

1.6. For first-order logic we obtained the compactness theorem from the 
existence of an adequate system of derivation rules (cf. VI.2). For Y1, there 
is no correct and complete system ofderivation rules. Otherwise we could use 
the same argument as for 9, to prove the compactness theorem for 9 , , .  
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This negative result does not, of course, hinder us from setting up correct 
rules for second-order logic. For example, one can add to the first-order 
rules the following correct rules for quantification over relation variables: 

In the introduction to this chapter we provided two motivations for 
investigating more expressive languages, namely: (a) to facilitate the forma- 
lization of mathematical statements and arguments, and (b) to supply us 
with more powerful tools for mathematical investigations. In regard to (a) 
and (b), what have we accomplished by second-order logic? 

To begin with, we note that by supplementing the second-order rules 
presented above, one can obtain a system largely sufficient for the purposes 
of mathematics. (However, by 1.6, one never gets a complete system, so that 
the choice of rules can only be made from a pragmatic point of view, and not 
with the aim of attaining completeness.) In addition, bearing in mind that 
mathematics can be formulated more conveniently in a second-order 
language, one can tend to the opinion that progress in the sense of (a) has 
indeed been made. However, as far as (b) is concerned 9,, is hardly an 
appropriate system. The results 1.4 and 1.5 already hint at this. The expressive 
power of second-order languages is so great that results such as the compact- 
ness theorem or the Lowenheim-Skolem theorem, which are of value for 
mathematical applications, no longer hold. In view of these remarks it is 
natural to investigate other extensions of first-order logic (cf. 92,93). 

By considering a further aspect we explain how, in a certain sense, second- 
order logic has overshot the mark: We show that set theory, as based, e.g., 
on ZFC, is not sufficient to decide basic semantic questions for 9,,. This 
follows because we can write down a sentence cp,, E ~g which is valid if 
and only if the continuum hypothesis CH holds. Since neither CH nor its 
negation can be proved in ZFC (cf. VII.3), the validity of cp,, can neither be 
established nor refuted within the framework of ZFC. 

CH says: 

(1) For every subset A of R, either A is at most countable, or there is a 
bijection of R onto A.  

cp,, will be essentially a formalization of (I). First, similar to cpsc,,,, we can 
easily give a formula cp,,,,,(X) - with the property 

(a, 1') t= cpsctbl(X) iff y(X) is at most countable. 

Further, there is a formula cp, such that 

(2) A cp, iff A and R have the same cardinality. 

To obtain cp,, note that the ordered field 3' of real numbers is, up to iso- 
morphism, the only complete ordered field. Therefore, if IC/ is the conjunction 
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of the axioms for ordered fields and of the second-order SG-sentence 

VX((3xXx A 3y Vz(Xz + z < y)) + 3y(Vz(Xz + ( z  < JJ v z = y)) 
A Vx(x < ), + 3z(x < z A Xz)))) 

("every nonempty set which is bounded above possesses a supremum"), 
then for all Sz-structures 2l, the following holds: 

(3) 2l F $ iff 2l %<. 

Hence, in order to obtain (2), we can choose as cp, an LZ-sentence which 
says: 

"There are functions +, ., elements 0, 1, and a relation < such 
that $". 

(We leave it to the reader to write down cp, as a second-order sentence.) 
Now we can take as cp,, a sentence which says that "if the domain is of the 
same cardinality as R, then every subset of the domain is either at most 
countable or else of the same cardinality as the whole domain", 

(PCH '= (PC4 + vX(~jctbl(X) 3g(vxX~x 

A VX Vy(gx - gy + X = y) A vy(xy + 3Xgx y))). 

It is easy to prove (cf. (1)) that 

F cp,, iff CH holds. 

1.7 Exercise (The System 9; of Weak Second-Order Logic). For every S, 
let L;vS = Ls,. Change the notion of satisfaction for 9,, by specifying, for 
3 = (a, y) and n-ary X, that 

C 
3 t=, 3X cp iff there is a jn i t e  C c An such that 3 - I=, cp. 

X 

Thus only quantification over finite sets (and relations) is allowed. 
Show: 

(a) There is a sentence cp and a structure 2l such that 2l k, cp but not 2l k cp. 
(b) For each sentence cp E L;.', there is a sentence $ E L: such that for all 

S-structures 2l, 2l k, cp iff 2l t= $. 
(c) The compactness theorem does not hold for 9;. 

(However, the Lowenheim-Skolem theorem does hold for 9;; cf, exercise 
2.7 in the next section.) 

52. The System 9,,, 

In VI.3.5 we showed that the class of torsion groups cannot be characterized 
in first-order logic. But we can axiomatize this class if we add to the group 
axioms the "formula" 

(*) Vx(x=e  v x o x = e v  X O X O X - e v  ...). 
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Thus we gain expressive power when allowing infinite disjunctions and 
conjunctions. Such formations are characteristic of the so-called injnitary 
languages. In the simplest case one restricts to conjunctions and disjunctions 
of countable length. This leads to the system Y,,,. (The notation Y,,, 
follows the systematic terminology usual in the study of infinitary languages, 
cf. [7]). 

To define the formulas of Y,,, we use the jargon of calculi. Nevertheless 
it should be noted that the rule in 2.l(b) below is not a calculus rule in the 
strict sense, since it has infinitely many premises. (For example, in order to 
obtain the formula (*) one must already have obtained the formulas x r e, 
x 0 x - e, . . . .) A precise version of such "calculi" and their usage can be 
given within the framework of set theory (cf. VII.4.3). For example, the 
definition of formulas and proofs by induction on formulas can be based on 
the principle of transfinite induction. 

2.1 Definition of Y,,,. Compared with the first-order language LS, we 
add the following to constitute the language L:,,: 

(a) the symbol V (for infinite disjunctions); 
(b) to the calculus of formulas the following "rule": 

If @ is an at most countable set of S-formulas, then V@ is an 
S-formula (the disjunction of the formulas in @); 

(c) to the definition of the notion of satisfaction the following clause: 

If @ is an at most countable set of L:,,-formulas, 2I an S- 
structure, ,8 an assignment in 2I and 3 = ( a ,  ,8) then 

3 I= V@ iff 3 I= cp for some cp E 0. 

There are many classes of structures which can be characterized in L,,,, 
but not in first-order logic. Examples are: 

the class of torsion groups, characterized by the conjunction of the group 
axioms and 

Vx V{x 0 . . . 0  x = eln 2 l), - 
n-times 

the class of fields with characteristic a prime, by the conjunction of the field 
axioms and 

V{? + . i .  + ! = 0 1 n prime), 
n-times 

the class of archimedean ordered fields, by the conjunction of the axioms for 
ordered fields and 

VxV{x < 1 + . . .  + I ln  2 11, - 
n-times 
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the class of structures isomorphic to (N, a, 0), by the conjunction of the first 
two Peano axioms and 

V x V { x - g . . . g  OO(n20). 

n-times 

2.2 Remarks. 
(a) For a set @ which is at most countable let /\@ be an abbreviation for 

the L,,,-formula l V { - i  cp1 cp E @). Then 

3 ,t= /\@ iff for all cp E @, 3; k cp. 

/\@ is called the conjunction of the formulas in @. 

(b) The definition of the set SF(cp) of subformulas of a formula cp in L,,, 
is obtained from the corresponding definition for first-order formulas in 
11.4.5 by adding the clause sF(V@) := {V@) u U*,, SF($). It can be 
proved for arbitrary cp that SF(cp) is at most countable. The proof is by 
induction on formulas; we give the V-step: Let cp = V@, where by induction 
hypothesis SF(+) is at most countable for every $ E @. Since SF(cp) = {cp) u 
U*,, SF(+) is an at most countable union of at most countable sets, SF(cp) 
is at most countable. In particular, for every cp E LEI, there exists an at most 
countable S' c S such that cp E LS,',,. 

(c) Define the set free(v@) of the variables occurring free in V@ to be 
u*,,free(+). The formula V{vn - v,ln E N )  has infinitely many free 
variables. But one can easily prove by induction that in case free(cp) is finite 
then so is free(+) for any subformula + of cp. In particular, subformulas of 
an 9,,,-sentence have only finitely many free variables. 

Consider the L:,,-sentence 

+fin :=  V{- ' (~znIn  2 23. 

Then for every structure 2I we have 

% ,t= iff A is finite. 

Hence the set of sentences u {cp,,Jn 2 2) is an example showing 

2.3 Theorem. The compactness theorem does not hold for L?,,,. 

Nevertheless, many results for% have their counterparts in L?,,,. We 
mention some examples and refer the reader to [20] for more information. 

(1) The analogue of the Lowenheim-Skolem theorem holds (see 2.4 below). 
(2) Extend the sequent calculus for first-order logic by the following "rules" 

for V :  

r cp $ for every cp E @ r 
(VA) I- V@ $ ', i f c p ~ @ ,  ; (Vs )  , VQ 
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where stands for a finite sequence of La,,-formulas. In this way one 
obtains a correct and complete "calculus": for 9,,,-sentences cp,, 
cp,, . . . , cpn- , and cp, the sequent cp,, cp, . . . cp,- ,cp is derivable if and 
only if it is correct. However, one must allow infinitely long derivations as 
is obvious from (VA). 

(3) An analysis of (2) shows that by suitably generalizing the concept of 
finiteness one can transfer other results from 9, to 9,,,. Among these 
is the Barwise compactness theorem, cf. [I]. 

2.4 L&iwenheimSkolem Theorem for Y,,,. Every satisjiable 9,, ,-sentence 
has a model over an at most countable domain. 

Since for every 9,,,-sentence cp there is an at most countable S such that 
cp E L;,,, 2.4 follows directly from 

2.5 Lemma. Let S be at most countable, cp E L:,,, and let 23 be an S-structure 
satisfiing cp. Then there is an at most countable substructure 'U c 23 such that 

cp. 

PROOF. We first present the idea of the proof. 
Let B, be a nonempty at most countable subset of B which is S-closed, 

that is, which contains all clB for c E S and which is closed under application 
off lB forf E S. Then B, is the domain of an at most countable substructure 
23, of 23. If one tries to prove by induction that 23, t= cp, the proof breaks 
down at the point where 3-quantifiers are considered. For example, in a 
simple case where cp is of the form 3xPx, one must ensure that there is a 
b E Bo such that plBb. Therefore we shall close B, with respect to all possible 
existential requirements arising from subformulas of cp. 

We now begin the proof. For pairwise distinct variables x,, . . . , x,- , we 
write $(x,, . . . , x,- ,) to denote a formula $ with free($) c {x,, . . . , x,-~}. 
Define a sequence A,, A,, A,, . . . of at most countable subsets of B so that 

(a) A m  A,,,; 
(b) for n-aryf E S and a,, . . . , a,- , E Am,flB(ao, . . . , an-  E A,+ 
(c) for $(x0, . . . , x,) E SF(cp) and a,, . . . , a,-, E A,, if 

then there is an a, E A,, such that 23 t= $[a,, . . . , a,- ,, a,]. 

Let A, be anonempty at most countable subset of B which contains {cgIc E S}. 
Suppose A, is already defined and is at most countable. In order to define 
A, + , we first set 

A 6  := {,f'lB(ao,. . . , a,-,)In 2 1, f E S n-ary, a,, . . . ,  an-, E A,). 

A; is also at most countable. Now, for $(x,, . . . , x,) E SF(cp) and a,, . . . , 
a,-, E A, such that 23 t= 3x,$[ao,. . . , a,- ,I, we choose an element b E B 
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such that % t= $[a,, . . . , an-] ,  b]. Let A: be the set of b's chosen in this 
. - way. Since SF(cp) and A, are at most countable, so is A:. Hence A,,, .- 

A, u A; u A: is also at most countable, and (a)- (~) are satisfied. 
Now let 

A : =  U A,. 
m e  N 

Then 

(1) A is at most countable. 
(2) A is S-closed. (By choice of A,, we need only show that A is closed under 

the functions fB. Let f E S be n-ary and a,, . . . , a,-, E A. Since the sets 
A, form an ascending chain, a,, . . . , a,-, lie in some A,. By (b) the 
elementfB(ao, . . . , a,- ,) lies in A,+ , and hence also in A.) 

By (1) and (2), A is the domain of an at most countable substructure 2I 
of %. Therefore we are done if we can show: 

(*) follows immediately from the following claim: 

(**) For all $(x,, . . . , x,- , )  E SF(cp) and all a,, . . . , a,-, E A, 

2I k $[ao, . . . , a,- ,I iff % t= $[ao, . . . , a,- ,I. 

We prove (**) by induction on $, but limit ourselves to the 3-cBse. 
Let $(xo, . . . , x,- ,) = 3x,x(xo, . . . , x,), and suppose a,, . . . , a,-, E A. 

If 2I I= 3 x n ~ [ a o ,  . . . , a,- ,] then we obtain successively: 

There is a E A such that 2I t= ~ [ a , ,  . . . , a,- ,, a]. 

There is a E A such that % + ~ [ a , , .  . . , a,- ,, a] (Ind. hyp.). 

t= 3x,x[ao, . . . , a ,  ,I. 
Conversely, if % + 3x,x[ao,. . . , a,- 1], we choose k such that a,, . . . , 

a,- , E A,, and we obtain successively: 

There is a E A,+ such that % k ~ [ a , ,  . . . , a,- a] (by (c)). 

There is a E A,+,  such that 2I t= ~ [ a , ,  . . . , a,- ,, a] (Ind. hyp.). 

2I t= 3x,x[ao, . . . , a,- ,I. 

Consider an at most countable set @ of first-order sentences and let 
cp := A@. Then it follows from 2.5 that every model of @ has an at most 
countable substructure which is also a model of @. In particular, this yields 
a proof of the Lowenheim-Skolem theorem for first-order logic which does 
not rely on the proof of the completeness theorem. Note that an Zmlm- 
sentence characterizing ( N ,  a, 0) has no uncountable model; hence in 
~ u , u  we do not have an analogue of the upward Lowenheim-Skolem 
theorem VI.2.3. 
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To conclude this section we give a mathematical application of 2.5 by 
choosing cp appropriately. 

We consider groups as S-structures with S = (0, e, - I } .  A group 8 is 
said to be simple if {e G)  and G are the only normal subgroups of 8. If for 
a E G we denote by ( a ) ,  the normal subgroup of 8 generated by a, then 
clearly 8 is simple if and only if ( a ) ,  = G for all a E G such that a # eG. 

Since 

(a), = { g O a z O g ; l . . . g , a z n g ; l ( n ~  N , z o  , . . . ,  z , ~ Z , g ,  , . . . ,  g , € G ) ,  

the class of simple groups can be axiomatized in L:,, by the conjunction 
cpO of the group axioms and the following sentence: 

z o ,  . . . ,  z , E Z ) ( ~ E  N).  

Using 2.5 we now show 

2.6 Proposition. If 8 is a simple group and M a countable subset of G then 
there is a countable simple subgroup of 8 which contains M.  

PROOF. Let S := S u {c,la E M ) ,  where the c, are new constants for a E M .  
We expand 8 to an S-structure G, interpreting each c, by the corresponding 
a, and apply 2.5 to and cpo . 

2.7 Exercise. Show that for every ~ z , ~ - s e n t e n c e  cp (cf. exercise 1.7) there is 
an L:,,-sentence I) with the same models (that is, for all S-structures a, 
2I k, cp iff 2I t= I)). Conclude from this that the Lowenheim-Skolem 
theorem holds for 2';;'. 

2.8 Exercise. Show that the following classes can be axiomatized by an 
Z,,,-sentence : 

(a) the class of finitely generated groups; 
(b) the class of structures isomorphic to ( Z ,  <). 

2.9 Exercise. (a) For arbitrary S, show that L;,, is uncountable. 
(b) Give an uncountable structure 23 (for a suitable countable symbol set S) 

such that there is no countable structure 'LC satisfying the same L;,,- 
sentences. 

2.10 Exerc,k. Using 2.5, show that any two infinite @-structures satisfy 
the same 5?2,,-sentences. 
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$3. The System Pp 

The system ZQ is obtained from first-order logic by adding the quantifier 
Q, where a formula Qxcp says "there are uncountably many x satisfying cp". 

3.1 Definition of ZQ. Compared with the first-order language LS, we add 
the following to constitute the language L z :  

(a) the symbol Q; 
(b) to the calculus of formulas, the rule: 

If cp is an S-formula then so is Qxcp; 

(c) to the definition of the notion of satisfaction, the clause: 
If cp is an S-formula and 3 = (a, ,G) an S-interpretation then 

a 
3 t= Qxcp iff a E A 1 3 - t= cp is uncountable. 

X 

ZQ has more expressive power than 9 , .  For example, the class of at most 
countable structures can be axiomatized in LYQ by the sentence i Qx x - x. 
For S = {<)  let cp, be the conjunction of the axioms for orderings and 
(Qx x - x A Vx i Qy y < x). Then cp, is an Li-sentence characterizing the 
class of uncountable orderings in which every element has at most countably 
many predecessors. These so-called a,-like orderings play an important 
r61e in investigations of ZQ. 

Note that the sentence cp,, or even the sentence Qx x = x, has an un- 
countable, but no at most countable model. Hence the strict analogue of the 
Lowenheim-Skolem theorem does not hold. (However, each satisfiable 
ZQ-sentence has a model of cardinality IK,, cf. exercise 3.3.) 

One can set up an adequate sequent calculus GQ for ZQ by adding the 
following rules to the sequent calculus for first-order logic. (After each rule 
an explanatory comment is given, which is also the essence of a correctness 
proof.) 

(Renaming of bound variables); 

if y and z are distinct from x. 
i Qx(x - y v x - 2)' 

("Singletons and pair sets are not uncountable"); 

I- Wcp + $1 
I- Qxcp + Qx*' 
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("Sets having uncountable subsets are uncountable"); 

("If the union of at most countably many sets is uncountable then at least 
one of these sets is uncountable"). 

One can show (cf. [19]) that the calculus GQ is correct and complete in 
the sense that the equivalence "0 I= cp iff @ t- cp" holds for Yo if @ is at 
most countable. As for first-order logic we conclude (cf. VI.2): 

3.2 9Q-Compactness Theorem. For every countable set @ of L~ formulas ,  @ 
is satisjiable if and only ifeveryjinite subset o f @  is sati.s$able. 

The following example shows that the compactness theorem does not 
hold for uncountable sets of formulas. Let S be an uncountable set of con- 
stants and let 

Then every finite subset of 0 is satisfiable, but @ itself is not. 

In Chapter VI we saw that the compactness theorem and the Lowenheim- 
Skolem theorem are useful for mathematical applications. None of the 
extensions of 9, which we have discussed in this section satisfies both 
theorems. The compactness theorem fails for Y,,,,], the Lowenheim-Skolem 
theorem for 9 , ,  and both for Y,,. Does there exist any logical system at all 
which has more expressive power than first-order logic and for which both 
the compactness theorem and the Lowenheim-Skolem theorem hold? We 
shall give a negative answer to this question in Chapter XII. 

3.3 Exercise. Show that every satisfiable 9,-sentence has a model over a 
domain of cardinality at most K, (where K, is the smallest uncountable 
cardinal). (Hint: Use a method similar to that in the proof of 2.5: for formulas 
Qxcp, which hold in %, add K, elements satisfying cp.) 

3.4 Exercise. Let Y i  be obtained from Za by changing the notion of 
satisfaction 3.l(c) as follows: 

a 
3 t= Qxcp iff is at most countable. 

Show that the compactness theorem does not hold for 9$, but that the 
Lowenheim-Skolem theorem does. 
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Limitations of the Formal Method 

Only in methodological questions have we thus far referred to the fact that 
applications of sequent rules consist ultimately of mechanical operations on 
symbol strings (cf. VII.l). In the following we also want to make stronger 
use of this formal-syntactic aspect in mathematical considerations. Let us 
give an initial idea, taking as an example the system of axioms @,, = 

{q,, cpl, cp2) for group theory. It follows from the completeness theorem 
that for all S,,-sentences cp, 

Thus cp is a theorem of group theory 

if and only if the sequent cp, cplcp, cp is derivable. 
By systematically applying all the sequent rules one can generate all 

possible derivations and thus compile a list of the theorems of Th,,: One 
adds a sentence cp E ~3~ to the list if one arrives at a derivation whose last 
sequent is cpocp,cp2cp. Hence there is a procedure by which one can in a 
"mechanical" way list all theorems of Th,,. It should be plausible that one 
could use a suitably programmed computer to carry out such a procedure. 
Of course, one would have to be able to increase the capacity of the computer 
if necessary since the derivations and the sequents and formulas therein 
can be arbitrarily long. A set such as Th,, which can be listed by means of 
such a procedure is said to be enumerable. 

Of course, the above enumeration procedure yields many trivialities like 
Vx(x - x + x = x). On the other hand, a group theorist is only interested 
in specific group-theoretical statements cp which are relevant for his in- 
vestigations. His aim is to determine for such a cp whether cp E Th,, or not. 
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Usually this is accomplished either by a proof or by a counterexample. 
Unfortunately, an enumeration procedure for Th,, as above is of little help 
in this situation: Given cp, one might start the procedure in order to see 
whether cp appears as an output; however, if cp + Th,, the procedure will not 
yield this information since at any step one is left uncertain as to whether 
cp will appear later or will not appear at all. Thus we are led to seek a different 
kind of procedure which can be applied to an arbitrary &,-sentence cp and 
then stops after finitely many steps, yielding the decision whether cp E Th,, 
or not. Put another way, can one program a computer so that whenever ~t 
is given an S,,-sentence cp it "computes" whether cp belongs to Th,,? If such 
a procedure exists for a given theory, we call that theory decidable. 

The present chapter is devoted to questions of this kind. First we discuss 
the concepts of enumerability and decidability in more detail, in 41 from a 
naive point of view, and in 42 on the basis of the precise notion of register 
machine. These topics form part of the so-called recursion theory (theory o f  
computability). The remaining sections of the chapter then contain applica- 
tions to first-order and second-order logic. 

For further information about recursion theory we refer the reader to 
[6]  and [15]. 

1 Decidability and Enumerability 

A. Procedures, Decidability 

It is well known how to decide whether an arbitrary natural number n is 
prime: If n = 0 or n = 1, n is not prime. If n 2 2, one tests the numbers 
2 ,3 , .  . . , n - 1 to see whether they divide n. If none of these numbers divides 
n then n is prime; otherwise it is not. 

This procedure operates with strings of symbols. For example, in the 
case of decimal representation of natural numbers it operates with strings 
over the alphabet (0, . . . ,9) .  Our description has not specified it in complete 
detail-for instance, we have not described how division is to be carried 
out-but it should be clear that it is possible to fill these gaps in order to 
ensure that all steps are completely determined. In view of its purpose we 
call the procedure a decision procedure,for the set of primes. 

Other procedures which are well known include those for 

(a) multiplying two natural numbers, 
(b) computing the square root of a natural number, 
(c) listing the primes in increasing order. 

Common to all of these procedures is the fact that they proceed step by 
step, they operate on symbol strings of a well-defined sort, and they can be 
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carried out by a suitably programmed computer. A procedure can operate 
on one or more inputs (as in (a) or (b)) or it can be started without any 
particular input (as in (c)). It can stop after finitely many steps and yield an 
o~itplrt (as in (a) for any input and in (b) for inputs which are squares), or it 
can run without ever stopping, possibly giving an output from time to 
time (as in (c)). 

Procedures in our sense (effective procedures, processes, algorithms) 
operate with concrete objects such as symbol strings. Sometimes mathe- 
maticians use these notions in a wider sense, speaking, for instance, of the 
Gram-Schmidt orthogonalization process even when referring to abstract 
vector spaces. 

Concerning the following definition and the subsequent discussion the 
reader should bear in mind that the notion of procedure has so far been 
introduced just in an intuitive way and by means of examples. 

1.1 Definition. Let A be an alphabet, W a set of words over A, i.e., W c A*, 
and !Jl a procedure. 

(a) is a decision proceriure for W if, for every input [ E A*, !Jl eventually 
stops, having previously given exactly one output q E A*, where 

(b) W is decidable if there is a decision procedure for W. 

Thus when a decision procedure for W is applied to an arbitrary word [ 
over A, it yields an answer to the question "(' E W?"  in finitely many steps. 
The answer is "yes" if the output is the empty word; it is "no" if the output 
is a nonempty word. 

To formulate the above decision procedure for the set of primes according 
to definition 1.1 we set A := (0, . . . , 9 )  and W := the set of primes, and we 
agree that the empty word shall be the output for primes and, say, 1 the 
output for nonprimes. 

Further examples of decidable sets are the set of terms and the set of 
formulas for a concretely given symbol set. In the case of S, (cf. 11.2) for 
instance, terms and formulas are strings over the alphabet 

We sketch a decision procedure for the terms. 
Let [ E A*, be given. First determine the length I([). If I([) = 0, [ is not a 

term. If l ( [ )  = 1 ,  i is a term if and only if i is a variable or a constant. If 
I([) > 1, [ is not a term unless it begins with a function symbol. If (' begins 
with a function symbol, say [ = f :it, then check whether there is a de- 
composition i' = [,<,[,, where the ii are terms. ( is a term if and only if 
such a decomposition exists. To check whether each ii is a term, use the 
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same procedure as for <. (Clearly, in this way an answer will be obtained 
after finitely many steps.) 

If one analyzes the procedure or tries to program it for a computer, a 
difficulty arises: programs (or descriptions of procedures) are finite and 
therefore can only refer to finitely many symbols in A,, whereas A, con- 
tains, among other things, the infinite list of symbols v,, v,, v,, . . . . Therefore 
we introduce the new finite alphabet 

and then represent the symbols in A, in terms of the symbols of A, in the 
natural way. For example, we represent v,, by v71, - - c, , by ell, R : ~  by ~ 3 1 8  
and the S,-formula 3v3(R:v3 v c,, r f hv,) by 3v3(Rilvj v ell = f T ~ v l ) .  
With this in mind we only consider$nite alphabets in the sequel. 

1.2 Exercise. Let A be an alphabet, and let W, W' be decidable subsets of 
A*. Show that W u W', W n W', and A* - W are also decidable. 

1.3 Exercise. Describe decision procedures for the following subsets 
of A,*: 

(a) the set of strings xcp over A, such that x E free(cp), 
(b) the set of S,-sentences. 

B. Enumerability 

We consider a computing machine which operates as follows: it successively 
generates the numbers 0, 1, 2, . . . , tests in each case whether n is a prime, 
and yields n as output if the answer is positive. The machine runs without 
ever stopping, and it generates a list of all primes, i.e., a list in which every 
prime eventually appears. 

Sets, such as the primes, which can be listed by means of a procedure are 
said to be enumerable: 

1.4 Definition. Let A be an alphabet, W c A* and '$ a procedure. 

(a) '$ is an enumeration procedure for W if '$, once having been started, 
eventually yields as outputs exactly the words in W (in some order, 
possibly with repetitions). 

(b) W is enumerable if there is an enumeration procedure for W. 

We give some further examples for enumerable sets. 

1.5 Proposition. If A is a (finite) alphabet, then A* i s  enumerable. 
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PROOF. Suppose A = {a,, . . . , a,). We first define the lexicographic order on 
A* (with respect to the indexing a,, . . . , a,). In this ordering i precedes i' 
if either 

1 )  = 1 )  and "i precedes C' in a dictionary ", 

that is. there are a,, a j  E A, with i < 1 ,  such that for suitable 5 ,  q ,  q' E A*, 
[ = (a iq  and i' = <ajqf .  
For example, if A = {a,  b, c, . . . , x ,  y, z ) ,  then "papa" comes before 

"papi ", but after "zoo ". In general the ordering begins as follows: 

0, a,, . . . , a,, aoao ,  aoa, ,  . . . , a,a,, a,ao, . . . , anan, aoaoao ,  . . . . 

It is easy to set up a procedure which lists the elements of A* in lexicographic 
order. 

1.6 Proposition. { c p  E Lgm I c p )  is enumerable. 

PROOF. By the completeness theorem we have to describe a procedure which 
lists the S,-sentences cp with t- cp. We use the same idea as in the procedure 
for listing Th,, at the beginning of this chapter: We systematically generate 
all possible derivations for the symbol set S,. If the last sequent in such a 
derivation consists of a single sentence cp, we include cp in the list. Note that 
the derivations can be generated as follows: For n = 1,2,3,.  . . one constructs 
the first n terms and formulas in the lexicographical ordering, and one 
forms the finitely many derivations of length ~n which use only these 
formulas and terms, and which consist of sequents containing at most n 
members. 

C .  The Relationship Between Enumerability and 
Decidability 

We have just seen that the set of "logically true" sentences can be listed by 
means of an enumeration procedure. Is it possible to go farther than this 
and decide whether an arbitrary given sentence is "logically true"? The 
enumeration procedure given above does not help to solve this problem. 
For example, if we want to test a sentence c p ,  for validity we might start the 
enumeration procedure in 1.6 and wait to see whether cp, appears; we obtain 
a positive decision as soon as c p ,  is added to the list. But as long as c p ,  has 
not appeared we cannot say anything about c p ,  since we do  not know 
whether c p ,  will never appear (because it is not valid) or whether it will 
appear at a later time. In fact we shall show (cf. 4.1) that the set of valid 
S,-sentences is not decidable. 
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On the other hand, if a set is decidable we can conclude that it is 
enumerable : 

1.7 Theorem. Every decidable set is enumerable. 

PROOF. Suppose W c A* is decidable and '$ is a decision procedure for 
W. To list W, generate the strings of A* in lexicographic order, use '$ to 
check for each string [ whether it belongs to W or not, and, if the answer is 
positive, add < to the list. 

As an extension of 1.7 we have: 

1.8 Theorem. A subset W of A* is decidable ifand only i f  W and the comple- 
ment A* - W are enumerable. 

PROOF, Suppose W is decidable. Then A* - W is also decidable (one can 
use a decision procedure for W, merely interchanging the outputs "yes" 
and "no"). Thus by 1.7, W and A* - W are enumerable. Conversely, 
suppose W and A* - W are enumerable by means of procedures '$ and 
(P'. We combine '$ and '$' into a decision procedure for W which operates 
as follows: Given i, (P and (P' run simultaneously until < is yielded by either 
(P or (P'. This will eventually be the case since every symbol string in A* is 
either in W or in A* - W. If [ is listed by '$, the output is "yes" (< E W), if 
it is listed by V ' ,  the output is "no" (< $ W). 

1.9 Exercise. Suppose U c A* is decidable and W c U.  Show that if W 
and U - W are enumerable, then W is decidable. 

Our definitions of decidability and enumerability were given with respect 
to a fixed alphabet. However, this reference is not essential: 

1.10 Exercise. Let A, and A, be alphabets such that A c A,, and suppose 
W c AT. Show that W is decidable (enumerable) with respect to A, if and 
only if it is decidable (enumerable) with respect to A,. 

D. Computable Functions 

Let A and B be alphabets. A procedure which for each input from A* yields a 
word in B* determines a function from A* to B*. A function whose values 
can be computed in this way by a procedure is said to be computable. An 
example of a computable function is the length function I ,  which assigns to 
every ( E A* the length of i (in decimal notation as a word over the alphabet 
'8, :. . ,911. 

Whereas our discussion of effective procedures deals mainly with the 
notions of enumerability and decidability, many presentations of recursion 
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theory start with computability of functions as the key concept. Both 
approaches are equivalent in the sense that the above notions are definable 
from each other. The following exercise shows that the notion of computable 
function can be reduced to both the notion of enumerability and the notion 
of decidability. 

1.11 Exercise. Let A, B be alphabets, # $ A u B, and f :  A* + B*. Show 
that the following are equivalent: 

(i) f' is computable. 
(ii) {w # f (w) 1 w E A*} is enumerable. 
(iii) {w # ,f'(w)l w E A*} is decidable. 

{w # f (w) 1 w E A*} can be considered as the graph of f ,  and hence the 
equivalences in 1.1 1 can be formulated as follows. A function is computable 
iff its graph is enumerable (decidable). Note that by 1.8 the notion of decid- 
ability can be reduced to that of enumerability. 

52. Register Machines 

In the foregoing discussion we have used an intuitive notion of procedure 
which we illustrated by use of examples. The conception we have thus 
acquired is perhaps sufficient for recognizing in a given case whether a 
proposed procedure can be accepted as such. But in general, our informal 
concept does not enable us to prove that a particular set is not decidable. 
Namely, in this case one must show that every possible procedure is not a 
decision procedure for the set in question. But such a proof is usually not 
possible without a precise notion of procedure. 

We now introduce such a precise concept, starting from the idea that a 
procedure should be programmable on a computer. For this purpose we set 
up a programming language and define procedures in the formal sense to be 
exactly those procedures which can be programmed in this language. 

For the following discussion we fix an alphabet 

A = {ao, .  . . , a,). 

The programs are executed by computers with a memory consisting of 
units R,, . . . , R,, called I-egisters. (In the literature such machines are 
frequently called register machines.) At each stage in a computation every 
register contains a word from A*. We assume that we have machines with 
arbitrarily many registers at our disposal, and that the individual registers 
can store words of arbitrary length. This idealization agrees with our objec- 
tive of encompassing all procedures which can be carried out in principle by 
a computer, i.e., disregarding problems of capacity. 
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A program (over A = {a,, . . . , a,)) consists of instructions, where each 
instruction begins with a natural number L, its label. Only instructions of the 
form (1) through (5) below are permitted. (The instructions describe very 
elementary operations on registers; for instance, they will add or delete a 
symbol in a register, or will test whether a register contains the empty word 
or not. Together with the instructions we give their precise meaning in 
parentheses.) 

(1) L LET R i  = R i  + aj  
for L, i, j E N with j r (Add-instruction: "Add the letter a j  to the word 
in register R,"); 

(2) L LET R i  = R i  - aj 
for L, i, j E N with j I r (Subtract-instruction: "If the word in register 
R, ends with the letter aj,  delete this aj; otherwise leave the word un- 
changed ") ; 

(3) L IF  R i  = THEN L' ELSE Lo O R . .  . OR L, 
for L, i, L', Lo, . . . , L, E N (Jump-instruction: "If register Ri contains 
the empty word go to instruction labelled L'; if the word in register Ri 
ends with a, (resp. a,, . . . , a,) go to instruction labelled Lo (resp. 
L13 . . . ,  Lr)''); 

(4) L PRINT 
for L E N (Print-instruction: "Print as output the word stored in 
register R, "); 

(5) L HALT 
for L E N (Halt-instruction: "Halt"). 

2.1 Definition. A register program (or simply program) is a finite sequence 
a,, . . . , a, of instructions of the form (1) through (5) with the following 
properties: 

(i) ai has label i (i = 0, . . . , k). 
(ii) In an instruction of the form (3) the labels L', Lo, . . . , Lr are _<k. 

(iii) Only a, is a halt-instruction. 

Each program P gives rise to a procedure: Imagine we have a computer 
which contains all registers occurring in P and which has been programmed 
with P. At the beginning of a computation all registers with the possible 
exception of R, are empty, i.e., they contain the empty word, whereas R, 
contains a possible input. The computation proceeds stepwise, each step 
corresponding to the execution of one instruction of the program. Beginning 
with the first instruction one proceeds line by line through the program, 
jumping only as required by a jump-instruction. Whenever a print-instruc- 
tion is encountered, the respective content of R, is given as an output 
("printed out"). The machine stops when the halt-instruction is reached. 
Some examples of programs follow. 
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2.2 Example. Let A = {I ) .  We interpret the strings 0, 1, 11,. . . as the natural 
numbers 0, 1, 2, .  . . . The following program Po decides whether an input in 
the register R, is an even number or not: Po successively deletes strokes from 
the string n given as an input in R, until the empty string is obtained. It 
ascertains whether n is even or odd and prints out or ( accordingly and 
then stops. 

0 IF  R, = THEN 6 ELSE 1 
1 L E T R o = R o - (  
2 I F  R, = THEN 5 ELSE 3 
3 LET R, = R, - I 
4 IF  R, = THEN 6 ELSE 1 
5 L E T R , = R , + I  
6 PRINT 
7 HALT. 

We say that a program P is started with a word ( E A*, if P begins the 
computation with 5 in R, and in the remaining registers. If P, started with 
(, eventually reaches the halt-instruction, we write 

P :  (+  halt; 
otherwise we write 

P :  5 -, a. 
For (, q E A*, 

P : [ + q  

means that P started with ( eventually stops, having-in the course of the 
computation-given exactly one output, namely q. In the above example, 

Po:  n + 0, if n is even, 

P, :n+(,  i fnisodd.  

2.3 Example. Let A = {a,, . . . , a,}. For the program P :  

0 PRINT 
1 LET R, = R, + a, 
2 I F  R, = THEN 0 ELSE 0 O R . .  . OR 0 
3 HALT 

we have P :  ( -, for all (. If P is started with a word (, P prints out succes- 
sively the words (, [a,, (aoao, .  . . . 

Line 2 of P has the form 

L IF R, = THEN L' ELSE L' O R . .  . OR L'. 

In every case such an instruction results in a jump to line L'. For the sake of 
simplicity we shall in the sequel abbreviate it by 

L G O T 0  L'. 
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2.4 Example. We present a program P for the alphabet A = {a,, a,) ,  such 
that P :  [ -+ [[ for [ E A*. (Given i in R,, instructions 0-8 serve to build up 
( in reverse order in the registers R, and R,, after which [( is built up in R,, 
taking the first copy from R, (instructions 9-15) and the second copy from 
R, (instructions 16-22).) 

0 IF Ro = THEN 9 ELSE 1 OR S 
1 LET R, = R o - a ,  
2 LET R, = R, + a, 
3 LET R, = R, + a, 
4 G O T 0  0 
5 LET R, = R, - a, 
6 LET R, = R, + a ,  
7 LET R, = R, + a ,  
8  G O T 0  0 
9 IF R,  = THEN 16 ELSE 10 OR 13 

10 LET R, = R ,  - a ,  
11 L E T R o = R o + a o  
12 G O T 0  9 
13 LET R , = R , - a ,  
14 LET R, = R, + a,  
15 G O T 0  9 
16 IF R, = THEN 23 ELSE 17 OR 20 
17 LET R, = R, - a, 
18 LET R, = Ro + a, 
19 G O T 0  16 
20. LET R, = R, - a, 
21 LET R, = R, + a, 
22 G O T 0  16 
23 HALT. 

As an exercise the reader should write a program P over the alphabet 
A = {a,, a,, a,) which accomplishes the following: 

P :  [ + halt, if i = a,a,a,, 

By analogy with the naive definitions in $1, we can introduce the exact 
notions of register-decidability and register-enumerability. 

2.5 Definition. Suppose W c A*. 

(a) A program P decides W if for all i E A*, 
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(b) W is said to be register-decidable (abbreviated: R-decidable) if there is a 
program which decides W. 

Example 2.2 shows that the set of even natural numbers is R-decidable. 

2.6 Definition. Let W c A*. 

(a) A program P enumerates W if P, started with 0 ,  prints out exactly the 
words in W (in any order, possibly with repetitions). 

(b) W is said to be register-enumerable (abbreviated: R-enumerable), if there 
is a program which enumerates W. 

If P enumerates an infinite set, then P: q -+ a. By 2.3, W = 

( 0 ,  a,, a,a,, . . .) is R-enumerable. The program 0 HALT enumerates the 
empty set, as does the program 

0 LET R,  = R,  + a, 
1 G O T 0  0 
2 HALT. 

For the sake of completeness we add the definition of register-computable 
functions. 

2.7 Definition. Let A and 5 be alphabets and F: A* -+ 5*. 

(a) A program P over A u 5 computes F if for all ( E A *, 

(b) F is said to be register-computable (abbreviated: R-computable) if there 
is a program over A u B which computes F. 

In this terminology, program P of 2.4 computes the function 
F: {a,, a,)* -+ {a,, a,)* with F(i)  = [(. Definitions 2.5 through 2.7 can 
easily be extended to n-ary relations and functions. For example, in order 
to use a program to compute a binary function, one enters the two arguments 
in the first two registers. 

Since any program describes a procedure it is clear that every R-decidable 
set is decidable, every R-enumerable set is enumerable, and every R-com- 
putable function is computable, Does the converse also hold? In other words, 
can every procedure in the intuitive sense be simulated by means of a 
program? A mathematical treatment of this problem is not possible because 
the concept of procedure is an intuitive one without an exact definition. 
Nevertheless, in spite of the simple form of the instructions allowed in 
register programs, it is widely accepted today that all procedures can indeed 
be simulated by register programs, and consequently that the intuitive 
concepts of decidability and enumerability coincide with their mathe- 
matically precise R-analogues. This view was first expressed by A. Church 
in 1936 (referring to a different but equivalent precise notion of decidability 
q n A  pnv~mer~h;litxrl Thorofnra tho n1- i -  thnt o . r o r r i  nrr\norl..,- LA 



$2. Register Machines 155 

simulated by a program and hence that the concepts of enumerability and 
decidability coincide with their precise counterparts is called Churclz's Thesis. 
We mention two arguments which suppor: this thesis. 

ARGUMENT 1 : Experience. Hitherto it has always been possible to simulate 
any given procedure by a register program. In particular, programs in 
programming languages such as ALGOL or FORTRAN can be rewritten 
as register programs. 

ARGUMENT 2. Since 1930 numerous mathematical concepts have been pro- 
posed as precise counterparts to the notion of procedure. Although developed 
from different starting points, all of these definitions have turned out to be 
equivalent. In the literature R-decidable sets and R-computable functions 
are frequently called recursive, and R-enumerable sets are called reczlrsivel~~ 
enumerable. 

Proofs of R-enumerability or R-decidability often require a considerable 
amount of programming work. To avoid getting lost in details, rather than 
actually writing down register programs, we shall usually content ourselves 
with describing procedures intuitively. The following example should help 
to illustrate this. 

2.8 Example. The set of valid S,-sentences is R-enumerable. 

As proof we accept the procedure described in 1.6. I7 

In the following exercises the critical reader is invited to practice writing 
programs for given procedures. The more trusting reader may instead draw 
upon the experience of others and rely on Church's thesis. 

2.9 Exercise. Suppose W, W' c A*. Show that if W and W' are R-decidable, 
then so are A* - W, W n W', and W u W'. 

2.10 Exercise. Suppose W c A*. Show: 

(a) A* is R-enumerable. 
(b) W is R-decidable if and only if W and A* - W are R-enumerable. 

2.11 Exercise. Suppose W c A*. Show that (a) and (b) are equivalent. 

(a) W is R-enumerable. 
(b) There is a program P such that 

2.12 Exercise. Show that a set W c A* is R-decidable iff W is R-enumerable 
in lexicographical order. 
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$3. The Halting Problem for Register Machines 

Again we fix an alphabet A = {a,, . . . , a,). Our aim is to present a subset of 
A* which is not R-decidable. The set will consist of register programs (over 
A) which are suitably coded as words over A. 

For this purpose we associate with every program P (over A) a word 
5, E A*. First we extend A to an alphabet 5 

and we order 5 *  lexicographically according to the order of letters given in 
(+). We represent a program P as a word over B, e.g., the program 

0 LET R , = R , - a ,  
1 PRINT 
2 HALT 

is represented by the word 

OLETR1 =R1 -ao(1PRINT(2HALT. 

If this word is the nth word in the lexicographic ordering on B*, let 
v cP := a, . . . a,. - 

n-times 

Set ll := {(,I P is a program over A). 
The transition from P to 5, (i.e., the numbering of programs over A with 

words in {a,}*) is an example of a Godel numbering (Godel was the first to 
apply this method); and 5, is called the Godel number of P. 

Clearly, for each P we can effectively determine the corresponding 
5, E A*; conversely, given ( E A*, we can decide whether it belongs to ll 
or not, and if it does we can effectively determine the program P such that 
(, = i. The corresponding procedures can be programmed for register 
machines (cf. the discussion at the end of $2). In particular we have 

3.1 Lemma. lI is R-decidable. 

The following theorem presents first examples of R-undecidable sets. 

3.2 Theorem (Undecidability of the Halting Problem). (a) The set 

nLal, = is a program over A and P: 5, -+ halt) 

is not R-decidable. 
(b) The set 

nhal, = {(PIP is a program over A and P :  -t halt) 

is not R-decidable. 
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Part (b) says that there is no register program which decides the set 
ll,,,,. Hence by Church's Thesis there is no procedure whatsoever which 
decides ll,,,,. From this we obtain the following formulation of 3.2(b): 

There is no procedure which decides ,for an arbitrarily given 
program P whether P: q -+ halt. 

For, if such a procedure Cg did exist, one could use it to decide ll,,,, as follows. 
First, for a given [, check whether ( E ll (cf. 3.1). If ( $ ll then ( $  ll,,,,. If 
( E rJ, construct the program P for which 5 ,  = ( and then apply Cg to P. 

PROOF OF 3.2. (a) For a contradiction, suppose that there is a program Po 
deciding ll;,,,. Then for all P: 

Po:  tP + 0 ,  if P :  5, -+ halt, 
(1) 

Po:  t ,+  '1 for some '1 # 0, i fP:  t P - +  a. 

From this we easily obtain a program P, (see below) such that 

P I :  5 P  -+ X, if P :  5 ,  -+ halt, 
(2) 

P,: tp -+  halt, ifP:[,-+ a. 

Then the following holds for all programs P :  

(3) P , :  tP  -+ a iff P :  t p  -' halt. 

In particular, if we set P = PI ,  we have 

(4) P I :  tP,  -+ a iff P, : [,, 4 halt, 

a contradiction. 
To complete the proof of 3.2(a) we show how to construct PI from Po :  

We change Po in such a way that if Po prints the empty word, the new program 
P, will not reach the halt instruction. This is achieved by replacing the last 
instruction k HALT in Po by 

k I F R , = O  THEN k E L S E k + l  OR . . .  O R k + 1  
k+ l HALT 

and all instructions of the form L PRINT by L G O T 0  k. 
(b) To each program P we assign in an effective way a program Pf such 

that 

P :  5 ,  4 halt iff P+ : q -+ halt, 
(*> 

that is, 5, E rJbalt  iff 5 p  + E %,I,. 

Using (*) we can prove (b) indirectly as follows: 

Suppose that Il,,,, is R-decidable, say by means of the program Po. Then in 
contradiction to (a), we obtain the following decision procedure for nh,,,: 
For an arbitrarily given [ E A* first check whether < E IT (cf. 3.1). If [ $ n 
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then ( 4 Il;,,,. If ( E n take the program P with Godel number i ,  (i.e., with 
5, = i )  and construct Pf . Using P o ,  decide whether (,+ E n,,,, . On account 
of (*) one thus obtains an answer to the question whether 5, E n;,,,, i.e., 
whether ( E n;,,, . 

It remains to define a program Pf satisfying (*). If 

5, = a, . . . a, 
v 

n-times 

let P' be the program which begins with the lines 

0 LET R ,  = R ,  + a, 

n-l LET R ,  = Ro + a, 

followed by the lines of P with all labels increased by n. When P +  is started 
with as input, it first builds up the word 5, in R,  and then operates in the 
same way as the program P applied to <,. Hence (*) holds. 

The reader should note that the only properties of the map P ++ 5, used 
in the proof were its injectivity and properties of effectiveness as mentioned 
before 3.1. Therefore the undecidability of the halting problem does not 
depend on our particular choice of Godel numbering. 

Of course, for particular programs P it may be easy to determine whether 
P: E -+ halt or not. But theorem 3.2 tells us that there cannot exist a pro- 
cedure which decides this question " uniformly" for each P .  (Strictly speaking, 
3.2 only refers to procedures which can be simulated by register programs. 
However, we obtain our preceding formulation if we accept Church's 
thesis. Henceforth we shall tacitly do this in explanatory remarks.) 

The following lemma together with 3.2 shows that II,,,, is an example of 
an enumerable set which is not decidable. 

3.3 Lemma. n,,,, is R-enumerable. 

PROOF. We sketch an enumeration procedure: for n = 1, 2, 3 , .  . . generate 
the finitely many programs whose Godel numbers are of length I n .  Start 
each such program with as input, and let each one perform n steps of its 
computation. To compile the desired list, note each program which stops. 

Applying 1.8, we obtain 

3.4 Corollary. A* - n,,,, is not R-enumerable. 0 

The proof of 3.2(a) is based on a so-called "diagonal argument". The 
following exercise contains an abstract version of this method of proof. 
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3.5 Exercise. (a) Suppose that M is a nonempty set and R c M x M. For 
a E M let 

M, = {b E MIRab). 

Show that the set 

D = {b E Mlnot Rbb) 

is different from each M,. 
(b) Let M = A* for some given alphabet A = {a,, . . . , a,), and define 

R c M x M b y  

Rtq iff 5 is the Godel number of a program P enumerating 
a set in which q occurs. 

Show that 

is not enumerable. Thus the set of programs which do not print their own 
Godel number is not enumerable. 

(c) Let M be as in (b) and define R c M x M by 

Rtq iff t is not the Godel number of a program which 
eventually stops when started with q. 

Show that all R-decidable sets (c A*) occur among the sets Ms and that 
D = rib,,,. 

94. The Undecidability of First-Order Logic 

The set of valid first-order Sm-sentences is enumerable (cf. 1.6). On the 
other hand we have: 

4.1 Theorem (Undecidability of First-Order Logic). The set {cp E LE- I != cp} 
of valid Sm-sentences is not R-decidable. 

Thus there is no procedure which decides, for an arbitrary Sm-sentence, 
whether it is valid or not. 

PROOF. We adopt the notation of 93 with A = {I) .  Again we identify words 
over A with natural numbers. By 3.2 we know that the set 

ri,,,, = {tpI P is a program over A and P: -+ halt} 

is not R-decidable. We shall assign to every program P, in an effective way, 
an Sm-sentence cpp such that 

(*> kcpp iff P: +halt. 
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Then we are done: If the set {cp E Lim I +cp) were decidable, we would 
have the following decision procedure for n,,,, (a contradiction): Given 
( E A*, first check whether i is of the form 5,. If so, take P, construct cp, 
and decide whether cp, is valid. By (*) we obtain an answer to the question 
whether P :  -+ halt, i.e., whether 5, E ll, ,,,. 

The following considerations are preparatory to the definition of the 
sentences cpp . 

Let P be a program with instructions cc,, . . . , cc,. Denote by n the smallest 
number such that the registers occurring in P are among R,, . . . , R, . An 
(n + 2)-tuple (L, m,, . . . , m,) of natural numbers with L I k is called a 
conjiguration of P. We say that (L, m,, . . . , m,) is the conjiguration of P 
after s steps if P, started with 0, runs for at least s steps, and if after s steps 
instruction L is to be executed next, while the numbers m,, . . . , m, are in 
R,, . . . , R,, respectively. In particular, (O,O, . . . , 0 )  is the configuration of 
P after 0 steps (the "initial configuration "). Since only cc, is a halt-instruction 
we have 

(1)  P: -+ halt iff for suitable s, m,, . . . , m,, 
(k, m,, . . . , m,) is the configuration of P after s steps. 

If P :  -+ halt, we let sp be the number of steps carried out by P until it 
arrives at the halt-instruction. Finally we choose symbols R ( (n  + 3)-ary), 

n + 3  < (binary), f' (unary), and c from S, (e.g., R,  , R i ,  f ' h ,  and c,), and set 
S := {R, <, f ,  c). 

With the program P we associate an S-structure 'Up within which we shall 
describe how P operates. We distinguish two cases: 

Case 1 .  P: -+ x. We set A p  := N and interpret < by the usual 
ordering on N, c by 0, f by the successor function, and R by the relation 
{ ( s ,  L. m,,  . . . , m,) 1 (L, m,, . . . , m,) is the configuration of P after s steps), 
respectively. 

Case 2. P :  0 -+ halt. We set e := max{k, s,} and A p  := (0,. . . , e } ,  and 
interpret < by the usual ordering on A p  and c by 0, respectively; furthermore 
we by,fAP(m) = m + 1 for m < e and f Ap(e) = e, and set RAP := 

{(s, L, m,, . . . , m,)I (L, m,, . . . , m,) is the configuration of P after s steps). 
(Note that RAP is indeed a relation on A, since at each step P increases the 
contents of each register by at most 1, and hence we have m,, . . . , m, 5 
s, I e for all (s .  L. m o ,  . . . , m,) E RAP.) 

Now we provide an S-sentence IC/, which, in a suitable way, describes the 
- - -  

operations of P on 0. We abbreviate c, fc, ffc, . . . by 0, 1,2, . . . , respectively. 
In reading i,bp the reader should convince himself that the following holds: 

(2) (a) %P + IC/P. 

(b) If 'U is an S-structure with 'U + IC/, and (L, m,, . . . , m,) is the con- 
figuration of P after s steps, then the elements oA, TA, . . . , j A  are 

- pairwise distinct and 2I + RiLiG, . . . m,. 
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We set 

where $0 , $a,, , . . . , $ak - ,  will now be defined. IC/, says that < is an ordering 
whose first element is c, that x I f x  holds for every x, and that f x  is the 
immediate successor of x in case x is not the last element. 

IC/, := " < is an ordering" A Vx(c < x v c = x )  

A V X ( X  < f~ V X = . f ~ )  A V X ( ~ Y X  < y + ( X  < f~ 
A Vz(x < z - + ( f x  < z v f x  = z)))). 

For a = cc,, . . . , cc,- ,, the sentence IC/ ,  describes the operation corresponding 
to instruction cc. It is defined as follows. 

Forcc = L LET R i  = R i  + I :  

For cc = L LET Ri = Ri - I 

t,ha := Vx Vy, . . . ~y , (RxLy , .  . . y, + ( x  < f x  
A ((yi  - 0 A R f xL  + ly ,  . . . y,) v ( i y i  = 0 - 
A 3u( fu = yi A R f x L  + ly0 . . . yi- ,uyi+ 1 . . . y,))))). 

For cc = L IF  R i  = THEN L' ELSE Lo: 

:= V X  VyO . . . Vyn(Rx l y o  . . . y, + ( x  < f x  
A ( (y i  = 0 A R f x p y 0 . .  . y,) v ( i y i  = 0 A RfxL,y, . .  . y,)))). 

For cc = L PRINT: 
- 

:= V X  V y o  . . . Vyn(RxEyo . . . yn -+ ( X  < f x  A R fxL  + ly ,  . . . y,)). 

Now we set 

(3) cp ,  := IC/, + 3x 3yo . . . 3y, Rxky, . . . y,. 

Then cp, is an S-sentence which satisfies (*), i.e., 

kcp, iff P: + halt. 

Indeed, suppose first that cp ,  is valid. Then in particular 'Up k cp,. Since 
'Up IC/, (cf. (2)(a)), we have 'Up I= 3x 3yo . . . 3y, Rxky, . . . yn (cf. (3)), i.e., 
for suitable s, m,, . . . , m,, ( k ,  m,, . . . , m,) is the configuration of P after s 
steps. Now, (1) yields P: + halt. 

Conversely, if P: -+ halt, then for suitable s, m,, . . . , m,, the tuple 
( k ,  mo, . . . , m,) is the configuration of P after s steps. Hence cp ,  is valid, 
because if 'U i's an S-structure such that 'U I= (I,, then 2I I= R~kiii, . . . iii, by 
(2)(b) and hence 'U k cp,. 
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The undecidability of first-order logic was first proved by A. Church [5] 
in 1936. In traditional logic (Llull, Leibniz) the problem of finding a decision 
procedure for "logically true propositions" had already been considered. 
4.1 shows that such a search was bound to fail. 

4.2 Exercise. Prove (2)(b) by induction over s. 

4.3 Exercise. Show that the set of satisfiable S,-sentences is not R- 
enumerable. 

$5.  Trahtenbrot's Theorem and the 
Incompleteness of Second-Order Logic 

The object of this section is to prove that the set of valid second-order 
S,-sentences is not enumerable, and to briefly discuss the methodological 
consequences. A useful tool in this context will be Trahtenbrot's theorem, 
which says that the set of sentences valid in all finite structures is not 
enumerable. 

5.1 Definition. (a) An S-sentence cp is said to be jin-satisjiable if there is a 
finite S-structure which satisfies cp. 

(b) An S-sentence cp is said to bejn-valid if every finite S-structure satisfies cp. 

To be specific we consider the symbol set S, and put 

Of, := {cp E Lim I cp fin-satisfiable), 

Of, := {cp E LZ- I cp fin-valid). 

As an example, we note that over a finite domain any injective function is 
also surjective; therefore the sentence cp := Qx Qy( f x  = fy -+ x - y) -+ 

Qx 3yx = fy is fin-valid; however, cp is not valid. The sentence i c p  is 
satisfiable but not fin-satisfiable. 

5.2 Lemma. Of, is R-enumerable. 

PROOF. First we describe a procedure which decides, for every S,-sentence 
cp and every n 2 1, whether or not cp is satisfiable over a domain with n 
elements. Suppose cp and n are given. Since for every structure with n elements 
there is an isomorphic structure with domain { I ,  . . . , n], we only need to 
check (by the isomorphism lemma) whether cp is satisfiable over (1,. . . , n}. 
Let S be the (finite!) set of symbols occurring in cp and 'U,, . . . , 'U, be the 
finitely many S-structures with domain (1, . . . , n} (cf. 111.1.5). We can describe 
the 21i explicitly by means of finite tables for the relations, functions and 
constants. cp is satisfiable over (1, . . . , n} if and only if 'LI, + cp for some 
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i < k. Thus we only need to test whether 21i F cp for i = 0, . . . , k. These tests 
can be reduced to questions which can be answered from the respective 
tables as follows: Given i < k, if cp = i$ then the problem "2li I= cp?" can 
be reduced to the question of whether 21i k $. If cp = ($ v X) then similarly 
the problem can be reduced to the questions of whether 21i F $ and whether 
21i I= X. If cp = 3x$ we reduce to the questions "21i I= $[I]?", . . . , "21i F 
$[n]?". Continuing in this way we eventually arrive at questions of the 
form "ai I= $[no,. . . , nm-,I?" for atomic formulas $(v,,. . . , urn-,) and 
n o  . . . , n I n. Clearly these can be answered effectively by inspecting the 
tables for 21i. 

Now Of, can be enumerated as follows: For m = 1, 2, . . . generate the 
(finitely many) words over A, which are S,-sentences and are of length I m ,  
and use the procedure just described to decide, for n = 1, . . . , m, whether 
they are satisfiable over a domain with n elements. List the sentences for 
which this is the case. 

5.3 Theorem. Of, is not R-decidable. 

PROOF. For a program P over A = { I ) ,  let 'Up and $, be defined as in the 
proof of 4.1. We show 

(*I P :  + halt iff $, E Of,. 

This proves the theorem; for otherwise, using (*), one could obtain from a 
decision procedure for Of, a procedure to decide whether P :  + halt 
(cf. the corresponding argument in the proof of 4.1). 

Proof of (*). If P :  + halt, then 'Up is finite and is a model of $,. Hence 
$, E Of,. Conversely, if P :  + m, then by (2)(b) in the proof of 4.1, the 
elements U", T", . . . are pairwise distinct in every model 2l of $,. Thus every 
model of $, is infinite, and hence $, 6 Of,. 

From 5.2 and 5.3 we now obtain 

5.4 Trahtenbrot's Theorem. The set Of, of Sm-sentences valid in all finite 
strzlctures is not R-enumerable. 

PROOF. Clearly, 

(*) cp E LSom - Of, iff i cp E Ofv 

holds for cp E L:m. For a contradiction assume that Of, is enumerable. Then, 
using (*), one can also enumerate LEm - O, : one simply starts an enumera- 
tion procedure for Of,, and whenever it lists a sentence i cp, one writes down 
cp. This would lead to a decision procedure for Of, (in contradiction to 5.3) 
as follows: For a string [ over A,, decide first whether [ is an Sm-sentence. 
If so, start enumeration procedures for Of, (cf. 5.2) and for LS,- - a,,, and 
let both proc,edures continue until one of them yields [ as output. Thus one 
obtains a decision whether [ E Of,. 
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5.5 Theorem (Incompleteness of Second-Order Logic). The set of calid 
second-order S,-sentences is not R-enumerable. 

PROOF. Let cpfin be a second-order S,-sentence with the property that for 
all 'U, 

+ cpfi, iff 'U is finite 

(cf. IX.l). Then for all first-order S,-sentences cp, 

(*I E Qfv iff + q f i n  + (P. 

Now, if the set of valid second-order S,-sentences is R-enumerable, then 
one can start an enumeration procedure for this set, and each time it yields 
a sentence of the form cpfin -+ cp, where cp E Lia, one adds cp to the list. By 
(*) we obtain in this way an enumeration of Of,, in contradiction to Trahten- 
brot's theorem. 

Theorem 5.5 is due to Godel. It is a stronger version of a result obtained 
in IX.1. There we concluded from the failure of the compactness theorem for 
second-order logic Y,,, that there cannot be any correct and complete proof 
calculus for Y,,. In other words, there is no calculus whose derivability 
relation k satisfies 

(+) For all Y,,-sentences cp and all sets O of Y,,-sentences, 
O k q i f f O ~  cp. 

However, ( + ) leaves open the question of whether there is a calculus which 
satisfies (+) for O = lT;, that is, whether there is a correct calculus in which 
all valid second-order sentences are derivable. Now 5.5 shows that in this 
sense second-order logic is also incomplete: If such a calculus existed, one 
could apply its rules systematically to generate all possible derivations and 
hence all valid second-order sentences (cf. the proof of 1.6). 

At this point we see how useful it has been to introduce the notion of 
enumerability: By employing this notion we were relieved of the task of 
giving precise definitions for the notions of derivation rule and calculus, but 
were nevertheless able to conclude that there is no adequate proof calculus 
for the valid second-order sentences. 

The argument for 5.5 above is based on the fact that the finite sets are 
characterizable in second-order logic. Thus it can also be applied to weak 
second-order logic (cf. IX. 1.7). 

For the sake of simplicity, we have, in the last section, referred to the 
symbol set S, although we have actually needed only a few symbols from 
S,. It should be clear that the results are also valid for other symbol sets 
S which are effectively given as is S, and contain the symbols mentioned 
above. One can even show that it is sufficient for S to contain only one 
binary relation symbol. Moreover, the incompleteness of second-order logic 
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already holds for S = lT; (cf. 5.6). On the other hand, the set of valid first- 
order S-sentences is decidable provided S contains only unary relation 
symbols (cf. XI.3.9(b)). 

5.6 Exercise. The set of valid second-order @-sentences is not R-enumerable. 

96. Theories and Decidability 

In this section we investigate several theories, especially with regard to 
enumerability and decidability. Among the results obtained is the unde- 
cidability of arithmetic. We shall always assume that the symbol sets con- 
sidered are effectively given. 

A. First-Order Theories 

6.1 Definition. T c L i  is said to be a theory if T is satisfiable and if it is 
closed under consequence (i.e., every S-sentence which follows from T 
already belongs to T). 

For every S-structure 'U the set 

T~( ' u )  := {. E L;I% I== cpcp) 

is a theory, the theory of'% (cf. VI.4.1). Th(%) is called (elementary) arithmetic. 
For (D c L: let (Dw :={p E L i l a  F cp). If T is a theory, then T = T', 

and if (D is a satisfiable set of S-sentences, then (DF is a theory. We give a few 
examples. 

(1) = {.~Ls,lk.). 
(2) For S = S,,: (first-order) group theory Th,, = (DL. 
(3) For S = {E} - : ZFC set theory ThzFc := ZFCF. 
(4) For S = S,,: the so-called (first-order) Peuno arithmetic ThpA := OFA. 

The axiom system (DpA consists of the Peano axioms given in 111.7.5, 
where the usual induction axiom (a second-order sentence) is replaced 
by the first-order "induction axioms" (*) below: 

(*) and for all x,, . . . , x ,-,, y and all cp E LSar such that free(.) c 

{x, , . . . , . u n  I ,  J'} the sentence 
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% is a model of 0,,. The schema (*) is a natural substitute for the induction 
axiom, because it expresses the induction axiom for properties which are 
definable in first-order logic. Many theorems of elementary arithmetic (i.e., 
sentences in Th(%)) can be derived from 0,,. Nevertheless it turns out that 
not all sentences of Th(%) are derivable from 0,,: in 6.10 we shall show that 
OFA 5 Th(%). 

6.2 Definition. (a) A theory T is said to be R-axiomatizable if there is an 
R-decidable set 0 of sentences such that T = 0'. 

(b) A theory T is said to bejnitely axiomatizable if there is a finite set 0 of 
sentences such that T = 0'. 

Every finitely axiomatizable theory can be axiomatized by means of a 
single sentence. (Take the conjunction of the axioms.) Every finitely axio- 
matizable theory is also R-axiomatizable. The theories ThpA and ThzFc are 
R-axiomatizable, but it can be shown that they are not finitely axiomatizable. 

6.3 Theorem. An R-axiomatizable theory is R-enumerable. 

PROOF. Let T be a theory and let 0 be an R-decidable set of S-sentences such 
that T = 0'. The sentences of T may be listed as follows: Generate syste- 
matically all derivable sequents and check in each case whether the members 
of the antecedent belong tb 0. If so, list the succedent provided it is a sentence. 

An R-axiomatizable theory T need not necessarily be R-decidable. 
Examples are T = a" (for S = S,; cf. 4.1) and T = Th,, (cf. [28]). The 
situation is different, however, if T is complete in the following sense. 

6.4 Definition. A theory T c LS, is complete if for every S-sentence cp we 
have c p ~  T o r  i c p  E T. 

Th(2l) is complete for every structure 2l. 

6.5 Theorem. (a) Every R-axiomatizable and complete theory is R-decidable. 
(b) Every R-enumerable and complete theory is R-decidable. 

PROOF. By 6.3 it is suficient to prove (b). Let T be an R-enumerable complete 
theory. In order to decide whether a given sentence cp belongs to T, we use a 
procedure to enumerate T, continuing until either cp or i c p  has been listed. 
Since T is complete, one of these two sentences will eventually be listed. If 
cp is listed, cp belongs to T ;  if i cp is listed, cp does not belong to T. 

From 6.5 we obtain the decidability of an axiomatizable theory once we 
have proved its completeness. A method for proving completeness will be 
introduced in the next chapter. In certain cases one can use the assertion in 
< "  c - ~ .  .I-:- 
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6.6 Exercise. Let T = 0" be a theory, where is R-enumerable. Show that 
T is R-axiomatizable. (Hint: Starting with an enumeration q o ,  q l ,  . . . of 0, 
consider the set {q,, qo A cp,, . . .).) 

6.7 Exercise. (a) For at most countable S, let T c L: be a theory having 
only infinite models. Further, suppose there is an infinite cardinal K such 
that any two models of T of cardinality K are isomorphic. Show that T 
is complete. 

(b) Set up a decidable system of axioms for the theory of algebraically 
closed fields of fixed characteristic and use (a) to show its completeness 
(and hence by 6.5 its decidability). 

B. The Undecidability of Arithmetic 

In this section we prove the undecidability of arithmetic, i.e., we show that 
there is no procedure which decides for every &,-sentence whether it holds 
in 8. We shall use the same method of proof as in showing the undecidability 
of first-order logic: we effectively assign to every register program P an 
&,-sentence q, such that 

8 + q, iff P :  -r halt. 

The undecidability of Th(%) then follows immediately from the undecid- 
ability of n,,,, . 

In defining q, we shall make use of a formula IC/, which, in %, describes 
how the program P operates. The following lemma provides us with such a 
formula. 

Assume the program P consists of the instructions cc,, . . . , cc,, and let n 
be the smallest number such that all registers mentioned in P are among 
R,, . . . , R,. Recall (cf. 94) that a configuration of P is an (n + 2)-tuple 
(L, m,, . . . , m,) of natural numbers such that L I k. (L, m,, . . . , m,) stands 
for a situation where cc, is the next instruction to be executed and the contents 
of the registers are m,, . . . , m,. 

6.8 Lemma. With any given program P one can effectively associate a formula 
IC/p(~o, . . . , v Z n +  2) such that for all k,, . . . , k,, L, m,, . . . , m, E N the following 
holds: 

% F IC/p[ko, . . . , k,, L, m,, . . . , m,] iffP, beginning with the con- 
jiguration (0, k,, . . . , k,), after jinitely many steps reaches the 
conjiguration (L, m,, . . . , m,). 

Using IC/,, we can write down the desired formula q, as 
1 

V P : = ~ V , + ~  . . . ~ V Z , + Z  IC/P(Q, . . . , Q , _ k , v n + ~ ,  . . . , ~ 2 n + 2 ) .  

n nrlz ' In case cp E L2', for example, we write cp(g, v , )  for cp -- and cp(n, m) for cp Here, as before, 
00 U 0 " l  

g denotes the corresponding term 1 + . . . + 1. 
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Then we have (note that cc, is the halt-instruction of P): 

% k cpp iff P, beginning with the configuration (0, . . . , O), 
after finitely many steps reaches the configuration 
(k, nz,, . . . , m,) for some m,,  . . . , m, 

iff P: -+ halt. 

Thus we have 

6.9 Theorem (Undecidability of Arithmetic). Arithmetic, i.e., the S,,-theorj 
Th(%), is not R-decidable. 

Since Th(%) is complete, using 6.5, we obtain 

6.10 Corollary. Arithmetic is neither R-axiomatizable nor R-enumerable. 

According to 6.9 and 6.10 arithmetic is not amenable to a purely 
"mechanical" treatment in the following sense: There is no procedure for 
deciding whether any given arithmetical sentence is true, nor is there even a 
procedure which lists all true arithmetical sentences. In other words, every 
procedure which lists only true arithmetical sentences must necessarily omit 
some true arithmetical sentences. Thus mathematicians will never possess a 
method for systematically proving all true arithmetical sentences. 

PROOF OF LEMMA 6.8. Let P be given as above. We must find an S,,-formula 
t,hP(xO, . . . , x,, Z, yo . .  . . , y,) (= t,hp(R, Z,  p)) which says (in %) that P, beginning 
with the configuration (0, Z), proceeds through a series of configurations, 
ending finally with the configuration (z, j). That is, t,hp(%, z, p) should be a 
formalization of the following statement: 

"There is an s E N and a sequence C,, . . . , C, of configurations 
such that 

and for all i < s, Ci -+ Ci+ l. 7, 

P 

"Ci 7 C i + , "  means that P passes from configuration Ci to Ci+ when 
executing the instruction addressed in Ci .  We form a single sequence from 
C O , . . . ,  C, and thus obtain the following formulation of (1): 

"There is an s E N and a sequence 
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(2) such that 

and for all i < s, 

The principal difficulty in formalizing (2) as a first-order &,-sentence 
arises with the quantifier "there exists a sequence.. .". We overcome this 
problem by using natural numbers as codes for finite sequences. Often one 
codes a sequence (a,, . . . , a,) by the number p"," +' . . . . . p:'+ +', where pi 
denotes the ith prime. However, when using this code, we would be forced to 
give an  definition of exponentiation. Since such a definition is rather 
involved, we provide another coding where a sequence (a,, . . . , a,) is coded 
by two suitably chosen numbers t and p. 

6.11 p-function Lemma.' There is a function P: N3 -+ N with the following 
properties : 

(a) For every sequence (a,, . . . , a,) over N, there exist t, p E N such that for 
i l r 

(b) There exists an S,,-Jbrmula ~ ( v , ,  v,, v,, v,) which dejnes P in 8 in the 
sense that jor t ,  p, i, a E N, 

% + xCt, P, i, a1 iff P(t, P, i) = a. 

PROOF. (a) Given (a,, . . . , a,), we choose a prime p which is larger than 
a a r + 1 and set 

By choice of p the right-hand side is the p-adic representation o f t .  
First we show that for all i r 

a = a, iff there are b,, b,, b, such that 
(i) t = b, + b,((i + 1) + ap + b2p2), 

(**I (ii) a < p, 
(iii) b, < b,, 
(iv) bl = p2' for a suitable I .  

The implication from left to right follows immediately from (*). Conversely, 
suppose (i)-(iv) hold for b,, b,, b, and let b, = p2'. From (i) we obtain 

t = b, + (i + 1) .p2 '  + up 2 '+  + b 2 ~ ~ ' + ~ .  

This nomenclature stems from Godel's use of for a function with the properties (a) and (b) 
of the lemma. 
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Since b, < p2', a < p, and the p-adic representation of t is unique, a com- 
parison with (*) yields 1 = i and a = ai.  We set /?(t, p, i) = ai ,  i.e., the uniquely 
determined number a for which the right-hand side of (**) holds. We extend 
this definition to arbitrary natural numbers r, q, j by specifying 

.the smallest a such that there exist b,, b,, b2 with 
(i) r = b, + b,((j + 1) + aq + b2q2) 

(ii) a < q 
(iii) b, < b, 
(iv) b, = q2' for suitable I ,  
if such an a exists and q is prime 

,0, otherwise. 

Then /? has the properties required in (a). 
(b) The definition just given leads immediately to an S,,-formula 

~ ( v , ,  v,, v,, v,) defining /?; one need only note that (iv) is equivalent to the 
condition that b, be a square and that for all d f 1 with d I b, we have q Id. 

We now return to the proof of 6.8, that is, to the problem of giving an 
S,,-formula which says that the program P passes in finitely many steps from 
the configuration (0, E) to the configuration (z, j). As we have seen, this 
statement about P is equivalent to statement (2). We can formalize (2) with 
the aid of the formula x from the /?-function lemma (where we now use 
s, t, . . . to denote variables): 

'hp(x0, . . . , X ~ , Z , Y O ,  . . .  , ~ n )  
:= 3s 3p 3t(~( t ,  P, O, O) A ~ ( t ,  P, I, x,) A . . . A ~ ( t ,  P, n+ x,) 
A x(t, P, s .  (MI2), z) A x(t, P, s .  (n+2) + 1, yo) A . . . 

A x(t, P, s .  (-22) + (dl, Y,) 
A Vi Vuu, . . . u, Vu'ub . . . u; 

[i < s A ~ ( t ,  p, i . (-21, u) A ~ ( t ,  p, i . (-2) + 1, u,) A . . . 
A x(t, p, i . (-22) + ( n  + 11, u,) 

A x(t, p, (i + 1) . (&), u') A ~ ( t ,  p, (i + 1) . (11 + 2) + 1, ub) A . . . 
A z(t, P, ( i  + 1 ) .  (n+2) + (n+), uh) 

- " (u ,  uo, . . . , u,) 7 (u', ub,  . . . , uA)'~). 

Here 

stands for a formula which describes the direct transition from configuration 
(u, u,, . . . , u,) to configuration (u', ub,. . . , ub); such a formula can be 
obtained as a conjunction IC/, A . . . A IC/,- ,, where t,hj describes transitions 
induced by instruction cc j  of P. For example, if aj  is of the form 

j LET R, = R, + 1 
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then we take 

Instructions of other type can be treated similarly. Thus a formula IC/, with 
the desired properties is obtained, and the proof of 6.8 is completed. 0 

Finally, we note another consequence of the fact that computations of 
register machines can be described in %. 

6.12 Theorem. Let r 2 1 .  

(a) Given an r-ary R-decidable relation Q over N, there is an S,,Tformula 
cp(vo, . . . , vr- ,) such that,for all k,, . . . , k r -  , E N ,  

Qk ,... k r - ,  i f f  %+cp(ko , . . . ,  _ k r - , ) .  

(b) Given an R-computable ,function j ' :  N r  + N, there is an S,,:formula 
cp(vo, . . . , vr- or) such that for all k,, . . . , k r -  ,, kr E N, 

f r -  = r i f f  % c~(_k0, . . . ,  _ k r - l , _ k r ) ,  

and in particular, 

% I= 3 = '  vrcp(_ko,. . . , _ k r - 1 ,  0,). 

PROOF. (a) Suppose r 2 1 and let Q be an r-ary R-decidable relation over 
N. Let P be a register program which decides II and cc,,, . . . , cc,, be the print- 
instructions of P. Suppose that R ,  is the largest register mentioned in P, 
and without loss of generality, that n 2 r - 1. Then, using IC/, from 6.8, we 
have for arbitrary k,, . . . , kr -  , E N : 

k . . . k iff P, beginning with configuration 

after finitely many steps reaches a configuration 
of the form (L i ,  0, m, ,  . . . , m,) with 0 I i I 1 

iff % + . u ~ ~ + ~  

Thus for cp(v,, . . . , vr-  ,) one can take the formula 
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(b) We proceed as in (a), noting that 

f ( k  . . . , k ) = k iff P ,  beginning with configuration 

after finitely many steps reaches a con- 
figuration of the form ( L i ,  k,, m l ,  . . . , m,) 
with 0 I i I 1.  

Hence the required formula cp(vo,. . . , v,- ,, v,) can be chosen as 

Relations and functions over N which can be described by an S,,-formula 
as in 6.12 are said to be arithmetical. Thus 6.12 says that all R-decidable 
relations and all R-computable functions over N are arithmetical. 

97. Self-Referential Statements and Godel's 
Incompleteness Theorems 

In the preceding section we have shown that arithmetic is not R-axiomatiz- 
able. Originally Godel [13] used another method to prove this result. He 
showed that within suficiently strong axiom systems there are self-referential 
formulas, i.e., formulas which make statements about themselves. Such 
self-referential formulas are the main theme of this section. We shall close 
by taking up our original objective of this chapter and obtain some important 
results concerning the limitations of the formal method. With this aim in 
mind we shall often conduct the arguments on the syntactic level. 

In the following we take a, to be a set of S,,-sentences. 

7.1 Definition. (a) A relation Q c N r  is said to be representable in cD if there 
is a formula cp(vo, . . . , v,- ,) E LSar such that for all no,  . . . , n,- , E N : 

Qno . . .  n r - I  implies cD t- cp(n_,,  . . . , !,.- ,), 

not Qn, . . . n r - ,  implies cD t- i cp(n_,,  . . . , rzr- ,). 
, 

In this case we say that cp(vo, . . . , v,- ,) represents Q in 0. 
(b) A function F :  N r  

+ N is said to be representable in a, if there is a formula 
cp(vo, . . . , v,) E L k l  such that for all no,  . . . , n,- ,, n, E N ,  

n o  . . . , n )  = n implies cD t- cp(_nO,  . . . , p,); 
n o  . . , n ) # n implies cD t- l c p C n O ,  . . . ,n,); 
a, t- I='  v,cp(n_,, . . . , g r - , ,  v,). 

In this case we say that cp(v,, . . . , v,) represents F in a. 
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7.2 Lemma. (a) If'@ c cD' c L2. then the relations andfunctions representable 
in cD are also representable in cD'. 

(b) I f  cD is inconsistent then every relation mlrf euery function is representable 
in cD. 

(c) Let cD be consistent. I f @  is decidable then every relation representable in 
cD is decidable and every junction representable in cD is computable. 

All assertions follow directly from definition 7.1. To prove (c), note that 
the set of formulas derivable from a decidable set cD is enumerable. 0 

For cD c L2r we define 

Repr cD iff all R-decidable relations and all R-computable 
functions on N are representable in 0. 

Repr cD says, in a certain sense, that cD is rich enough to describe how pro- 
cedures operate. In the preceding section we have described the execution 
of programs in cD := Th(%). Indeed we have 

7.3 Proposition. Repr Th(%). 

The proof is immediate from 6.12 if one notes that for every &,-sentence cp, 

and 
% F cp iff Th(%) k- cp 

not 91 k= cp iff Th('J1) F i c p .  

A closer analysis shows that the arguments in the previous section which 
led to a description in Th(%) of the execution of programs, can actually be 
carried out in a,,. Thus one can obtain 

7.4 Proposition. Repr a,, . 

As an important technical means we assume in the following that an 
effective coding of the S,,-formulas by natural numbers (a Godel numbering) 
is given. and moreover that every number is the Godel number of some 
formula. We write nq for the Godel number of cp. Conversely, we let cp, 
denote the formula with Godel number n. In this way it is possible to translate 
statements about formulas into arithmetical statements. For example, a 
statement about the derivability of a formula cp becomes an arithmetical 
statement about the Godel number of cp, and this in turn can be formalized 
as an Sa,-sentence. 

The way we shall proceed originates from the liar's paradox, thereby 
leading, on a formal level, to a clarification of the problems which lie behind 
this paradox. The paradox of the liar amounts to the fact that the statement 

(*) "I am not telling the truth" 
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can neither be true nor false; for if it were true it would have to be false, and 
if it were false it would have to be true. Note that (*) makes a statement 
about itself, and hence is an example of a self-referential statement. 

As a first step we consider statements of this kind in general. We show 
that within a suficiently rich system, every property which is expressible in 
the system gives rise to a self-referential sentence; more precisely: 

7.5 Fixed Point Theorem. Suppose Repr 0. Then, for every $ E L : ~ ~ ,  there 
is an S,,-sentence cp (= cp*) such that 

0 t- (P - $(ne). 
Intuitively, cp says " I  have the property $". 

PROOF. Let F: N x N + N be given by 

nX@', i f  n = n X for some x E LSar 
F(n, m )  = 

otherwise. 

Clearly, F is computable, and for x E LFr we have 

Since Repr 0, F can be represented in 0 by a suitable formula cc(v,, v,, v,) E 

Lpr .  We write x, y, z for v,, v,, v,. For given $ E Lfar we set 

n P 
Since E ~f~~ and cp = a ,  we have F(nP, n P)  = ne and hence 

X , 

We now show in two steps that 

0 t- cp - 
First, by definition of cp,  

P P 'P 0 u {cpl t- ~ ( n  , _n , c ) - $(ne). 
By (I), it follows that 0 t- cp + $(@). Since cc represents the function F in 
0, we have, on the other hand, 

P P Ot- 3"zcc(g , _ n  , z ) ;  

thus by (1) 

0 t- Vz(cc(nP, l Z P ,  z )  -+ z = ne), 
and therefore 

0 t $(rze)  - Vz(cc(nP, _nP,  z )  - $(z)), 

that is, 
0 t- $(ne) - cp 
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Let us now turn to systems which are rich enough to contain statements 
about the "truth" or "falsity" of statements formalizable in the system. The 
following theorem shows that in such a system one cannot classify all state- 
ments as either "true" or "false". Formally, we consider an axiom system @; 
The "true" statements correspond to the sentences in 

the "false" statements to the negations of sentences in @+. To say that one 
can speak of "truth" in @ is to say that @+ is representable in @ (more 
precisely, that {nqlcp E O F )  is representable in 0). If @ satisfies this latter 
condition then, as we shall show, there is a sentence cp such that neither cp 
nor i cp belongs to @+. 

7.6 Lemma. Let @ be consistent and suppose Repr @. I f  @' is representable 
in @, then there is an S,,-sentence cp such that neither @ t cp nor @ t i cp. 

PROOF. Suppose x(vo) E LPr represents the set @+ in 0. Then in particular, 
for a E LSoar, 

@ t x(_na) iff @ t cc. 

For II/ = i~ we choose, by 7.5, a "fixed point7' cp E Lgar such that 

cp says intuitively "I am not true". 
As in the paradox of the liar, we now obtain that neither @ t- cp nor 

@ t- i cp. For if @ t- cp then @ t- x(_nq) and hence by (*), @ F i c p ,  that is, 
@ is inconsistent, contrary to our initial assumption. On the other hand, if 
@ t i cp then by (*), @ t ~(_nq) and therefore @ t- cp, and @ would again be 
inconsistent. 

Lemma 7.6 has interesting consequences both on the syntactical and 
semantical levels. In semantical formulations one usually refers to OF 
instead of @+. 

7.7 Tarski's Theorem [26]. (a) Suppose 0 is consistent and Repr 0 holds. I f  
@" is representable in @, then @' is not complete. 

(b) Th(%) is not representable in Th(8). 

PROOF. (a) Since 0'- = cDF, (a) follows immediately from 7.6. 
(b) follows from (a) by setting @ = Th(8)  and noting that Th(%) = 

Th(%)" is complete. 

Tarski's theorem is of great significance in the study of semantics. Part 
(a) says that for a sufficiently strong system the following two conditions 
cannot hold simultaneously: 

(1) Every statement in the system is either true or false ("QF is complete"). 
(2) Truth is expressible in the system ("@" is representable in 0"). 
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The paradox of the liar arises from the tacit assumption that both conditions 
(1) and (2) hold for everyday language. 

Part (b) of Tarski's theorem can be formulated succinctly as "there is no 
truth definition for arithmetic within arithmetic". 

Like Tarski's theorem, Godel's first incompleteness theorem is also a 
consequence of lemma 7.6 (cf. 6.10). 

7.8 Gddel's First Incompleteness Theorem. Let cD be consistent and R-decidable 
and suppose Repr 0. Then there is an S,,-sentence cp such that neither cD t cp 
norm t i cp .  

PROOF. Suppose that for every S,,-sentence cp, either cD t cp or cD t- i c p .  
Then cDt is decidable. Hence, by Repr 0 ,  cDk is representable in cD in con- 
tradiction to 7.6. 

A refinement of the above discussion leads to results concerning the 
consistency of mathematics. In particular, Godel's second incompleteness 
theorem, which we shall derive, shows that the consistency of a sufficiently 
rich system cannot be proved using only the means available within the 
system. 

Let cD c L ~ C  be decidable such that Repr cD. We choose an effective 
enumeration of all derivations in the sequent calculus associated with S,, 
and define a relation H c N x N by 

Hnm iff the mth derivation ends with a sequent of the form 
t,hO . . . t,hk- lcpn, where t,h,, . . . , E cD and cp, is 
(as before) the nth formula in the Godel numbering 
of S,,-formulas. 

Since cD is decidable, so also is H, and clearly, 

cD I- cp iff there is m E N such that Hnem. 

As a decidable relation, H can be represented in cD by a suitable formula 
cpH(vO, vl) E LS,,. Again we write x, y for v,, v ,  and set 

Derdx) := 3ycpH(x, y). 

For t,h = i DerQ(x) we choose a fixed point cp E ~ 3 . :  
(*) cD t- cp ++ i DerQ(ne). 

cp says intuitively "I am not provable from cD" 
Then we have 

7.9. I f  cD is consistent then not t cp. 

PROOF. Suppose@ t- cp holds. Choose m such that HnVm. Then CD t- cp,(~e,_m)), 
and so cD t DerQ(_nV). From (*) we have cD k- icp,  and hence cD is incon- 
sistent. 
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Since Repr 0, the consistency of cD is equivalent to "not cD t- 0 -- 1 ". 
(Note that in case cD t 0 - 1 every representable set which contains 0 
would also contain 1.) The &,-sentence 

thus expresses the consistency of a. 7.9 may then be formalized as the 
&,-sentence 

Consis, -+ i Der,(_ne). 

An argument which is in principle simple, though technically rather tedious 
could now be used to show that the proof of 7.9 can be carried out on the 
basis of 0, in case cD 2 a,, (and a natural representation cp,(vo, v,) of H has 
been chosen). This means: 

(**I cD I- Consis, + i Der,(ne). 

We then can deduce 

7.10 Giidel's Second Incompleteness Theorem. Let cD be consistent and 
R-decidable such that cDpA c cD. Then 

not cD t Consis,. 

PROOF. If (D t Consis, then by (**) t- i Der,@V) also. By (*), t- cp ++ 

i Der,(_ne) and hence cD t cp, in contradiction to 7.9. 0 

For cD = cD,, Godel's second incompleteness theorem says intuitively 
that the consistency of a,, cannot be proved on the basis of cD,,. This result 
shows that Hilbert's program cannot be carried out in its original form. In 
particular this program aimed at a consistency proof for cDpA using only 
finitistic means. The concept "finitistic", though not defined precisely 
(cf. [18], p. 32), was taken in a very narrow sense; in particular it was required 
that finitistic proof methods be carried out on the basis of a,,. 

The above argument can be transferred to other systems where there is a 
substitute for the natural numbers and where decidable relations and com- 
putable functions are representable. In particular, they apply to systems of 
axioms for set theory such as ZFC. One uses the natural numbers as defined 
in ZFC. Then one can define an {E)-sentence Consis,,,, which expresses 
the consistency of ZFC, to obtain 

7.11 Theorem. If' ZFC is consistent then not ZFC t- Consis,,,. 

Since present-day mathematics can be based on the ZFC axioms, and 
since "not ZFC t Consis,,," says that the consistency of ZFC cannot be 
proved using only means available within ZFC, we can formulate 7.11 as 
follows: I f  mathematics is consistent, we cannot prove its consistency by 
mathematical means. 
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In a similar way also Tarski's theorem and Godel's first incompleteness 
theorem can be transferred to axiom systems for set theory. For example, 
7.8 would then assert that for every decidable and consistent system of 
axioms cD for set theory which contains ZFC, there is an (5)-sentence $ such 
that neither cD t- IC/ nor cD I- i IC/. Intuitively this means that there is no 
decidable consistent system of axioms for mathematics which, for every 
mathematical statement, allows us to either prove it or disprove it. In this 
fact an inherent limitation of the axiomatic method is manifested. 



CHAPTER XI 

An Algebraic Characterization of 
Elementary Equivalence 

The greater part of our exposition so far has been devoted to the development 
and investigation of first-order logic. We can justify the dominant r61e 
assumed by first-order logic in several ways: 

First-order logic is in principle sufficient for mathematics. 
The intuitive concept of proof and the consequence relation can be 
adequately described by a formal notion of proof, which is given by 
means of a calculus. 

(c) A number of semantic results such as the compactness theorem or the 
Lowenheim-Skolem theorem lead to an enrichment of mathematical 
methods. 

However, in contrast to these positive aspects, one also has to take into 
account that the limited expressive power of first-order language often 
requires clumsy formulations. In particular, it forces us to make explicit 
reference to set theory to an extent not usual in mathematical practice. For 
this reason we were led to seek other systems with greater expressive power 
but still satisfying conditions (b) and (c). We introduced a number of exten- 
sions of first-order logic (Y,,, Y;, Y,,,, YQ)  and investigated their 
semantic properties. In each case we found (cf. IX) that not all the properties 
mentioned in (c) are available. 

In the previous chapter we obtained negative results of a more syntactic 
nature. For example, we saw that for YII and for 9; there is no possibility 
of adequately describing the notion of proof by means of a calculus; hence 
in these cases we also have to make concessions concerning (b). 

The discussion in the last two chapters will show that these negative 
results have a deeper reason: Having made precise the concept "logical 
system" we shall prove in Chapter XI1 that no logical system with more 
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expressive power than first-order logic can meet the conditions of (b) and 
(c> 

In the present chapter we introduce a useful tool for these investigations. 
Recall that two structures are elementarily equivalent if they satisfy the 
same first-order sentences. We now present a purely algebraic characteriza- 
tion of elementary equivalence. This characterization is useful not only for 
our present purpose but also in other contexts. For example, in many cases 
it can serve to verify that two given structures 'U and '23 are elementarily 
equivalent (in a simpler way than by proving directly that 2I and '23 satisfy 
the same first-order sentences). 

1 Partial Isomorphisms 

In this section we provide the concepts we need in order to formulate the 
algebraic characterization of elementary equivalence. We refer to a fixed 
symbol set S. The domain of a map p is denoted by dom(p), its range by 
rg( P). 

1.1 Definition. Let 'U and '23 be (S-)structures and let p be a map. p is said to 
be a partial isomorphismfrom 'U to '23 if and only if dom(p) c A, r g ( ~ )  c B 
and p has the following properties: 

(a) p is injective. 
(b) p is homomorphic in the following sense: 

(1)  For n-ary P E S and a,, . . . , a,-, E dom(p), 

a . . . a iff pmp(a0) . . . p(a,- ,). 

(2) For n-aryf E S and a,, . . . , a,- ,, a E dom(p), 

f'%(ao, . . . , a ,  ,) = a iff f '(p(a,), . . . , p ( a ,  ,)) = p(a). 

(3) For c E S and a E dom(p), 

c% = a iff c' = p(a). 

We write Part(%, '23) for the set of partial isomorphisms from 'U to '23. 

1.2 Examples and Comments. 

(a) The empty map, i.e., the map with empty domain, is a partial iso- 
morphism from 'U to '23. 

(b) The map p with dom(p) = (2, 3) and p(2) = 2, p(3) = 6 is a partial 
isomorphism from the additive group (R, +, 0) of real numbers to the 
additive group (Z, +, 0) of integers. On the other hand, the map q with 
dom(q) = (2, 3) and q(2) = 1, q(3) = 2 is not a partial isomorphism from 
(R, +, 0) to (Z, +, O), because 2 + 2 # 3 but q(2) + q(2) = q(3). 
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(c) If S is relational, that is, if S contains only relation symbols, then for 
a,, . . . , E A and b,, . . . , b r - ,  E B the following two statements are 
equivalent : 

(*) By setting 

p(ai):=bi ( i < r ) ,  

a partial isomorphism from (U to '23 is determined (where dom(p) = 

{ a , , . . . , a r - l l a n d r g ( p )  = { b o , . . . , b r - l } ) .  

(**) For every atomic formula IC/ E L:: 

(U + [ a , . .  a  ,I iff '23 k $[bo, . . . , br- l l .  
PROOF. First we note that for i, j < r 

ai = a .  iff (U k vi - v j [ao ,  . . . , a,- , I ,  
(1) 

J 

b ,  = b j  iff '23 I= vi - v j [bo ,  . . . , b,- 

and that for n-ary P E S and i,, . . . , i n - ,  < r  

Paa io . .  . ai ,_ ,  iff (U + Pci, . . . vi ,_,[aO, . . . , a,- , I ,  
( 2 )  

pSbio . . . iff '23 k Pvio . . . vi,_ l [ h o ,  . . . , b ,  ,I. 
Now, if (**) holds, then by (1) and the fact that 

(U + v = v j [ a  . . . , a  ] iff '23 + vi - u j [ b o , .  . . , b r - l l ,  

p (as given in (*)) is well-defined and injective. Since 

(U + P o i o . .  . v i ,_ , [ao , .  . . , a,- ,I iff '23 + Pui,. . . v i n _ , [ b o , .  . . , b,-11, 

and by (2) ,  p is also homomorphic. 
Similarly one can use (1) and ( 2 )  to deduce (**) from (*). 

(d) Note that the equivalence in (c) is no longer true if S contains function 
symbols or constants. For example, for the partial isomorphism p  in (b) 

but on the other hand 

(e) The following example shows that even for relational S a partial 
isomorphism does not in general preserve the validity of formulas with 
quantifiers. 

Let S = { < } and let q ,  be the partial isomorphism from (R, <) to ( Z ,  <) 
such that dom(q,) = { 2 , 3 }  and q,(2) = 3,  q,(3) = 4. Then 

(R, <) b ~ U ~ ( U O  < V 2  A V~ < v * )  [2, 31 
but 

not ( Z ,  <) + 3v2(v0 < 0 2  A 0 2  < 0 1 )  Cq0(2), q0(3)1. 
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If p is a partial isomorphism from (R, c) to (Z, <)such that dom(p) = {a, b) 
and a < b, then we always have 

(R, <) != 3vz(vo < 02 A 02 < 4 )  [a, bl, 

since, for example, 

In this case the validity of 

is equivalent to the existence of a partial isomorphism q from (R, <) to 
(Z, <) which extends p and has (a + b)/2 in its domain. For, if such a q 
exists, then (+) holds, since 

conversely, if (+) is satisfied and, say, 

(Z, <) + uo < v2 A vz < vlCp(a), p(b), d l ,  
then the extension q ofp with dom(q) = {a, b, (a + b)/2) and q((a + b)/2) = d 
is such a partial isomorphism. 

This argument indicates that the truth of formulas with quantifiers is 
preserved under partial isomorphisms provided that these admit certain 
extensions. It embodies the basic idea behind the algebraic characterization 
of elementary equivalence: The elementary equivalence of structures amounts 
to the existence of extensions of certain partial isomorphisms. 

In the following we identify a map p with its graph {(a, p(a))la E dom(p)). 
Then p c q means that q is an extension of p. 

1.3 Definition. 'U and '23 are said to bejinitely isomorphic, written 2I Z '23, 
iff there is a sequence (I,),,, with the following properties: 

(a) Every I, is a nonempty set of partial isomorphisms from 'U to B. 
(b) (Forth-property) For every p E I,, , and a E A there is q E I, such that 

q 3 p and a E dom(q). 
(c) (Back-property) For every p E I,, , and b E B there is q E I, such that 

q 2 p and b E rg(q). 

Informally we can express (b) and (c) as follows: partial isomorphisms in 
I,, , can be extended (n + 1) times; the corresponding extensions lie in 
I,, I,-,, . . . , I , ,  and I,, respectively. If ( I , ) , , ,  has the properties (a), (b), 
and (c), we write (I,),.,: 'U z '23. 

1.4 Definition. 2I and B are said to be partially isomorphic, written 'U g, '23, 
iff there is a set I such that 
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(a) I is a nonempty set of partial isomorphisms from 2l to 23. 
(b) (Forth-property) For every p E I and a E A there is q E I such that 

q 2 p and a E dom(q). 
(c) (Back-property) For every p~ 1 and b e  B there is q E I such that 

q 3 p and b E rg(q). 

Thus the conditions (a), (b), and (c) amount to (I),,,: 2l g 23 for the 
constant sequence (I),, , . 

If (a), (b), and (c) are satisfied for I we write I: 2l E ,  '23. 
The following lemma lists the relations between the various notions of 

isomorphism. 

1.5 Lemma. (a) If 2l r 23, then 2l z,  23. 
(b) If2l E,B then% ~ ~ 2 3 .  
(c) If 2l E '23 and A isjnite then 2l E '23. 
(d) If 2l r ,  23 and A and B are at most countable then 2l E '23. 

PROOF. (a) If z: 2l z '23 then I :  2l r,B for I = {z). 
(b)IfI:21rp23then(I), , , :21 r f % .  
(c) Suppose (I,),,,: 2l r '23, and suppose A has exactly r elements, 

A = {a,, . . . , a , - , ) .  We choose p E I*+,. If we suitably apply the forth- 
property r times we obtain a q E I, such that a,, . . . , a,-, E dom(q), i.e., 
dom(q) = A. If rg(q) # B and b E B - rg(q), then by the back-property 
there would be an extension q' of q in I, such that b E rg(ql). Since dom(q) = A, 
this is not possible. Therefore rg(q) = B and thus q: 2l z '23. 

(d) Suppose I: 2l r , % ,  A = {a,, a,, . . .) and B = {b,, b,, . . .). Starting 
from an arbitrary p, E I, by repeated application of the back- and forth- 
properties, we obtain extensions p,, p,, . . . in I such that a, E dom(p,), 
bo E rg(p2), a ,  E dom(p,), bl E rg(p,), . . . , that is 

(1) P, Pn+li 
(2) if n is odd, say n = 2r + 1, then a, E dom(p,); 
(3) if n is even, say n = 2r + 2, then b, E rg(p,). 

By (I), p := U,,, p, is a partial isomorphism from 2l to '23. As dom(p) = A 
(by (2)) and rg(p) = B (by (3)), we have p: 2l r '23. I7 

Part (d) of 1.5 is an abstract version of the following theorem of Cantor: 

1.6 Theorem. Any two countable dense orderings (without endpoints) are 
isomorphic. 

Here a dense ordering is a { < }-structure which is a model of cDdo,, where 
Qd0,, contains the ordering axioms together with the following sentences: 

vx Vy(x < y -+ 3z(x < z A z < y)), 
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(R, c) and (Q, <) are dense orderings. By contrast, (Z, <) is not a dense 
ordering. 

Cantor's theorem follows from 1.5(d) and 

1.7 Lemma. If '  % = (A, <A)  and 23 = (B, <B) are dense orderings, then 
I :  % Z ,  '23 for I = {plp E Part(%, B), dom(p)jnite). 

PROOF. Since p = IZj is in I, I is not empty. I satisfies the forth-property. For, 
if p E I ,  d ~ m ( ~ )  = {a,, . . . , a,- ,), and a E A, then because '23 is dense there 
is an element b E B which is related to p(a,), . . . , p(a,_ ,) in the ordering '23 
in the same manner as a is related to a,, . . . , a,-, in the ordering 'U. Then 
q := p u {(a, b)) is an extension of p which is defined for a and lies in I. The 
back-property follows analogously, using the fact that 'U is dense. 

6' 1.8 Example. Suppose S = { g ,  0) and let @, consist of the successor 
axioms" 

Vx(1 x - 0 - 3ygv - x), 

vx Vy(cx - g)) -+ x - y), 
and for every m 2 1 : 

V x i c  . . . a  x = x .  
v 
m-times 

The structure !TI, (cf. III.7.3(2)) is a model of@,. We show that any two models 
of @, are finitely isomorphic. For a model 'U of @, and for a E A, let 

a(m) := aA . . aA(a). r 
nz-times 

For every n E N we define a "distance function" d, on A x A by 

0)I 
if a'"' = a' and m I 2", 

d,(a, a') := - m if a'(m) = a and i n  I 2", 

I x otherwise. 

Now suppose 'U and '23 are models of a,. We show that (I,),,,: 'U r f  '23, 
where 

I, := {p E Part(%, B)ldom(p) finite, OA 
E dom(p), 

and for all a, a' E dom(p), (/,(a, a') = d,(p(u), ~(LI'))). 

Thus a partial isomorphism in I, preserves the "d,-distances". First we have 
I, # 0 since {(OA. OB)) E I,. We sketch a proof of the forth-property for 
(I,),,, (the back-property can be proved analogously). Supposc p E I,,, 
and L I E  A. We distinguish two cases, depending on whether or not the 
following condition (*) is satisfied. 

(*> There is an a' E dom(p) such that I d,(a1, a) 1 1 2 "  
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If (*) holds there is exactly one b E B for which p u {(a, b)) preserves the 
d,-distance (since p E I,, ,); if (*) does not hold we choose an arbitrary 
element b such that d,(p(al), b) = x for all a' E dom(p) (such an element 
must exist since every model of 0, is infinite). In any case it is easy to show 
that q := p u {(a, b)} E I,. 

1.9 Exercise. Let S = lT;. Show that any two infinite S-structures are partially 
isomorphic. 

1.10 Exercise. (a) Give an example of structures which are partially iso- 
morphic but not isomorphic. 

(b) Give an example of structures which are finitely isomorphic but not 
partially isomorphic. 

1.11 Exercise. Give an uncountable model of the system of axioms 0, in 1.8. 

$2. Fraisse's Theorem 

Using the concepts introduced in $1, we now formulate the main result of 
this chapter. 

2.1 Fraisd's Theorem. Let S be a jinite symbol set and 2l, '23 S-structures. 
Then 

2l-'23 i f f ' U r f % .  

Note that Fraisse's theorem provides us with a characterization of 
elementary equivalence which does not refer to first-order language. 

Before proving the theorem (in the next section) we give several examples 
showing how it can be used to check the elementary equivalence of structures 
and the completeness of theories. 

2.2 Proposition. (a) A n j ~  two dense orderings are elementarily equivalent. In 
particular, (R, <) - (Q, <). 

(b) Any two {g, 0)-structures satisfying the axioms in 1.8 are elementarily 
equivalent. 

PROOF. (a) follows from 2.1, since every two dense orderings are partially 
isomorphic, and thus also finitely isomorphic; (b) follows analogously by 
means of 1.8. 

For some applications we need the following simple criterion for the 
completeness of theories. 

2.3 Lemma. For a theory T c L: the,following are equivalent: 

(a) T is complete, i.e., for every S-sentence cp either cp E T or i cp E T. 
(b) Any two models of T are elementarily equivalent. 
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PROOF. Suppose first that (a) holds, and let %, '23 be models of T. For any 
S-sentence cp either cp E T or i c p  E T. If cp E T then 'U + cp and 23 + cp; if 
7 c p ~ T t h e n W k  l c p a n d B +  7cp.ThusYlkcpiffB+cp.  

Conversely, let cp be an S-sentence and suppose cp $ T. Since T is a theory, 
T k cp does not hold, and therefore there is a model 2l of T u {T cp). By (b) 
every model of T is elementarily equivalent to 'U, and thus is a model of 7 cp. 
Hence T k 7 cp and therefore 7 cp E T. 0 

From 2.2, with the aid of 2.3 and X.6.5 we obtain 

2.4 Proposition. (a) The theorj @&,, of dense orderings is complete and 
R-decidable. (Thus, for example, @Ford = Th(R, <).) 

(b) The theorjl @: c?f' "successor structures" is cornplete and R-decidable. 
(Thus,for example, @: = Th(N, o).) 

Preparatory to the proof of Fraisse's theorem we show that we can restrict 
ourselves to relational symbol sets. 

Let S be an arbitrary symbol set. As on p. 120 we choose, for each n-ary 
,f E S, a new (n + 1)-ary relation symbol F and, for each c E S, a new unary 
relation symbol C. Let Sr consist of the relation symbols from S together 
with the new relation symbols. Sr is relational. For an S-structure 'U, let 'Ur 
be the Sr-structure obtained from 'U, replacing functions and constants by 
their graphs (as in VIII.1). 

When defining partial isomorphisms we treated functions and constants 
in such a way (cf. l.l(b)) that 

From this we obtain 

(*I 'Ur,'23 iff 'Urz,!Br 

In VIII.1.7 we showed that 

(**I $3 = '23 iff 'Ur = '23'. 

Thus, in proving Fraissk's theorem, we can restrict to relational symbol sets. 
For, if % and B are given, it follows from 

'U'=!Br iff W z , W  

by (*) and (**) that 

21 = '23 iff 'U ~ ~ 2 3 .  

2.5 Exercise. Show that for S = lT; the theory of infinite sets, {cp,,ln 2 2}", 
is comp!ete and R-decidable. 
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2.6 Exercise. Let S = { P ,  I n E N } be a set of unary relation symbols. Define 
the S-structures 2l and '23 as follows: A := N, B := N u {x}, P: := { m  ( ~ n  E N, 
rn2 n } , P ~ : = { r n ( r n ~ N , r n >  n}  u {x}.Showthat21='23butnot21zf'23. 
(Thus Fraisse's theorem is in general not true for infinite symbol sets. Note, 
on the other hand, that for arbitrary S and S-structures 2l, '23 we have 2l - 23 
iff for any finite So c S, 2l r So = '23 1 So, that is. 2l r So gf'23 r So.) 

$3. Proof of Fraisse's Theorem 

As a measure of the complexity of formulas we define the qlrantiJier rank of a 
formula cp to be the maximum number of nested quantifiers occurring in it: 

qr(cp) := 0, if cp is atomic; 

For example, the formula -I 3x(Vy Rxz A Qy) A VzQz has quantifier rank 2. 
The formulas of quantifier rank zero are the quantifier-free formulas. 

In the sequel let S be a fixed finite relational symbol set. One half of 
FraisscYs theorem amounts to 

3.1. 1f"U ?, 23 then 2l - 23. 
In order to prove 3.1 we must show for every S-sentence cp that 

We obtain this by applying the following lemma, taking r = 0, n = qr(cp), 
and an arbitrary p E 1, (note that I, # a). 
3.2 Lemma. Let ( I , ) , ,  : 21 z '23. Then for everj~jorrnula cp: 

I f '  cp E LS, qr(cp) I n, p E I,, and a,, . . . , a , ,  E dom(p), then 
(*I 

'uk= cpCtro,... ,ar-,I iff ' 2 3 ~  c p C ~ ( a o ) , . . . , ~ ( a ~ - ~ ) ] .  

Informally, 3.2 says that partial isomorphisms from I, preserve formulas 
of quantifier rank I n .  It makes precise the idea discussed in 1.2(e) that 
formulas with quantifiers are preserved under partial isomorphisms provided 
these isomorphisms admit certain extensions. 

PROOF OF 3.2. We show (*) by induction on formulas cp. Suppose cp E L:, 
qr((o) I n,  p E I , ,  and a,, . . . , a,-, E dom(p). 

(i) For atomic cp the result was proved in 1.2(c). 
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(ii) If cp = i $ then 

%I= q[ao ,..., iff not%!= $[ao , . . . ,  
iff not '23 != $Cp(aO), . . . , p(ar-1)1 

(by induction hypothesis) 

iff '23 F cpCp(a0), . . . , p(a,- 111. 

(iii) For cp = $, v $, the argument is analogous. 
(iv) Suppose cp = 3x$. Since cp E L:, v, does not occur free in cp. Thus 

3x$ - 3vr $5, and therefore we may assume that x = v,. Because 
X 

qr(cp) = qr(3x$) I n, we have qr($) I n - 1. The claim for cp is now 
obtained from the following chain of equivalent statements: 

( 4  'U I= cpCa0,. .., a,-13 
(b) There is a E A such that 2l I= $[ao, . . . , a,- a]. 
(c) There is a E A and q E In-, such that q 2 p, a E dom(q), and 'U != 

#[ao, . . . ,  a,-], a]. 
(d) There is a E A and q E In-, such that q 2 p, a E dom(q), and '23 F 

*Cp(ao), . . . 3 ~ ( a r -  11, q(a)l. 
(e) There is b E B and q E In-, such that q 5 p, b E rg(q), and 

(f) There is b E B such that '23 I= $[p(ao), . . . , p(a,-,), b]. 
(8) '23 cpCp(ao), . . . , p(ar- ,)I. 

To prove the equivalence of (e) and (f) and of (b) and (c), respectively, one 
uses the back- and forth-properties of the sequence (I,),., . The equivalence 
of (c) and (d) follows from the induction hypothesis. 

From the foregoing proof we extract another result needed in the next 
chapter. Two structures 'U and '23 are m-isomorphic (written: 'U g,B) if 
there is a sequence I,, . . . , I, of nonempty sets of partial isomorphisms from 
'U to '23 with the back- and forth-properties, i.e., 

For n + 1 5 m, p E In+ and a E A (resp. b E B), there is q E I, 
such that q 2 p and a E dom(q) (resp. b E rg(q)). 

In this case we write (I,),,,: 'U s, '23. 
Since the proof of 3.2 shows that partial isomorphisms in I, preserve 

formulas of quantifier rank I m, we have 

3.3 Corollary. If' 'U G, '23 then 'U and '23 satisfL the same sentences of' 
qtrantijier rank m. 

The following considerations are needed for the converse of 3.1. 
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Given a set 0 of S-formulas we write (O), as in VIII.3, to denote the 
smallest subset of L' which contains 0 and is closed under propositional 
connectives (i.e., which contains together with IC/ and x also 1 $ and (lC/ v x)). 

It is easy to verify: 

(1) If every formula in 0, is logically equivalent to a formula in 0 , ,  then 
every formula in (0,) is logically equivalent to a formula in (0,). 

By induction on cp one can show: 

(2) If cp E L: and qr(cp) I n + 1 then 

cp E ({* E Ls I qr(*) 5 n )  u {3x * E Ls I qr(*) I n l ) .  

From (1) and (2) we obtain 

3.4 Lemma. Let n E N. Then ,for ever?; r E N there are, up t o  logical equiv- 
alence, onlyfinitely many Jormtrlas in L: oj'qzlantijier rank <_n. 

PROOF. By induction on n. 

n = 0: Since S was assumed to be finite and relational, there are only 
finitely many atomic formulas in Ls. By VIII.3.2 there are, up to logical 
equivalence, only finitely many quantifier-free formulas in Ls. 

Induction step: Let r. E N. By induction hypothesis there are formulas 

t,ho,. . . , IC/k- l  E L: of quantifier rank 5 n  

and formulas 
S ~ 0 , .  . . , xh-, E L r + l  of quantifier rank I n  

such that every formula in Ls (resp. Lf+ ,) of quantifier rank I n  is logically 
equivalent to some IC/, (resp. xi). We show: 

(*) Every formula in 

is logically equivalent to a formula in 

From this we obtain the claim in the induction step as follows: Every formula 
in L? of quantifier rank ~n + 1 is in (0,) (cf. (2)) and is therefore, by (*) 
and (I) ,  logically equivalent to a formula in (0,). But by VIII.3.2 (a,) 
contains only finitely many formulas which are pairwise logically non- 
equivalent. 

Proof of (*): By choice of the every ll/ E Lf with qr(ll/) 5 n is logically 
v , equivalent to some ll/;. If 3x$ E L ;  and qr(ll/) n, then 3x$ ++ 3v,$ -. 
X 
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The formula $ 5  is in L:,, and has quantifier rank %n, hence is logically 
X 

equivalent to some xi; thus 3x $ is equivalent to 3vr xi. 

We conclude the proof of Fraisse's theorem by showing 

3.5 Lemma. If 'U = '23 then W r, '23. 

PROOF. Suppose W - '23. For n E N  we define I, as follows (cf. (*) in 3.2): 

p E I, iff p E Part(VI, B) and there are r E N and a,, . . . , a,-, E A 
with dom(p) = {a,, . . . , a,-,) such that for all cp E L; 
with qr(cp) 5 n 

'U + cp[uO,. . . , a,-,] iff F cp[p(ao), . .. , p(a,-l)J. 

We show that (In),EN: 'U z , B. 
(I,),,, has the forth-property. For, suppose that p E I,+,, a E A and 

dom(p) = {a,, . . . , a r - , ) .  By 3.4 we can pick finitely many formulas 
$,, . . . , $, E L;+ , of quantifier rank I n  such that every formula in L:,, of 
quantifier rank _<n is logically equivalent to some t,hi. 

For 0 5 i s we let 

(pi := $ 9  ifak $,[aO , . . . ,  a,-,,a], 
1 if 'lU + i $,[aO, . . . , a,- ,, a]. 

Then W F 3vr(cpo A . . . A cp,)[a,, . . . , a,- Since 

and p E I,+ ,, it follows that 

say '23 + cp, A . . . A cp,[p(a,), . . . , p(ar- ,), b]. Then in W and '23 the elements 
a,, . . . , a,- ,, a and p(a,), . . . , p(ar- ,), b respectively, satisfy the same 
formulas among the $i and therefore satisfy the same formulas of quantifier 
rank s n .  Thus p = q u {(a, b)) is a partial isomorphism which extends p 
(cf. 1.2(c)), has a in its domain, and lies in I,. 

The back-property is proved analogously. 
Finally, every I, is nonempty: Since W = '23 the same sentences of quan- 

tifier rank I n  hold in 2l as in '23, and therefore p = @ lies in I,. 

If '91 and '23 satisfy the same sentences of quantifier rank _<m, the last 
argument in the preceding proof shows that p = lT; is an element of I,, 
I , ,  . . . , I,. Summarizing, we have 

3.6 Lemma. I f ' %  and '23 satisfjl the same sentences of'qtrantiJier rank <m then 
2€ ~ ~ ' 2 3 .  0 
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Assertions 3.3 and 3.6 yield 

3.7 Theorem. Let S bejnite and relational. For S-structures 'U and '23, the 
following are equivcllent: 

(a) 'U 2, '23. 
(b) 'U and '23 satisj) the same sentences of'qtrantijier rank ~ m .  

3.8 Exercise. Suppose S = { P , ,  . . . , P , _  , } with unary reiation symbols P i .  
Show that for every S-structure 'U and every m 2 1 there is a structure '23 
such that 'U r, '23 and '23 contains at most m .2' elements. (Hint: Consider 
the 2' subsets of A  of the form A ,  n . . . n A,-  ,, where A ,  = P A  or A ,  = 

A  - P4.  Choose '23 to be a structure whose corresponding sets have the same 
number of elements if this number is <m, and otherwise have m elements.) 

3.9 Exercise. Again let S = { P , ,  . . . , P r -  ,} with unary relation symbols P i ,  
let m 2 1, and cp E L: be a sentence of quantifier rank ~ m .  Show: 

(a) If cp is satisfiable, then cp is already satisfiable over a domain with at most 
m .2' elements. 

(b) {IC/ I IC/ E L ~ ,  $ valid} is R-decidable. 

$4. Ehrenfeucht Games 

The algebraic description of elementary equivalence is well-suited for many 
purposes. However, it lacks the intuitive appeal of a game-theoretical 
characterization due to Ehrenfeucht, which we describe in the present 
section. 

Let S be an arbitrary symbol set and let 'U and '23 be S-structures. To 
simplify the following formulation we assume A  n B = @. The Ehrenfeucht 
game G(%, B) corresponding to 'U and '23 is played by two players, I and 11, 
according to the following rules: 

Each play of the game begins with player I choosing a natural number 
r 2 1 ; r is the number of subsequent moves each player has to make in the 
course of the play. These subsequent moves are begun by player I, and both 
players move alternately. Each move consists of choosing an element from 
A u B. If player I chooses an element ai  E A  in his ith move, then player I1 
must choose b, E B in his ith move. If player I chooses an element bi E B in 
his ith move, then player I1 must choose a, E A. After the rth move of player 
I1 the play is completed. Altogether some number r 2 1, elements a,, . . . , 
a, E A  and b,, . . . . , b, E B have been choscn. Player I1 has won the play iff by 
p(ai) = b, for i = 1, . . . , r a partial isomorphism from 'U to '23 is defined. 

We say that player I1 has a winning strategy in G(%, '23) and write "I1 wins 
G ( a ,  '23)" if it is possible for him to win each play. (We omit an exact defini- 
tion of the notion of winning strategy.) 
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4.1 Lemma. (U r 23 iff I1 wins G((U, 23). 

This lemma, together with Fraisse's theorem, yields the desired game- 
theoretical characterization of elementary equivalence: 

4.2 Ehrenfeucht's Theorem. Forjinite S and arbitrary (U and 23: 

(U = 23 iff I1 wins G((U, 23). 

PROOF OF 4.1. Suppose (In)nE , : (U E 23. Then (I:),. , : (U E 23 also, where 

I ;  := {plthere is q E I ,  such that p c q). 

We describe a winning strategy for player 11: 
If player I chooses the number r at the beginning of a G((U, 23)-play, then 

for i = 1 , .  . . , r player I1 should choose the elements ai (or resp. b,) so that 
by pi(aj) = bj for 1 I j I i one obtains a partial isomorphism pi in I:-i; 
this is always possible because of the extension properties of partial iso- 
morphisms in (I;),,, . For i = r it follows that player I1 wins the play. 

Conversely, suppose that player I1 has a winning strategy in G((U, 23). 
We define a sequence (I,),.. as follows: 

For n E N let 

P E In iff p E Part(%, 23) and there are j E N and a,, . . . , a j  E A 
such that 
(i) dom(p) = {a,, . . . , aj} ; 

(ii) there is an rn 2 n and a G((U, 23)-play which I1 plays 
according to his winning strategy, which player I 
opens by choosing the number rn + j, and where in 
the first j moves the elements a,, . . . , a j  E A and 
p(al), . . . , p(aj) E B are chosen. 

From the rules of the game we immediately obtain that (I,),,, : (U r 23. 
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Characterizing First-Order Logic 

In this final chapter we present some results, due to  Lindstrom [21], which 
we have already mentioned several times. They show that first-order logic 
occupies a unique place among logical systems. Indeed we shall prove: 

(a) There is no logical system with more expressive power than first-order 
logic, for which both the compactness theorem and the Lowenheim- 
Skolem theorem hold (93). 

(b) There is no logical system with more expressive power than first-order 
logic, for which the Lowenheim-Skolem theorem holds and for which the 
set of valid sentences is enumerable ($4). 

1 Logical Systems 

In the definition of a logical system which follows, we collect several proper- 
ties which are shared by the logics we have considered so far. As we are mainly 
interested in semantic aspects we shall speak of a logical system as soon as 
we have the following: We are given, for every symbol set S, an "abstract" 
set whose elements play the r81e of S-sentences, and in addition, a relationship 
between structures and such sentences which corresponds to the satisfaction 
relation. and determines whether an "abstract" sentence holds in a structure. 

1.1 Definition. A logical systern 9 consists of a function L and a binary 
relation k,. L associates with every symbol set S a set L(S), the set of' S- 
sentences of 2. The following properties are required: 

(a) If So c S,  then L(So) c L(S,). 
(b) If (U k, cp (i.e., if 21 and cp are related under k ,), then, for some S, (U 

is an S-structure and cp E L(S). 
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(c) (Isomorphism property) If (U k, cp and (U 2 23 then 23 k cp. 
(d) (Reduct property) If So c S,,  cp E L(So), and V l  is an S,-structure then 

(Uk,cp iff (U r S o k 9 ~  

9 , ,  9 , , ,  9;,  9 ,,,, and YQ are logical systems. For instance, in the case 
of 9, we choose L, to be the function which assigns to a symbol set S the set 
L,(S) := L: of first-order S-sentences, and we take k,, to be the usual 
satisfaction relation between structures and first-order sentences. 

If 2 is a logical system and cp E L(S), let 

~odS,(cp) := {(U((U is an S-structure and (U k, cp). 

In case S is clear from the context we just write Mod,(cp). 
~od$(cp)  can be regarded as a mathematically precise counterpart to 

the meaning of cp. 1i suggests the following definition of when a logical system 
9' has more expressive power than 2, namely, if for every 9-sentence cp 
there is an 9'-sentence $ with the same meaning. 

1.2 Definition. Let 9 and 9' be logical systems. 

(a) 9' is at least as strong as 2 (written: 2 f~ 2 ' )  iff for every S and every 
cp E L(S) there is a $ E Lf(S) such that 

(b) 9 and 2' are equally strong (written: 2 2') iff 2' I 9' and 2' 2. 

EXAMPLES. 2, I 2 ; ;  2441"; I 2 , , ;  not 9,, 5 2; (cf. IX.1.7); 9; 5 2,,a 
(cf. IX.2.7); not 2; I YQ (proof !) and not LfQ I 2441";. 

On our abstract level we now formulate some properties of logical 
systems which are known to hold for the systems we have considered so far. 

Boole(2) ( " 2  is closed under propositional ("Boolean") connectives") if 
(1) and (2) are satisfied. 

(1) Given Sand cp E L(S), there is a y E L(S) such that for every S-structure (U: 

( U ~ , X  iff not(Uk,cp. 

(2) Given Sand cp, $ E L(S), there is a x E L(S) such that for every S-structure 
a: 

B I k y ~  iff  2I1=,cpor(Ut=~$. 

If Boole(2) holds then let i cp and (cp v $) stand for formulas x in the sense 
of (1) and (2) above. (cp A $), (cp -+ $), . . . are used analogously. 

Rel(9)  ( " 2  permits relativization", cf. VIII.2): 

For S, cp E L(S), and unary U there is a $ E L(S u {U)) such 
that 

A a ( % , U A ) k 9 $  iff [U 1 k ~ c p  
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for all S-structures (U and all S-closed subsets CIA of A. ([CI"]' 
is the substructure of (U with domain CIA.) 

If Rel(9)  holds let cpu be a formula $ with the above property. 

Elim(9) ( " 9  allows elimination of function symbols and constants"): 

If S is a symbol set and S' is chosen as in VIII.1, then for any 
cp E L(S) there is a $ E L(Sr) such that for all S-structures (U: 

(Uk,cp iff Ti=,$. 

(For the definition of T cf. also VIII.1). If Elim(9) then we write cpr for a 
formula $ with the above property. 

1.3 Definition. A logical system 9 is said to be regular if it satisfies the 
properties Boole(9), Rel(9), and Elim(9). 

All logical systems which we have hitherto considered are regular. In the 
case of 9, we verified Elim(9,) and Rel(2,) in VIII.1 and VIII.2. The 
arguments given there can also be applied without difficulty for the other 
logical systems. 

We tacitly adopt some semantic notions whose definition can be extended 
from to the general case in a straightforward manner. For example, 
cp E L(S) is said to be sutisjiuble if Mod&(cp) # a, and valid if Mod$(cp) is 
the class of all S-structures. If 0 c L(S) then 0 k, cp means that every 
model of 0 (in the sense of k,) is a model of cp. Note that these definitions 
refer to a fixed symbol set S. However, using the reduct property l.l(d) one 
can argue as in 111.5.3 to show that they do not depend on S. In the sequel 
similar applications of l.l(d) will be made without explicit mention. 

We introduce the following abbreviations: 

LiiSko(2) ("The Lowenheim-Skolem theorem holds for 2"): 
Every satisfiable sentence of 9 has an at most countable 
model. 

Comp(9) ("The compactness theorem holds for 2"): 
If 0 is a set of sentences of 2 such that every finite subset of 0 is 
satisfiable, then 0 is satisfiable. 

In this terminology the result of Lindstrom mentioned in (a) reads as follows: 

Let 2 be a regular logical system such that 2, I 2 ,  
LoSko(2), and Comp(2).  Then 2 - 9,. 

Before embarking on the proof (in $3) we derive in the next section some 
properties of logical systems for which the compactness theorem holds. 

1.4 Exercise. Let 2 be given by 

(i) L(S) := '{cp 1 cp is an L;-sentence of the form 3 X , .  . . 3X , -  ,$, where $ 
does not contain a second-order quantifier}. 
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(ii) For cp E L(S) and any S-structure Vl, 

% k , q  iff (Uk9,,cp. 

Show: 

(a) 2 is a logical system. 
(b) LoSko(9), Comp(2) ,  Rel(Y), and Elim(9'). 
(c) Not Boole(9). 
(d) 9, I 9 but not 9 I 9,. 

$2. Compact Regular Logical Systems 

In this section 2 will always be a regirlar logical system such thut 2, 2. 
For a first-order S-sentence cp, let cp* be a sentence in L(S) which has the 

same models as cp, i.e., 

~ o d $ , ( q )  = ~odS,(cp*). 

For a set @ of first-order S-sentences define @* := {cp* ( q  E Of.  
If 9 is compact, i.e., C o m p ( 9 )  holds, then also the compactness theorem 

for the consequence relation holds, as can be shown similarly to the first- 
order case: 

2.1 Lemma. Sirppose Comp(Y), and let @ u {q} c L(S) and @ k y  cp. Then 
there is ajinite slrbser @, of @ such thut @, k, cp. 

PROOF. Choose i c p  by Boole(2). Then @ u { i c p )  is not satisfiable. By 
C o m p ( 2 )  there is a finite subset 0, of @ so that @, u {i cp) is not satisfiable, 
i.e., k y  cp. 

As a further property of compact logics, we show that the meaning of an 
L(S)-sentence only depends on finitely many symbols from S: 

2.2 Lemma. Suppose C o m p ( 2 )  and $ E L(S). Then there is a finite subset 
So of's sirch that,for all S-structures (U and 23, 

if ( U r S o z 2 3 r S o  then ( ifSBt=,$). 

PROOF. We restrict ourselves to the case where S is relational (the case we 
shall subsequently need). There is no difficulty in extending the proof to 
arbitrary symbol sets. 

Choose new unary symbols U ,  V,  and f'. Let @ consist of the following 
first-order S u {U, V, f.}-sentences, which say that f is an isomorphism 
between the substructure induced on U and the substructure induced on V: 
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and for every R E S, R n-ary, 

Vx, . . . Vxn- ,((Uxo A . . . A Uxn- ,) + (Rxo . . . xn- , - R fx0 . . . fxn-  ,)). 

Then, firstly, 

(1) @* 9 *" -- *". 
In fact, if (U is an S-structure and ((U, UA, vA, f A) I= @*, i.e., ((U, UA, vA, f A) 
k 0, then UA and vA are nonempty and f A r UA is an isomorphism from 

A P [U ] to [vA]'. By the isomorphism property (cf. l.l(c)) we have 
A P A P [ U I  k *  i f f C V 1  k 9 * ,  

that is, by Re1(2), 

Using the reduct property and Boole(9) we obtain 

((U, UA, vA,  f A) k , *" -- *". 
Thus (1) is proved. By Comp(2)  there is a finite subset @, of @ such that 

Since 0, consists of first-order sentences, we may choose a finite subset So 
of S such that 0, consists of So-sentences. We show that So has the desired 
properties. Suppose (U and B are S-structures and n: (U r So s B r So, 
where we assume A  n B = a. (Otherwise we can take an isomorphic copy 
of B and use the isomorphism property.) We define over C : = A  u B an 
S u {U, V, f )-structure (E, UC, vC, f ') as follows (note that S is relational): 

RC := RA u RB for R E S, 

, fC such that f r UC = n. 

Then (E, UC, VC,fC) is a model of @,, i.e. (E, UC, vC' ,fC) I=, 0:. Hence by 
(21, 

(E, uC,  VC,.fC) k, *" - *", 
and therefore, using [UC]" = (U and [v?" = 23, 

(Uk,$ iffBi=,$. 

Two S-structures 2I and B are said to be 2-equivalent (written: (U -, B), 
if for all I) E L(S), 

'uk,$ iff23k,$. 

For (U E,, B we continue to write simply 2I = 23. Clearly, if 9 - 9, then 
(U E 23 implies (U =, 23. We show that the converse holds for compact 9. 
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2.3 Lemma. Assume Comp(9)  und suppose that (U r 23 implies (U =, 23 
for arbitrary (U, 23. Then Lf LfI. 

PROOF. Since Lfl 5 Lf, given S and $ E L(S), we must show that there is a 
first-order S-sentence cp such that 

Suppose $ is satisfiable. (Otherwise we let cp := Vx i x  = x.) First, we claim 

For every 'U E Mod,($) there is cp, 6 L i  such that 
(1) 

(Ui==cp, and cp$i==,$. 

To show this we let (U E Mod,($). Then for the first-order theory Th((U) 
of a, 

For if 23 k, Th((U)*, i.e., 23 Th((U), then 23 = (U by hypothesis; therefore 
23 and hence 23 k,$. 

Since Comp(Y), there are r and cp,, . . . , cp, E Th('2I) such that 
{cpg,. . . , cp?} i==, $. We set cp, := cp, A . . . A cp,. Then cp, E Th('L[), i.e., 
(U I= cp,, and cp$ I=, $. Thus (1) is proved. 

From (1) we immediately obtain 

Now we show that there are (U,, . . . , (U, E Mod,($) such that 

(3) Mod,($) = Mod,(&,) u . . . u M O ~ , ( ~ $ ~ ) .  

Otherwise, for arbitrary (U,, . . . , (U, from Mod,($) we would have 

and thus every finite subset of {$} u {icpgl (U E Mod,($)} would be 
satisfiable. By Comp(9)  the whole set would be satisfiable, in contradiction 
to (2). 

Writing Mod,($) as in (3) we obtain 

Hence for cp := cp,, v . . . v (pan we have Mod,,(cp) = Mod,($). 

53. Lindstrom's First Theorem 

We now have all tools available to obtain the following characterization of 
first-crder logic. 
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3.1 Lindstrom's First Theorem. Let 9 be a regular logical system such that 
LF1 5 9. Then 

LoSko(9) and Comp(9)  imply 9 - PI. 

PROOF. Given $4 satisfying the conditions of the theorem we must show 
that 9 44 I,. By 2.3 it is sufficient to prove for all S :  

( + I  For all S-structures (U and 23, if (U = 23 then (U s, 23. 

We can restrict ourselves here to relational symbol sets. Assuming that (+) 
has been established for relational symbol sets, we can then give the following 
argument for arbitrary S:  

Suppose (U s 23. Considering S', (Ur, and 23" we obtain, first of all, (Ur - '8 
(cf. VIII.1.7). Then for the relational symbol set S', (+) yields (Ur -, Br. 
Finally, using Elim(9), we have for arbitrary $ E L(S): 

%I=,$ iff (U'I=,$" 

iff 23' I= , (since 'Ur - , Br)  

iff 23 k,$, 

and thus (U = -, 23. 
For relational S we now prove (+). Assume, for contradiction, that we 

have S-structures (U and 23, and $ E L(S) such that 

Corresponding to $ we choose a finite subset So of S as in lemma 2.2, so that 
the meaning of $ only depends on the symbols in So. 

Since (U r So - 23 r So holds, (U r So and 23 r So are finitely isomorphic 
by Fraissk's theorem, and hence for suitable (I,),,, we have 

The central idea of the proof is to apply Comp(9)  and LoSko(9) to obtain 
structures 'U' and 23' which are at most countable and for which 

(3) (U' rSo  ~ ~ 2 3 '  1 So,  ( U  and 23' k, i$. 

Once we have (3) we get the desired contradiction: The at most countable, 
partially isomorphic structures (U' r So and 23' r So are isomorphic (cf. 
XI. l.S(d)). Hence by the choice of So 

%'I=,$ iff B 1 k , $ ,  

and this contradicts a' I=, $ and 23' +, T $  of (3). 
In order to proceed from (2) to (3) we give a suitable "description" of (2) 

in 9. We may assume that A n B = for a, 23 in (2) (otherwise take an 
isomorphic copy of 23). Let the symbol set S +  be formed from S by adding 
the following new symbols: a unary function symbo1,f'and relation symbols 
P,  U ,  I/ (unary), <, I (binary), and G (ternary). We define an S+-structure (5. 
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in which (2) can be suitably described. In particular & includes (U and '$3 and 
also contains the partial isomorphisms of the I, in (2): Set 

(a) C = A u  B u  N u (),,,I,; 
c crrs = (u. (b) UC = A and [ U  ] 

(c) vC = B and [1/7"'" '$3; 

((b) and (c) are possible since A n B = and since S is relational.) 

(d) the natural ordering relation on N and f r N the predecessor func- 
tion on N, i.e., ,fc(n + 1) = n and,fc(0) = 0; 

(el PC = Un, , In ;  
(f) I C n p i f f n ~ N a n d p ~ I , ;  
(g) GCpab iff pep, a 6 dom(p) and p(a) = b. 

This is illustrated in Fig. 12.1 

Figure 12.1 

(5. is then a model of the conjunction x of the following finite set of sentences 
of L(S+). (Since 244, I 2 we use first-order sentences as an intuitive notation 
for the corresponding sentences of 2 . )  

(i) Vp(Pp -+ Vx Vy(Gpxy -+ (Ux A Vy))). 
(ii) Vp(Pp + Vx Vx' Vy Vyf((Gpxy A Gpx'y') -+ (x = x' - y = y'))). 
(iii) For every R E So, R n-ary: 

Qp(Pp -+ Vxo . . . Vx, - 1 Vyo . . . Vyn- 1((Gpxoy0 A . . . A Gpx,- lyn- 1) 
-+ (Rx, . . . x,-, ++ Ryo . . . y,- ,))). 

(In effect (i), (ii), and (iii) say that for a fixed p 6 P, Gp . . describes the graph 
of a partial isomorphism of the So-substructure induced on U to the So- 
substructure induced on V.) 
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(iv) The axioms of @,,,, (for partially defined orderings) and 

Vx(3y y < s -+ (,fx < x A 13z( , fx  < z A z < x))) 

(i.e., (field <, <) is an ordering with predecessor function f ' ) .  
(v) b'x(3y(x < y v y < x) + 3p(Pp A Ixp)) (i.e., if x is in the field of < 

then I, = {p 1 Pp  A Ixp} is not empty). 
(vi) Vx Vp Vu((,fx < s A Ixp A U L ~ )  

+ 39 3v(If:uq A Gquu A Vx' Vyr(Gpx'y' -+ Gqx'j"))) 
(the fort h-property). 

(vii) An analogous sentence for the back-property. 
(viii) 3x Ux A 3y Vy A $' A (11))" (note that U" = A, vC = B, '11 +,I), 

23 t=9 ~ $ 1 .  
We choose a new constant c and writef Oc, f 'c,f2c,. . . for the terms c, fc, 

flc, . . . . Then we let 

Y = {x} u {. . .flc < fc  < c), 
l.e., 

Y = { x }  u { f n + ' c  < fncln  E N}. 

Every finite subset of Y has a model, namely &' = (&, cC'), where cC' is a 
sufficiently large natural number. By C o m p ( 2 )  there is a model of Y ,  say 
( a ,  cD>. 

2 D D D D contains an infinite descendingchain, namely. . . (,f c) < ( f ' ~ ) ~  < c . 
For what follows we need a colrrztable model with this property. LoSko(2)  
does not directly help us here because it only applies to single sentences, 
whereas Y is an infinite set of sentences. We circumvent this difficulty 
using a new unary relation symbol Q: Let 9 be the L(S+ u {c, Q})-sentence 

3 = Qc A Vx(Qx -+ (f i  < x A Qfx)) 

("Q contains c and every element of Q possesses an immediate <-predecessor 
which also belongs to Q"; thus Q is a subset of the field of <). 

If QD 
:= {(,f'"c)"In E N) then 

i.e., A 3 is satisfiable. Therefore, by LoSko(2),  there is an at most 
countable model (C, cE, Q") of x A 3. Since (viii) holds in C, U" # a, 
vE # a, and because S is relational, uE and I/" are domains of substructures. 
We set 

and show that the at most countable structures (U' and 23' satisfy the condi- 
tions in (3). By (viii), Cf t=, $' and Cf k, (i$)", and from this we obtain 
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From (i), (ii), and (iii) we know that to every p E PE there corresponds a 
partial isomorphism from 'U' r So to 23' 1 So,  which we also denote by p. 

Since ((5, cE, Q E)  9, for every n E N the element en := (,f " c ) ~  belongs to 
QE and the en form a descending chain . . . e ,  < e ,  < e ,  < e,. Let 

I := {p l  there is an n such that IEenp} .  

Using (v) we see that I # a, and using (vi) and (vii), that I has the back- 
and forth-property. For example, to verify the forth-property one can reason 
as follows: if p E I ,  say IEenp,  and a E A' = U", then by (vi), there is q such 
that IEe,+ ,q (thus q E I) ,  q 3 p, and a E dom(q). To  summarize, we have 

(4) and (5) yield (3) and thus 3.1 is proved. 

By closer inspection of the above proof we can obtain the following lemma, 
which we shall need in the next section. 

3.2 Lemma. Let 9' he a regular logical system such that 9, I 9 anntl 
LoSko(9). Assume that ,for some jifinite set S of' relation synzbols there is 
I )  E L(S) such thatfbr ecery rn E N there are S-stnrcturrs (Urn and Bm with 

Then in 9, the class ofjinite orderings can be described in the following sense: 
There is a jinite S, containing symbols <, c and a sentence x1 E L(S,) such 
that (a) and (b) hold: 

(a) If (U kp x1 then (A, < A )  is a partially dejined ordering and cA is an 
element of the jield with onlyjinitely many < A-predecessors. 

(b) For every m EN there is a model 'U of '%,  in which cA has at least m < A-pre- 
decessors. 

PROOF. Let S, I) be given as above. Choose x and c as in the preceding proof 
(taking now So = S) and set x ,  = A " c is in the field of < ". 

We first prove (b). For a given m, let (Urn and Bm be as in (*) and let 
(I,),,,: (Urn z '$3,. Define 6 as in the proof of 3.1 except for the following 
obvious modifications: 

(i) cC is the natural ordering on (0, . . . , m ) ;  
(ii) PC = Unsm I,,. 

For cC 
:= m the structure (6 ,  cC) is a model of x , ,  and cC has m cC- 

predecessors. 

PROOF OF (a): Suppose there is a model ( a ,  cD) of 1, in which cD has 
infinitely many <D-predecessors. From ( a ,  cD) we can proceed as in the 
proof of 3.1 to obtain isomorphic structures (U' and '23' such that (U' k I) and 
B' k i I ) ,  a contradiction. 
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Lindstrom's theorem 3.1 characterizes first-order logic in the following 
sense: Among the regular logical systems there is none of greater expressive 
power which still satisfies the compactness theorem and the Lowenheim- 
Skolem theorem. 

If one considers the defining properties of regular logical systems 2 ,  the 
properties Rel(2) and Elim(9) do not seem as fundamental as the others. An 
analysis ofthe proof of 3.1 shows that both these properties were used to speak 
about two structures (U and 23 by placing them together in the structure &. 
There are alternative properties that can be used for the same purpose (cf. [2]). 
But if there is no substitute at all for Rel(2) and Elim(9), then there are 
counterexamples to 3.1. 

$4. Lindstrom's Second Theorem 

In our considerations of logical systems we now pay special attention to 
syntactic aspects. In this connection we recall the following properties of 
first-order logic: For a decidable symbol set S 

the S-sentences are concrete finite symbol strings and the set ofS-sentences 
is decidable; 

operations such as negation, relativization, and the elimination of 
function symbols can be carried out effectively; 

there exists an adequate proof calculus, and therefore the set of valid 
S-sentences is enumerable. 

We shall consider these aspects for logical systems in general, thereby 
arriving at the concept of an effective logical system. Within this framework 
we can then formulate and prove the result of Lindstrom mentioned in the 
introduction to this chapter under (b). 

When speaking of a decidable set we understand it to be a set of words 
over a suitable alphabet which is R-decidable in the sense of X.2.5. 

4.1 Definition. Let 2 be a logical system. $4 is called an effective logical 
system if for every decidable symbol set S the set L(S) is decidable, and for 
every cp E L(S) there is a finite subset So of S such that cp E L(So). 

4.2 Definition. Let 2 and 9' be effective logical systems. 

(a) 9 2' iff for every decidable S there is a computable function * 
which associates with every cp E L(S) a sentence cp* E L1(S) such that 
~odS,(cp) = ModS,,(cp*). 

(b) 9 - -,,,2' iff ( 9  I ,,, 9' and 2' I erf 2'). 

2',, Y;, 9 , , ,  and 2a are effective logical systems, but 244,,, is not. We have, 
for instance, 2, I eff 2; ,  2; Ieff 2,,. 



204 XI]. Characterizing First-Order Logic 

4.3 Definition. Let 2 be a logical system. 2 is said to be effectively regular 
if 2' is effective and if the following effective analogues of Boole(2), Re1(2), 
and El im(9)  hold. 

For every decidable symbol set S: 

(i) There is a computable function which assigns to every cp E L(S) a 
formula i cp, and, in addition, a computable function which assigns to 
any cp and $ E L(S) a formula (cp v $). (Here i cp, for instance, denotes 
an L(S)-sentence I) such that 91 I=, $ iff not 2l I=, cp (cf. the formulation 
of Boole(9) in $1). 

(ii) For every unary U ,  there is a computable function which associates with 
every cp E L(S) a formula cpu. 

(iii) There is a computable function which associates with every cp E L(S) a 
formula cpr E L(Sr). 

Y,, 244,";, are effectively regular logical systems. 
Let 2 be an effective logical system. We say that 2 is enumerable ,for 

validity if for every decidable S, the set 

is enumerable. 
Clearly, if 2 has an adequate proof calculus then 2 is enumerable for 

validity. (Examples are 52, and LfP) 
Lindstrom's second theorem tells us that no proper extension 2 of 9, 

with LoSko(2)  can have an adequate proof calculus. 

4.4 Lindstrom's Second Theorem. Let 4P he an effectively . . regular logical 
sj.stem s~rch that 2, serf 9. I f '  LoSko(4P) arlri if'9 is enunzerable,fi?r validity 
then 2, - eff 2'. 

PROOF. Let 2 satisfy the hypotheses of the theorem. We prove that 9 fP Iff 9, 
in two steps. 

First we show 

(+) For every decidable S and for every $ E L(S) there is a first- 
order S-sentence cp which has the same models as $. 

Then we shall prove that the transition from $ to cp can be carried out 
effectively: Given a decidable S, we shall set up a procedure which yields for 
every $ E L(S) a first-order S-sentence with the same models. 

Since 52 is an effective logical system. we only need to give a proof of (+) 
for,finite decidable S (cf. 4.1). We leave it to the reader to show, using Elim(2'), 
that we can furthermore assume S to be relational. 

Thus we assume that S is decidable, finite and relational. As a first step 
we prove 
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4.5 Lemma. If for some $ E L(S) there is no jirst-order S-sentence with the 
same models as $, then for every m E N there exist S-structures (Urn and 23, 
such that 

(*) am r, Bm,  JUmt=,$, B m k , l $ .  

PROOF. $ is satisfiable, otherwise Mod,($) = Mod,,(3vo l v ,  - v,). We 
proceed indirectly, assuming that for a suitable m E N and for all S-structures 
(U and 23: 

Let cp,, . . . , cp, be, up to logical equivalence, the first-order S-sentences of 
quantifier rank I m  (cf. XI.3.4). We have (cf. XI.3.7): 

(2) CU gm23iff for i  = O  , . . . ,  k ,  ((UF cpiiff23t= qi). 

For an S-structure (U let cp, be the conjunction of the formulas in 
{cpi 10 I i I k, (U I= cpi). Then, by (2), for arbitrary 23, 

(3) (U ~ , 2 3  iff 23 + cp,. 
Let cp be the disjunction of the (finitely many!) cp, for which (U k, $, i.e., 

We show: 

and thus obtain a contradiction to our assumptions. Suppose first that 23 is 
a model of$. Then cp, is a member of the disjunction in (4), and since 23 cp,, 
we have 23 I= cp. Conversely, if 23 k cp, there is an (U such that 'U k, $ and 
23 t= 9, (cf. (4)). Then by (3), 'U z, 23, and finally by (I) ,  23 k , $. 

To continue with the proof of (+), we assume that there is a sentence $ 
in L(S) for which there is no first-order S-sentence with the same models, and 
aim for a contradiction. By the result 4.5 just proved there are, for every 
rn E N, S-structures (Urn and 23, such that (Urn E, %,, (Urn I=, I), and 
23, k, i $. Since the assumptions in 3.2 are fulfilled, there is, for some finite 
S,, a sentence 1, E L(Sl) which describes the finite orderings (as explained 
in 3.2). 

We extend S,  by adding a new unary relation symbol W and consider the 
L(Sl u {W))-sentence 

A 3X WX A VX(WX + x < C )  

(note that $4, I 9). By the properties of 1, (cf. 3.2) we have: 

(a) If 'U is an S, u {W)-structure such that (U k, 9 then WA is finite and 
not empty. 

(b) For every m 2 1 there is a model 'U of 9 such that WA contains exactly m 
elements. 
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Thus as 'U ranges over the models of 9, W A  ranges over the finite sets 
(isomorphism property!). We shall now see that we can use (a) and (b) 
together with Trahtenbrot's theorem to conclude that 9 is not enumerable 
for validity, in contradiction to our assumptions. We argue as in the proof 
of the incompleteness of second-order logic (cf. X.5.5). 

By Trahtenbrot's theorem there is a decidable symbol set S2 such that the 
set of fin-valid first-order S2-sentences is not enumerable. We may assume 
that S2 is relational and disjoint from S,  u { W ) .  

Let * be a computable function associating with every first-order S2- 
sentence cp a sentence cp* E L(S,) which has the same models. Then for 
cp E Liz we have 

(=> * w cp is fin-valid iff t=, 9 + ((P ) 

To prove this, we assume first that cp is fin-valid. If PI is an (S, u { W )  u S2)- 
A srs2 structure such that PI k, 9, then W A  is finite by (a), and thus [W ] k cp. 

But then [WAIsrS2 k y  (P*, and hence 'U t=, (cp*)". The converse is obtained 
similarly by applying (b). 

Equivalence (.2) enables us to obtain from an enumeration procedure 'Q 
for the set of valid L(S, u { W )  u S2)-sentences an enumeration procedure 
C for the fin-valid first-order S2-sentences, thus yielding a contradiction to 
Trahtenbrot's theorem. Q proceeds as follows for n = 1, 2, 3, .  . . :  the first 
(lexicographically) 11 sentences ( P O ,  . . . , 9,-, from L,(S,) are generated, and 
the L(S, u ( W )  u S2)-sentences 9 -+ ( (P ; )~ ,  . . . , 3  -+ (cp,*_ , ) I V  are formed. 
(Note that the map * is computable and that the operations of relativization 
and implication are effective.) Then, using 13, one generates the first n valid 
L(S, u { W }  u S2)-sentences, listing those cpi for which :J + (cpT)w occurs. 
This finishes the proof of (+). 

Now, given a decidable S, we describe an effective procedure which 
associates with every sentence $ E L(S) a first-order sentence cp with the same 
models. Let '$3 be an enumeration procedure for the set of valid L(S)-sentences, 
and * a computable function which assigns to every first-order S-sentence 
x an L(S)-sentence x* with the same models. 

Given $ E L(S), proceed as follows: For n = 1, 2, 3 , .  . . use 13 to generate 
the first 11 valid sentences I),, . . . , $,-, from L(S); then generate the first 
(lexicographically) n sentences (P,, . . . , cp,-, from L,(S), and finally, form 
the L(S)-sentencc.~ $ ++ cp;, . . . , $ ++ q,*- ,. Check whether there are i, j such 
that t)i = t) ++ cpj*. By (+)  this must eventually happen. Then let cpj be the 
cp associated with t). 

Lindstrom's results initiated a series of investigations of properties of 
logical systems and relations between them, in a general setting (cf. [2]). In 
this way it is possible to bring important aspects of such properties into better 
perspective, thus gaining new insights into concrete logical systems and even 
into first-order logic. We illustrate this briefly, taking the compactness 
theorem as an example. 
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An ordering (A, <*) which contains no infinite descending chain 
. . . < A  a, < A  a ,  < A  a, is said to be a well-ordering. All finite orderings are 
well-orderings, as are (N, cN) and the ordering which results when (N, <N) 

is extended by adding an isomorphic copy. On the other hand, (Z, <") and 
(Q, <Q) are not well-orderings. 

Let 9 be a regular logical system such that 9, I 2'. A well-ordering 
(A ,  < A )  is said to be accessible in 9 (or 9-accessible) if there is an S with 
< E S and an L(S)-sentence $ such that 

(a) in every model 23 of $, (field < B, c B )  is a well-ordering; 
(b) there is a model 8 of I) such that (A, < *) c (field < B, < B). 

Since 9, _< 9 ,  a11 finite well-orderings are 9-accessible. If 9 is compact 
then no infinite well-ordering is 9-accessible. For if a sentence $ has an 
infinite model A, where (field < A ,  c A )  is a well-ordering, then one can show 
by a method similar to that used in exercise VI.4.11 that $ has a model 23 
in which (field < ", < ") has an infinite descending chain. 

I f  one assumes LoSko(9)  and strengthens the regularity conditions 
slightly, the following two statements are, in fact, equivalent: 

(i) not Comp(9)  
(ii) (N,  < ') is 9-accessible. 

These considerations motivate us to look beyond the simple dichotomy 
"Comp(9)  - not Comp(9)", and to make finer distinctions: the more 
2'-accessible well-orderings there are, the more the compactness theorem is 
violated. As a measure for the violation one can take the smallest well- 
ordering which is not 2-accessible, the so-called well-ordering number of 
9. The study of well-ordering numbers has led to a series of fruitful investiga- 
tions (cf. [2]). In particular it has turned out that for certain logical systems 
one can use arguments involving the well-ordering number to compensate 
for the absence of the compactness property. 
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