
ELEMENTS 
OF 

MATHEMATICAL LOGIC 
( M O D E L  T H E O R Y )  

G. KREISEL J. L. KRIVINE 
Stanford U n i ~ e r s ~ ~ y  U n i ~ e r s ~ t ~  de Paris 

1967 

N O R T H - H O L L A N D  P U B L I S H I N G  C O M P A N Y  
A M S T E R D A M  



8 North-Holland Publishing Company - Amsterdam - 1967 

All rights reserved. 
No part of this book may be reproduced in any form 
by print, photoprint, microfilm or any other means 

without written permission from the publisher 

Library of Congress Catalog Card Number: 67-20006. 

P R I N T E D  I N  THE NETHERLANDS 



PREFACE 

This book presents the principles of the Axiomatic Method, here 
formulated in set theoretic, also called : semantic, terms. 

The basic notions involved are: different kinds of languages; their 
realizations (types of mathematical structures) ; and models (of a formula 
in the language considered, i.e., the realizations of the language which 
satisfy the formula). From them are derived the notions of consequence 
(a conclusion A being a consequence of “axioms” d, formulated in a 
language 9, if every realization of 9 which satisfies each formula of d 
also satisfies A )  and of dejinability (in a realization of 9 by means of a 
formula o f 9 ) .  Consequence and definability are the two main topics 
here studied. 

The most general results on the Axiomatic Method known, apply to 
axiomatic systems formulated in the language of predicate logic of jirst 
order restricted to finite formulas. Much of this theory can be generalized 
to suitable infinite formulas of first order, less to languages of higher 
order, even when they are restricted to finite formulas. The last chapter 
contains some information on such generalizations. 

The treatment is set theoretic in that the basic notions above are de- 
fined in the vocabulary of current set theory: sets, membership relation, 
logical operations. 

This book contains the elementary, more or less classical, results of its 
subject. Each of its eight chapters is preceded by a summary which not 
only indicates the general content of the chapter, but also the relation of 
the exercises to the main theorems. 

Appendix I gives an idea of the kind of applications to current mathe- 
matics that can be expected from a general theory of the Axiomatic 
Method. Knowledge of the main text is not assumed. 

Appendix I1 is intended for readers with some interest (and back- 
ground!) in the philosophy of mathematics. Parts A and B sketch the 
so-called semantic and syntactic (better : set theoretic and combinatorial) 
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foundations with special reference to Godel’s completeness and incom- 
pleteness theorems, of which proofs are given in Part A. Part C discusses 
the relation between these foundational schemes : semantic analysis is 
developed, and not superseded, by syntactic analysis, which, incidentally, 
is a reason for adopting a semantic introduction to logic, as in the present 
text. The Introduction to Appendix I1 may be of use to those readers who, 
consciously or unconsciously, are influenced by positivistic, in particular 
formalistic philosophical doctrines which are widely quoted. If one accepts 
the doctrines, which reject the foundational notions of both Parts A and 
B, one is bound to be ill at ease with these notions and hence to find them 
difficult. (It is true that a consistent formalist would also be ill at ease with 
mathematical practice where the same notions occur constantly; how- 
ever, with this psychologically important difference : they function as a 
tool, and not as a principal object of study.) The introduction, by pointing 
out, without technicalities, some of the most obvious weaknesses of the 
formalist position, is intended to overcome this, quite unnecessary diffi- 
culty. The knowledge acquired by study of these notions then permits a 
more searching criticism of the formalist position; cf. Parts A, €3 infine. 
Appendix I1 can be read without specialized knowledge of mathematical 
logic, except for certain passages in square brackets([ 1) which concern ques- 
tions that are either raised or solved by results established in the main text. 

This text developed from a graduate course (“Cours de troisiitme 
cycle”) first given in 1960/61, and hectographed in 1962, at the University 
of Paris. The present version of Chapters 0-5, except for some exercises, 
is due to 3. L. Krivine; it is, in most respects, a definite improvement on 
the original. More recently I added Chapters 6 and 7 which bring the 
course up to date and contain material needed in Appendix 11. J.  P. Res- 
sayre, who translated into French an earlier version (or, rather, several 
versions) of Parts A-C of this appendix, has helped me much by his 
questions and constructive criticism. 

Chapters 0-7 and Appendix I were translated from the French by 
A. Slornson except for some additions and changes made after he had 
completed the translation. 

The collaboration of my friends Hubert Faure and Raymond Queneau 
deserves special notice. Faced with the translation (into French) of a 
hopelessly long preface, they led me, by acute questions, to separate the 
material into the present preface and the introduction to Appendix 11; 
Hubert Faure helped me with the former, Raymond Queneau with the 



PREFACE VII 

latter. Finally, my oid friend Christopher Fernau translated the French 
text of this introd~ction, changing and suppressing freely whatever dis- 
pleased him. 

Uses of the book. Experience with students suggests the following comments. The 
(very natural) idea of keeping the treatment purely model theoretic really seems to 
work: for instance, rules of inference would not have helped the presentation. Also 
the separation of the main theorems from illustrations and refinements in the form of 
exercises seems successful. By way of criticism: some relatively small changes in 
Chapters 0-7 (which, however, would have required a good deal of work by somebody) 
could have much improved the whole presentation, in particular Appendix 11, Part A. 
Specifically, Chapter 0 could establish the properties of formal languages needed for 
Godel’s incompleteness theorems, and a separate chapter containing a brief formal 
development of set theory would certainly be preferabfe to the relevant exercises in 
Chapter 5 and Appendix TI, Part A. Concerning more technical points, the theory of 
p-adic fields should probably replace the theory of [certain) Boolean rings considered 
in Chapter 4; the elimination of quantifiers for the latter was given to stress two points 
not well illustrated by the other axiomatic systems studied in that chapter: (i) the need 
for introducing ‘many’ new relations; fii) a theory that permits elimination of quanti- 
fiers but is ‘far’ from being saturated. Both points would equally well be illustrated by 
the el~mination of quantifiers for p-adic fields, which is mat~e~at ica l ly  much more 
interesting and worth some extra labour. In the exercises of Chapter 5 the only (non 
principal) models of languages of higher order are provided by various systems of 
hereditarily finite sets : some specific models used in A. Robinson’s Non-standard 
Analysis would be more interesting. 

Originally a companion volume was planned, as purely proof theoretic as the present 
text is model theoretic: Part B of Appendix I1 would have properly belonged there. 
Though such a volume is both feasible and desirable, I doubt whether I shall write it. 
In the absence of such a book, Part B might be of use to somebody in preparing a 
course in proof theory, in conjunction with recent detailed literature on the subject. 

G. KREISEL 



CHAPTER 0 

P R E L I M I N A R I E S  

This chapter contains elementary results about classes of functions defined by 
finite schemas. Such schemas are frequently used in nia~ematics (e.g. polynom~als 
over a given ring, rational functions over a given field); here they are mainly used 
for the constructio~ of languages. Theorem 2 establishes the existence of bracket- 
free notations. 

The notions of this chapter can also be defined using only (hereditarily~ finite 
sets; see Chapter 5, Exercise 6 or Appendix 11, pp. 169-1 70. 

We begin with a countable family F,(n=O, 1 ,  ...) of disjoint sets. An 
element of F, is called an n-ary function symbol. 

We let F= U, F,, and o(F) be the set of all finite sequences of elements 
of F. (A finite sequence of elements of F is, for example, (fl, f2, ... >fk) 
written for short asfi ... fk . )  We consider those subsets M of o ( F )  which 
have the following property: 

If a,, . . ., a, are elements of A4 andfel;,, then f a ,  . . . u,EM. (We will call 
this property “property S”. )  

All intersections of sets which have the property S also have this 
property. Hence the intersection of all the subsets of o(F) having property 
S has this property. This intersection is called the functional closure of the 
family (F,) and is denoted by P. An element of F i s  called a function 
schema (constructed by means of symbols in F).  Pis  not e ~ p t y   an^ only 
if F, is not empty. (That is, if F contains 0-ary function symbols. 0-ary 
function symbols are also called cons t~n~s . )  For suppose that Fo is not 
empty and that UEF,. Then a is in all the sets which have the property S 
and so a d .  Conversely if F, is empty, the empty set 8 has the property S 
and so P=8.  

All the elements of p are of the form .fa, . . . a,, with f E F, and al ,  . . .? a, 
EF. For suppose E is the set of all elements of this form. Since F has the 
property S it is clear that all the elements of E are in F. Conversely, since 
E also has the property S, FG E. This concludes the proof. 
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I f  x and y d ,  a€ F, and (the finite sequence) z is ob~a~ned by r e ~ ~ a ~ i n g  
an occurrence of a in x by y then also ZEF. 

The proof is by induction on the length of x, which we may take to be 
= f,al ... a,. If n=O either x=a  and z = y  or x # a  and z = x :  in each case 
Z E F .  If n>O, each a, has length less than that of x, and EF. So, if b, is the 
result of replacing the occurrence of a considered by y ,  also bi€F; z= 
f ,b ,  ... b,. 

LEMMA 1 : I f a d  and u ~ a ( F )  with u ?c: 0 then au #F. 
PROOF: The proof is by induction on the length of a. If a is of length 1 
then we must have aEF,. So if au E F i t  follows that au=fa, ... ak with 
f E F k ,  a,, ..., akEP and hence a=$ (Equating the first symbol of each 
expression.) Hence k = 0, so au = a and therefore u = 0. 

Now suppose that the lemma is true for all X E F  of length less than n 
and let a be an element of 1” of length n. Then a =far . . . a, WithfEFk and 
a, ... akE1”. If au E P  we have au=gb, ... b, with gGF, and b,, ..., blEF. 
Hence f a ,  ... a,u=gb, ... b, and so f = g .  Let i be the least integer such 
that ai#b,. Therefore aiai+, ... aku=bibi+, ... b,. Hence for some U E  

a(F) with u # 0 we have either a p  = b, or a, = biv. But the length of a, is less 
than that of a and so is less than n. Hence aiv=biEF contradicts our 
induction hypothesis. If biu = a, then the length of b, is less than the length 
of a, and since b,uEP we again have a contradiction. 

THEOREM 2: Each XEF can be written uniquely in the form f a l  ... a, with 
f E F n  and a,, ..., a n d .  
PROOF: If there were two ways of writing x in this form we would have 
fal .. . a,=gb, .. . 6, with feF,, g E  F, and a,, . . ., a,, b,, . . ., bpEF. Thus f =g.  
Let i be the least integer such that a, f b,. Then ai . . . a, = bi . . . b, and so 
a,=biv or b,=aiu with v#@. But in either case this would contradict 
Lemma 1. 

We will find that the next Theorem proves to be very useful. 

THEOREM 3 : Let X be a set and for each integer n let f - f be  a ~ a p ~ i ~ g j r o ~  
F,, to the set of maps of X ”  into X .  Then there is a unique map x-tXjrom F 
into X such that for all f e  F, and all a,, ..., a,EP we have 

fa ,  ... a,=f(d,, ..., cia>. 
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PROOF : 
Uniqueness: suppose that there are two such maps from P to X .  Let U 

be the set of all those elements of P for which these two maps agree. Then 
U has the property S and hence Pc: Li. Therefore P= U and so the two 
maps are the same. 

Existence: let @,, be the set of elements of Yr which have length n. We 
define by induction on n, a map #,, from @,, to X as follows: for n= 1, 
since G1=F0, for all XEF,  we put # l (~ )=2 .  Suppose now that #i has 
been defined for all i<n. If XG@,,, x can be written uniquely in the form 
fai . . . a, with f €Fk and for i 6 k each ai is an element of F of length Zi < n. 
Therefore we put 

= f(#li(al), ..*,(P1*(ak)). 

The desired map x-+R i s  then given by 2 = #,,(x) if x is of length n. It 
follows at once that this map satisfies the conditions of the Theorem. 

In particular we have the case when, for each ~ E F , , ,  f is the n-ary 
function on E; defined byf(a,, . . ., a,) =fa1 . . . a, for all a,, .. ., U,,EF. This 
function f is called the natural value off on the functional closure of F. 



CHAPTER 1 

PROPOSITIONAL CALCULUS 

This chapter treats grammatical connectives (or operators) such as negation, 
conjunction and disjunction. These connectives are used to form new propositions 
from given ones. The particular connectives considered here are called “Aris- 
totelian”, “classical” or “two-valued”, because they were first brought into 
prominence by Aristotle and because they are applied to  propositions with well 
defined values (true or false) and not to indeterminate propositions. Further, we 
restrict our attention to those connectives which produce propositions whose truth 
or falsity depends only on the truth or falsity of the propositions to which they are 
applied. This condition is not satisfied by, for example, the usual meaning of 
implication ( A  implies B )  where the hypothesis A is supposed to have “something 
to do” with the conclusion B. 

We call the operators considered “truth-functions”. The structure which these 
operators make up is that of the class of all functions from (O,l)n into (0,l). 
Exercise 1 shows the precise sense in which the collection of all these operators can 
be built up by superposition of the connectives mentioned in the text. Since the 
structure in question is very simple the only mathematically interesting questions 
are those about infinite sets of propositional formulas. 

The basic notions we use are those of ‘‘propositional formula”, which is 
defined in terms of the notions of the previous chapter, and of “model” of a given 
collection of formulas. This second notion is a particular case of the general 
concept of model in predicate logic. The main result is the Finiteness Theorem 
which can be proved by a simple application of compactness (there is also a proof 
by transfinite induction which generalises to languages considered in Chapter 7). 
Some algebraic applications are given in Exercises 4 and 5 (they are special cases 
of Theorem 13 in Chapter 3). 

Let P be a given set. We denote by Prop(P) the set of function schemas 
constructed from the following symbols (supposed to be distinct from one 
another) : 

1) The 0-ary function symbols are T, 1 and the elements of P ( T is read 
“true” and 1 “false”). 

2) I (read “not”) is the only unary function symbol. 
3) v (read “or”) is the only binary function symbol. 
The elements of P are called ~ r o ~ o ~ ~ r i o ~ u l  yffriubles. The elements of 
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PropfP) are called formz~las. We call Prop ( P )  “the propositional calcu- 
lus on P”. 

For A ,  B&Prop(P), we will usually denote v A B  by ( A ) v ( ~ ) ;  

( ( B ) ~ ( A ) )  by (A)t.(B). We read A as “and”, - as “implies” and c+ as 
“is equivalent to”. For readability we sometimes omit (round) brackets if 
no confusion is likely, and use square brackets; e.g. [(A)-t(B)] for 

A realization of the propositional calculus on P is a map 6 from P to 
(0,l) (or, more generally, from P to an ordered set of two elements}. 

It follows from the fundamental theorem on function schemas (Theo- 
rem 0.3) that each realization 6 can be extended to a mapping (also de- 
noted by 6)from Prop ( P )  into (0,l) if T is given the value 1, I is given the 
value 0 and 1, v are given the following values (functions with val- 
ues ill {O,l}, defined on (0,l) and {O,l>’): iO=1, i 1 = 0 ;  vOO=O, 
v 01 = v 10= v 11 = 1. We say that a realization 6 of Prop ( P )  satisf;es 
a formula A in Prop ( P )  or i s  a model of A if 6(A)=1. 

We say that a realization 6 satisfies a set &’ of formulas, or is a model 
of &’ if 6 satisfies each formula in -d. 

A formula A jn Prop ( P )  is said to be a theorem of propositional 
calculus if it is satisfied by all realizations. Two formulas A and B are 
said to be equivalent if A-B is a theorem or if 6(A)=6(B) in all reali- 
zations, which is obviously the same thing. 

l t ( l A ) V ( l B ) )  by (4 A m  (--rA)v(B) by (A1-G) and ( t A ) ~ t B ) ) A  

((A)+(B))- 

LEMMA 1. THE INTERPOLATION LEMMA FOR PROPOSITIONAL CALCULUS : 
If A v B is a theorem of Prop ( P )  there is a formula C whose proposi~~onal 
varia~les occur in both A and B such that A v C and i C v B are the~renis 
of Prop ( P ) .  
PROOF: The proof is by induction on the number k of propositional 
variables which occur in A but not in B. If k=O it is sufficient to put 
C= IA. Now suppose that the lemma has been established for k=n- 1. 
Let A be a formula such that A v B is a theorem and A contains exactly 
n propositional variables which do not occur in B. Let p be one of these 
variables and let A ,  and A ,  be the formulas obtained by substituting 
T and I for p in A.  A, v B and A ,  v B are theorems and so (A ,  A A, )  v B 
is a theorem to which we may apply the induction hypothesis. Thus there 
is some formula C, containing only propositional variables common to 
A ,  A A 2  and B, such that ( A ,  A A , )  v C and i Cv B are theorems. It 
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follows from the definitions of A,  and A2 that A v C is also a theorem, 
This completes the proof. (Cf. also Exercise 2.) 

If we replace A by i A  in this lemma we get the following result: 
If A-tB is a theorem of Prop (P)  there is a formula C, cont~in~ng only 

propositional variables common to A and B such that A+ C and C-tB are 
also theorems of Prop (P).  

We call C an interpolation forniula for A and B. As a corollary of 
this result we have 

THEOREM 2. THE DEFINABILITY THEOREM FOR PROPOSITIONAL CALCULUS : 
Let A ( p )  be a formula which contains the propositional variable p ,  and let 
A(p’) be the result of substituting p’ for p in A(p) ,  where p‘ is a propo- 
sitional variable which does not occur in A(p) .  Then, i f  (A(p) A A ( ~ ’ ) ) +  
(p-tp’) is a ~heore~ i  there is a formula F con~aining only propositional 
variables which occur in A (p), bud not p nor p’, such that A(p)+fp++F) 
is a theorem. 
PROOF: Since (A(p)~A(p’))+(p+p’)  is a theorem we also have that 
(A(p )  Ap)+(A(p’)-+p’) is a theorem. Hence by the Interpolation Lemma 
there is a formula F, not containing p nor p‘, such that ( A ( p )  Ap)-tF and 
F-+(A(p’)+p‘) are both theorems. It follows that A(p)-+(p++F) is a 
theorem. 

We can be precise about the form of the formula F. If we replace 

the Interpolation Lemma yields (A(  T) A T) v (A(J..) A I) for F, 
which reduces to the formula A (  T).  Thus F is A (  T), the result of 
substituting T for p in A(p) .  (More directly, we could argue as folIows. 
For all A ,  A(p’)+(p’-tA( T)), is a theorem; substituting T for p we 
have A(p‘)-+(A( T)+p’) is a theorem, and hence A(p’)-+(p’c*A( T)).) 

We will make use of the next Theorem for the elimination of quantifiers. 

THEOREM 3: Each formula A of Prop ( P )  is equivalent to aformula of the 
form A ,  v A ,  v v A, where each At ( l  < i <  k)  is of the,form c(, A ... A a,, 
where aj(l <j<rj) is either p or i p ,  and p is either one of the proposi- 
tional variables occurring in A or is T . 

Thus we say that A can be written as a “~sjunction of conjun~tions”, 
The Theorem is also true for a CcConjunction of disjunctions” and can be 
proved in the same way. 
PROOF: The proof is by induction on the number k of propositional 

( 4 P )  AP)-+(A(P’)-tP’) by ( l A ( P )  v 1 P )  v ( l A ( P ’ )  VP’) the proof of 
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variables occurring in A .  If k=O, A is equivalent to T or I, i.e. 1 T. 
Suppose now that the Theorem has been proved for k=n-1 and 

let A ( p )  be a formula containing n propositional variables of which p 
is one. Let B and C be the results of substituting T and I, respectively, 
for p in A ( p ) .  B and C each contain n- 1 propositional variables and 
clearly A ( p )  is equivalent to ( p  A B) v (ip A C).  

By the induction hypothesis B is equivalent to B, v ... v Bk and C is 
equivalent to C, v .+. v C,. Therefore A ( p )  is equivalent to ( p  A B,) v 
( p  A B2) v 1 . .  v ( p  A Bk) v ( i p  A C,) v ... v ( i p  A C,) which is of the de- 
sired form. 

This completes the proof. 

THEOREM 4. THE FINITENESS THEOREM FOR PROPOSITIONAL CALCULUS : 
Let JZZ be a set of formulas of Prop ( P )  such that everyJinite subset of d 
has a model. Then d has a model. 
PROOF: We will first prove the result for the most commonly occurring 
case, namely when P (and hence also d) is countable. 

Letp,, . . ., p k ,  . . . be an enumeration of P. Suppose that we have found a 
map 6 of { p l ,  . . . , p , }  into {0,1} such that each finite subset of d has a 
model in which pl, .. ., pn take the values 6(p , ) ,  .. ., S(p,). Then we show 
that we can extend 6 to { p , ,  ..., pn, pn+,} so that this same property 
holds. For suppose that this is not true if we put 6 ( p n +  ,) = 0. Then there is 
some finite subset U, of d such that there is no model of U, in which 
p , ,  . . . ,pn,pn+,  take the values 6(p , ) ,  ..., 6(pn),  0. Let U be any arbitrary 
finite subset of d. Then U, u U is a finite subset of d and so by hypothe- 
sis it has a model in which p , ,  .. ., pn take the values 6(pl), ..., S ( p , ) .  By 
the choice of U,, in this model pn+,  must take the value 1. Hence if 
6 ( ~ , + ~ ) =  1 every finite subset U of JZZ has a model in which p , ,  . . . ,pn+,  
take the values 6(p , ) ,  ..., 6 ( ~ ~ + ~ ) .  

Thus we can define, by recursion on n, a realization 6 of Prop (P) such 
that, for each n, every finite subset of d has a model in which p , ,  .. ., pn 
take the values 6 ( p , ) ,  ..., 6(pn) .  It follows that 6 satisfies d: for suppose 
A is a formula of d; in order to see that 6 satisfies A it is sufficient to take 
n so large that all the propositional variables occurring in A appear 

Clearly this proof can be extended to the general case when P is not 
countable provided that we have a well-ordering of P. For the general 
case we also have the following proof. 

among PI, . . . , P n .  
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For each formula A of Prop (P) the set of realizations which satisfy A is 
open in the space {0,1}', with the product topology, since A only contains 
a finite number of propositional variables. This set is also closed since 
the realizations which do not satisfy A are precisely those which satisfy i A .  
For each formula A of d let 2 be the set of realizations which satisfy A .  
It follows from the hypothesis of the theorem that all finite intersections 
of the sets A are non-empty. Since {0,1)' is compact the intersection of all 
the sets A for A e d  is  ion-empty. 

This completes the proof. 

The Finiteness Theorem can also be expressed in the following form: 

THEOREM 5 : If each realization satisfies one of' the formulas of a set .GY of 
formulas then there are formulas B,, . . . , 3, in ,Ow such that 3, v + v B, is a 
? h ~ o r ~ ~ .  
PROOF: Suppose such a set {Bl ,  ..., B,) does not exist. Then for each 
finite subset { B l ,  . . . 7  B,} of ~3 there i s  some realization which does not 
satisfy B, v A i B,. Let d 
be the set of formulas i B for B in .#, Then every finite subset of d has a 
model and so, by the Finiteness Theorem, d has a model. This contra- 
dicts the assump~ion that each realization satisfies some formula of @. 

A formula A is said to be a consequence of a set d' of formulas if each 
realization which satisfies d' also satisfies A .  In particular, the con- 
sequences of the empty set are the theorems. The consequences of a 
finite set &={A1, ..., A,}arethoseformulasAsuchthat(A, A * . .  AAJ-+A 
is a theorem. 

THEOREM 6: A is a consequence of a set d of formulas if and only $ A  is a 
consequence of somefinite subset of d. 
PROOF: The condition is clearly sufficient. I t  is also necessary since to say 
that A i s  a consequence of d is equivalent to saying that the set 
d u { 1 A }  does not have a model. This set does not have a model only if 
some finite subset d' of d exists such that d ' v { i A )  does not have a 
model. And this set does not have a model only if A is a consequence 
of d'. 

Exercises 

1. Clearly each formula A having pl, ..., pn as its propositional variables 
defines a map of {O,l)" into {O,l}. Show that each map of {0,1}" into 
{0,1] is obtainable in this way. 

v B, and which therefore satisfies -I& A 
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Let U, be the set of maps of { O , l } k  into {0,1} and let U= U k e N  Uk. A 
subset S of U is said to  be complete if all the elements of U can be obtained 
by composition from the elements of S. 

Show that the sets S=(d} ,  where d ( p ,  q)= i p  A i q ,  and {+, I} are 
complete and that the sets S= { T,+} and { T, +, A ,  v } are not complete. 

Answer. We prove that all maps from {0,1}" into {0,1} can be obtained, 
by induction on n. Suppose that the result has been established for n = k 
and let f ( p , ,  . . . , p k , ~ ~ + ~ )  be a mapping from {O,l}k+' into {O,l}. By 

where A and B are two formulas whose variables are p l ,  ..., p k .  It can be 
seen at once thatf(p,, . . ., pk, p k + l )  is given by the formula 

hypothesisf(pl, . . .) P k ,  l)  = A (PI 9 . . .) P k )  andf(pl, . ..) pk, O) = B(pl  9 . . . , P k )  

This shows that the set {i, v }  is complete. Now i p = d ( p , p )  and 
p v q =  i d ( p ,  q)= i p - q  and so the sets { d }  and {+, I} are also both 
complete. 

Now consider the function schemas that can be constructed from 
{ T, -} and a set P of propositional variables. These represent all the 
functions that can be obtained from { T, +} by composition. Let A ( p )  
be one such function schema which contains only the propositional 
variable p .  It can be seen by induction on the length of A ( p )  that either 
A ( p ) t t  T or A ( p ) t t p  is a theorem as follows: if A ( p )  is of length n then 
A(p)=B(p)+C(p) ,  where B(p)  and C ( p )  are both of length less thann. 
It follows that A ( p )  is equivalent to one of the formulas p+p, T+p, 
p -  T, T + T, i.e. to  T orp. 

Consequently the function i cannot be obtained by composition 
from { T, +, v ,  A } .  

2. Let A, ,  ..., A , ~ P r o p  ( V )  where V is a set of propositional variables. 
The class of formulas built up from the propositional connectives (de- 
fined by) A , ,  .. ., A ,  is, by definition, the least class $? such that 

(i) each Ai€$? (1 < i <  n), and T and I E V if there is a formula A E%? 

such that A ,  resp. i A  is a theorem of Prop ( V ) ;  
(ii) if A€$? and BE$? and C is obtained from A by substituting either 

a variable EV or the formula B for each occurrence of a variable in A ,  
then C E ~ .  
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Show that, if P, Q, R are disjoint subsets of V, A&, BE???, A ~ P r o p  
(FUR), BEProp (QuR) and A-B is a theorem, then there is a formula 
CEV, CsProp (R) such that A -C, C-B are theorems. (Interpolation 
Lemma for arbitrary sets of propositional connectives.) 

Answer. If P=0 or Q=O there is nothing to prove. 
Case 1 : R=0. In this case either B is a theorem or I A  is a theorem 

(and C= T or C= I satisfies the condition above). Suppose I A  is not a 
theorem; then there is a realization p p  of P for which A= 1,  and since 
A E Prop (a), A= 1 for every extension p ( = p p u p Q )  of p p .  Since A 4 B is a 
theorem, a= 1 forp. Hence, since BEProp(Q), for any p' whose restriction 
to Q is pQ, B= 1. Since pQ was arbitrary, this means that B is a theorem. 

Case 2 :  R#@. We consider first the case when T or LEV. Suppose 
P=(p, ,  ..., p,),  Q=(ql, ...,q,). If TEV and n=I, or I€%, and m = l ,  
we write A=A(p,),B=B(q,) and C = A ( A ( T ) )  or C=B(B(i))  is a 
solution. By Lemma 1 it is enough to show that 

are theorems, since both A (  T)  v A ( i )  and B( 7 ) A B ( L )  are interpolation 
formulas, Let p be any realization of F', and so Tf= 1, =0, and either 
A( T)= 1 or A( T)=O; if A( T)= l ,  A(A( T)=A(  T), i.e.= 1, and also 
A ( T)  v A (I)= 1 ; if A( T ) = 0, A (A( T ) )=A( I), = A  ( T ) v A (I); in both 
cases, A (  T ) v A ( I ) = A ( A (  T)); since p is arbitrary this shows that 
A (  T ) v A ( i ) - A ( A (  T)) is a theorem. The proof for (B( T)A B(I))++ 
B(B(l.)) is similar. (Note that Lemma 1 itself provides a solution only if 
both T and 1. E% and either v or A occurs in %.) 

To treat n> 1, we define a sequence Ci(l < i6 n) where (i) each C+Prop 
( ( p i + l ,  . . . ,p, ,  ufuR) (i<n),  C,EProp ('vfuR) and u # P u R  (e.g. ueQ 
since Q#@), (ii) each Ci is obtained from A by substitution for the 
variables p , ,  . . . , p i .  We write C i = C i ( p i + l ) ,  Ci=Ci  [v] and denote by 
Ci(F), Ci[F] the result of substituting F for each occurrence in Ci of 
p i + , ,  resp. of 21, 

- ___ -- - 

C ,  = A(A(v)) ,  Ci,l = ci(ci(u)) (1 6 i < ti). 

Then, for l<i<n,  A+Ci[T], C j [ T ] + C ~ + , [ T ~ ; C j [ T ] ~ B ( 1 ~ ~ ~ n ) .  
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For i= I ,  we have the case above because C, [ T 1 is A ( A  ( T ) ) .  Suppose 
true for i<j, and write C j [  T]=CJ(pj , , ) ;  since CJ-B, again C;(C;( T)) 
is an interpolation formula, and this, by definition, is Cj+lf T I .  

If i&, a similar construction of D,EProp ((qi+l, ..., qm, w ) u R )  
( w $ Q w R )  yields a formula D,,,[L] where D1 =B(B(u)), D,=Di(q j+ , )=  
Di[w], and Di+l =Di(Di(w)). 

For the general case, note first that, for any formula F, C,[P]-+B is a 
theorem because C,,[u] is got from A by substitutions for pl, ..., pn and 
the p do not occur in B. In particular, for F=Bo where B, is obtained 
from B by substituting elements of R for ql, ..., gm. We shall show that 

Let p R  be any realization of R. We distinguish two cases: (i) There is a 
realization ps on P such that A= 1 for pp*up,, (ii) for each extension p p ,  
A=O for ppwpR. In case (i), since A-+B in a theorem, for each realization 
pq of Q, B= 1 for P~U~RUPO; ;  since the p do not occur in B, B= 1 for each 
extension of p R ,  and, in particular, B,=l. So C,[B]=C,[T], and we 
know that A+Cn[  T I  = 1. In case (ii), since for all pp, A=O for pRwpp, 

and hence for all p R ~ p p u p Q ,  A being in Prop (PwR),  A+Cn[Bo]=l 
for all extensions p R u p P ~ p Q .  Since p R  is arbitrary, A+C,[B,] is a 
theorem. 

Similarly, D,[A,] is an interpolation formula if A ,  is obtained from A 
by substituting elements of R for p l ,  . . . , pn. 

A-,CJBol. 

-- 

3. A set d of formulas is said to be independe~~ if no formula A in d is 
a consequence of d- ( A ) .  Show that 

a) a set d of formulas is independent if and only if each finite subset of 
a? is independent; 

b) each finite set d of formulas has an independent equivalent subset 
@ (in the sense that each formula of &’ is a consequence of a, and 
conversely) ; 

c) each countable set of formulas d has an independent equivalent set 
of formulas. 

We remark that there is a countable set d of formulas which does 
not have any equivalent independent subset. Let pl ,  ...,p,,, ... be a 
sequence of distinct propositional variables and let, for example, 
d= ( p I , p l  ~ p ~ ,  ..., p, A A P ~ ,  ...I. Clearly each independent subset of 
a? consists of a single formula and d is not equivalent to any single 
formula in d. 
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Answer. 
a) This is an immediate consequence of the Finiteness Theorem. 
b) We prove the result by induction on the number of elements k in d. 

If k=O the result is trivial; suppose it is true for k=n and let d= 
{Al, ..., A,, A,,+l} be a set of n f  1 formulas. If this set is already in- 
dependent we are home. If not, then A,,+,,  say, is a consequence of 
{Al, ..., A, )  and it is sufficient toapplytheinduction hypothesis to  this set. 

c) Let A , ,  . .., A,, . .. be an enumeration of the formulas of d. Let Ai be 
the first formula in this enumeration which is not a theorem. Put B, = Ai 
and in general let B,+,=Bn/tAj where A ,  is the first formula in the 
enumeration which is not a consequence of B,,. Clearly the formulas 
B,, B,, ..., B,,, ... are all consequences of d and, conversely, each A ,  is a 
consequence of the formulas {B,, B,, ..., B,I, ...I. In the sequence B,, ..., 
B,,, . . . each formula is a consequence of the one following it but not of the 
one preceding it. If this sequence is finite let B, be its last term. Then 
{B,) is the desired independent set of formulas. It is independent since if 
B, were a theorem then, because B,+B, is clearly a theorem, Bl would 
also be a theorem, which it is not. (If each A,  is a theorem, d is equivalent 
to the empty set.) 

If this series is infinite, put C, = B, , C, = B, --+ B,, . , . , C, = B, - --+ B,, . . . . 
It follows at once that 

i) no C, is a theorem, and 
ii) the set { C,, . . ., C,, . . . f is equivalent to d. 
The set {el, ..., C,,, ...} is, in fact, independent. For by i) there is a 

realization which satisfies i C,, i.e. which satisfies B,- , and i B,,. Since 
1 Bn-+ i B, for n 6 m is a theorem, this realization also Satisfies i B, for 
n 6 m  and hence satisfies C,,, for n<m.  But we also have that B,--+B, is a 
theorem for p < n and so this realization also satisfies C, for p < n. That is, 
this realization satisfies all the formulas C, for q # n  but it does not 
satisfy C,. Therefore C, is not a consequence of {Cz, ..., C,I-.,, ...>. 

This completes the proof. 

4. a) A group G is said to be ordered if there is a total ordering < of G 
such that a 6 b implies ac 6 bc and ca 6 cb for all c in G. Show that a group 
G can be ordered if and only if every subgroup of G generated by a finite 
number of elements of G can be ordered. 

b) Deduce that a commutative group can be ordered if and only if it is 
torsion free, i.e. no element other than the identity is of finite order. 
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Answer. 
a) The condition is obviously necessary; we will show that it is also 

sufficient. 
Consider the propositional calculus on G x C, i.e. the propositional 

calculus having the elements of C x G as propositional variables. Let a3 be 
the set consisting of the following formulas: 

i) (a, a )  for all a in G, 
ii) (a, b) v (b, a) for all a, b in G, 

iii) (a,  b)-+T(b, a )  for all a, b in G with a f b ,  
iv) (a, b) A (b, c)+(a, c) for all a, b, c in G, 
v) (a, b)-+(ac, be) A (cu, cb) for all a, 6,  c in G. 

In any finite subset of d, say U, there occur only a finite number of 
elements of G. If G, is the subgroup which they generate, since G ,  can be 
ordered, by hypothesis, there is a realization of the propositional calculus 
which satisfies U, namely the realization in which (a,  b) gets the value 1 or 
0 according as a < b or a> b, for a, b in G,, and which is arbitrary other- 
wise. By the Finiteness Theorem it follows that there is a model of the 
whole set d. It is now sufficient to put a < b when (a, b) = 1 in this model 
and a> b otherwise to obtain an ordering of G. 

b) If G is an ordered commutative group then G is clearly torsion free. 
Conversely if G is torsion free the sub-groups generated by finite 

subsets of G are free groups which are isomorphic to Z" for some integer 
n. But Z" can be ordered by the lexicographical ordering where (al, . . ., a,) 
<(b,, . . ., b,) if i is the least integer such that a, # 6, and a, c 6,. 

5. A graph (a non-reflexive symmetric relation) defined on a set M is 
said to be k-chromatic, where k is a positive integer, if there is a partition 
of Minto k disjoint sets CI, .. ., C,, such that two elements of Mconnected 
by the graph do not belong to the same Ci. Show that for a graph to be 
k-chromatic it is necessary and sufficient that every finite sub-graph be 
k-chromatic. 

Answer. The condition is clearly necessary since each partition of M 
induces a partition of each of its finite subsets. We will show that the 
condition is also sufficient. 

Consider the propositional calculus on { 1,2, .. ,, k )  x M.  Let d be the 
set of the following formulas 

i) (i, a ) - + i ( j ,  a )  for all i, j < k  with i # j  and all U E M ,  
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ii) (1, u)v(2,  u )v  
iii) ( i ,  u)+i( i ,  b) for all i< k and all pairs (a, 6) of elements of M 

connected by the graph. 
If each finite sub-graph is k-chromatic it follows at once that each 

finite subset of .d has a model. Hence .d has a model. Then if we put 
U E  Ci if and only if (i, u) has thevalue 1 in this model we obtain a partition 
of M with the required properties. 

v ( k ,  u) for all  EM, 



CHAPTER 2 

PREDICATE CALCULUS 

The discussion of the previous chapter is here extended by taking into account 
the quantifiers “for all” and “there exists”. These quantifiers do not operate on 
propositions but on relations. They are applied to define n-ary relations from 
(n + 1)-ary relations and, in particular, propositions (i.e. 0-ary relations) from 
unary reiations. We also extend the use of the propositional connectives defined 
in the previous chapter so that they can be used as operations on relations. 

The language obtained turns out to be adequate for the expression of most 
mathematical concepts and is therefore a useful framework for a general theory 
of axiomatic systems. For further analysis see also Appecdix TI, p. 169 and pp. 
19c191.  

Unlike the case of propositional calculus, when one defines the general notion 
of “quantifier” it is not true that all quantifiers can be defined in terms of the two 
quantifiers mentioned above. For more details about this see MOSTOWSKI, On a 
Generalization of Quantifiers, Fund. Math. 44 (1957) pp. 12-36. 

The main notions used are those of “formula” and ‘‘language” of first order 
predicate logic, and that of a “realization” of a language, from which the notion 
of a “model” of a collection of formulas is defined. A particularly important case 
is that of “canonical” models in which each object (i.e. element of the model) has 
a riame in the language under consideration. 

The chief tool used in this chapter is that of the construction of canonical 
models by means of function schemas. This method leads to the following results: 

i) Each model of a finite or countable set of formulas d has a countable 
subsystem which is also a model of d. 

ii) The Finiteness Theorem. This is proved by reduction to the case of propo- 
sitional calculus. 

iii) The Uniformity Theorem. Exercise 6 shows that this useful result is the best 
possible from several points of view. 

Other results on the main topics of this chapter can be found in Chapters 3 and 
5. This last chapter contains a second method for constructing canonical models 
(and alternative proofs of the main results of the present chapter). 

The methods of this chapter permit an extension to predicate logic of the 
interpolation lemma, given in the preceding chapter for propositional logic; but its 
main interest derives from applications to definability such as those in Chapter 6.  

For an interesting analysis of the special role played by the usual propositional 
operations applied to relations (and not only to truth values, discussed in Chapter 
1, Exercise I), see CRAIG, Boolean notions extended to higher dimensions, in: 
The Theory of Models (North-Holland Publ. Co., Amsterdam, 1965) pp. 55-69. 
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A language 9 consists of 
1) A set V, of elements called variables. 
2) A sequence of sets F$(n=O, 1, ...). The elements of F$ are called 

n-ary function symbols. F, = un F$ and is called the set of function sym- 
bols. 

3) A sequence of sets R$(n=O, 1 ,  ...). The elements of R$ are called 
n-ary relation symbols. 

We assume that the sets V,, F$, R> are all pairwise disjoint. 
The set of function schemas built up from F:u V, as the set of 0-ary 

symbols and F$ as the set of n-ary symbols (n = 1 ,  2, . . .) is called the set 
of terms of 2’ and is denoted by T,. We denote by T l  the set of terms 
which contain n distinct variables. 

The set u, [Ri$ x (T,)R] is called the set of atomic formulas of the 
language 9 and is denoted by At,. Thus an atomic formula of 9 is a 
sequence Rt, . . . t, where R is an n-ary relation symbol and t,, . . ., t ,  are 
terms of the language. 

The set of formulas of the language 9, denoted by S,, is the set of 
function schemas built up from the following list of symbols supposed 
to be distinct from one another : 

i) The 0-ary symbols are the atomic formulas of 9, T (read “true”) 
and I (read “false”). Thus the set of 0-ary symbols is the set At,u 

ii) The unary symbols are i ( “ n ~ t ” )  and the elements of a set Q, 
disjoint from the sets already mentioned, and in one-one correspondence 
with V,. The element of Q corresponding to the variable x is denoted 
by Vx (read “there is an x”). 

{ T, I}. 

iii) A single binary symbol v (“or”). 
We remark that F,=Prop(P),  in the sense of the previous chapter, 

where P is the subset of F2 consisting of those elements (formulas) of 
9, whose first symbol is not a propositional constant (T, I, 1 or v). 

A realization of the language 9 is defined to consist of 
i) A non-empty set E called the domain of the realization. 

ii) For each nbO a map of F;P into the set of functions defined on En 
and having values in E. From this we can derive (by Theorem 0.3) a map 
of TG into the set of functions defined on En with values in E. 

iii) For each n 3 0 a map of RI$ into g ( E ” ) ,  the power set of En (or set 
of all subsets of E”). From this we derive a map of At, into g ( E Y 9 )  as 
follows: the image of the atomic formula Rt, ... t ,  in this mapping is the 
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set { ~ E E ' " :  (6tl ,  ..., &,,)El?), where RcE" is the image of R under the 
given map and at, is the value taken by the function derived from the 
term ti  when the variables take the values given by 6. (~EE"" is a map of 
V, into E.) 

It follows from the fundamental theorem on function schemas (Theo- 
rem 0.3) that to each formula of the language 2 corresponds under the 
realization a subset of E"" if we define T, I, 1, v , V x  as functions on 
9d(EYr) as follows: 

T is the constant Eva, 
I is the constant 8, 
i is the map of B(EV") into P(E"") which sends each X into cX, the 

complement of X in EVp, 
v is the map from [9(E"")12 into B(E"") which sends (X, Y )  into 

X u  Y. 
Vx is the map ofB(EVa) intoB(EV9) which sends Xinto the projection 

of X along x, i.e. to ( 6 d ' " :  for some S'EX, 6'=6 except possibly at xf .  
(In Exercise 1 we give a simple example of a language and of a reali- 

zation of this language which helps to explain the construction we have 
described here.) 

Each time we are considering only a single realization of the language 
9 we will denote by Athe value taken by the formula A in this realization 
(AE Evr if E is the domain of this realization.) 

We say that a subset X of EV2 depends only on the variables xl, . . ., x,, 
if there is a set Y ~ E ' " i ~ ~ ~ ~ ~ " n '  such that X =  Y x  Ev~- (x1s . .~2x~b) .  

LEMMA 1 : Let A be a formula and let xi, ..., x,, be the only ;~arjables 
occurring in the terms of A. Then in each realization, A' depends only on the 
variables xl, . . ., x,. 
PROOF: This result is obvious if A is atomic. If it holds for formulas A and 
B then it holds also for A v B, since a= AuB, for i A, sinceTA = cA, 
and also for VxA since VxA is the projection of A along x. Therefore, by 
the definition of the set of formulas, the result is true of all formulas. 

- - 

So that we can use this sort of argument easily we will call the length of 
a formula A the number of symbols occurring in A of types i), ii) and iii). 
That is, the length of A is the sum of the number of atomic formulas 
occurring in A and the number of symbols T, I, i, v, Vx in A ,  
separate occurrences being counted as distinct. 
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We associate with each formula A of the language 9 a finite set of 
occurrences of variables, called the free occurrences of variables in A .  We 
do this by recursion on the length of A as follows: If A is of length 1, and 
so is an atomic formula or T or I, the free occurrences of variables in A 
are the occurrences of variables in the terms of A.  Now suppose that we 
have defined the set of occurrences of free variables for each formula of 
length less than n and that A is a formula of length n. If A is of the form 
-123 the free occurrences of variables in A are those of B, and if A is of 
the form v B C  the free occurrences of variables in A are those in B 
together with those in C. Finally, if A is of the form V x B  the free oc- 
currences of variables in A are those in B except x, if x has a free oc- 
currence in B. 

An occurrence of a variable which is not free in A is said to be boundin A .  
A variable is called a free variable of A if it has a free occurrence in A ,  

and bound if it has not. In particular, all those variables which do not 
occur in A are bound in A .  Note that a free variable of A may have 
bound occurrences in A .  

THEOREM 2: Let A be a formula whose free variables are xl, . . ., s,. Then in 
all realizations k depends only on the variables xi, . .., x,. 
PROOF: The proof is immediate by induction on the length of A .  

A formula A is said to be closed if it has no free variables. It follows from 
Theorem 2 that in a realization with domain E, if A is closed, either A=@ 
or A= EY9. 

We say that a realization, with domain E, satis$es a closed formula A if 
in the realization A=Evre. In this case we say that the realization is a 
model of A .  If d is a set of closed formulas of 2 we say that a realization 
of 2 satisfies d, or is a model of d, if it satisfies each formula of d. 

We will adopt the following notation. If A and B are two formulas of 
3 we will write ( A ) v ( B )  for v AB; A-+B for ( i A ) v ( B )  and ( A ) A ( B )  
fori((iA)v(iB)).WewriteAxAfor -7 V x i A , A x i s  read “for allx”. 
If A is a formula whose free variables are x3, ,.., x,, by the closure of A 
we mean the formula Ax, ... Ax,A. Thus the closure of A is a closed 
formula. 

We sometimes write A(x,, ..., xn) for A and A(t,, ..., f,) for the 
formula obtained by substituting the terms t,, ..., ?, for each occurrence 
of xi, . . ., x, respectively. By chapter 0, A ( t l ,  . . ., t,) is a formula if A is one. 
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A (not necessarily closed) formula A is called a theorem of the language 
9 if in each realization we have A= Evg, where E is the domain of the 
realization. This is equivalent to saying that each realization satisfies the 
closure of A .  
If A = A (xI , . . ., x,) and no variable that occurs in ti ( I  6 i < n) has a bound 

occurrence in A then A ( tl , . . . , tn) is a t~~eorem proy~ded A is one. The proof 
is immediate by induction on the length of A with use of Theorem 2. 
QUANT~F~ER FREE FORMULAS: A formula of the propositional calculus on 
At, is called a quant~er free formul~  of the language 3. Evidently 
such a formula is a formula of the language 2. It is called ‘‘quantifier 
free” because the symbols Vx, Ax are called “quantifiers”, 
PRENEX FORMULAS: A formula is said to be in prenex normal form or to be 
a prenex formula if it is of the form QA, where Q is a finite sequence of 
symbols i and Vxi ,  xi€ V,, and A is a quantifier free formula. 

LEMMA 3 : If A and B are prenex formulas and V, is infinite there is a prenex 
formula C which is equivalent to A v B. 
PROOF: The proof is by induction on the length of A v B. If A and B are 
quantifier free the lemma is obvious. Suppose, for example, that A 
contains quantifiers. Let V x  be the first quantifier occurring in A .  It will 
be preceded by symbols i which we may clearly assume to be not more 
than one in number. 

Let x’ be a variable not occurring in A nor in B. Since V, is infinite 
such a variable exists. 

If A is VxA‘, let A” be the formula obtained by replacing each oc- 
currence of x in A’ by x’. Then A v B is equivalent to ( V X’A’’) v Band so 
to Vx’(A” v B)  since x’ does not occur in B. Since A” v B is shorter than 
A v B and A“ and B are prenex formulas we can apply our induction 
hypothesis to obtain a prenex formula C’ which is equivalent to A“ v B. 
Then C= Vx’C’ is the required prenex formula equivalent to A v B. 

If A is i VxA‘, let A” again be the formula which i s  obtained from A‘ 
by replacing each occurrence of x by x’. Clearly A is equivalent to 
i \/x‘A”, which is equivalent to p,x’iA‘‘,  and i A ”  is shorter than A .  
Hence by the induction hypothesis there is a prenex formula C‘ which is 
equivalent to i A “ v  B. Put C = i  Vx’iC‘. Then C is equivalent to 
~ , x ~ ( - I A ’ ’  v B) which is equivalent to l \x’( iA”v B) since xi does not 
occur in B. Thus C is equivalent to A v B. 

This completes the proof of the lemma. 
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We are now able to prove 

THEOREM 4: If V, is infinite, then for each formula A there is a prenex 
formula A' which is equivalent to A ,  i.e. AHA' is a theorem or A=A" in 
each realization of 9. 
PROOF: We prove the theorem by induction on the length of A .  

If A is an atomic formula we put A'= A .  If A is i B or V x B  then, by 
the induction hypothesis, there is a prenex formula B' which is equivalent 
to B. We put A' = i B' or A' = VxB'. If A is B v C then, by the induction 
hypothesis, there are two prenex formulas B' and C' equivalent to  B and 
C respectively. We can apply Lemma 3 to obtain a prenex formula A' 
which is equivalent to B' v C' and hence to A .  

A prenex formula can always be written in the form Qlx, ... Q,x,H, 
where each Qiis a quantifier, v or A, and H i s  quantifier free. The for- 
mula is said to  be existential if each Qi is V and universal if each Qi is A.  

Let d be a set of formulas of 9. The language of 8, denoted by 
9(d), is the language whose variables are those of 9 and whose rela- 
tion and function symbols are those which occur in the formulas of 8. 

A canonical realization of d is a realization of 9(&) with domain 
T,(6), the set of terms of 8, in which the function symbols are given their 
natural or canonical values as functions on T9(81. The choice of values for 
the relational symbols is left free. 

The aim of the theorems that follow, up to the Uniformity Theorem, 
is to answer the question of how we can tell whether a given formula is a 
theorem or  not. We concern ourselves only with prenex formulas (see 
also Appendix I1 A, Lemma 3). 

THEOREM 5: Let d be a set of closed universalprenex formulas. If & has a 
model then it has a canonical model. 
PROOF: Put 9 ' = 9 ( d ) .  Each formula of 8 is, by hypothesis, of the form 
A x ,  ... Ax,A, where A is a formula of the propositional calculus on the 
set of atomic formulas of 9'. Let E be the domain of the given model of 
8, and let RE En be the value in this model of the relational symbol R 
in RI$. Let 6 be an arbitrary fixed element of EV9'. We derive from it a map 
t+ i of T9, into E. We now define an canonical realization of d by giving 
to RER;, the value R={( t l ,  ..., tfl)ET':(i1, ..., Q E R } .  The map t+i  of 
T9 into E defines a map 4 :  TVp'-+EVp' and from this, the inverse map 
4 - : B ( E ~ ~ ~ ) + ( T ~ ~ ~ ) .  
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If A is a quantifier free formula of 22, A the value it has in the given 
model and A" its value in the canonical realization, then A= 4- ' (4 .  This 
is obvious if A is atomic and we know that 4- l  commutes with the 
operations of unions and taking complements. 

Now let Ax,  ... Ax,A be a formula of 8. By hypothesis A=Evie'. 
Hence A" = 4-l (A) = (Ty)y2'. Therefore Ax, . . . A x,A is satisfied by the 
canonical realization we have constructed. 

This completes the proof. 

We have the following dual result. 

THEOREM 6 : If A is a closed existential prenex formula then A is a theorem 
if and only i f  all canonical realizations satisfy it. 
PROOF: The condition is obviously necessary, It is also sufficient since if 
all canonical realizations satisfy A none satisfies i A. Hence by Theorem 5 
i A does not have a model. 

THEOREM 7 : To each prenex fo~mula  F there corresponds a ~niversal prenex 
formula p, whose language does not direr from that of F except for the 
addition of aJinite number of function symbols, such that 

a) In each realization o f 9 ( @ ) ,  PEP,  that is, @-+Pis a theorem and 
b) Each realization of S ( F )  can be extended to a realization of 2 ( P )  

in such a way that F=z 
PROOF: The proof is by induction on the number of q u ~ t ~ e r s  in F. If F 
has no quantifiers in it we put p=F.  

If F= AxG, then by our induction hypothesis, there is a formula G 
which satisfies the theorem for G. It is sufficient to put P= Axe. 

If F= VxG, we again let G be the formula which satisfies the theorem 
for G. Let xo, x l ,  . .., x,, be the free variables of G. If x is not free in G then 
in each realization a=?? and so it is sufficient to take P=G. If x is 
free in G, say x is x,,. Let 4 be an n-ary function symboi which does not 
occur in 9(e). Let be the formula obtained from G by replacing each 
occurrence of x by 4xr . . . x,. Clearly, because G is universal so is p. 

We first show that P satisfies condition a). Let E be the domain 
of a realization of 22(F). Pis the set of all (ai, ..., a , ) ~ E ' " ' * ~ ~ ~ ' " " )  , such 
that ($(a,, . . ., a,), a,, . . ., a,)&s G E E'"'"~~'""' . Thus for each element 
(al ,  ..., a,) of F, (a,, ..., a,)E VxG=F. Hence FGF. 

- 
- -* a- 
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Finally we show that E’ satisfies condition b). Let E be the domain of a 
realization of A?(F). By hypothesis this realization can be extended to 
9 ( G )  in such a way that G = z .  Thus we then have F= -= VxG. So 
@I, *’*,  a,) is in E(XI? ..., x d  if and only if there is some aEE such that 
(a, a,, ..., a,)EF. We now define 6 as follows (since, by hypothesis, 
4$A?(&), we still have this definition to make): 

$(al, .,.,a,) = a if ( a l ,  ..., a,)EPP 

- 

and $(a,, .. ., a,)=a, is an arbitrary element of E, otherwise. 
In this way we obtain a realization of 2 ( p ) .  In this realization p i s  the 

set of those (al ,  ..., a,) such that (5,(al, ..., a,), a,, ..., a,)EG. Hence E’= 
- 7 _. 

- 
VxG=E’. 

This completes the proof. 

We again have a dual result. 

THEOREM 8: To each prenex formula F there corresponds an existential 
prenex formula P whose language does not differ from that of F except for 
the addit~on of a finite number of function symbols, such that 

a) In each realization of 9 ( F ) ,  FG that is, F-+ E is a theorem, and 
b) Each realization of 9 ( F )  can be extended to a realization of 9 ( f )  in - 

01 
such Q way that P= $. 
PROOF: It is sufficient to put f= -1 (1 F). 

COROLLARY 1 : For a cl5sedprenexformula F to be a theorem it is necessary 
and sufficient that P be satisfied by all canonical realizations. 
PROOF: If F is a theorem then because F - d  is a theorem, is also a 
theorem. Hence, in particular, 8 is satisfied by all canonical realizations. 

is satisfied by all canonical realizations. Then 
by Theorem 6 ,  since Pis existential, #is a theorem. Given any realization 
of 9 ( F )  it can be extended so that F=F. But P is satisfied by this ex- 
tension and so F is satisfied by the original realization and hence is a 
theorem. 

Conversely, suppose 

COROLLARY 2: Let 8 be a countable set of c~osed f5r~u~as .  gd has a model 
then d has a countable model. 
PROOF: We may assume that d consists of prenex formulas. Let 8 be the 

h 
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set of formulas P for F in 8. (We assume that the function letters added 
to 9(8) for different formulas F are different.) If d has a model this 
model can be extended to a model of 8. Now B consists of universal 
prenex formulas and so if it has a model it has a canonical model. 
Clearly such a model is countable. 

Later (in Exercises 4 and 5)  we shall give more precise formulations of this 
result. 

A A 

This concludes the proof. 

Consider a language 9. If we have a canonical realization of 9 we 
have at the same time, for each n 2 0 ,  a map of RI$ into B((T,)")= 
{O,l}(',)". From this we can obtain a map of Rf$ x (T9)" into {0,1) and 
thus, for each n 2 0, a map of At,, the set of atomic formulas of 2, into 
{O,l}. Thus we have seen that 

THEOREM 9: Having a canonical realization of a language 9 is equivalent 
to having a realization of the propositional calculus on the set of atomic 
 formula^ of 9. 

LEMMA 10: Let F(xt ,  ..., x,) be a quantifier free formula of 9 with free 
variables x,, ..., x, and let t,, ..., t, be terms of 9. Then in a given 
canonical realization of 9, ( t l ,  .. ., t , )EF if and only i f  the corresponding 
r~alization of the proposit~onal calculus on At, satisJies F(tl, .. ., r,,,). 
PROOF: The lemma is obvious if I; is atomic. Also if F satisfies the lemma 
then clearly so does i F. 

Now suppose that G and H satisfy the lemma. (t,, . . ., t,)E G v H if and 
only if (t l ,  ..., t m ) E ( :  or (t l ,  ..., t,)&, that is, if and only if either 
G(t , ,  ..., t,) or H(t,, ..., t,) is satisfied by the corresponding realization 
of the propositional calculus on At,, and hence if and only if F(tl, . .., t,) 
is satisfied by this realization. 

THEOREM 1 1. THE UNIFORMITY THEOREM: Let F(x , ,  . . . , x,) be a quantifier 
free for mu^^ with free variables xl, . . . , x,. Then V x, . . . \I x, F(x,, . . . , x,) 
is a theorem  and only i f  there are terms t f , . . ., t l ,  1 < i 6 k, ofthe language 
of F such that the formula 

F ( t i ,  ...) ti) v F ( t : ,  ...) t i )  v * "  v F ( t : ,  ..., t:) 

is a theorem of the pro~ositional calculus on At2((F). 
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PROOF: The condition is sufficient. For suppose that the formula 

q t : ,  ..., 2;) v F(tT,  ..., t:) v - * *  v F(t : ,  ..., ti) 
is a theorem of the propositional calculus on Atgfrt. Now consider an 
arbitrary canonical realization of Y ( F ) .  In the corresponding realization 
of the propositional calculus on At,(,, the formula above is satisfied. 
Hence for some i, 1 6 i < m ,  the formula F(t i ,  ..., t i )  is satisfied in this 
realization. Therefore, by Lemma 10, in the given canonical realization 
( t i ,  ..., t i)eF, and so Vx, ... Vx, F(x,, ..., x,) is satisfied. Since this 
existential formula is satisfied by all canonical realizations it is a theorem. 

Conversely, we will show that the condition is necessary. Suppose that 
Vx, ... Vx, P(x,,  ..., x,) is a theorem, then it is satisfied by all canon- 
ical realizations. Thus for each canonical realization of 9 ( F )  there are 
terms ti, ..., t, such that (t i ,  ..., t&F. By Lemma 10, it follows that for 
each realization of the propositional calculus on At,,,, there is a sequence 
of terms t,, . . ., t ,  such that F(t,, . . . , t,) is satisfied in the realization. Hence, 
by the second version of the Finiteness Theorem for propositional calculus 
(Theorem lS), there are terms tf, ..., t i ,  1 < i < k ,  such that F(t t ,  ..., ri) 
v -1. VF(Z[, ..., t:) is a theorem of the propositionaI caIcuIus on At9(F). 

This completes the proof. 

These results give us the following method for verifying that a prenex 
formula A is a theorem. We construct the formula which, being exis- 
tential, can be written in the form Vx, . . . Vx, F(x,, . . ., x,), where Fis  a 
quantifier free. Then it is sufficient to look at all the formulas of the form 

F ( t : ,  ... t;) v *.*  v q t : ,  ..., t k )  

where the tf are terms of 9 ( F )  until you come across one which is a 
theorem of the propositional calculus on AtB1F). (For each formula of this 
form we can test in a finite number of steps whether or not it is a theorem, 
by the definition of a theorem of the propositional calculus.) 

Then A will be a theorem if and only if you finally discover a theorem 
of the propositional calculus in this way. 

THEOREM 12. THE FINITENESS THEOREM FOR PREDICATE CALCULUS: A set 
d of closed formulas has a model if and only if each finite subset of B has a 
model, 
PROOF: Trivially, if B has a model so does every finite subset of 8. 
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Now suppose that every finite subset of d has a model. We will prove 
that c" has a model. 

Let 8 be the language of 8. Clearly we can assume that all the formulas 
of b are in prenex normal form. Let F= (2: A E a}. We will assume that 
the function symbols that we use to construct different Â  are distinct. 
Since A^+A is a theorem for each A ,  it will be sufficient to prove that b 

Each finite subset of € has a model. For suppose {Al, ..., A,} is a finite 
subset of 5. Then, by hypothesis, { A l ,  ..., A,} has a model and, by 
Theorem 7, this can be extended to a model of {Al, ..., A,}. Therefore we 
need only consider the case when 8' consists of universal prenex formulas. 

Let each formula A of F be of the form Axl ... I \xnAo(x,, ..., x,), 
where A ,  is quantifier free. Let d = { A o ( t , ,  ..., t,): A E ~  and (tl, ..., t , ) ~  
(Typ)nf. So d is a set of formulas of the propositional calculus on At,. 

Every finite subset of € has a model and so has a canonical model. 
Hence, by Lemma 10, every finite subset of d has a model, in the sense of 
propositional calculus. Therefore, by the Finiteness Theorem for propo- 
sitional calculus, d has a model. It follows, again from Lemma 10, that 
the canonical realization corresponding to this model satisfies b. 

h 

h 

has a model. h 

This completes the proof. 

We will use the following notation in what follows: 
1. Let 8 and 8' be two languages. Then 8u9' will be used to denote 

the language whose function and relation symbols are those of 9 to- 
gether with those of 8' and Sn8' is the language whose function and 
relation symbols are those common to 8 and 8'. We write 8 ~ 8 '  to 
indicate that the function and relation symbols of 9 belong also to 2'. 
For example, 9 ( A  v B ) = ~ ( A ) u ~ ( B ) .  

2, If A,, ..., A,  are formulas we write W A ,  for the formula 
1 S i S k  

A ,  v --. v A,  (and ilh A ,  for the formula A, A A Ak). 
I C i S k  

THEOREM 13. THE INTERPOLATION LEMMA FOR PREDICATE CALCULUS : 
I f A  v B is a theorem, there is a formula Csuch that 8(C)  ~ 8 ( A ) n 9 ( B )  

and such that A v C and B v -I C are theorems. 
PROOF: We show first that it is sufficient to consider the case when A and 
B are both closed formulas. For suppose that we have proved the Theo- 
rem for this case and that A(z,, ..., zk) and B(z,, ..., zk) are two formulas 
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whose free variables occur among zl,. * ., zk such that A (z ,  ,.,., z k )  v 
B(z, ,..., zk) is a theorem. Let a, ,..., a, be k constant symbols (0-ary 
function symbols) which are not in 9 ( A ) u ~ ( B ) .  Then A@,,  ..., a k )  v 
B(a,, ..., ak) is a theorem and so, by hypothesis, there is a formula D such 
that 9 ( D ) c ( S ( A ) n ~ ( B ) ) u ( a , ,  ..., ak] and such that A(@,,  ..., a k ) v D  
and B(a,, ..., ak) v -7 D are theorems. Let C be the formula obtained 
from D by substituting zl ,  . . ., zk for a,, . . ., a,. Then clearly A ( z j ,  . . ., zk) v C 
and B(z,, .. ., zk) v i C are theorems. 

So from now on we shall assume that A and B are closed. We shall now 
show that it is sufficient to consider the case when they are existential 
formulas. For suppose that we have proved the theorem for this case 
and let A and B be two closed prenex formulas such that A v B is a 
theorem. We construct the formulas A and B using distinct function 
symbols which do not occur in P ( A ) u S ( B ) ,  so that LT(&d?(&= 
~ ( A ) ~ P ( B ) .  Since A-+X and B+B are theorems, Av B is a theorem. 
Therefore, by hypothesis, there is a formula C such that A v C  and 
B v i C are theorems and P ( C )  c 9 ( A ) n ~ ( ~ ) .  All realizations of 
9 ( A )  can be extended to realizations of 9(2) in such a way that A = x  
Hence each realization of 9 ( A  v C) can be extended to a realization of 
9 ( A v C )  in such a way that A v C = A v C .  It follows that A v  C is 
satisfied by each realization and hence is a theorem. Similarly B v  i C 
is a theorem. 

So we can assume that A =  Vx, ... Vx, H(x , ,  ..., s,) and B= 
V y1 . . . V yn K(y,, . . ., y,) where H and K are quantifier free. A v B is a 
theorem, and so, by the Uniformity Theorem, there are terms t: and u: of 
9 ( A  v B) such that if 

and 

-- 

Al = WH(t’;, ..., t i )  

B ,  = W ~ ( ~ ~ ,  . . . ,~~) 

h 

k 

then A ,  v B, is a theorem of the propositional calculus on AtsfeAvBf. 
Then, by the Interpolation Lemma for propositional calculus, there is a 
formula C whose propositional variables occur both in A ,  and B, such 
that A ,  v C and B, v -1 C are both theorems of the propositional calculus. 

Let (,, .. ., tl be the terms which occur in the atomic formulas of C. 
So C=C,(<,, ..., C l )  where C,(z,, ..., zl)  is a formula with free variables 
z,, ..., zl which does not contain any function symbols and whose re- 
lation symbols are all in B(A)nz(B) .  
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We construct, by recursion on p ,  a sequence of quantifier free formulas 
Cp(zl, ..., zl,) whose language is contained in L Z ( A ) n 2 ( B ) ,  and for 
each p a sequence ti, ..., tf, of terms of Y(A)nLZ(B)  so that C= 
Cp(tT7 . . .7  <Ip)7 as follows: 

For p =  1 the formula is C, (zl ,  ..., zJ and the terms are tr7 ..., ti. 
Suppose we have carried out this construction as far as p so that 
C= C,(ti, . .., tf,). We choose a tr of maximum length that begins with a 
function symbol d ,eY(A)  n 2 ( B ) ,  if one such <a exists. If, say tf, is this 
term, we have tf, = d,ro . . . rr where qo, . . ., r,. are terms of LZ(A) n 2 ( B ) .  
We then put Cp+l(zl, ..., zi,+,)=CP(zl, ..., z , ~ - ~ ,  #zip ... zlP+J and we let 

Clearly when p is increased by one the sum of the lengths of the terms 
tf decreases by one. Consequently this construction must stop after a 
finite number of steps. Thus we eventually obtain a quantifier free 
formula M(z,, ..., z,) and a sequence of terms rl, ..., r, such that 
C = M ( q l ,  ..., vq), the language of M(zl ,  ..., 2,) is contained in 9 ( A ) n  
LZ(B) and none of the terms ql, ..., q, begins with a function symbol of 
Y ( A )  n 2 ( B ) .  

Since A ,  v C and Bl v -1 C are theorems of the propositional calculus 
on At9(AVB) it follows from Lemma 10 that Vx, .. . Vx, H(x,, .,., x,) v 

theorems. Suppose that rl, . . .7  r4 are arranged in order of decreasing 
length (in such a way that no term can be a sub-term of any that follows 
it). 

Put D=Q4zq ... Q,z1M(z1, ..., z,), where Qi= f\ if qi begins with a 
symbol I# which is in Y ( B ) ,  and hence not in LZ(A), and Qi= V if qi 
begins with a symbol d, which is in LZ(A), and hence not in 2 ( B ) .  We 
will see that D is the desired formula. 

Clearly 2 ( D ) ~ 2 ( A ) n 2 ( B )  since 2 ( M ) c 2 ( A ) n 2 ( B ) .  Suppose 
that for I <  q we have shown that 

the corresponding sequence of terms be <:, ..., ti, P - ';lo, . . ., qr. 

M ( r l ,  ..., r,) and VY, ... VY,K(Y,, ..., Y,,)v - l M ( r l ,  ..., r,) are both 

are both theorems. (Note that this is certainly true when I =  1.) 

our hypothesis A v U(ql) and B v -I U ( r ~ )  are both theorems. Suppose, 
Put U(zJ=Q,-,Zt-i I . .  QlZiM(z1, . . . 7  zt-1, zi-1, zi, ~ i + i ,  ...? I./,)* SO by 
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say, that qt begins with a symbol #I of 9 ( B ) ,  so # # 9 ( A ) .  Let qr = #z, .. . T,, 
where z,, ..., z, are terms of 3' (A)u 3'(B). We have to show that both 
A v Az,U(z,) and B v  V z , i  U(zf) are both theorems. Clearly the latter is 
because B v --I U(qf) is a theorem. 

Put A v  U(zf)= Y(z,, ql+,, ..., q,) where 

V ( z ~ , Z j + . ~ ,  ..., Z J = A  v Q t - t ~ t - 1  ...el ~ l M ( Z 1 , . . . , ~ 1 - 1 , ~ 1 , . . . ,  2,) . 

Then we have to show that Azt V(q,  qr+l, ..., qq) is a theorem. This is a 
consequence of the following lemma. 

LEMMA 14: Let V(z, zl, ..., 2,) be a formula with free variable z and let # 
be a function symbol which does not occur in V(z, z,, ..., 2,). Let q= 
#zl ... z, be a term beginning with # distinct from and at least as long as 
each of the terms ql, ..., q,. Then, if V(q, q17 ..., q,) is a theorem so is 

The lemma reduces to its special case of purely existential V. For, if 
V(q, ql, ..., qq) is a theorem, so i s  P(q, ql, ..., q,) and hence, by applying 
the lemma to this existential formula, so is Az p(z, ql, . .., q,). Let a be an 
individual constant or variable not occurring in V(q, q,, ..., qq) (by 
assumption that there are infinitely many variables there always is such 
an a). So p(a, ql, ..., q,), i.e. [ / \ zV(z ,  ql, ..., q,)]" i s  a theorem, and so 
is r \z V(z, ql, . . ., q,). Suppose then that V(z, ql, . . ., qq) = Vx, . . . Vx, 
W(z, ql, ..., q,, x,, ..., x,), and that a is a new constant or variable. We 
wish to show that V(a, ql, ..., q,) is a theorem or, equivalently, that it is 
satisfied in each canonical realization a. Let %t' be the realization 
obtained from fm by changing the value of $ at the place (zl, ..., T,) by 
putting $(z,, . . ., z,) = a instead of # = z1 . . . zr (its value in the canonical 
realization a). Now YJI' satisfies V(q, qr, ..., qg) since this is a theorem; 
also the values of ql, . . . , q, in TUE and fm' are the same, namely q,, . . . , qq 
because none of these terms contains q as a part. Since W(z, zl, ..., z,, 
x,, . .., x,) does not contain #, its values in and YJI' are the same: let W 
be the common value. Since YJI' satisfies Vxl ... Vx, W(q, ql, ..., qq, xi, 
..., x,) and the domain of YJI' is the set of terms, there are terms I,, .. ., t, 
suchthat(@, @,, ..., ij,, tl,_.., trn)6R. But ijI=ql, ...? Q4=qq and ij=a. So 
(a, ql, ..., qq7 t,, ..., t m ) E  Wwhich means, since t,, ..., t, are also elements 
of the domain of fm, that Vx, ... Vx, W(a, q,, .. ., qq, x,, .. ., x,,J is satis- 
fied in fm and hence also V(a, ql, ..., q,). 

AZ Y ( Z 7  ql7 * * * ?  111,). 

This concludes the proof of the lemma and hence of Theorem 13. 
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In the Exercises we give an example where the formula C is obtained by 
following the above proof. 

We can restate the result as 

THEOREM 15 : If A+ B is a theorem there is a formida C such that A-+ C and 
C+B are theorems and L?(C>cL?(A)ndia(B). 

We have as a corollary 

THEOREM 16. THE DEFINABILITY THEOREM FOR PREDICATE CALCULUS : 
Let &‘ be a set of formulas, R an n-ary relation symbol of 9“() and d’ 
the set of formulas obtained by substituting for R in each formula of d 
an n-ary relation symbol R’ which does not occur in 2’(&‘). Then if(Rx, . . . x, 
+ R’x, . . . x,) is a consequence of -02 u d‘, there is a f o r ~ u l a  F such that 
9 ( F )  E dia(d), R#L?(F) and (F-Rx, . . . x,) is a consequence of d. 
PROOF: Since (Rx,  ... x,-+R‘xl ... x,) is a consequence of d ud’, by the 
Finiteness Theorem, there is a finite subset -02, of d such that (Rx, . . . x, 
-+ R‘x, . . . x,) is a consequence of dl u di. If A is the conjunction of the 
formulas in dt and A’ is the conjunction of the formulas in &’\ then 

( A  A A’)+(Rx,  ... x , , - + R ’ x $  ... x,) 
is a theorem and hence so too is 

( A  A R x ,  ... x,) + (A’ -+ R’xl .. . x,) . 
Therefore, by the Interpolation Lemma there is a formula F such that 
9 ( F ) c 9 ( A ) n 9 ( A ’ ) ,  and both 

( A A  Rx, ... x,)-+F and F-+(A’-+R’x ,  ... x,) 

are theorems. Therefore A+(Rx,  ... x,-+F) and A’-+(F-+R’x, ... x,) are 
theorems, which gives the desired result. 

Exercises 

1. The language 9 is given as follows: 
V9 is the two element set {x, y )  , 
R ,  contains two elements, a unary symbol U and a binary symbol R, 
F2 contains one unary symbolf. 
Consider the following realization of 2’. The domain is R, the set of 

real numbers, the value of U is the closed interval [O,l], R has the value 
I?={(x ,y)~R~:x<y) ,  the value offisgiven byf(t)=t2+1. 

What is the set of terms of L?? 
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The values of the formulas of 55' can be represented as subsets of the 
plane R(XpY). Which subsets of the plane correspond to the followhg 
formulas: 

Ux, Ufx, Vx~fx, R(x, fv), AxR(y, fx), AxR(x,.fy), 

A xR(x,  fx), AY (UY -+ R ( f k  x)). 

2. Give a formula in prenex normal form which is equivalent to 
AxVyAzAxyz+Ay VzByz  (AER;, BeR$). 

3. Consider the formula F= A x  V y  V z  A u  V v  A(x, y ,  z ,  u, v) ,  where A 
is a 5-ary relation symbol. 

Give two formulas 8 and P which satisfy Theorems 7 and 8.  

Answer. The proofs of these Theorems give the following formulas 

P =  A X  Au A ( x ,  fx, gx, U ,  h(x, j x ,  gx, a)) 

where f and g are unary function symbols and h is a 4-ary function 
symbol. p =  v y  v z  v u  A(a, Y ,  z ,  cP(a, Y? 21, v )  

where a is a 0-ary function symbol and d, is a ternary function symbol. 

4. Let &' be a set of formulas of cardinal K >  KO. Show that if d has a 
model then, for each cardinal K' 2 K, d has a model of cardinal K'. 

Answer. Let &'= {$: FE b), where we use distinct function symbols not 
occurring in 3(&) to form P for different F. d has a model and this can be 
extended to a model of c? We add to 2(&) a set C of constant symbols of 
cardinal K'. Since b has a model it has a canonical model for this new 
language. Clearly this canonical model is of cardinal K'. 

5. If 3 is a realization of a language 9 with domain E, a realization '3' 
of 2 with domain E' c E and such that for each #EF$, $(E '" )c  E' and 
the values of the function and relational symbols are the restrictions to E' 
of their values in 3 is called a sub-realization of 3. 

a) Show that if d is a set of universal prenex formulas then every sub- 
realization of a model of d is a model of I. 

b) Let d be a set of prenex formulas of cardinal K 3 KO. Show that if 8 
has a model then this model has a sub-realization, whose domain is of 
cardinal < K, which is a model of 8. 

h 

A 
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Answer. 

a) Let F be a quantifier free formula, P the value which it has in the 
realization %, (Fc E‘”), and F the value which it has in the sub-realization 

Then we show that F =  Fn Elv2. This i s  clear if F is atomic; also if it is 
true for F and G then it is true also for -i F and Fv G and hence for all 
quantifier free formulas. Now suppose that A =  Axi ... Ax,,F, where f: 
is quantifier free, i s  a formula of b. It is satisfied by the realization % and 
so F=E’”. Therefore F=EtV” and so A is satisfied also in the sub- 
realization %’. 

b) We construct the set c?= {I? F E ~ ]  using distinct function symbols 
not in 2(b)  for difTerent formulas F. The given model % of d can be 
extended to a model of g. Let E be the domain of this model and let T 
be the set of terms of U(b). Clearly the cardinal of Tis  less than or equal 
to K. 

Let S be an arbitrary fixed element of E‘”. From 6 we can derive a map 
t - + f  of T into E such that 2=6(x)  for each variable x, and #tl ... t,,= 
(f;(fl, ..., f,,) for each (p in FG, where $ is the value of # in the model % of 
b. Let E’ be the image of T under this map. Clearly E’ is of cardinal 
6 K. Also if # is an n-ary function symbol of 9(8) and a,, ..., a,,€E‘ 
then $(al ,  ..., an)EE’. Consequently there is a sub-realization 3‘ of % 
with domain E. 

%’ of (52, (F c ~ ’ “ 2  c: ~“9) .  

h 

h 

By a) %’ satisfies 8 and so 93’ is a model of 8. 

6.a) If R is a binary relation symbol, show, by using the method on page 
24, that the formula A x  V y  Az(R(x,  y )  v i R ( x ,  z))  is a theorem. 

b) Give an example of a quantifier free formula A ( y )  such that V y A ( y )  
is a theorem but for no term t of U ( A )  is A ( t )  a theorem. 

c) Give an example of a quantifier free formula A ( x ,  y ,  z )  such that 
p,x v y  ~ z A ( x ,  y ,  z )  is a theorem but for each sequence tl(x), ..., tn(x) 

of terms of U ( A )  having only x as free variable the formula A(x, t ,  (x), z )  
v -. . v A (x, tn(x),  z) is not a theorem. 

Answer. 

a) It is obvious that this formula is a theorem; in fact it is the closure of 
V y R ( x ,  y )  v ~ z i R ( x ,  z) which is of the form A v -i A. 

If F =  A X  v y  Az(R(x ,  y ) v i R ( x ,  z))  then g= Vy(R(a, Y ) V  
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i R(a, # y)), where Q is a constant symbol and # is a unary function 
symbol. It follows from the Uniformity Theorem that there are terms 
t , ,  ..,, tk formed from a, # and variables such that 

(R(a ,  t l )  v 1 R(@,  4tl)) " *  ( R ( a ,  t k )  R ( a 9  + t k ) )  

is a theorem of the propositional calculus. In this case it is clear that we 
need only take t ,  = a  and t ,  =#a to obtain the formula 

R ( a ,  a) v 7 R ( a ,  #a) v R(a,  #a) v 7 R(a,  #+a) 

which is obviously a theorem of the propositional calculus. 
b) Put A(y)=R(a ,  y)v i R ( a ,  #y) .  Clearly V y A ( y )  is a theorem. But 

for any term t , A ( t ) = R ( a ,  t ) v i R ( a ,  # t )  is a theorem only if it is a 
theorem of the propositional calculus on (R(a, t ) ,  i R ( a ,  # t ) )  which it 
plainly is not. 

c) Put A(x ,  y ,  z )=R(x ,  y ) v  i R ( x ,  z). We have seen that Ax V y  Az  
A ( x ,  y ,  z )  is a theorem. However A ( x ,  t ,  (x), z )  v v A(x ,  tn(x), z )  is 
equivalent to i R(x ,  z )  v R(x, t ,  (x ) )  v -.. v R ( x ,  tn(x)) which cannot be a 
theorem if none of the terms tk(x) is equal to z. 

7. Consider a formula F. Let # and 8 be constructed using distinct 
function symbols. Show that $-+$ is a theorem. Which is the corre- 
sponding interpolation formula? 

Let F= A x  V y  Az A(x , f ( y ) ,  z), where A is a ternary relation symbol 
and f is a unary function symbol. Find the corresponding interpolation 
formula given by the proof of the Interpolation Lemma. 

Answer. We have atready shown that $-+Fand F-+@ are both theorems. 
It follows that @--+$is a theorem. On the other hand since P and fl are 
constructed with distinct function symbols we have . Z ( F ) c = Y ( E )  n 2(@) 
and so Fis  an interpolation formula. 

If F= A x  V y  AzA(x, f ( y ) ,  z) then P= A x  AzAfx, f (+x) ,  z )  and @= 
V y A  ( a , f (  y ) ,  $(a, y)),  where a, 4, $ are, respectively, 0-ary, unary and 
binary function symbols. Thus the theorem i Pv l? is 

v x  V Z l A ( X , f ( + X ) ,  z)v VYA(@,f(Y) ,  *(a, Y ) )  

which, in order to follow the proof of the Interpolation Lemma, we can 
write as v x  vzH(x, z)v v y i y ( y ) .  

It can be seen at once that Hfcc, $ ( E ,  4.)) v K(#cc) is a theorem of the 
propositional calculus. (It can be written in the form N v -IN where N is 
A (a,f(#a), $(a, &)).) The corresponding interpolation formula is N .  
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We write N = C ( t l ,  ..., g,), the formula C(z,, ..., 2,) in this case is 
A(z, ,  z2, z3) with r l = a ,  g2=f(4a) and t3=+(a,  4.). We choose the 
longest 4, beginning with a function symbol common to E and P (here 
t,) and put C2(z1, z2, z3)=C1(z1, fz2, z3)=A(z1,fzZ, z3). Thus we have 
6; =a, t: =+a and = I) (a, &), and the sequence of formulas C, stops 
here. The formula M(z,, ..., zq) in this case is therefore A(z, ,fz, ,  zl) and 
q1 =+(a, #E),  qz=@ and q3 =a, the q being arranged in descending 
order of length. Therefore the interpolation formula we seek is 
Q3z3Q2z2Q1z1 A (z3, fzz, z,) with Q ,  = A, because ql begins with 
I)fdLp(P), Q,= V because q2 begins with $ E ~ ( E ) ,  and Q3= A, 
because q3 begins with C I E Y ( P ) .  Thus the interpolation formula is 
Az, Vz, Az, A(z3, fz2, zi) which is equivalent to Ax V y  AzA ( x ,  fy, z). 
Thus we have again arrived at the same interpolation formula. 

8. A formula A is said to be a c o n ~ e ~ ~ e n c e  of a set d of formulas if all 
realizations of d which satisfy d also satisfy A .  

a) Show that A is a consequence of a finite set {Al,  ..., A,) of formulas 
if and only if ( A ,  A ... A A,)+A is a theorem. 

b) Show that A is a consequence of a set d of formulas if and only if it 
is a consequence of a finite subset of d. 

c) A set d of formulas is said to be independent if no formula of d is a 
consequence of the other formulas of b. Show that d is independent if and 
only if every finite subset of d is independent. 

d) Show that each finite set of formulas has an equivalent independent 
subset and that for each countable set of formulas there is an equivalent 
independent set. 

Answer. The proofs of these results are similar to those already given 
for the case of propositional calculus. 



CHAPTER 3 

PREDICATE CALCULUS WITH EQUALITY 

We now consider those languages studied in the preceding chapter which 
contain the symbol =, and we only consider those realizations in which = rep- 
resents the identity relation. It turns out that the study of these normalrealizations 
can be reduced to the general theory of the previous chapter. It should be noted 
that when a given relation symbol i s  required to have some definite realization then 
the class of models so obtained will in general have a somewhat different theory, 
cf. the o-models of Chapter 7, Exercise 4. 

The chief result given in the text provides a convenient set of necessary and 
sufficient conditions for a given realization to be embeddable in a model of a given 
set of formulas. These conditions are, incidentally, also significant in the case of a 
language without equality. As an interesting consequence we have a general 
result about the existence of “symmetric laws” in the sense of Bourbaki, and 
purely algebraic conditions for the existence of an ordering compatible with a 
given structure. 

The result on embeddability is a particular case of a general result on the 
equivalence of certain second order (or higher order) axioms and certain sets of 
first order axioms. ( S e e  Chapter 7 where the notion of “second order axiom” is 
studied.) Exercise 5 provides an example of a second order axiom which is equiva- 
lent to an infinite set of first order axioms (of the same language) but which is not 
equivalent to any finite set of such axioms. This proves the existence of an infinite 
set of first order axioms constructed from a finite number of relation symbols 
which is not equivalent to any of its finite subsets. 

Exercises 1 and 2 establish some important non~ategoricity properties of first 
order axiom systems (even for normal realizations). In fact, neither the notion of a 
finite set, nor that of a countable set, nor that of the set of natural numbers (with 
the successor relation) can be characterized by means of first order formulas. We 
shall show in Chapter 7 that the usual characterizations of these notions (those due 
to Dedekind and Peano) are in fact second order formulas. Thus these second 
order conditions are not equivalent (in the sense of having the same class of models) 
to any set of first order formulas, 

A language 2’ is said to be with equality if R$ # 0 and there is a singled 
out element E of R; (called the identity or equality symbol). 

A realization of a language with equality with domain U is said to be 
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normal if in this realization E is the diagonal of U, i.e. the set of all pairs 
(x, x) with x in U. 

A formula A of 9 is called a theorem of the predicate calculus with 
equality if jn each normal realization of 9, A= U",, where U is the 
domain of the realization, i.e. if each normal realization of 9 satisfies A .  

Given a language 9 with equality we denote by 8, the set consisting 
of the following formulas 

1 .  A xExx.  

2. For each P E  R;P (including P= E )  the formula 

A x ,  ... A x ,  AY1 ... Ay,,((EXlyl A * * *  A EX,y, A PX, ... X,) + P y ,  ... y.). 

3. For each 4 E F; the formula 

Ax1 1.. Ax, AY1*.. AYn(ExlY1 A * * * / \  E x n Y n + E ( 4 x ,  * * . X n , 4 Y l * * . Y n ) ) -  

Clearly, each formula of 8, is a theorem of the predicate calculus with 
equality. 

Let !Ul be a realization of 9 which satisfies g9. !Ul therefore satisfies 
the formulas A X E X X  and A x1 A x2 A y1 A y z  (Ex, y1 A Ex,  y ,  A Ex1x2+ 
Ey,y,) which shows that E, the value of E in !Ul, is the graph of an 
equivalence relation on U, the domain of !Ul. Since 9Jl satisfies all the 
formulas of 2), for each PER;, P is closed with respect to the equivalence 
relation 1. That is, if (al ,  ..., a , ) d  and a, -bl, ..., a,-b, under the 
relation E, then (b,, ..., ~,)EP.  We let !W be the following realization of 
9. The domain of !Ul' is U'= U/E, the quotient of U with respect to E, 
that is, the set of equivalence classes of elements of U under the equiva- 
lence relation E. For each PER;, F, the value taken by P in m', is PIE. 
For each 4 E F l ,  6 the value of 4 in !Ul' is given by 

6 ( U l / E ,  ..., U J S )  = $(a,, ..., a,) /B.  

This is a good definition since !Ul satisfies all the formulas of 3). 

LEMMA 1 : For each formula A of 9, A, the value of A in the realization !Ul, 
is closed with respect to the equivalence relation 1, and A' =Ale. 
PROOF: We prove the lemma by induction on the length of A .  The result 
is obvious if A is atomic. Also if the result holds for formulas B and C it 
holds also for i B and for B v C.  For example, if A is i B then J= CB 
and A'= cB, therefore since B is closed so is CB and CE = cB/E. 
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Now suppose that A is VxB, where B satisfies the lemma and let 

the set of (al, . . ., a,)€ U h, -) xnl such that, for some a€ U, (a, a,, ..., a,)&. 
Now if a, -a;, .. ., a, -a: under the relation I?, since by hypothesis B is 
closed, if (a, a,, ..., a,)& then (a, a;, ..., a:)& and so (at, ..., a ; ) d .  
Hence K is also closed; 

x, xi, ..., x,bethefreevariabIesofB. Kis(uptoafactorof UVB-‘X1r...’xn’ - ) 

i 

A = {(a1, ...,a,) E u’{xl*-.*xnJ* , for some a E u’, (a, a,, . . . , an) E 9) . 
Let a, a,, ..., a, be elements of U whose equivalence classes under I?? are 
a, a,, ..., a,. Since B satisfies the lemma, (a, a,, ..., a,)EB and therefore 
(al, ..., a,,)EAand so A = K / E .  

THEOREM 2 ; A set d of formulas has a normal model i f  and on@ if the set 
~ F ~ u d  has a model. 
PROOF: The condition is obviously necessary since each formula of gB is a 
theorem of the predicate calculus with equality. 

Conversely if bBud has a model %Z, then in the normal realization 
2R’ obtained from %Jl as above J=A/I? for all formulas A. Therefore 
since %Z is a model of d, W’ is also a model of d. 

COROLLARY 1 : A countable set d of formulas of 2’ which has a normal 
model has a countable or finite normal model. 
PROOF: Since be(&) is countable if d is, ud has a countable 
model. The domain of the normal model of d obtained from this model 
is the quotient of the domain of the original model with respect to an 
equivalence relation (see above). It follows that the domain of the normal 
model is finite or countable. 

COROLLARY 2: A formula A is a theorem of the ~ r e ~ ~ c a t e  calculus with 
e~uality ifand only ifit  is a conse~uence of &3(Af. 

PROOF: The condition is obviously sufficient. It is also necessary. For 
suppose A is a theorem of the predicate calculus with equality, then -1 A 
does not have a normal model. Hence, by Theorem 2, u (I A )  does 
not have any model. This shows that A is a consequence of &aa(A). 

THEOREM 3. THE FINITENESS THEOREM FOR PREDICATE CALCULUS WITH 
EQUALITY: A set d of formulas of 9 has a normal model if and only i f  
every finite subset of d has a normal model. 
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PROOF: The condition is obviously necessary. It is also sufficient, since, 
if it holds then every finite subset of g2(&) u d has a model. Therefore 
gs(&) u d has a model and so d has a normal model. 

THEOREM 4. THE INTERPOLATION LEMMA FOR PREDICATE CALCULUS WITH 

EQUALITY: V A + B  is a theorem of the predicate calculus with equality then 
there is a formula C such that both A+C and C-+B are theorems of the 
predicate calculus with equality and 9 ( C )  c 2 ( A )  n LP(B). 
PROOF: By an abuse of language we shall use c F ~ ( ~ )  to denote the con- 
junction of all the formulas in g2(A), which is finite. Since A+B is a 
theorem of the predicate calculus with equality it is a consequence of 
&2(A) A €2cB). So (&2tAt A &2(B))+(A+B) is a theorem and hence 

A A)-.(&2fe)+B) is a theorem. Therefore, by the ~nterpola~on 
Lemmaforpredicatecalculus,thereisafo~ulaC,such that(&21A) A A)+C 
and C+(€y(B,-+B) are theorems and 9 ( C ) c 9 ( A ) n 2 ( B ) .  It follows 
that &2(A)+(A+C) and 82(B)+(C+B) are both theorems and hence 
A- tC  and C + B  are theorems of the predicate calculus with equality. 
(See also Exercise 4 of Chapter 5.) 

THEOREM 5. FIRST DE~NABILITY ~ E O R E M  FOR THE PREDICATE CALCULUS 

WITH EQUALITY: Let A be a formula, R an n-ary relation symbol of Y ( A )  
and A’ the,formula obtained from A by substituting for R an n-ary relation 
symbol R‘ which does not occur in 9 ( A ) .  Then i f  

( A  A A’) + (Rx,  . . . x ,  -+ R’xl . . . x,) 

is a theorem of the predicate calculus with equality, there is a f o r ~ u l a  F 
such that L P ( F ) s Z ( A ) ,  R $ 2 ( F )  and A+(Fc*Rx, ... x,,) is a theorem of 
the predicate calculus with equality. 
PROOF: The proof is the same as before, from the Interpolation Lemma. 

THEOREM 6.  SECOND DEFINABILITY THEOREM FOR THE PREDICATE CALCU- 

LUS WITH EQUALITY: Let A be a formula, Cp an n-ary function symbol of 
9 ( A )  and A‘ the formula o b ~ a ~ n e ~  f r o ~ z  A by substitut~ng for Q, an n-ary 
function symbol Cp’ which does not occur in B ( A ) .  Then i f  

( A  AA’)-+(Cpx l . . . X n = ( a ’ X l . . . X n )  

is a theorem of the Predicate calculus with equality, there is a formula F of 
3 ( A )  such that # $ 9 ( F )  and such that A-+(Fc*y=#xl ... x,) is a theo- 
rem of the predicate calculus w~ th  equal~ty. 
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(Note that in the statement of this Theorem we have written u = z, instead 
of Euu: we shall continue to do so below.) 
PROOF: ( A ~ A ‘ r \ ( y = # x ,  ... x,,))+(y=#’x, ... x,,) is a theorem and 
hence so is ( A A ~ = # x ,  ... xn)-f(A’-iy=#’xI ... xn). 

The result now comes by applying the Interpolation Lemma to this 
formula. 

We have the following theorems which are immediate consequences of the 
analogous results of the previous chapter. 

THEOREM 7 : For each prenex formula I: there is a universal prenex formula 
E and an exis~ential prenex formul~  P such that a) p-+P and F+P are 
theorems of the ~redicate calculus with equal~ty, and b) each real~~ation of 

2 ( F )  can be extended to 9($) and to 2 ( P )  so that F= Pand P= I? 

THEOREM 8. THE UNIFORMITY THEOREM FOR PREDICATE CALCULUS WITH 

EQUALITY: The formula V x ,  ... Vx,, A (x ,  ... x,), where A is quantifier 
free, is a theorem of the predicate calculus with equality if and only i f  there 
are terms try ..., ti(1 <i<k), such that the formula 

w A(& ..., t i )  
I G i d k  

is a consequence, in the sense of the propositional C a k U l U S  on At,,,,, of the 
following set of formulas: 

1) For each term tczY(A), t=t. 
2) For each n-ary relation symbol R of Z ( A )  and each pair of n-tuples 

( t l ,  ..., t,,) and(t;, ..., ti) in 

(tl = t i  A -.+ A t, = ti A Rt,  ... tn) + Rt; ... t i ,  
3) For each n-ary f u n c t ~ 5 ~  symbol I# of dip(A) and each pair of n-tuples 

(ti, ..., t,) and (ti, ..., ti) in (T’lA,)” 

( t l  = t i  A *.. A t,, = ti)+ 4tl ... t ,  = $ti ... t i .  

PROOF: It is sufficient to apply the Uniformity Theorem to the formula 
-1 4 q A )  ” A. 

EXTENSIONS OF REALIZATIONS 

Given a realization %?l of the language dip with domain U, by an e~tension 
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of 93 we mean a realization s3J1' of a language 2" containing 2 such that 
a) the domain U' of '2rt' contains U, 
b) for each n-ary relation symbol R of 8, if R, K are its values in the 

c) for each n-ary function symbol Q, of 8, if (75, 5 are its values in the 
realizations 93, %TI', respectively, then 17 =k n U", 

realizations %TI, tm', respectively, then 6 is the restriction of d; to U". 

LEMMA 9 : Let tm' be an extension of !XR. Let F be a quant$er free formula 
with values F and F in %TI, 9.W respectively. Then F= F n Uv2. 
PROOF: The proof is by induction on the length of F. If F is atomic then 
F= Rt, . .. t,, say. Let xi, .. ., x, be the variables of F. F= {(al, .. ., a& 
u i x i ,  .-, Xk) : (fl, ..., t , )ER)=En~,.Sinceon u I ~ ~ , . - - * ~ ~ ~ , ~ ~ =  i i ( l < i < k )  
we certainly have that F=Fn U'"', .'" Xk'. 

Clearly if F and G satisfy the lemma then so too do i F ,  because 
-I F=cF, and F v  G, because F v  G = P v  e. This completes the proof. 

THEOREM 10: If%TI' is an extension of %TI all closed universal formulas of 2' 
satisfied in !XR' are satisfied also in 9JI. 
PROOF: If Ax, ,.. Ax,, A(x , ,  ..., x,), where A is quantifier free, is satis- 
fied in 9.W the value of A in ltm' is UtV9. Hence A is also satisfied in fm. 

- 

- __._. 

For the remainder of this chapter we shall assume that all the languages 
we consider are languages with equality and that all realizations are 
normal. 

Let !XR be a realization of a language 2' whose domain is U. By the 
diagram of 'SJZ, which we denote by D ( ~ ~ ) ,  we mean the set of the fol- 
lowing formulas of the language 2" which is obtained from 8 by ad- 
joining the elements of U as constant symbols. (We assume that U n 2 = 0.) 

a) for each RE RI$ and each (al, .. ., a,)€ U" the formula Ra, . . . a, or 
i R a ,  ... a, according as (al, ..., a,)ER or (a1, ..., a,)#R, 

b)for each (PEF; and each (a,a,, ..., a,,)EU"+' the formula a= 
Q,al . . . a, or a # Q,a, . . . a, according as a = 4 (ai, . . . , a,) or a J: $(a1 , . . . , a,). 
In particular D(irJr) contains for each pair (a,  b)' U 2  the formula a = b or 
a # b according as a = b or a $: b. 

THEOREM 11 : A realizationtm' of dip is (up to ~somorph~sm) an extension of 
'JJ1 ifand only if'W can be extended to 8' so as to satisfy D(fm). 
PROOF: 93' has a sub-realization isomorphic to %TI if and only if there is a 
one-one map of U into U' which preserves the values of the function and 
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relation symbols of 2' in the two realizations. The existence of such a 
map is equivalent to being able to extend rmt to 3' so as to satisfy D(%!). 

THEOREM 12. THE EMBEDDING THEOREM: Let %I be a realization of the 
language 2F0 and d be a set of formulas of a Zang~age LFl. Then has an 
extension which is a model of d if and only if%I satisfies all the universal 
formulas of .-Yo which are consequences of ,d. 
PROOF: The condition is necessary, since if 93' is an extension of 93, %I 
satisfies all the universal formulas of LFo satisfied by W. 

Conversely suppose that there is no extension of %I which satisfies d. 
Then, by Theorem 11, the set D(93) u d is inconsistent. Hence there is 
some finite subset A of D(%R) such that A u d is inconsistent. Let U be 
the domain of %I and a,, . .., a, the elements of U which occur in A .  Let 
F(a,, . . . a,) be the conjunction of all the formulas of A.  F(x,, . . . x,) is a 
quantifier free formula of .-Yo. Clearly $'(a,, . . ., a,) is satisfied by %R if we 
put dl =al ,  ..., =a,. Hence V x ,  .. . V x ,  F(x,, ..., x,) i s  satisfied by 93. 
Now d u  (F(a,, ..., a,,)} is inconsistent and hence i P ( a , ,  ...) a,,) is a 
consequence of d. Since the constant symbols a,, ..., a,, do not occur in 
d, Ax, ... Ax,iF(x,, ..., x,,) is a consequence of d. Thus we have 
found a universal formula, which is a consequence of d, but which is not 
satisfied by $332. 

This completes the proof. 

We have the following application of this result. We take as Yo the 
language which has a single binary function symbol x . (We will write xy 
for xxy). Then there is a (clearly countable) set 9 of closed universal 
formulas of go such that a monoid is embeddable in a group if and only 
if it satisfies 9. 

Any monoid is a realization of go. If .d is the following set of formulas 
of Yl, the language which has the binary function symbol x , the unary 
function symbol -' and the constant e ;  

A x  Ay A z ( x ( y z ) = ( x y ) z ) ,  A x ( x e = x ) ,  ,4x(xx-'=e) 

then Theorem 12 gives us the existence of the set $9. 
We note that one of the formulas of 9 is the cancellation rule 

AX Ay AU AV(UXV =I UYV -+ x = y) . 

This formula is sufficient, by itself, if the monoid is commutative. 
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Let YJl be a realization of a language 8 with domain U and let U‘ be a 
subset of U.  U’ is the domain of a sub-realization %R’ of 9Jl if and only 
if for each a-ary function symbol 4 of 8 and each n-tuple (al, ..., a,) of 
elements of U’, $(a,, ..., a,)eU’, where 6 is the value of 4 in the realization 
’Pi. Clearly the intersection of any collection of subsets of U having this 
property also has this property. We therefore give the following definition. 

generated by U‘ is 
the sub-realization whose domain is the smallest subset of U which 
contains U’ and has the above property. The following Theorem gener- 
alizes Exercises 4 and 5 of Chapter 1.  

For each subset U‘ of U, t~esub-reali~a~ion YJY of 

THEOREM 13 : Let %I be a reali~at~on of a Zanguage so and let d be a set of 
f o r rdas  of a language PI. Then‘Pi has an extension which is a model o f d  
ifand only if every sub-realization of YJl generated by alfinite set has such an 
extension. 
PROOF: The condition is necessary since, obviously, an extension ofYJl is 
an extension of every sub-realization of Im. 

Conversely, let LZ? be the set of universal formulas of go which are 
consequences of d,  By the Embedding Theorem, if 2IJl does not have an 
extension which is a model of d, then there is some formula of LZ? which is 
not satisfied by 9Jl. Let F= Ax ,  ... G(x,, ..., &) be this formula, 
where G(x,, .. ., xk) is quantifier free. Let G be the value of G in %R. Then 
there are elements a,, ..., ak in E, the domain of 9Jl, such that (a,, ..., ak) 
@. Let %R’ be the sub-realization of YJl generated by {a,, . .., ak}. Let E‘ 
be the domain of YJI‘ and G be the value of G in TX’. Since G is quantifier 
free G = G A E’ fxlv ..., xk}. Hence (a,, ..., a,)$(? and YJI’ does not satisfy F. 
HenceYJI’ does not have an extension which satisfies d. 

This completes the proof. 

We give some more applications of these results in the Exercises. 

Exercises 

(In these Exercises we shall write =, instead of E, for the identity symbol 
and x=y  for =xy.) 

1. Two realizations 9Jl and of a language 8 with domains U and U’ 
are said to be ~ ~ o m o r ~ h ~ e  if there is a one-one map # of U onto U‘ such 
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that for all R E  Ri$, w = Q, (R)  and for all f€F& 7 = Q, (F) ,  where R, fare the 
values of R and f in 102 and R ,  f are their values in 102'. 

A set d of formulas of '9 is said to be categorieaZ with respect to a set 
of realizations of the language 9 if all the models of &' in this set are 
isomorphic. 

a) Show that if a set &' of formulas is categorical with respect to 
the class of all realizations then it does not have a model, i.e. &' is 
inconsistent. 

b) Show that if &' is categorical with respect to the class of all normal 
realizations then all models of d have the same finite number of elements 
in their domains. 

Answer. 

a) Let d be a set of formulas which has a model. If K is the cardinal of 
this model we show that sit' has also a model of cardinal K' > K. This will 
prove that d' is not categorical. 

Let &'={A: A E ~ } ,  where we use distinct function symbols not 
occurring in 9(d) to construct different formulas d. Let 9' be the 
language which is obtained by adding to 9(d) a set of constant symbols 
of cardinal K" > K. Since d has a model so too does 2. Hence 2 has a 
canonical model with respect to the language 9, i.e. a model with 
domain T2,. This model is of cardinal H' 2 K" > fs. 

b) Let d be a set of formulas of the language 9, with equality, which 
has an infinite normal model of cardinal K. We shall show that d has a 
normal model of cardinal greater than K. 

We add to =Yip(&') a set C of constant symbols of cardinal greater than 
N. Let 2 be the set of formulas obtained by adding to d all the formulas 
a # b for a, b s  C with a # b. Clearly each finite subset of B has a normal 
model (e.g. the given normal model of d, since this is infinite). Hence B 
itself has a normal model. Clearly the normal model is of cardinal 
greater than or equal to that of C and hence greater than K. 

A 

2. Consider the following language 9 with equality. The only relation 
symbol of 9 is = ?  there is one constant symbol 0, a unary function 
symbol s (read "successor") and two binary function symbols +, x . 
Given two terms t ,  t', we will write tS t' for + tt' and t x t' (or just t t ' )  
for x tt'. The standard realization of 9 is the realization whose domain 
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is N, the set of natural numbers, and in which the symbols 0, s, +, x , 
take their natural values in N, namely zero, successor, addition and 
niultiplication. 

Now consider the following formulas, d, of 9: 

Ax(sx f O), A x  Ay(sx = s y - x  = y ) ,  A x  v y ( x  = o  v x = s y ) ,  

Ax(x + 0 = O), 
Ax(x  x 0 = O), 

A x  Ay(s(x + 4') = x + Sy) ,  

Ax A y ( x  x sy = (X x y )  + y ) .  

a) Show that the standard realization of 9 is a normal model of d 
(the standard model of d )  and that all normal models of d have a sub- 
model isomorphic to the standard model. The elements of this submodel, 
i,e. the values of the terms 0, SO, ss0, ... are called the natural n ~ ~ b e r s  of 
the model. 

b) Show that given any set 9 of formulas of 9 which contains Jze and 
has a model, there is no formula A(x)  of 9 with a single free variable 
whose value in all models of @ is the set of natural numbers of that model. 

c) Show that given any countable set 9l of formulas of 9 which 
contains d and has a model, there is a countable normal model of 
which is not the standard model of d( in particular, ai? is not categor- 
ical with respect to the class of all countable models). 

d) (An improvement of b).) We obtain the system called first order 
arithmetic by adding to d the countable set of the following formulas: 

for each formula A (x) having as free variables x, xl, . . ., xk we include 
the formula 

Ax, ... Ax,[(A(o) A A x ( A ( x ) ~ A ( s x ) ) ) ~  A x A ( x ) f .  

The set of these formulas represents the principle of induction for 
properties definable in the language 2. 

Show that for each formula A of 9 with a single free variable and for 
all non-standard models 93 of first order arithmetic, the value d of A in 
'$Jl is not the set of natural numbers of 93. 

Answer. 

a) Clearly the standard realization satisfies d. Conversely if '2Jl is a 
normal model of d the first three formulas of d entail that the values in 
93 of the terms of the form s"0 form a set isomorphic to N, under the map 
s"O-+n, in which 0 and s have their natural values. The other formulas 
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of d entail that + and x have as values addition and multiplication 
on this set. This subset of 93 closed under 5, i and X is a sub-model 
of m. 

b) Add the constant symbol a to 2’ and consider the set of formulas 
{A(a),  a#O, a#sO, ..., a#s”O, ...} where A(x)  is a formula of 2’ with 
one free variable. If the value of A(x)  in each model of B is the set of 
natural numbers then each finite subset of this set has a model which 
satisfies B (it is sufficient to take for the value of a a sufficiently large 
natural number). Therefore the whole set has a model which satisfies a. 
In this model A ( x )  is satisfied by an element, the value of a, which is not a 
natural number. 

c) Take as A (x) in b) the formula x = x.  The normal model which we 
have contains the standard model as a proper sub-model, since the value 
taken by a is different from all the natural numbers, which is not iso- 
morphic to it. 

d) If i A ( x )  is the empty set, AF) contains non-standard elements 
since, by hypothesis, is non-standard. If i A ( x )  is not empty, since 

( A  (0) AY (A ( Y )  -+ A (s~))) -+ AYA ( Y )  
is equivalent to 

/ \x(1A(x)-+(-lA(O) v V Y ( 1 4 S Y )  A A(Y)))) 

either U # A ! )  or there is a non-standard jj.AF) or there is a natural 
number jj of Im such that j j ~ A m  and Sjj#Am. In each case AF) is not 
the set of natural numbers of 9X. 

We can see now why Peano’s postulates are categorical while those 
of first order arithmetic are not. Peano’s axioms state that the induction 
principle can be applied to any property of the elements of the domain of 
the realization (of d) we are considering. In particular it can be applied 
to the property of being a natural number of that realization. However 
this property cannot be defined in the language 9 for any realization of 
Y other than the standard realization. 

3. Consider the following language 9. The only relation symbol is = ; 
there are two constant symbols 0 and 1 and two binary function symbols 
f and x . Show that given any formula A of dip which is satisfied in all 
co~mutative fields of characteristic zero, there is an integer P such that A 
is satisfied in all commutative fields of characteristicp2P. 
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Answer. Let V be the following set of formulas of 9. 

Ax A Y  Az(x: + (Y + Z) = (x + Y )  + 2 )  

A x  A y ( x  + Y = y  +x)  

Ax A Y  AZ(X(YZ) = ( x y ) ~ )  

Ax AY(XY = vx )  
Ax(x + 0 = 0) 

Ax vy (x  + y = 0) 

A X  A y  ~ z ( ~ ( Y  + Z) = XY + XZ) 

A x ( x * l =  x) 

Ax vy (x  = 0 v xy = 1) 

1 # 0  

(here we have written xy instead of x xy). 
Clearly the normal models of V are precisely the commutative fields. 

Let Fp be the formula 1 -I- 1 + - a +  + 1 =0, where 1 is repeated p times. 
Clearly the normal models of W u  { i F p :  p prime) are precisely the 
commutative fields of characteristic zero. Thus any formula A which is 
true in all commutative fields of characteristic zero is a consequence of 
%?u{iFp:pprime). Hence it is a consequence of some finite subset 
V u  { i F 2 ,  ..., i F p )  of this set and hence is satisfied by all Commutative 
fields of characteristicp >P. 

4 (STEINITZ'S THEOREM). Consider a commutative field K. Show that there 
is an extension field L of K in which all polynomials with coefficients in K 
decompose into linear factors. Deduce from this the existence of the 
algebraic closure of K. 

Answer. Consider the language 2 of Exercise 3. The field Kis a realization 
of 9. Let the diagram of this realization be DK. Clearly every normal 
model of VuUD,, where %? is the set of formulas defined in Exercise 3, is 
an extension field of K. 

For each polynomial P(x)=a,+a,x+ --*+a,-lx"-l +P, with coef- 
ficients in K, we consider the formula 

vx, ... Vx,(ao + * * *  + an- lxn- l  + xn = (x + XI) ... (x + x,)) 
of the language A?', in which the diagram of K is expressed. Let d' be the 
set of all these formulas. For each finite subset do of d' we know that 
there is a normal model of V u D , u d , ,  since we can construct an 
extension of K, of finite dimension over K, in which a given polynomial 
splits into linear factors. Thus every finite subset of V u D, u d' has a 
normal model. It follows that V u D, u d has a normal model. This 
model, L say, is a commutative field which is an extension of K in which 
all polynomials with coefficients in K can be split into linear factors. Let 
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52 be the subfield of L consisting of all those elements of L which are 
algebraic over K. Then clearly R is the algebraic closure of K. 

5. Consider the language -Yo which has a single binary relation symbol P. 
Show that there is a set @ of universal formulas of Yo  such that given a 
realization 9Jl of Po, P, the value of P in %Jl, can be extended to an order 
relation if and only if !lJl satisfies 9d. Give an example of such a set @ and 
show that it is not equivalent to any finite subset of the consequences of 4. 
Show that Pcan be extended to a totalordering if and only if %Jl satisfies a. 

Answer. Consider the language 9, with two binary relation symbols P 
and 4. Let d be the set of the following formulas of Yl : 

Ax AY(~XY +x < Y )  

Ax(x < x) 
/ \X l\y(X < .Y A J’< X+X=y) 

AX A Y A Z ( X  G Y  A Y G Z - ~ X  G Z ) ,  

By the ~ m b e d d ~ n g  Theorem a realization of -Yo can be extended to a 
model of &‘ if and only if it satisfies the set of universal formulas of Z0 
which are consequences of d. But clearly %Jl can be extended to a model 
of LZ? if and only if P can be extended to an order relation. Hence @ is the 
desired set of universal sentences. 

It is at once evident that % contains the formula 

F,, = AX, ... AX,((PXlX2 A A PX,-l X, A PX,Xl)-+ 

xn>> +(Xi = x2 =...= 

for each n& 1. We now show that given a realization %Jl which satisfies all 
these formulas, F,, P can be extended to a total ordering or, equivalently, 
that $3 has an extension which satisfies 

a =  du{Ax Ay(x < y v y < x)). 
To show that 9.Jl has such an extension it is sufficient to show that every 

sub-realization YX’ of $3, generated by a finite set, has such an extension. 
Any such sub-realization has a finite domairi E’. We prove that %Jl’ 
can be extended to a model of a by induction on the number of elements, 
k,  in E‘. 

If k = I the result is trivial. Suppose it is true for k = r -  1 and let E’ 
contain the P elements a,, . . .,a,. There is some i, 1 <i< r, such that for all 
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j # i ( a j ,  uj)#,P, for otherwise there is a sequence n,, ..., np, ... of integers 
between 1 and r such that (al ,  a,,,), (a,,, a,& ..., (anp-,, a,,), ... are all in 
P, which would contradict one of the formulas F,. 

We will therefore assume that a,, say, is such that, for 1 <i<r7  (u,, ai)$P. 
Since El'= {al,. . .,a,-,} contains only r -  1 elements, by our induction 
hypothesis, P can be extended to a total ordering of E". It is sufficient 
to put ai<ur for 1 < i < r  in order to extend P to a total ordering of E'. 

Consider the relation P on the set {1, ..., n},  whose elements are the 
pairs (1, 2), (2, 3), .. ., (n- I, n), (n, 1). Clearly this is a model of {Fl, ..., 
Fn-l, i F , }  which, by the Finiteness Theorem, shows that the set of all 
F,'s is not equivalent to any finite subset of its consequences. 

6. a) Consider the language 2, which has the single binary functjon 
symbol x . Show that there is a set % of closed universal formulas of 9, 
such that an arbitrary group G can be totally ordered if and only if it is a 
model of %. Give such a set of formulas % for the case of commutative 
groups. 

b) Consider the same problem for a field. In this case the language has 
two binary function symbols + , x and a single constant 0. 

Answer. This is an easy consequence of the Embedding Theorem. 
For the case of a commutative group the set of universal formulas 

sought for is { I \xAy(xn=y"-+x=y): n> I]. The commutative groups 
which are models of this set are the torsion free groups. 

In the case of a commutative field the desired set of formulas is 
{ Ax, . , . Ax, (x: + .* .  + x, = 0+x1 = ... = x, = 0): n 2 l}. The commutative 
fields which are models of this set are the real fields. 

7. Let 9 be a language with equality which contains a binary relation 
symbol R different from = . Show that there is no set .d of formulas of 9 
which has an infinite normal model and is such that in all normal models 
of d, R represents a well-ordering of the domain. 
Answer. Let d be a set of formulas of 9 and let be an infinite normal 
model of d with domain E, such that the value i? of R in this model is a 
well-ordering of E. E therefore contains an infinite strictly increasing se- 
quence ofelements ll, ..., t,, ... . Therefore, for each integer &(ti, l i + l ) ~ R  
and ti # ti, We add to 9 an infinite sequence of constant a,, . . a,, . . . . 
For each integer n the set 

2 

d u  {Rn2a, A a2 # a,, ..., Ranan-, A n, f: a,-l} 
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has a model, namely the model %R with 8, = t,, ..., d,= 5 , .  Hence, by the 
Finiteness Theorem, the set 

d u  {Ra,+,a, A a,,, z a , :n  2 11 
has a model. In this model the sequence d,, . . . dn, . . . is an infinite strictly 
decreasing sequence and hence R does not represent a well-ordering. 

8 (Existence offree models). Let 8 be a language with equality and d a 
set of closed formulas of 2’ of the form Ax, ... Ax,, [ (A,  A e . 1  A A,)+B] 
where rn is possibly zero, and all A , ( l Q i Q n )  and Bare ato~icformulas. 

a) Show that af is satisfied by the normal realization whose universe 
consists of (equivalence) classes of terms t’ of 8 i.e. [ t ] = { t ‘ :  t’=t is a 
consequence of d] for each term t of 8; for each function symbol f of 
S , f ( [ t , ] ,  ..., [ t n ] ) = [ f ( t l ,  ..., & ) I ;  and for each relation symbol R of 3, 
([ t , ] ,  . . ., ft ,])  ~ f 7  if and only if the formula R(t,, . . ., t,) is a consequence 
of d. 

b) Deduce that if each Ci is an atomic formula, possibly containing free 
variables, and if C, v 1.. v C, is a consequence of a‘, some Ci(l  < i< p) is 
a consequence of d. 

Answer. 

a) The equality axioms for 8 have the form Ax, ... Ax,[(A, A *.. A 

A,)+B] withm= I andrn=2. Consider t,, ..., tn: if ( [ t l ] ,  ..., [t,,]) satisfy 
eachAi(l <i<m), each formula Ai( t , ,  ..., t,) is consequence of d and so 
is B(t,, ..., t,), i.e. ([t ,] ,  ..., [t , , ])  satisfies B. 

b) Each Ci has the form Ri(t,,  ..., tp,) where R, is a relation symbol of 
2 and t,, ..., tpi are terms of 3 or Ci is t ,  = tz .  Since C, v v C, i s  a 
consequence of d, it is satisfied in the realization given in a), and so 
C, v a . 6  v C, is true, i.e. either the formula C, is a consequence of d or 
the formula C, is a consequence of d ... or the formula C, is a con- 
sequence of d. 



CHAPTER 4 

THE E L I ~ I N A ~ I O N  OF QUANTIFIERS 

The general theory given in the previous chapters is here applied to axiomatic 
systems having the following property: each formula (in the language of the 
axiomatic system considered) is equivalent to a quantifier free formula. The 
examples of such systems given in the text are: certain discretely (and totally) 
ordered commutative groups ; algebraically closed fields ; real closed fields ; certain 
Boolean rings. This property has the following important consequences: 

1) A complete characterization of all those relations explicitly definable in the 
axiomatic systems considered; 
2) (Usually) Completeness. 
Among the useful applications of this second result we have: in the case of 

algebraically closed fields the “Nullstellensatz” of Hilbert (Exercise 4) and in the 
case of real closed fields Artin’s Theorem on the representation of positive forms 
(Exercise 5) .  

A simple model theoretic condition is formulated (p. 50) which can often be 
used to show the impossibility of eliminating quantifiers. (Exercises 1 and 2 
provide examples, even in the case of complete axiomatic systems.) A partial 
converse of this condition is given in Exercise 1 of Chapter 6. Exercise 5 contains an 
algebraic application obtained by combining the result 1) above with the theorem 
on definability given in the previous chapter. 

In Exercise 3 we describe a method for proving that certain axiomatic systems 
are complete without eliminating quantifiers (using, instead, morestrictly algebraic 
methods). For the use of the more general method of ultraproduc~ in dealing 
with this type of question, see KOCHEN, ~ltraproducts in the Theory of Models, 
Annals of Maths. 74 (1962) pp. 229-261 and KEISLER, Ultraproducts and Elemen- 
tary Classes, Proc. Kon. Ned. Akad. Wet. 64 (1961) pp. 477-495 and its appli- 
cation to p-adic fields in AX-KOCHEN, ~ i o p ~ a n t i n e  Problems over Local Fields, 
h e r .  J. of Maths. 87 (1965) pp. 605-648, (For an alternative treatment without 
the use of ultrapowers, see their paper, Annals of Maths. 83 (1966) pp. 437-456, 
where the method of Chapter 6, Exercise I ,  is employed.) References to the 
older literature are to be found in ERSHOV, LAVROV, TAIMANOV and TAITSLIN, 
Elementary Theories, Russian Math. Surveys 20 (1965) pp. 35-106. 

The results of this chapter are used below only for some counter-examples. 

In this chapter all the languages that we shall consider will be languages 
with equality and all the realizations will be normal realizations. 



50 THE EL~MINATION OF QUANTIFIERS 

Suppose that we have a language 9 and a set d of formulas of 2. We 
say that s? allows the eliminat~on of quanti~ers in a f o r ~ u ~ a  F o f  2 if there 
is a quantifier free formula I;' of 9 such that F-F' is a consequence of 
s4 or, equivalently, such that F=P' in every normal model of d. d is 
said to allow the el i~inat~on qf qi€ant~er .~  in 8 if it allows the elimination 
of quantifiers in every formula of 9. 

Clearly we can show, by induction on the number of quantifiers in F 
which we assume is in prenex normal form, that Oe allows the elimination 
of quantifiers in 2' if d allows the elimination of quantifiers in all 
formulas of the form VxHx,  where Hx is quantifier free. By Theorem 1.3 
of the propositional calculus, each quantifier free formula H i s  equivalent 
to a formula of the form HI v v fir, where each Hi is of the form 
a1 A A ar, and each aj  is an atomic formula of the language P or the 
negation of such a formula. Therefore, because V x ( H ,  v -.. v Hk) is 
equivalent to VxH, v ... v VxH,, we have the following theorem. 

THEOREM 1 : A set of formulas of 9 allows the elimination of quantiJiers 
in 9 if and only i f  it allows the elimination of quantifiers in all forrriulas of 
the form Vx(a,  A + +. ~ c l k )  where each cli is an atomic formula or the 
negation of an atonzicforrriula of 9. 

A set d of formulas is said to be cornplete for 8 if for each closed 
formula I; of 8 either F or -1 F is a consequence of d. 

THEOREM 2 :  If& allows the elimina~ion of quantiJiers in 2 and D ( m )  is the 
diagram of a model m of .d then s4 u D(m) is complete (for the l a n ~ ~ a g e  

PROOF: We first note that if Oe allows the elimination of quantifiers in 8 
then it allows the elimination of quantifiers in all languages 9' obtained 
from 8 by the addition of a set C of individual constants. For suppose F 
is a formula of such a language 2'. Let Fl be the formula of 8 which is 
obtained by substitutin~ for each a in C which occurs in F a variable x 
which does not occur in F, substituting distinct variables for distinct 
elements of C. There is a quantifier free formula F; which is equivalent 
to  FI. If we substitute back the constants in F; we obtain a quantifier free 
formula which is equivalent to P. 

Now suppose that 8' is the language of d u D ( D )  and that F is a 
closed formula of 8'. If Pis  satisfied in the model !lJl then P= Evp, where 
E is the domain of 'm. Now every model of D('JJ) is an extension of 'Jn. 

8' of s4 u D(W)). 
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Consider a model %I' of d u D(%R). In and '332', which are both models 
of d, F is equivalent to a quantifier free formula. Hence by Lemma 3.9, 
if F is the value of F in 'n', we have E'=Fn EV9=Ev9. Hence P is not 
empty, but P i s  a closed formula and so m' satisfies F. Thus if F is  satisfied 
by 9.R it is satisfied by all models of d u D ( % R )  and hence is a con- 
sequence of d u D ( ! ~ ) .  But for each closed formula F either F o r  i F  is 
satisfied by '%R. Thus for each closed formula F either F or i F  is a 
consequence of du DQi). 

This completes the proof. 

We devote the rest of the chapter to the consideration of some particular 
cases. 

I. DENSE ORDERS WITH FIRST AND LAST ELEMENT 

We consider the language 9 which has two constant symbols 0,I and 
two binary relation symbols < , = . (We will write x < y for < xy.) 

Let a2 be the set of the following formulas of 9: 

E A x 1  (x<x) 

A x A y (x = y v x < y v y < x) 

Ax(x=OvO<x) t 
/h\x(x=lvx<l) 5 

A x  AY A Z ( X < y A y < Z - + X < Z )  

Ax Ay Vz(x<y+x<rAz<y) 

Axioms for a 
total ordering. 

Axiom for a dense ordering. 
Axioms for first and 
last elements. 

We will show that .d allows the eliminatioii of quantifiers in 9. 
Suppose that we have a formula of the form Vx(a, A . . - A c x ~ )  where 

each ai is either an atomic formula of 9 or the negation of an atomic 
formula of 9. Thus for each ai there are four possibilities: t, < t,, t ,  = t,, 
i (ti < t,), tl # t,, where t,, tz are terms of 9 and so either 0,l or a variable. 

From d it follows that -I (t, < t,) is equivalent to ( t ,  < t,) v (tl = t,) and 
that t ,  # t ,  is equivalent to (tl < t,) v ( t z  < t i ) .  Using the facts that A A 

( B  v C )  is equivalent to ( A  A B) v ( A  A C )  and V x(A v B) is equivalent to 
V x A  v V x B  we can therefore reduce the problem to that of eliminating 
quantifiers in a formula of the form Vx(x, A ... n CX~) where each ai is of 
the form tl = t, or t ,  < t,. 

We proceed by recursion on r. If Y =  1 the formula is Vx(tl ( t , )  or 
Vx(t,=t,) where t,, t ,  are 0,l or a variable. The elimination of the 
quantifier for this case is obvious. 
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Now suppose that we have eliminated quantifiers for all formulas 
where r<h,  and consider the formula V x ( a ,  A * . .A a,,). If one of the a;, 
say ctlr does not contain x, the formula is equivalent to a1 A Vx(a ,  A A cth) 

and we are reduced at once to the case r = h - 1. So we will assume that 
all the cti contain x so that we can write the formula as Vx(x<t, A .-. A 

X < ~ ~ A u l < x A . . . ~ u ~ < x A x = z l l A  ... ~x=u,Jwherethet,u,  uareterms 
which we can assume are different from x (if, for example, t , = x  the 
formula is equivalent to I, and if, for example, zll =X we are reduced to 
the case r = h -  1). 

If k >  1 the formula is equivalent to 
(fl < t,  A v X ( X  < f 1  A X < t 3  ...)) V 

V (7 t1 < t z  A VX(X < fz A X < f ,  ...)) 

and we are again reduced to the case r = h - 1. 
We obtain a similar reduction if I >  1. 
If k=l=  1 the formufa can be written 

V X ( X  < A U1 < X A X = O 1  A -.. A X = O m )  

which for m # O  is equivalent to 

(ul = v2 = ... =: Om) A (u1 < u1 < t l )  

and for m=O is equivalent to u1 < t i .  

For k = 0 the formula can be written 

v X ( U 1  < X A X =; V 1  A - a *  A X = urn) 

which for m f 0 is equivalent to 

(U1 < 01) A (Oi = Uz =.-*= urn) 

and for m = 0 is equivalent to u1 # 1. 
We obtain similar results when 1=0. 
This completes the proof. 

The reader can investigate in a similar way dense orders with first but 
without last element (drop the constant 1 and add the axiom A x  V y  (x <y)) 
with last but without first element, and without first or last element. 

It should be noted that the quantifier free formula which is equivalent 
to Vx(ct, A .-- A ct,) contains the same variables as this formula, other 
than x. Thus for each closed formula F the quantifier free formula 
associated with it contains no variables. The proposit~onal variables in it 
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are therefore all equivalent to either 0 < 1 , O  = 1 or 1 < 0 which are in turn 
equivalent to T or I. Therefore F is equivalent to either T or I and 
hence the set d is complete for its language 9- 

11. DISCRETE ORDERS WITHOUT FIRST OR LAST ELEMENT 

We consider the language 8 which has one unary function symbol s 
(read “successor”) and the two binary relation symbols < and =. The 
terms of 9 are therefore of the form spx (s repeated p times followed by a 
variable x). 

Let ,d be the set of the following formulas: a) the axioms for a total 
ordering (see I above), and b) the formulas 

A ~ A ~ ( x < y o ( j ’ = ~ x v s x < y ) )  

A X  VY(X = S Y ) .  

We will show that .d allows the elimination of quantifiers in 9. 
Asin Iabove,weneedonlyconsideraformulaoftheform Vx(a, A - I .  A a,) 

where each ai is of the form t ,  c t ,  or t ,  = t2  i.e. splxl <sp2xz orsplxl =sp2x2.  
We proceed by recursion on r. The case r=l  is trivial. Suppose we 

have dealt with the case r < h  and that we have a formula of the form 
Vx(cr, A ... A zh). As before it is immediate that in each atomic formula 
sP1xt <spzx2 or splxi =sp2x2 at least one of x1 and x2 is x or else we can 
immediately reduce the problem to the case r = h - 1. If both xi and x, are 
x in some mi then this xi is of the form sp’x<sp2x or sp’x=sp2x which 
is equivalent to s~‘x’<s~~x’ or sp1xr=sp2xr with x#x’ so that we can 
again reduce the problem to the case r=h - 1. 

As a simplification we wilf write the formulas spx<x, and spx=x, as 
x<s-Px, and X = S - ~ X , .  Thus the formulas spx<splxl and spx=spzxl are 
equivalent to x<spl-pxi and Therefore the formula we are 
considering can be written as 

VX(X < / \ * * * A X  < t, A U1 < X  A * * . / \  U 1  < X  A X =  211 A * * * A  X =  Urn) 

where the terms t ,  u, D are of the form spy, p some integer. 
If k or 1 is bigger than I we can reduce the problem to the case r=h - 1 

as before. We therefore need only consider the formula Vx(x< t ,  A 

u1 < x A x = o1 A . -. A x = vnl) and this can be reduced to a quantifier free 
formula in a way similar to that which we used in I. 

It follows, just as in I, that d is complete for the language 8. 
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111. SOME COMMUTATIVE GROUPS WITH DISCRETE TOTAL ORDERINGS 

We consider the language 9 which has, in addition to the binary relation 
symbol =, two constant symbols O,I, a unary function symbol -, a 
binary function symbol + and a unary relation symbol > 0. 

The terms l + . ' * + l  and t+..-+t ( I  and t repeated p times) will be 
written asp and pt,  and the term t ,  + (- t 2 )  as 2, - t,. 

Let d be the set of the following formulas 
(a) The axioms for a commutative group: 

Ax A y  Az((x + V )  f L" = x + (y  + 2)) 

A x  A y ( x + y  = Y  + x )  
Ax(. + 0 = x) 
Ax(x - x = 0) .  

(6) The axioms for a total ordering compatible with the group structure: 

A X  ~ y ( x  > 0 A y > O-+x + y > 0)  

A X  1 (x > O  A - x >  0) 
A x ( x  = o  v x > 0 v - x  > O ) .  

A x (x > 0 +-+ (x = 1 v x - 1 > 0)). 

(c) The axioms for a discrete ordering 

It is clear (by induction on the length of t) ,  that for each term f of 9 
there are integers al, ..., a,, ~ E Z  and variables xi, ..., x, such that 
t=a,x, + -*.+a,x,+b is a consequence of d. (In fact we only need the 
axioms of (a).) 

We can show (see Exercise 2) that the set d does not allow the elimi- 
nation of quantifiers in 2. Let 2' be the language obtained from 2, by 
adding, for each integer n > l ,  the unary relation symbol nl (read "n 
divides") and let d' be the set of formulas obtained by adding to d the 
formulas 
(4 Ax(nlx- V y ( x  = ny)) for each n > 1 
and 
( e )  A x ( n l x v n l x + l  v . . . v n l x + n - l )  foreach n > l .  

It is clear that each model of d, that is each commutative group with a 
discrete total ordering, is also a model of (d), or, more precisely, given a 
model of d, there is a unique value of n] so that (d) is satisfied. On the 
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other hand (e)  is not a consequence of the set (a) u (6) u (c) u (d). (We will 
write (a, b, c, d )  for this set in future.) We can show (see Exercise 2) that 
(a, b, c, d )  does not allow the elimination of quantifiers in 2' but we will 
see that (a, b, c, d, e)= d' does ailow it. To do this we consider a formula 
F of the form '$x(cr, A --. A a,) where each ai is an atomic formula of 
5? or the negation of an atomic formula of 3'. Thus ai is of one of the 
forms t ,  = t ,  (which, by d', is equivalent to t = O  with t = t ,  - t,), t # 0, 
t>O,i(t>O), nlt or 7(/?lf). 

It follows from d' that t # O  is equivalent to t>Ov - f > O ,  that 
i ( t  > 0) is equivalent to t = 0 v - t > 0 and that i (nit) is equivalent to 
nit+ 1 v - - .vn / t+n-  I .  Hence we call suppose that each cri is of one of 
the forms t=O, t>O or nit. 

Each term t can be written in the formpx+ t' with p f Z  and t' a term 
which does not contain x. To make things clearer we will write t ,  > t ,  for 
t l - f t ,>O.  

Thus the formula F can be written in  the form 

where the p ,  q, r are in Z and the t, u, v are terms which do not contain x. 
It follows from d' that the formula nl/rlx-vl is equivalent to 

(nllrlx A nllv,) v (nllrlx + 1 A nllvl + 1) v 
v v ( n , l r l x  + n1 - 1 A nllvl -t n, - 1). 

If we make this substitution in F and use the fact that A A ( B  v C) is 
equivalent to ( A  A B) v ( A  A C )  we can reduce the problem to that of 
considering a formula of the same form of Fexcept that the vi are integers 
(positive, negative or zero). 

Weputh=lplf+ ...+Ipkl +lqll + ...+jq J + n l  f ...+ n,+ Ir,I+ --.+ IrJ 
We proceed by recursion on h, which we will call the rank of F, Suppose 
that we have eliminated quantifiers for all formulas of rank less than h 
and that F is a formula of rank h. 

If k 2 2 ,  F is equivalent to 

(Pzti 2 P i t 2  A v X ( P i X  > tl A P 3 X  t 3  A '**))'J 
V ( P i t 2  > P2t1 A vX(P,X > $2 A p3X > f 3  A ..*)) 

and we are reduced to the case of a formula of rank 12- 1. 
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If 222 we note that q1x=u, ~ q ~ x = u ~  is  equivalent to q,x=u, A 

( q 2 - q 1 ) x = u 2 - u l .  Thus with, say 1q11~lq21, we have 1q11+1q2--q11< 
lqll + lqtl and we can again reduce the problem to that of a forniula of 
rank less than h. 

If k =  1 and I= 1 the formula F can be written as 
Vx(px > t A qx = u A nl lr lx  - u, A - - -  A n,lr,x - 0,) 

and this i s  equivalent to 
( p U  > 4t A q l U  A q H 1 l r l U  - V 1 q  A 1.. A qn,(r,U - U,q) 

which is quantifier free. 

except that we drop “pu>qt”. 

dealt with in the same way). F can be written 

If k=O and I= I ,  F is equivalent to the same quantifier free formula 

Suppose then that k =  1 and I=O (the case where k=O and I=O can be 

v x ( p x  > t A nllrix - u1 A . . . A  n,lr,x - u,). 

If one of the ni, say nl ,  can be written as n = nn‘, where n and n‘ are 
coprime, nllrlx--ul is equivalent to nlrix- u1 A n ’ l r l ~ - u l .  Since n+n’ 
<nl we are therefore reduced to a formula of rank less than h. Thus we 
can assurne that all the ni are of the form nf’, where II, is a prime. 

Let u,, ..., a, be the integers in the interval [0, n1 - 13 such that 
nljral-ul, ..., n,Ira,-ou, (if any exist). It can easily be seen that the 
formula nl[rlx--vl is equivalent to n,lx-a, v v n,lx-u,. Making this 
substitution in F we are reduced to the case of k formulas each of rank 
less than h. 

Thus we can suppose that rl = = r, = 1 and that F can be written 
A nmlx - u,). V x ( p x  > t A nllx - u, A 

If, say, n1 = ? I p 1  and n2 =nP2 with p1 < p 2 ,  the formula n,lx--u, A 

n21x- u2 js equivalent to nllul -v2 A n21x-u2. Therefore we can assume 
that the ni are of the form nf’, where the xi are distinct primes. 

Since the ni are pairwise coprime there is some integer u in the in- 
terval [0, n, ... n,-1] s u c h t h a t ~ l i ~ - ~ i ,  ..., n,fu--v,and we can deduce 
that Fis equivalent to T. For suppose that, for exdrnple,p 2 0; then, fort 2 0, 
x= u+n,. . .n,t satisfiespx? t A n, Ix- u1 A ... A n,,,lx- u, and for t < 0, x= u 
satisfies it. 

This completes our proof that d’ allows the elimination of quantifiers 
in 9’. 



THE ELIMINATION OF QUANTIFIERS 57 

As before, we see that if F is a closed formula, F' to which it is equiva- 
lent contains no free variables. The atomic formulas of F' are therefore 
t=O,  t > O  and nit, where t is a term of 2" without any variables and so is 
an integer. Thus each of these atomic formulas is equivalent to T or 1. 
Therefore d' is complete for Y .  

IV. ALGEBRAICALLY CLOSED FIELDS 

The language 2 that we consider has two constant symbols 0, I, a unary 
fun~tion symbol -, two binary function symbols +, x and no relation 
symbols other than = . (We write xy for x xy and x + y  for f xy.) 

(a) Axioms for a commutative group with respect to + : 
Let d be the set of the following formulas 

A x  Ay Az(x + ( y  + z )=  (x + y f z)) 

A x  Ay(x + y  = y  +x) 
Ax(x + 0 = x) 
Ax(x +(- x) = 0). 

Ax AY (xy = yx) 
Ax(x*l= x) 

A x  vy(x = 0 v xy  = 1) 

Ax A Y  Az(x(y2) = (XY) 2 )  

A x  A y  Az(x(y + z )  = x y  + x z )  

O Z - 1 .  

It is clear that each model of (a, 6) is a Commutative field and that for 
each term t OF 2 there is a polynomialp(x,, ..., x,) with coefficients in Z 
such that t = p ( x I ,  ..., xn) is a consequence of (a, b). 

(We write p for the term 1 + + l (1  repeated p times) and t P  for the 
term t x - - -  x t ( t  repeated p times).) 
(c) For each n> 1 the formula 

 AX^ AX, ... AX,-% VX(X, + xlx + a * * +  x,-~x'-' + xn = 0) .  

Clearly each model of &-(a, b, c) is an algebraically closed field. We will 
see that af allows the elimination of quantifiers in 9. To show this we 
make use of 

LEMMA 3 : Let p(x,, . . ., xk, x }  atid q(x,, .. ., x,, x) be two t e rm of 9, i.e. 
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two pol~noFniaIs with coe$"icients in Z. Then there is a quantifier free 
formula F of 9 such that in each model of (a, b), i.e. in each commutative 
field K, f i s  theset ofthose (tz, ..., t k ) € K k  such that p(e,, ..., t k ,  x) divides 

PROOF: Let p (x) =a, + a,x + -.. + a,xm and q(x )  = 6 ,  + b ,x  + . a * +  bnxn 
where the a, and bj are polynomials in x,, ..., x,, with coefficients in Z. 

We obtain the desired formula F by recursion on m+n. Clearly for 
m + n = 0 the formula we want is a, # 0 v b, =O. 

Now suppose we have found a formula F with the required property 
whenever nz+n<h and that the polynomials p(x) and q(x )  are such that 
m+n=h. 

If n<m then, by our hypothesis, there is a formula Fcorresponding to 
the polynomials px =a,+a,x+ .--+a,,-,P-' and q(x) ,  The formula we 
want is therefore 

S(;Jl, " * 3  tk, x). 

(a,#O A b,  = b ,  = - - * =  b, = 0) v (a,=O A F ) .  

Ifm < n weputp, =a, + a,x + - 9 .  +a,- lxm-l and q1 = a,q(x) - b,x"lmp(x), 
so q, is of degree less than n. By hypothesis there is a formula Fcor- 
responding to the pair of polynomjals pl, q and a formula G corre- 
sponding to the pair p, 4,. The formula we want is therefore 

(a, = 0 A F )  v (a ,  # 0 A G ) .  

This completes the proof of the lemma. 

We now consider a formula F of 9 of the form Vx(a, A ... A a,), where 
each cti is an atomic formula of 9 or the negation of an atomic formula of 
2'. Thus each tti is of the form t, = t ,  or t, # t,, and so is equivalent to a 
formula of the form t=O or t#O (where t= 5, - tz) .  But ti # O  A A t,#O 
is equivalent to tl..,tl#O, so we can see that F can be written as 

Each ti is a polynomial in x whose coefficients are polynomials in the 
other variables with coefficients in Z. Let the term of highest degree in ti 
be aixni. Clearly we can assume that no ni is zero since if, for example, 
n,=O, F is equivalent to t,=OA Vx(t,=Or\ w . . ~ t k = O ~ t # O ) .  

We now proceed by recursion on the sum of the ni, which we will call 
the rank of F. If kaO and, say, n,an,, we put t;=a,tl-a,x"1-n2t, 
and t;=tZ-aZxn2. Then t i  is of degree less than n, and ti is of degree 

Vx(t,=OA - * - A  t k = O A  t#O). 
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less than n2.  The formula F is equivalent to 

(a2 = 0 A vx ( t ,  = 0 A tb = 0 A ... A tk = 0 A t f. 0)) v 

v (aZ # 0 A Vx (ti = 0 A t2  = 0 A A t k  = 0 A t # 0))  

and so we are reduced to two formulas of lower rank. 
I f k = I  the formula Fcan be written V x ( t l = O ~ t # O ) .  We know that 

in any algebraically closed field K,  given two polynomialsp(x), q ( x )  with 
one free variable x and coefficients in K, there is some xg in K such that 
p(x,)=O and q(x,)#O if and only if p does not divide q", where n is the 
degree of p with respect to x. Hence if G is the quantifier free formula 
that, by Lemma 3, is associated with the pair t,, t"(n=degree tl> the 
formula F is equivalent to i G (that is, it has the same value as i G in all 
algebraically closed fields). 

If k=O the formula F can be written Vx(t#O). Let t=a,+a,x+... 
-ta,x". Since all algebraically closed fields are infinite and each polynomial 
in a single variable which is not identically zero has only a finite number 
of roots we can see that F is equivalent to a, # O  v -.. v a,,#O. 

This completes the proof that sd allows the elimination of quantifiers 
in 2. 

We see, as before, that each closed formula of 2 is equivalent to a 
quantifier free formula whose atomic formulas are of the form t=0, 
where t is a term which does not contain any variables, and so of the 
form n=O where  EN, the set of natural numbers. Now if n> 1 neither 
n=O nor n#O is a consequence of a2 because there are algebraically 
closed fields of characteristic p for p = 0 or any prime number. Therefore 
.d is not comp~ete but it becomes so if we add any one of the formulas 
p=O for p prime (axiom for a field of characteristic p) or the set of 
formulas (p#O:p prime) (axioms for a field of characteristic 0). 

We have the following application of this result. 

THEOREM 4: If the polynomials p l ,  . . ., pk in the variables x,, . . ., x,,, with 
coeficients in the$eield K have a common zero in some extensionJield L of K, 
then they have a c ~ ~ ~ i o ~ i  zero ~ , h ~ c h  is algebruic over K. 
PROOF: Let D be the algebraic closure of K and let L I ,  be the diagram of 
Q. The set of axioms for an algebraically closed field allows the 
elimination of quantifiers and so, by Theorem 2, du D, is complete. 
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Let 9 be the language of du D,. The formula 

V X ,  ... vX,(p, = O A * - . A  P k = o )  

is a formula of 9' which is satisfied in a model of d v D,, namely the 
algebraic closure of L. Hence it is satisfied in all models of d LJ D, and, 
in particular? in Q. 

v. REAL CLOSED FIELDS 

The language 9 that we consider has two constant symbols 0, 1, one 
unary function symbol -, two binary function symbols +, x , one 
unary relation symbol > 0 and the binary relation symbol = . 

(a) The axioms for a commutative field (i.e. the sets (a) and (b) of IV). 
Let d be the set of the following formulas 

(b) A X  A y ( X > O  A y > O + X  -/- y >o)  
A X ( X  = o  v x > o  v - x  > O )  

A X  1 (X > 0 A - X > 0) 
A X  ~ y ( x  > 0 A y > O+xy > 0) .  

Each model of (a, b) is an ordered field. 
2 

(c )  

for each n> 1. 

Ax v y ( x  = y z  v - x = y ) 
 AX^ AX, ... Ax2,, VX(X, + X ~ X  +.*--I- x~,x*" + xZn+' = 0) 

The models of &=((a, b, c) are the real closed fields. (For the properties 
of such fields that we use here see, for example, B. L. VAN DER WAERDEN, 
Modern Algebra.) We will show that d allows the elimination of quanti- 
fiers in 9. 

For each term t there is, as before, a polynomial p(x,, ..., x,) with 
coefficients in 2 such that t =p(x,, . . ., x,) is a consequence of &'* 

For simplicity we will write the formula t - t' > 0 as t > t' or t' < t and 
the formula t < t' A t'< t" as t< t' < t". Each atomic formula F of 9 is 
equivalent toaformulaoftheformp(x,x,, ..., x,)=Oorp(x, xt, ..., x,)>O. 
Each quantifier free formula F is equivalent (in all models of d) to a 
disjunction of formulas pI=Or\ ..-Ap,=Or\q,>OA - - . ~ q , > o .  The 
degree in x of an equation pi=O is the highest degree of x in pi, and the 
degree of an inequality qj>O is 1 + the highest degree of x in qj. The 
degree of F itself is the maximum of the degrees of its atomic parts. 
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LEMMA 5 :  For each quant$er f iee  formula A of the form p1  = 0 A ... A 

pk = 0 A q1 > 0 A . . . A q1 > 0, where the pi, qj  are polynomials in x, xi, . . . , x,, 
there is a q u a n ~ ~ e r  freefor~?ula B ~ h i c h  is equ~valent to A (in all n~ode~s  
of d) such that the degree of x in B is less than or equal to the least 
degree of x in the polynomials pr (which we assume is not zero). 
PROOF: We prove the lemma by induction on the sum of the degrees of 
x in the pi and qj, which we will call the rank of A.  Suppose that we have 
proved the lemma for all formulas of rank less than h and let p1 = 0 A -. . A 

p,=OAg,>Or\ - - -Aq,>O be a formula of rank h. 
If k 2 2 ,  let alxm' and a2xm2 be the terms of highest degree inp, and p., 

and put n1 = a2pl - a,x m i  -mz (assuming mi &ni2), and n2 = p 2  -a2xm2. 
Then the formula that we are considering is equivalent to 

(az = 0 A p1 = 0 A x2 = O  A * - - A  pk = 0 A q1 > 0 A - * - A  qI > 0) v 

v (aZ f 0 A n1 = 0 A p 2  = 0 A . - - A  p k  = 0 A q 1  > 0 A . . . A  ql > 0) 

and we are therefore reduced to the case of two formulas of rank less 
than h. 

I f k = l  t h e f o r ~ u l a c a n ~  wri t tenp=OAq~>OA.. .Aq~>O , Ifall  the 
qi are of degree in x less than the degree of x in p the formula itself 
satisfies the lemma. If not, say, for exampIe, qi is of degree greater than p 
and let axm and bx" be the terms of highest degree in p and qI ; so m <n. 
Put P = p  -axm and Q =a2q, - abx"-*p. Then the formula is equivalent to 

(a = 0 A P = 0 A qt > 0 A - - . A  qr > 0) v 

v (a  # 0 A p = 0 A Q > 0 A 92 > 0 A * * * / \  41 > 0) 

and so we are again reduced to the case of two formulas of rank less 
than h. 

If k=O there is nothing to prove; so this completes the proof of the 
lemma. 

THEOREM 6 :  Let A ( x ,  x,, ..., x,) be a quantifier free formula of degree h 
in x. Let a, b be two variables other then x, x,, ..., x,. Then there is a 
quan t~~er  free formula F whose  variable^ are a, b, xl, ..., x,, whose degree 
in a and b is less than or equal to h, none of whose atomic f ~ r m ~ i l a s  contai~~s 
both a and b and such that 

F o  V x ( a  < x < b A A(x , x , ,  ..., x,)) 
is a consequence of d v {a < b).  
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PROOF: The proof is by induction on the degree of x in A .  If this degree 
is zero then A does not contain x. Therefore the formula V x(u < x < b A A )  
is equivalent to A A a c b and so the formula I; that we want is A itself. 

Suppose now that we have proved the Theorem for formulas of degree 
less than h and that the degree of x in A is h. 

A is equivalent to a disjunction of formulas of the form u1 A ... A u,. 
where each ui is an atomic formula or the negation of an atomic formula, 
and hence is of one of the forms p = O , p f O , p > O  and i ( p > O ) .  Since 
p f O  i s  equivalent to p > O v  -p>O and i ( p > O )  is equivalent to 
p = O v  -p>O we can assume that A is of the formp,=OA - . . A p , = o A  

Lemma 5 shows that if k 2 2 ,  or if k = I and one of the qj  is of degree in 
x greater than or equal to the degree in x of p1  we can replace A by B ;  
so we are reduced to a formula of lower degree and can therefore apply 
the induction hypothesis. 

A 

q1 > 0, where the degree of qj is less than the degree ofp, so the degree of p 
equals the degree of A ,  which is h, or II:~,>OA ... r\q,>O. 

We first consider A of degree h and form 11. Let G =  V X ( U < X < ~ A  
q , > O ~ . ~ . r \ q , > O ) ,  the degreein x ofqj(l,<j,<Z) being <h.Inanyreal 
closed field, G is true if and only if in some open interval (a, P )  con- 
tained in (a, b) each qj is strictly positive. The following set of conditions 
exhausts all possibilities: 

q,>OA - - * A q f > o .  

Thus we can assume that A is of one of the forms I: p =O A q, 0 A 

Go ( U ,  b)  = /\X [U  < X < b -+ (41 > 0 A . * *  A 41 > o)] 
G ~ ( u ,  b) = V u  [ a  < u < b A qi(u) = 0 A Go(a, u)]  v 

Hij(u, b)  = ~ u i / v [ u  < u < v < b A qi(u) = 0 A 

v V v [ a  < v < b A qi (v)  = 0 A Go(v,  b)] (1 6 i < I) 

q j ( ~ ) = O ~ G O ( z ~ , v ) ]  ( I < i < l , l < j < l ) .  

We shall reduce each of these cases by use of the induction hypothesis. In 
each model of d,  

Go (a, b) cf [q 1 (u) 2 0 A * . *  A q1 (a) 2 0 A 7 V x: (a < x: < b A 4 I = 0)  A 

A ... 1 Vx (u < x < b A q1 = O ) ]  . 

Since the degree of qi=O is <h, the induction hypothesis applies to each 
formula V x ( a < x < b ~ q ~ = O ) .  So c,(a, b) is equivalent to a quantifier 
free formula of degree c h  in a and 6, whose components are of the form 
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K r ( a ) ~ L r ( b )  (1 $r$.s) .  Gi(a, b) is equivalent to the disjunction (1GrG.s) 
of formulas 

K,.(u) A V u  [ a  < u < b A qi(u) = 0 A L,(u)] v 
L,(b) A V U  [U < U < b A qi(U) = 0 A K,(U)] ; 

to each component of Gi(u, b) we can apply the induction hypothesis since 
the degree in u of qi(u)=O A L,(u) and the degree in u of qi(v)=O A Kr(u) 
are all <h. 

Finally Hij(a, b) is equivalent to the disjuncti#n (1 Qr<s)  of formulas 

\ ~ U ( U  < &l < b A q i ( U )  = 0 A & ( U )  A 

V O [ U  < D < b A q j ( D )  = 0 A L,(D)]). 

Since qi(u)=O A Lr(u) is of degree <h in u, the induction hypothesis yields 
formuIas MjPt(u) A N&) of degree <h in ZI and b such that 

V U [ U  < U < b A q j ( U ) = : o  A L,(U)]++w[Mj , t (u)  A Njrt(b)]- 
t 

So Hij(a, b )  is equivalent to the disjunction (over r and t )  of 

Njr t (b )  A V u  [u  < u < b A q i (u )  = 0 A &(u)  A M j r t ( u ) ] ,  

to which the induction hypothesis evidently applies, This concludes the 
reduction of formulas of form I1 and degree h. 

By Lemma 5 we need only consider formulas A of the form 
p=O A q1 > O  A ... A ql.>O where the degree of p in x is h, and the degree 
of each qj(l <j<l’) js less than h. We shall reduce this case to formulas of 
degree < h, and to formulas of form I1 of degree h ; the latter have just been 
dealt with. 

A is evidently equivalent to Al v A2 v A3 where 

A l i s p  = 0 A p’ = 0 A q l  > 0 A . . . A  qt. > 0 ,  

A,isp = 0 A p‘ > 0 A 41 > 0 A * * * ) \  41, > 0 ,  

A,iSp=:O A - - p ’ > o  A 41 > o  . & - - - A  4 ~ ~ > 0 ,  

and p‘ denotes the derivative o f p  with respect to x. 
A ,  represents the case where p has a multiple zero. Since the degree of 

p‘ in x is t h ,  by Lemma 5,  Al is equivalent to a formula of degree <h 
and the induction hypothesis applies. 

V x ( u < x < b r \ A , )  is true in a real closed field if and only if there is 
some open interval (a, a) contained in (a, b) in which all the g j (  1 $ j<  E ’ )  
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and p' are strictly positive, andp(a)<O,p(P)>O. Put I=Z'+ 1 and ql=p'. 
Using again the notation 

Go ( a ,  b) = A x  [a < x < b -+ ( q  > 0 A .-. A qr > O)] 

we have: Vx(a<x<b A A,) is equivalent to the disjunction of the for- 
mulas 

p ( a )  < 0 A V u  [a < u < b A qi(u)  = 0 A p ( u )  > 0 A Co(a7 u)] v 

P ( a )  < 0 A P(b) > 0 A b) ,  

v p (b )  > 0 A V u [a < u < b A q ( U) = 0 A - p ( u )  > 0 A G l  (u,  b)] 
(1 < i 6 l ) ,  

V u  Vv[a < u < u < b A qi(u) = 0 A q j ( u )  =O A 

- p ( u ) > O  A p ( u ) > O  A Go(u, D)] (1 < i < 2 , 1  < j  6 l ) .  

Go has already been treated, All the other formulas are patently of degree 
t h  because all the q are of degree <h.  

A ,  is treated by interchanging p' and -p', p < O  and p>O. 
This completes the proof of Theorem 6. 

THEOREM 7 : .xd allow the elimination of quanfr9ers in 2. 
PROOF: It is sufficient to prove the Theorem for a formula of the form 
V x A ( x ,  xl, ..., x,). We add to 2 the two constants u and l / u  and to d 
the axiom u *  l /u= 1. By Theorem 6, the formula 

is equivalent to a quantifier free formula Q. Each atomic formula of Q is 
ofthe f o r m ~ ( x . l / ~ ) = O  o r ~ ( x , l / ~ ) > O ,  and so,by the axiom u * l / u = l ,  
of the form p(x, u)=O or p ( x ,  u)>O. Hence there is a quantifier free 
formula R(z), where z is a variable of 2, such that u . I/u = I + 

Vx(- 1 <x< 1 A A ( x *  1/u, xl, ..., x,)) is equivalent to R(u). Clearly in 
all models of a2 the two formulas V XA (x, xl, . . ., x,) and V z(0 < z < 1 A 

R(z)) are equivalent. But, by Theorem 6, this last formula is equivalent to 
a quantifier free formula. 

This completes the proof of Theorem 7. 

In particular, we can deduce that ,d is complete, since the atomic for- 
mulas of 9 without variables are of the form n=O and n>O, where 
neZ.  The first of these is equivalent to I unless n=O, since all real closed 
fields are of characteristic zero, and the second to T or i. 
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VI. SEPARABLE BOOLEAN RINGS 

The language 9 that we consider has two constant symbols 0,1, two 
binary function symbols +, x and the binary relation symbol = . (As 
usual we write t ,  + t 2  for +t i t2  and t , t2  for x t , t2.)  

(a) Axioms for a commutative group with respect to + : 
Let d be the set of the following formulas 

Ax A y  Az(x + ( y  + 2 )  = (x + y )  + 2 )  

A X  AY(X + Y  = Y +  Z )  

Ax(x 3.0 = x) 

A x  V Y ( X  + y = 0). 
(b) Ax A r  A~(x (yz )  = (xy).) 

Ax(x.1 = 1.x = x) 
Ax A y  r \ z ( x ( y  + z )  = xy + xz) 

1 Z O .  
(c) Ax(x2 = x). 

(a) and (b> together make up the axioms for a ring with identity, (a), (b) 
and (c) those for a Boolean ring. 

All Boolean rings are commutative and satisfy Ax(2x=O);  this follows 
because ( x + 1 ) 2 = x + l = x 2 + 2 x + 1  and so 2x=O, and also ( ~ + y ) ~ =  
x + J ~ ,  whence xy+yx=O and so x y = y x .  

If x ,  y are terms of 9 we will write x u y  for the term x + y +  xy and 
x c y  for the formula xy=x. Clearly the terms of 9 are polynomials 
p(x,, ..., x,) whichare of degree one in each of the variables xl, ..., x, and 
in which all the coefficients are 0 or I. 

Let F ( x )  be the formula x f O ~  ~y(ycx-+y=Ovy=x).Theelements  
which satisfy this formula are called atoms. 

We add to 9 an infinite sequence of unary relational symbols B, A , ,  
A, ,  ,.., A,, ..., and to d t h e  following set of formulas (in the notation of 
Chapter 2,  p. 25): 
( d )  for each positive integer n the formula 

AX(A,X* ‘JX,  ... v X , (  I% X i  # X j  A I% ( F ( X i )  A Xi C X))), 
1 < i < j < n  1 C i < n  

Ax(Bx- Ay(y C=x-A,y)]). 

It is clear that given any model of (a, b, c) we can define the values of 
B, A , ,  ..., A,, ..., in a unique way so as to satisfy the formulas of (d). 
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The elements which satisfy Anx are those which contain n distinct atoms. 
3 is satisfied by those, possibly empty, elements all of whose subsets 
contain an atom and are called atomic. 

We shall write d’ for the set of formulas (a, b, c, d) ,  and &’FA for: 
A is a consequence of d’, where A is a formula in the language 2’ of d’. 

We shall show that together with the axiom 

Ax V Y  [Y c x A By A 1 A ,  ( x  + Y ) ]  , 
i.e., every element x is se~arabZe into disjoint parts such that one of 
them is atomic and the other contains no atoms, allows elimination of 
quantiJiers in its language 9‘. (The axiom follows from its particular 
case V y  [ @ A  i A S ( l  +y)] in d.) 

Remarks. For an application, see Exercise 7. By extending the language 
further one obtains an elimination for arbitrary boolean rings, but the 
known methods are too long to be included here. 

Note that for each term t of 2F which contains x there are terms a and 
b not containing x such that d‘ 1 t=ax+b ,  and all atomic formulas are 
(equivalent in each model of d’ to) ax+b=O, B(ax+b),  An(ax+b) 
(n 2 1) for some terms a and b not containing x .  

We collect simple distributive laws and simple properties of disjoint 
elements that are consequences of d’. 

LEMMA 8: (i) ( u , x = ~ A  ..*Aakx=O)t.(a, u--.uak)*x=O, (5) i A , ( x u y )  
- ( ~ A , x A  i A , y ) ,  (iii) B(xuy)ct(Bx A By). 
PROOF: (i) follows by induction with respect to k.  Evidently ( a x = O ~  
bx=O)+(aub)x=O. Suppose ( a u b ) x ,  i.e. (a+b+ab)x,=O; then 

a(a+ b + ab)x= (az +ah +a2b)x= (a+ ab)x= ax=O, 

and hence (ax = 0 A bx = O)-(a u b)x = 0. (ii) As in (i), one uses elementary 
properties of set theoretic union and intersection which hold formally for 
u, resp. for *: zcx-+zcxuy,  and (zx)u(z~)=z(xuy), from which (ii) 
and (iii) follow. 

LEMMA 9: (i) x . ( l  +x)=O, (ii) xy=O-+x+y=x u y  and, in particular, 
xu(1 + x ) =  1 (x is the complement of 1 +x), (iii) xy=O-+[x+p=Oo 
( x = O ~ y = O ) l ,  (iv) ifG,(x) are formulas of 9’ then 

N ( x , x ~ = O ) - +  [ N V u G i ( x i ~ ) -  V U  N G , ( x , u ) ] .  
1 < i <  j < n  1 C i d n  1 G i d n  
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PROOF: (i)-(~i) follow by computation. 

(iv) [ V u  AS Gi(xiu) ]  -+ VuGi(xiu) 
l Q i 6 n  1 Q i d n  

is a theorem of predicate calculus. Put w = Ciuixi;  then 

since uiujxi = 0 for j #  i, and uizxi = uixi. So 

[ AS Gj(xiui)] -+ G j ( ~ j w )  
1 4 i <  j Q n  

for 1 < j < n, and hence (iv). 
The first e~mjnation result will concern atoms. 

LEMMA 10: Suppose neither a nor b contains x. (i)-(v) are consequences of 
d’ and Fx where 

(i) (ax + b = b A ax = 0) v (ax + b = b + x A (1 + a ) x  = 0) ,  

(ii) (b + x = b u x A bx  = 0) v (x u (b + x) = b A (1 + b ) x  = 0) , 
(iii) ax + b = O w  [(ax = 0 A b = 0)  v ((1 + a)x = 0 A x = b ) ] ,  

ax + b #O+-+[(ax = 0 A b # 0 )  v ((1 + a ) x  = 0 A x # b ) ] ,  

(iv) B ( b  + x ) w B b  , 
(v) for ta 3 1, A,(b 4 x)-f(bx = 0 A A,-1 b) v 

v ((1 -t- b)x  = 0 A A,+,b)f,whereA,b = T by definition. 

PROOF: (i) Since x is an atom, ax=O v a x = x ;  a x = x w ( l  +a) x=o. 
(ii) Again, x being an atom, b x = O v b x = x ;  bx=O-+b+x=bux by 
Lemma 9(ii); bx=x-+x (b+x)=O and so, by Lemma 9 (ii), x+(b+x)= 
xu(b+x),= b since 2x=O. (iii) is clear. (iv) Note that Fx-+Bx; by (ii) 
and Lemma 8 (iii), if bx= 0, B(b + x)*(Bb A Bx), hence B(b + x)+-+Bb; 
similarly, if x(b + x) = 0, [Bx A B(b + x)]+-+Bb, and so again B(b + x)* 
Bb. (v) Note that Fx-+A,x and Fx-+x#O; if bx=O, xcb+x, and so if 
A,-,b, A,(b+x);  if A,(b+x) ,  b contains at least (n-1) atoms, x being 
one, and i x c b .  Similarly, if xcb, A,(b+x)++A,,,b. 

COROLLARY 1 1 :  r f  Fx then every formula (1) (ax+b=O) (i.e. every 
formula of the form ax+b=O or i (ax+b=O)) ,  A,(ax+b), B(ax+b), 
where a and b do not contain x, is equivalent to a disjunction of conjunctions 
of formulas not containing x and of equations of the form ax=O, x=b,  x# c. 
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THEOREM 12:Let G(x) be a quanti~er~ree formula of LZ”, Then \]x[F(x) A 

G(x)] is equivalent to a quantifier free formula. 
PROOF: By Cor. 11, it is sufficient to consider G ( x ) : a , x = O A  . . . A  

If x= b, appears, Vx[G(x) A P(x)]+-+G(bi) A F(bi); applying Lemma 
a,x= 0 A x = bl ... A x = b, A X # cl A h x # Cm. 

8 (i) it is sufficient to consider 

v X [ F ( X )  A U X  = 0 A X # C1 / \ * * * A  X # C8,,]. 

By induction on m: 

vx[F(x)  A ax = 0 A A x f ci] 
l < i < m  

is equivalent to the disjunction of the following formulas: 

(i) 
(ii) F(cJ A ac, = 0 A F(cj) A acj = 0 A 

v x ( i  [F(ci) A aci = 01 A F ( x )  A ax = 0 A AX # c j )  (1 < j  < m) 
j # i  

ci = c j  A vx [F(x)  = 0 A ax = 0 A iM x f c j ]  (1 6 i c j 6 m) 
j # i  

(iii) A [F(ci) A aci = 0 A A cj z ci] A ~ x [ F ( x )  A 
l < i 4 n  j # i  

a x = = O ~  M\ x f c , ] .  

We can apply the induction hypothesis to (i) and (ii), and (iii) is equivalent 
to 

1 <ism 

A,+r (1 + a )  A A [F(ci) A ac, = 0 A M cj f C J .  
I <i<m j + i  

The Theorem just proved establishes elimination of quantifiers for 
formulas in which all quantifiers range over atoms. To treat the general 
case one uses the following construction of disjoint cases. 

LEMMA 13 : Let a,, . . . , a,, be terms of 9‘ (and hence of 9) not containing 
x. Then there are terms t,, ..., t,, also not containing x, and subsets 
it, ..., I, of (1, ..., N )  such that 

r F 4 ~ t i t j = O ( f 6 ~ i < j 6 ~ ) , r F 4 t a y =  t i ( r = l  ,..., B). 

PROOF by induction on n: If u,, . . ., u, satisfy the conditions of the lemma 
(on the t )  for a2, ..., a,, then a,u,, ..., aluk, (l+al)u,, ..., ( l+a,)u, ,  
a,(I +u, + ... +u,) satisfy the lemma. 

i e l ,  
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COROLLARY 14: Let G(x) be a conjunction of formulas Hr(a,x + b,) (1 G r< n)  
where H,(z) is i A , ( z )  or (7) (z=O) or ( l ) B ( z ) .  Then G(x) is equivalent 
to a disjunction of conjunctions of formulas H’(cix), H’(cix+ci), H’(di) of 
the same type where ci and di do not contain x, and such that, for ~ i s t ~ n c t  
terms ci, c j ,  dt-cicj=O. 
PROOF: Note first that by Lemma 8 (ii) and (iii) and by Lemma 9 (ii), either 
d’ t-xy = O - t [ ~ ( x  -t-y)t+(Hx A Hy)f or d’ t-xy=O-+ [H(x+ y ) t t ( H x  v 
Hy)],  By the lemma, if t,, ..., tN correspond to a,, ..., a,, b,, ..., b, 

a,x + b, = (x .  C t i )  + z: ti 
isl, i € . i r  

for suitable subsets I,, J, of (1,2, ..., N ) .  Hence 

a , x + b r = ( x + l )  t i + ( ~ . C  t i ) +  C t i ,  
iel,nJ,. i s I , , - J r  ieJp-I,.  

where, clearly, I, n J,., I, - J,, J, -I, are pairwise disjoint. 
So H,(a,x+b,) is either equivalent to 

f% Ht(tiX f ti) A f% H,.(@) A f% H,( t f )  
i E I r n J r  i E I ,  - J ,  i e J , - r ,  

or to the formula obtained by replacing the conjunctions by disjunctions: 

w N,(t ,x  + fi) v w H,(tiX) v w H,( tJ .  
i e  I,.n J ,  i € I r - J ,  i e  J,- I, 

Substituting these formulas for each H,(a,x+ b,) in G(x), and using 
distributivity of A over v , we obtain the desired result. 

LEMMA 15 : V x[H,(a,x+ b) A . . . A H,(a,,x+ b,)] is equivalent to a quan- 
t$er free formuia ( for  Hi, 1 < i< n, of the type considered in ~ ~ r o l ~ a r y  14). 
PROOF: By Corollary 14 it is sufficient to consider the formulas 

Vx[K,(aix) A . * . A  K,(a,x)] 

where each K(z)  is a conjunction of i A r z ,  iA, ( l+z) , ( i ) (z=O) ,  
( i ) ( z = I ) , ( i ) B ( z ) ,  (-i)B(I+z), and for i#j, d t a i a j = O .  

By Lemma 9 (iv) it is then sufficient to consider VxK(ax) .  
We may suppose that neither ax=O nor ax+a=O is a component of 

the conjunction K(ax),  since if ax=O or ax+a=0 is then V x K ( a x ) o  
K(O), respectively V x ~ ( a ~ ) t + ~ ( a )  is a theorem. We may suppose that 
ax z 0 appears in K(ax), since K(ax)+ [ax = 0 A K(ax)] v [ax z 0 A 

K(ax)); similarly ax+a#O. 
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Note that x#O-+(Bx-+A,x) and hence x#O-+(iA,x+iBx). So 
K(ax) i s  equivalent to a conjunction of ax#O A as+n#O, and one of the 
following formulas: _L or 
a) i A ,  (ax). iA , (ax+a)  (since if e.g. B(ax) occurs the conjunction is 

contradictory, and i B(ax) is redundant by above), 
b) ( i ) iA , (ax )~B(ax+a)  or ( i j ) i A , ( u x ) ~  i B ( a x + a )  and similarly 

with ‘ax’ and ‘ax + a’ interchanged, 
c) (i) B(ax )~B(ax+a) ,  (ii) B ( a x ) ~  i B ( a x + a )  or i B ( a x ) ~ B ( a x + a ) ,  

(iii) i B ( a x )  A iB (ax+a) .  
In case (a) VxK(ax)++(a#O~ iAla) ; -+  is evident. i A l a + i F a  and 

( U Z O A  i F a ) - +  ~ ~ ( ~ # O A ~ C U A ~ # U ) ;  so V ~ ( U ~ # O A U ~ + U # O ) ,  ap- 
ply Lemma 8 (ii). 

In case (b) (i) V ~ K ( U ~ ) ~ ( ~ ~ U A  i B a ) .  By se~arability, if A,a A i B a  
we have b c a A  iA,b,  with B(a+b); since A,a, b#a;  since i B a ,  b#O. 
For (b) (ii), V xK(ax)++( i Ba A a # 0). If i Ba, by separability, we have 
bfO, b c a ,  i A , b ~ B ( a + b )  wherea+bispossibly=O. Since iA,b+Fb, 
there is c# 0, c # 6, c c  b, and i Alc, i A,(c+ b). Take ax= c, ax+ a= c+ a. 

In case (c) (i) V x K  (ax)+-+(Ba~A,a). If A2a, there are at least two 
atoms one of which =b(with bca ) ,  the other contained in a+b.  By 
Lemma 8 (iii) and disjointness of b and a+ b, Bb A B(a+ 6). (ii) VxK(ax)  
+ + ( i B a ~ A , a ) .  Since A,a, there is b c a ~ F b .  Since Fb+Bb, for ax= 
a+b, B(ax+a), and since i B a ,  i B ( a x ) .  (iii) \ ~ ~ K ( u ~ ) ~ + ( ~ B u A u # O ) .  
By separability, if i Ba, there is b c a, -1 A,b A B(a+ b) with b # 0 (but 
possibly= a). Again, since i A ,  b+ i Fb, and b # 0 there is c c b A c # 0, 
with - I A ~ C A  iA,(b+c). Then i B c A  iB(a+c) .  

This takes care of all cases. 

THEOREM 16: Let G(x)  be a quantiJier free formula 0f-9’~. Then VxG(x) 
is e ~ u i ~ a ~ e n t  to a q ~ a n t ~ e r  free form~la of -9’’ fin all separable Boolean 
rings). 
PROOF: By Theorem 1 it is sufficient to consider conjunctions G(x) of 
atomic formulas and negations of such formulas. Writing 

E,(x)  (read: x contains exactly n atoms) for A,(x) A 1 A,+ ,  (x) 

(i) i A , ( x ) t , [ i  A , ( x )  v E , ( x )  v...v E n - l ( x ) ]  (n 2 1). 
(n 2 l),  E , ( x )  for i A ,  (x) we have 

Also, if y is a variable not occurring in A,(x), resp. E,(x), using the defi- 
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nition: A,(x)=  T in Lemma lO(v), we have 

By (i) it is suffcient to consider G(x) of the form G’(x) A G ,  (x) where 
G‘(x) is of the type listed in Cor. 14 and GI(.) is a conjunction of urz- 
negated atomic formulas An(ax+b), E,(ax+b). 

The degree of G ( x )  in x is, by definition, the ordered pair (0,O) if 
GI (x) is empty, and (h, k) if h 2.1 is the length (i.e., number of conjuncts) 
of G,(x) and Gl(x) is C k ( a x + b ) ~ G , ( x )  where C,(ux+b) is either 
A,(ax+b) or  E,(ax+b) (the first conjunct in G,(x)). F o r k  3 1, the degree 
of G, (x) is <(h, k) in the lexicographic ordering of pairs of integers. 

Since this is a well-ordering we can use induction on the degree of G(x) .  
If the degree is (0,O) the Theorem reduces to Lemma 15. 
If the degree is ( / I ,  k),  h 2 1, and y does not occur in G(x), by (ii), 

VXG(x)- Vx(G’(x) A vy[Fy A y c ax + b A 

and so, 
Ck- l (aX b y)] A G, (X)) 

VxG(x)- V y [ J ’ y  A VxH(x, y)] 

where H(x, J)) is G ’ ( x ) n a y x + b y + y = O ~  C k - , ( a x + y + b ) ~  G,(x), since 

The degree (in x) of H i s  less than (h, k). Since ayx+by+y=O is of the 
type considered in Cor. 14, the degree of H is that of Ck-,(ux+y+b) A 

G,  (x). We have two cases. If k > 1, the degree of H is (h, k - l), and so 
<(A, k); if k =  1, the degree of H is that of G,, and also <(A,  k). This 
proves the Theorem. 

Exercises 

y c  ax+b-ayx i- (by + y )  = 0. 

1. Show that in Section I1 the use of the symbol s was necessary to ensure 
that we could eliminate quantifiers. To be more precise, we consider the 
language 2 which has the single binary relation symbol < other than = 
and we let d be the following set of formulas of .5? 

a) the axioms for a total ordering 

b) Ax V y  A z ( x < i + - + y = i  v y < i )  

Ax v y  / \Z(Z  < xt+y = 2 v z < y ) .  
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The models of &' are the same as those of Section TI, namely discretely 
ordered sets without first or last element, but &' does not allow the 
elimination of quantifiers in 2. 

Answer. We consider the model of d which is the ordered set Z of 
integers. If D, is the diagram of this model and if d allows the elimi- 
nation of quantifiers the set du D, is complete. However if we add the 
number + to this model we still have a model of d LJ D,, but the formula 
Vx(O<xtl)  is not satisfied in the first model and is satisfied in the 
second. This shows that d u D Z  is not complete and so d does not 
allow the elimination of quantifiers. 

2. Let 9, 9' be the languages of Section 111. Let (a), (b), (c), ( d )  be the 
sets of axioms given in that section. 

i) Show that the set (a, 6 ,  c) does not allow the elimination of quanti- 
fiers in 9. 

ii) Show that the set (a, b, c, d )  does not allow the elimination of 
quantifiers in 9'. 

Answer. We consider the group G =  Z x Z ordered as follows: (a, b) > O  if 
and only if either a > 0 or a = 0 and b > 0. G is a model of (a, 6, c) which 
contains d as a sub-model (identifying (0, n) with n). Let D, be the 
diagram of Z. Then (a, b, c, d, D,) is not complete since the formula 
Ax \/y(x= 2yv x+ 1 = 2y) is true in Z but not in G.  

3. a) Let s9 be a countable set of formulas in a language with equality. 
Show that if a2 has an infinite normal model then for each infinite cardinal 
N, s9 has a model of cardinal N. 

b) Prove that if .d has only infinite models and for some infinite 
cardinal X all the models of d of cardinal N are isomorphic, that is if U.P is 
categorical for the class of realizations of cardinal H, then d is complete. 

c) Show that all countable models of the axioms of Section I, that is all 
countable densely ordered sets with first and last element, are isomorphic 
to the segment [0, 11 of the set of dyadic numbers (rationals whose 
denominator is a power of 2). Deduce that these axioms are complete. 

d) For this question we use the properties of transcendental bases of 
extensions of a field K (see BOURBAKI, Algkbre, Ch. 5). 

Show that if SZ is an algebraically closed field and K and K' are alge- 
braically closed extensions of R with transcendental bases of the same 
cardinal then K and K'are isomorphic. 
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Deduce that two algebraically closed fields of the same characteristic 
and of cardinal 2'* are isomorphic and hence that the axioms for an 
algebraically closed field of characteristic p ,  where p is zero or a prime, 
are complete. 

Answer. 

a) We add to L? a set C of constant symbols of cardinal N. Let be the 
set of all the formulas a# b for distinct elements Q, b of C. Every finite 
subset of d u g  has a modeI, namely the given infinjte model of d, and 
hence a f  u 9 has a model. Let d = {A: A E d), then a? u 9 has a canoni- 
cal model which is clearly of cardinal K. 

b) Let F be a closed formula of L? which is not a consequence of at'. 
Hence du { i F }  has a model and consequently a model of cardinal K 
since d has only infinite models. Since all models of d of cardinal K are 
isomorphic i F is satisfied in all models of d of cardinal K. Therefore 
i F is a consequence of d since if d u { F )  has any model it has a model 
of cardinal K. It follows that a f  is complete. 

c) Clearly every densely ordered set is infinite. Let 10, a,, . .., a,, . . .> u 
{ 1) be a countable densely ordered set whose first element is 0 and whose 
last element is 1. 

We define an order preserving map #J of {0, a,, ., ., a,, ...} u { 1) into 
the segment [0, 11 of the dyadic numbers as follows. 

Let @(O)=O, @ ( l ) =  1. Now suppose that @(a,.) has been defined for 
rQn.  Let b, c be the elements of X,={O, al ,  ..., a,, 1) such that a,,, is 
immediately between b and c, i.e. such that h<a,+, <c and there is no 
element of X,  between b and c. Then we let @(an+,)=5t#(b)+#(c)1. 

We show that each dyadic number in [0, 11 is in the image of 4. For 
suppose not; let (2g+1)/2" be the first dyadic number in LO, 11, with 
respect to the ordering given by (2q+ l)/2" <(2g' + 1)/2" if f z  <n' or iz = fz' 

and q<q', which is not in the image of 9. Then 4/2"-' and (q+ 1)/2"-' 
are in the image and are equal to @(ai) and @ ( a j )  for some i,j. Let a k  be 
the first a which lies between a, and a j ,  then @(ak)=(2g+ 1)/2". Therefore 
@ is an isomorphism and the proof is completed. 

d) Let {b,:id) and ( b i : i d )  be two transcendental bases of K and K' 
over st. K is therefore algebraic over st(b,),, and is therefore the algebraic 
closure of S2(bi)i,I. Similarly K' is the algebraic closure of S 2 ( b ~ ) , ~ ~ .  But 

and SZ(b:),, are both isomorphic to the field of rational fractions 
sZ(Xi)iEI and hence their algebraic closures are isomorphic. 

A * 
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Let Q,, be the algebraic closure of the prime field of characteristic p, 
thus R, is countable. If the cardinal I of f  is greater than or equal to No, 
the cardinal of the field of rational fractions Q(X&, is equal to I and 
hence also to that of its algebraic closure. Hence if K is an algebraically 
closed field of characteristic p and of cardinal 2"" the transcendental base 
of K over Rp is of cardinal 2'O. Two algebraically closed fields of charac- 
teristic p and of cardinal 2 " O  have therefore transcendental bases over Q, 
of the same cardinal and are therefore isomorphic. Since the axioms for 
an algebraically closed field of characteristic p have no finite models we 
need only use the result of b) with t S = 2 " O  to see that these axioms are 
complete. 

4 (~ILBERT'S ~~LLSTELLENSATZ).  Let K be a field and L an algebraically 
closed extension of K. If p l ,  . . . , p R  are polynom~als in the n variables 
xl, ..., x, with coefficients in K which have no common root in L, then 
there are polynomials q,, ..., qk in the n variables xi, ..., x, with coeffi- 
cients in K such that k 

qipi == 1 * 
i = l  

Answer. Let d' be the set of axioms for an algebraically closed field and 
let DK be the diagram of K. Then d u  DK is complete and has L as a 
model. Therefore pi, . . ., pk have no common root jn any algebraically 
closed extension of K. Since any extension of K can be embedded in an 
algebraically closed extension of Kit  follows thatpl, ...,pk have no com- 
mon root in any extension of 1% 

Let I be the ideal of K [ q ,  . . ., x,] generated by p 1  . . ., pk. If this ideal is 
not K(xl, ..., x,) itself it can be extended to a maximal ideal J. The 
quotient K[x,, ..., xn]/J is an extension of K i n  whichp,, ...,pk have a 
common root, namely the image of (xl, . . . , xn> under the canonical map 
of K[xl, ..., x,] into the quotient. But this is impossible, hence I= 
K[xl, . , ., x,] and so 1 ~ 1 .  This completes the proof. 

5. a) We recall that any ordered field can be embedded in a real closed 
field (see VAN DER WAERDEN). 

Show that if a polynomialp(x,, ..., x,) with coefficients in an ordered 
field K is 2 0 for a11 values of x,, . . . , x, in some real closed extension of K 
then the polynomial is 2 0  for all values of xl, ..., x, in any ordered 
extension of K. 
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b) A field L is said to be realif, for any x,, . . ., x,, in L, x: + ..- + x,” 4- 1 f 0. 
We recall that any real field can be embedded in a real closed field and so 
can be ordered. 

Let UEL.  Show that if a is not the sum of squares, is real. 
Deduce that there is an ordering of L in which a < 0. 

c) Consider a real field K in which for each U E K  either a or -a is the 
sum of squares. Show that if the polynomial p ( x ,  .. ., x,) with coefficients 
in K is 2 0 for all values of xl, . . . , x,, in some real closed extension of K, 
then there are rational fractions rl, . . . , r k  with coefficients in K such that 
p = r , +  . . - + r , .  

d) Let p (xi, . . ., x,,) be a polynomial with coefficients in the field of 
rationals Q, which is positive or zero for all values of xl, . .., x, in Q. Then 
there are rational fractions rl, ..., r k  with coefficients in Q such that 
p = r ,  + - . . + r , .  

2 2 

2 2 

Answer. 

a> Let DK be the diagram of K and d the set of axioms for a real closed 
field.ThenduDD,iscomplete. Sincetheformula Ax, ... Ax, (p(xl, ..., x,,) 
20) is satisfied in one model of du DK it is satisfied in all real closed 
fields containing K and hence in all ordered fields containing K since 
these can be embedded in real closed fields. 

b) Each element of I,(,/-;) is of the form u+B& with a, PEL. If 
1 +Ci (ai+& J-a!’=O then 

1 + Ca’ - UCPf  = 0 
i i 

and so a is a sum of squares, which js a contradi~tion. 
c) It is clear that K can be ordered in only one way, that is, so that a> 0 

if a is the sum of squares and a < 0 otherwises. Hence in all ordered fields 
containing K, p ( x l ,  .. ., x,)>O. The field K(Xl, ..., X,,) of rational frac- 
tions in n variables over K is a real field. Hencep(X,, .. ., X,,), that is the 
value of the polynomial p(x , ,  . . . , x,) for x1 = X,, . . ., x,, = X,,, where the Xi 
are the base elements of the field K( XI, . . . , X,,), is greater than or equal to 
zero for all orderings of the field K(Xl ,  . . ., X,,) and hence it is the sum of 
squares of elements of this field. 
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d) If p ( x , ,  ..., xJ>O for x i ,  ..., x,EQ, then since p is a continuous 
function, p(xl, ..., xJ>O for xl, ..., x,ER. So it is sufficient to note that 
on the one hand R is real closed and that on the other each positive 
element of Q is the sum of squares of elements of Q to obtain this result 
(ARTIN’S THEOREM). 

6. a) Let 9 be the language described in Section I11 and let 9‘ be the 
language obtained from 8 by adding a binary function symbol x . 

Show that there is no formula of 9, with three free variables, whose 
value in the standard realization (on Z) of 9 is the set 

{ ( ~ , E , ~ ) E Z ~ : W  = n p ) .  

b) Let A? be the set of formulas of 9’ which are satisfied by the standard 
realization of Y, (where x is interpreted as multiplication), and let d1 
be the set of formulas obtained by substituting for x in d another 
binary function symbol x I which is not in 8’. Show that the set d u dt 
has a model in which the values of x and x , are different. 

Answer. 

a) Let F(x, y ,  z) be a formula with the required property. Since the 
standard realization satisfies the axioms of Section 111 there is a quan- 
tifier free formula G(x) with a single free variable such that G ( x )  and 
VyF(x ,  y ,  y )  have the same value in the standard realization, this 
common value being the set of squares. 

But we will show that for any quantifier free formula H ( x )  of L with a 
single free variable, there are two positive integers N and p such that for 
integers n> N,  n&if and only if n +PER, where R is the value of H(x)  in 
the standard realization. This is obvious if H is atomic since then H i s  of 
one of the forms ax+b=O, ax+b>O or nlax+b with a, ~ E Z .  Also if H 
and H’ have this property so too do i H and H v  H‘. So it is true of all 
quantifier free formulas H. 

We therefore have a contradiction since there are no positive integers 
N ,  p such that for all n > N,  n is a square if and only if n + p  is one. 

b) Suppose that in all models of du ds the values of x and x are 
the same. Then the formula Aa Ab(a x b = a x ,b) is a consequence of 
d u d,. Hence, by the Definability Theorem, there is a formula F(a,b, c) 
of 8 such that F(a, b, c)t;.a=b x c is a consequence of d. Since &‘ is 
satisfied in the standard realization of 9 the value of F in this realization 
is ((m, n, p)eZ3:m=np)  which contradicts the previous result. 
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7. (a) Let 9 be the language of Boolean rings, and 9, the language of 
fields of sets, i.e., 9, contains two monadic relation symbols I and 
PCI' for: individual, 'P' for: part) and a binary relation symbol E ;  we 
shall write x ~ y  for a y .  

For any set X ,  X # 0 ,  let E c ( P ( X )  where ~ E E ,  X E E ;  for XEX, ( x f ~ E ,  
and E is closed under symmetric difference ( A )  and intersection (n). 
Thus, if '%Jl,=(E,@, X ,  A ,  n) and 9 X , = ( X u E ,  X ,  E,E) ( E  being the 
membership relation restricted to X x E )  then 9X is a realisation of 2, %Ill 
of 9,. 

(i) Show that '%Jl, is an atomic Boolean ring, i.e. each X E E  satisfies 
B(x) in 9X.  

(ii) For each formula A of Y find a formula A, of 9, with the same 
free variables x,, ..., xn such that, for all X and E as in (i), (Z,, ... 22,) 
satisfies A in 9X if and only if (Z,, ..., 2,) satisfies A ,  in '%Jl,, and con- 
versely. 

(iii) Write 
I,(x) for PX A V X ,  ... V X , [ X , E X  A . . . A  X,EX A 110, (xi#xj)], 

1 < i <  j < n  

P,(x) for l \u i (usx) ,  P,(x) for ~ u ( u e x ) ,  

1; (x) for Vx, . . . v x, [x, B: x A ..* A x, a: x A M xi # xj] . 
1 4 i i j G n  

Deduce from (ii) that for each formula A(x)  of 9, with a single free 
variable x there is a propositional combination A*(x)  of I(.T), I,(x) 
( n a  l), I;(.), P,(x) and P,(x) such that, for all x and E, A=K* in %Itl. 

(b) Let ( X I ,  R,)(R, c X : )  be an ordering of the type of the rationals 
2 0  (under the usual ordering), and ( X 2 ,  R,)(R, c X ~ )  an ordering of the 
type of the negative integers, with X ,  nX, =O. Let (X, R )  = ( X ,  u X,, 
R,  u R, u X ,  x X,), i.e., the order type of the rationals 2 0 followed by 
the negative integers. 

Let E be the collection of finite unions of disjoint half open intervals in 
(X, R )  under the order topology, i.e, of sets (x:(a, X)E R, (x, b)ER, xf b, 
U E X ,  bEX). 

(i) Show that 9 X ,  = (E ,  0, X ,  2, n> is a Boolean ring such that ~ E E  
is atomic if and only if it consists of intervals all of whose end points are 
in X,; and contains no atoms if all its intervals c X I .  

(ii) Show that X itself is not separable in (%)I2, but for any proper 
partition2u?ofX(i.e.,2d, Y E E ,  2nj=0,  2 + O , j # O ,  fuj j=X)ei ther  
2 or j is separable. 
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(iii) Deduce that the set of axioms a), b), c) does not permit elimination 
of quant~fiers for the language 9’; similarly for a), b), c) and d) and the 
language 2” where 9” is obtained from 9’ by adding the monadic 
predicate symbol S, and d) is: AX(S‘X++VY[YCXAB.YA i A , ( x + y ) ] .  

Answer. 

is a Boolean ring. Every element ( x ) ,  for X E X ,  
is an atom, and every ~ E E  contains such an {x) because y is a subset of 
X. So 9X is atomic. 

(ii) We “define” in a natural way the operations of 9X in the language 
2” and the relations of %, in 3. Formally suppose A E ~ ,  A in prenex 
form, the quantifier free part written as a disjunction of conjunctions of 
the form a t  b and negations of such formulas (a = bcta c b A b c a). Let 
u be a variable not appearing in A ;  for each term a of 9 we find A ,  of Yl 
such that (ii, i,, ..., 3,) satisfies A, in if and only if { E )  c B ,  where d is 
the value of a in “l; since each dicX(l G i G n ) ,  Zi satisfies P in s332,; if 
a is the symbol 0 or 1, A,= I, resp. = T ; if a=b .c, a=b+c, A,=Ab A A ,  
resp. i ( A ,  A A,) A ( A ,  v A,); (acb),  =Px, A A P X ,  A A u ( A p  -+Abu), 
(1 (acb ) ) ,  =Px, A ... A P X ,  A ~ u ( A , u  A i A@);  ( A  A B), and ( A  v B), are 
A ,  A B,, resp. A ,  v B,; ( AxiA),  = Axi(Pxj-+At),  ( VX,A)~ = Vxi (PxL A 

Al), The first half of (ii) follows by induction on the length of A .  
For the converse, given a formula A of 9, containing the free variables 

x, ,  ..., x,,, we have to find a formula A‘ of 9 such that (XI, ..., 2,) 
satisfies A in %, if and only if (i;, ..., 2:) satisfies A’ in % where f i=f i  
if P,EE, and i i = ( R i >  if l i € X  (identification of individuals with their 
unit sets). We put (Zx)’=Fx, (Px)’= T, ( X E Y ) ’ = F X A X C ~ ,  ( i A ) ’ =  
i (A’) ,  ( A  A B)’= A’ A B’, ( A  v B)’ =A’ v B’, ( AxA)’ and ( VxA)‘ are V xA,  
resp. VxA’.  The proof is evident. 

(iii) Given A(x)  (with a single free variable x) of 9,, consider A’(x) of 
9 constructed in (ii). By Section VI, since W is an atomic Boolean ring, 
A‘(.) is equivalent to a propositional combination of A,x, x=O, x =  1, 
A,(l +x); by (ii), A ( x )  is equivalent in Ilfz, to T, I, A u i  ( U E X ) ,  A u ( ~ E x )  
or: x is an individua~, or x, resp. the complement of x contains at least, 
resp. at most IZ individuals. 

(b) (i) It is clear that W2 is a Boolean ring. The only atoms are the 
intervals with a single element since if [a, ~ ) E E  and [c, d ) c [ a ,  b) also 
[c, d ) e E ;  so [G, b) is an atom if and only if U E X ,  and b is the successor of 
a. Since finite unions of atoms are atomic, if REE and 2 is a finite union of 

a) (i) It is clear that 
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intervals with endpoints in X,, then R is atomic. On the other hand, if 
a, brzXl, [a, b) contains no atom because all its non empty parts are 
unions of intervals [c, d )  with end points in XI. (ii) X ,  i.e. T, is not 
separable, because X, has no first element and so the set theoretic union 
of the atomic elements of m,, namely X,, has no greatest lower bound in 
fm,. But if X=Xup, 3#@, j j # @  either 1 or j j ,  say 2, contains an interval 
[u, b] with UEX,, b € X 2 ;  then j j  consists of a finite set of (disjoint) 
intervals [a, b) with UEX,  A  EX, or a f X ,  A bEX,; the former contain no 
atoms, the latter are atomic. 

(iii) Suppose a), b), c), d) permitted the elimination of quantifiers for 
LY”,inparticuIaroftheformulaF= V y [ y f O ~ y # l  A By A i A , ( I + x ) ]  
of 9’ itself. It would be equivalent to a propositional combination of 
formulas AJ, B,1, S1 (?A,O, BO, S O  being consequences of a), b), c), d)). 
Fis false in %I, which also satisfies AJ (n > I), i B1, I S1. But there are 
evidently Boolean rings which also satisfy A,1 (n 2 l), i B1, i S1 in which 
H is true, e.g. the Boolean ring constructed analogously to fm,, starting 
with the ordered sum of (X,  R) and a disjoint copy of it in place of ( X ,  R). 



CHAPTER 5 

PREDICATE CALCULUS WITH SEVERAL TYPES OF OBJECTS: 

THE HIERARCHY OF FINITE TYPES 

The first part of this chapter and Exercises 1,2 and 3 contain a second method, 
mentioned in the summary of Chapter 2, for developing first order predicate logic, 
including the reduction of the theory of functions to that of their graphs. The 
essential results are formulated and proved directly for languages with several 
types of variables which are common in niathematics. The use of such languages 
is in principle reducible to the use of languages with a single type of variable and 
unary predicates Ms ( x )  for ‘‘x is of type i”. However in practice these languages 
are useful because they allow simple formulations of certain results, for example, 
an improved version of the Interpolation Lemma, which will be useful in the next 
chapter. The method of constructing canonical models given in this chapter is in 
practice much more convenient for languages with several types of variables than 
that of Chapter 2. For the relation between these two methods see Exercise 2. 
In the second part we study languages with several types of variables constructed 

as follows: one type for individuals, one for sets of individuals, one for families 
of such sets and so on for a finite number of steps. These languages are familiar 
from axiomatic mathematics where, for example, in the theory of groups, the 
elements of the given group constitute the individuals while the sub-groups are 
sets of such ii~dividuals (sets on which we take the restriction of the group 
operation). More generally, the languages considered here concern the finite levels 
in the structure or “hierarchy” of (simple) types. In Exercise 5 the cumulative type 
structure and its relation to the simple type structure are described. 

In the class of realizations here considered (that of general models), the domain 
CO of the individual variables is arbitrary and the domains of the other variables 
are families of sets of the types 1,2, . . ., respectively, of the hierarchy having CO as 
base, and which satisfy certain closure conditions. The study of these general 
realizations can be reduced to the theory of Chapter 2 (by use of the axioms of 
extensionality), Two other classes of realizations are treated in the last chapter. 

A lang~age 9 with k types of objects is a language which consists of: 
1) k infinite disjoint sets @), ..., V$). The elements of V$(l G i G k ) ,  are 
called variubles of type i o f 9 ;  
2) k disjoint sets C g ) ,  ..., C g ) .  The elements of C$)(l <f<kk), are called 
constant symbols of type i of 9; 
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3) for each integer n3O a set R$), the elements of which are called n-ary 
relational symbols (with variables of arbitrary type) ; 
4) for each sequence (il, . .., in) of integers between 1 and k ,  a set Sg*.. 
the elements of which are called relational symbols of type (il, ..., in), (or 
n-ary relational symbols the first variable of which is of type i,, ..., and 
the n-th is of type in). 

All these sets are assumed to be pairwise disjoint. 
The atomic forniulas of 9 are defined to be the sequences of one of the 

followjng forms 
a) I?((,, ..., (,J, where R is an n-ary relation symbol, (RER$’) and 

. . ., 5, are variables or constant symbols of 3 of arbitrary type, that is, 
k 

t i€  U (cS’U v$)) for I < i < n ;  

b) S((yl), ..., CF’) where S is a relation symbol of type (il, ..., in), 
(sEs$, id ), and (y) is a variable or a constant symbol of 9 of type 
i j ,  1 G j G n .  

j = l  

The set of atomic formulas of 3 is denoted by At,. 
The set .F9 of formulas of 9 is the set of function schemas built up 

with the atomic formulas of 9 as the 0-ary symbols, -I and V x  (where 
XE V ~ ) u . . . u  V$))  as the unary symbols and v as the only binary symbol 
(see Chapter 0). 

The abbreviations , f , x , + , o  and A are defined just as in Chapter 2 as 
also are the notions of the free ~ ~ ~ $ ~ a b l e s  of a formula of 9 and of a closed 
~ ~ r r n ~ l a  of 3. 

We define a realization of the language 23 with k types of objects to 
consist of 
1) k non-empty sets El ,  ..., Ek. E,(1 <i<k) is called the domain of type i 
of the realization; 
2) for each i(l <i<k), a map c+C of Cg)  into Ei; 
3) for each integer n 3 0  a map R+R of R$) into 9 ( ( E l  u...uEk)n); 
4) for each sequence (il, ..., in) of integers between 1 and k a map S+s 
of S$* 

The value F of a formula F of 9 in this realization is a subset of 
Ey9(” 1 x . . . x ELY(k) (that is, it is a set of sequences . . . , dk) where di is 
a map of V$) into Ei, or alternatively since the sets V$) are pairwise dis- 
joint, it is a set of maps 6 of ufzl if$) into u:=, Ej  such that for 
1 <j< k ,  6 (Vg)) E Ej). This set F is defined as follows : 

into P(Eil x ... x Ei,). 
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If F is an atomic formula it is of the form R(tf l ) ,  . . ., 52’) with R E  R$’ 
or RES(‘I* 2 ... , i n )  , where tyl), ..., <>) are variables or constant symbols of 
types i l ,  ..., in respectively. In this case P i s  the set of those 6 ~ E y ~ “ ‘ )  x 
x * - +  x EkyZCk) such that 

( 8 ’ ( L p ) ,  ..., s ’ ( p ) ) € R  

where 6 ’ ( ~ y ) ) = 6 ( t y ) )  if <?) i s  a variable and 6’(ry’)=F)if ty) is a con- 
stant symbol. 

By the Theorem on Function Schemas (Theorem 0.3), if we put Fv  G= 

FuG, ?F= CF and K F =  the projection of P along the variable x 
(that is the set of those 6 ~ E ; ~ ~ l ’  x - a -  x EFg”’ such that there is some 
6, EF which is equal to 6, except possibly at x), then F is defined for each 
formula F. 

Just as in Chapter 2 we can see that the value of a closed formula F is 
either E Ygc1) x x EkyZ(*) or 8. In the first case we say that F is satisjed 
by the given realization. If d is a set of closed formulas of 9 the formula 
F is a consequence of .d and we write d l - F  (as on p. 66), if every reali- 
zation which satisfies &’ (that is, which satisfies each formula of d )  also 
satisfies F, A theorem of 9 is a formula whose closure is satisfied by each 
realization of 2. 

The notion of a formula in prenex normal form or a prenex formula is 
defined as in Chapter 2. We can again show that each formula of 2 is 
equivalent to a prenex formula. 

A realization of 9 is called a canonical realization if its domain of type 
i is Cg’, the set of constants o f 9  of type i, for each i, 1 GiGk ,  and if for 
each constant symbol c of 2, E ,  the value of c in the realization, is c itself. 
Hence if one of the sets C $  is empty 9 does not have any canonical 
realization. 

To each canonical realization of 2 there corresponds a realization of 
the propositiona~ calculus on the closed atomic formulas of 2’ defined 
as follows: 

The value of R(ayt) ,  ..., a?)), where R is an n-ary relation symbol or a 
relation symbol of type ( i l ,  .. ., in) and afl), . .., a?) are constant symbols 
of types i,, ..., in, respectively, is 1 or 0 according as to whether or not 
(of1), ..., a?)>ER. 

Conversely each realization of the propositional calculus on the set of 
closed atomic formulas of 9 defines a canonical realization of 2. The 
following lemma can easily be proved by induction on the length of F. 

- 
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LEMMA 1 : Let F be a closed quantSfier free formula of 9. Then given any 
canonical realization of 8, F is satisjed by this realization i f  and only i f  it 
is satisfied by the corresponding realization of the propositional calculus on 
the set of closed atomic formulas of 9. 

Let {A:) :  1 < i < k ,  n an integer 2 1) be a family of disjoint sets each of 
the same cardinal as the set of formulas of 9, and each disjoint from 2 
so that no finite sequence of variables or of other symbols of 9 belongs 
to A:). Let A("= UnBl A:) and let z4 be the language which is obtained 
by adding to 2 each element of A(') as a constant symbol of type i. Thus 
the set of constant symbols of SA of type i is C$) u A ( i ) .  

Let d, = U A:) and A = U A ,  = lJ A ( i ) .  
1 $ i Q k  II3 1 l < i 4 k  

For each a€ A") the rank of a is the integer n such that aed:', the integer 
i, between 1 and k, being the type of a. The rank of a formula F of 94 is 
the greatest rank of the elements of A which occur in it, or 0 if no elements 
of A occur in it, i.e., if F i s  a formula of 9. 

We choose a variable x ( ~ )  of 9 of type i for each i(1 < i<k),  and we let 
F t )  be the set of formulas of 2Yd of rank n which have x ( ~ )  as their only 
free variable. Clearly Fji' and A?! have the same cardinal, namely that 
of the set of formulas of 2'. Hence for each pair (i, n), with 1 <i<k and 
n an integer 20, there is a one-one map E of F:"' onto A t !  1. Therefore for 
each asd( ' )  there is a unique formula, A ( x ( ~ ) ) ,  with x ( ~ )  as its only free 
variable, such that a==&(A(x('))). Further, the rank of A(x(") is one less 
than the rank of a. 

We let 52, be the formula 

- + A @ )  v x(OA (,&i))  

where a = E ( A  (xt'))). 
We let 

52:'= ( 5 2 , : a ~ A ~ ) )  
a(') = {Qe; a ~ d f ' ) )  

52, = f f 2 , : a ~ A , )  
and 

Thus 

PROPOSITION 2:  Each realization of 9 can be extended to 
a model of 52. 

so as to be 
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PROOF: Let Em be a realization of 2 with domains El, . . ., E,,. We define 
the value a of a E A  by recursion on the rank of a. 

Suppose that we have defined 6 for each be Up<,, A ,  in such a way that 
fi1, ..., Q,-, are all satisfied, and let aeA,,. The formula A ( x )  such that 
a=e(A(x))  is of rank n - 1 and therefore has a value A T )  in the reali- 
zation of 9 u A, u, u A,- which has already been defined. If A(.> is 
not empty there is some a€Ei, where i is the type of a, such that c(EA(x) ,  
We put @ = E .  If A T )  is empty we let d be an arbitrary element of Ei. In 
either case 52,, which is V x A ( ~ ) ~ ~ ( a ) ,  is satisfied. 

I_ 

This completes the proof. 

PROPOSITION 3: For each model Em of SZ there is a canonical model '2Jll 
which satisfies the same closed formulas of 9, as i%R. 
PROOF: Let R be an n-ary relation symbol of 9 or a relation symbol of 
type (i l ,  ..., i,,) of 2, and let R ,  be the value of R in the given realization 
Em. We define Rm,, the value of R in the realization (nil by Rm,= 
((a,, ..., a,,): the formula R(a,, ..,, a,,) is satisfied in fm). (If R is a relation 
symbol of type (i,, ..., i,) then a,, ..., a, are respectively of types ir, ..., in 
or else R(a,, ..., a,) is not a formula of ZA.) 

Now let F be a closed formula of 9,. We will show by induction on the 
length of F that F is satisfied by Em if and only if it is satisfied by Em,. This 
is obvious if F is atomic from the way that we have defined 'JJZ,. 

Suppose that the result is true for all formulas of length less than h and 
that F is a closed formula of length h. 

If F i s  i G, then by the indwtion hypothesis, G is satisfied, say, by both 
Em and fml, hence F i s  satisfied by neither '2Jl nor 92,. Conversely, if G is 
satisfied by neither 9Jl nor %Il then F is satisfied by them both; similarIy 
i f F i s  G v H .  

If F is VxG(x) ,  suppose first that F is satisfied by Em. Since Em is a 
model of Q, Em satisfies G(g) where g=E(G(x)), because 52 contains the 
formula VxG(x)-+G(g). Hence, by the induction hypothesis, Em1 satisfies 
G(g) and so satisfies F. Suppose now that '2Jl does not satisfy F. Then Em 
satisfies all the formulas i G ( a )  where a is a constant symbol of LZA of 
the same type as x.  Therefore, by the induction hypothesis, 9Jl, also satis- 
fies all these formulas. But the domain of Em, of type i is the set of con- 
stant symbols of of type i and so fm, satisfies p,xiG(x), that is %?, 
satisfies i F .  

This completes the proof. 
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With each closed prenex formula F of 9,, we associate a set ( F )  of 
closed quantifier free formulas of 9,,, and a subset A ( F )  of A,  defined by 
recursion on the length of F as follows: 
i) if F i s  quantifier free, ( F ) = { F )  and A(F)=@;  
ii) if F is V x G ( x )  then ( F ) = ( G ( g ) )  and d ( F ) = { g } u d ( G ( g ) )  where 

iii) if F i s  r\xG(x) then ( F ) = U , ( G ( a ) )  and A(F)= U,d (G(a) )  where 
a ranges over all constants of 2YA of the same type as x. 

s=e(G(x ) ) ;  

Let Q(F)={Q,:aeA(F)) .  

LEMMA 4: Each canonical model of ( F )  satis$es F and each model of 
{ F ]  u Q ( F )  satisfies ( F )  (or, for short, F, Q ( F )  k ( F ) ) .  
PROOF: The proof is by induction on the length of F. The lemma is obvious 
if F is quantifier free since then ( F )  = { F ] .  

Suppose that the lemma is true for all formulas of length less than h 
and that F is of length h. 

If F is V x G ( x )  and 93 is a canonical model of ( F ) ,  93 is a model of 
( G ( g ) )  where g =e(G(x)). By the induction hypothesis 93 satisfies G(g)  
and also F. Also, since a,, i.e. VxG(x)+G(g) ,  EQ(F) ,  { F }  u Q(F)k  G(g) ;  
sinceQ(G(g))c C?(F),and,bytheinductionhypothesis, {G(g) )  u Q(G(g)) k 
(G(g ) ) ,  we have ( F ]  u Q ( F )  k (G(g ) ) ,  i.e. { P }  LJ Q(F)  t ( F ) .  

If F is i\xG(x) and '93 is a canonical mode1 of ( F ) ,  93 is a model of 
U { (G(a) )  : a is a constant symbol of 9,, of the same type as x). By the 
induction hypothesis '2X satisfies each of the formulas G(a) and so, since 
93 is a canonical model, W satisfies AxG(x) ,  i.e. F. By the induction 
hypothesis G(a),  Q(G(a))k (G(a ) ) ,  and so, since Q(F)3Q(G(a)) ,  also 
G(a), Q(F)k (G(a) ) .  Since, further, for each a, FkG(a) ,  we have 
F, Q ( F ) k ( G ( a ) ) ,  i.e., F, Q(F)kU, (G(a) ) ,  and so F, Q ( F ) t ( F ) ,  as 
required. 

THEOREM 5. THE FINITENESS THEOREM: If each finite subset of a set d of 
closed forniulas of 9 has a model, then d has a model. 
PROOF: We can assume that d contains only closed prenex formulas. 

Let g= u { ( F ) : F ~ d f .  Let 9 be an arbitrary finite subset of so 
that @c(Fl)u.*.u (Fm). Since, by hypothesis, {Fl, ..., Fm) has a model, 
it follows from Proposition 2 that Q u (F,, . . ., F,) has a model and hence 
from Proposition 3, that Qv {Fl, .,., F,) has a canonical model. Since 
C?(F)cQ,  by Lemma 4, Q, Fik(Fi); so this canonical model satisfies 
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<Fl) v...v (Fa> and hence also %!. Thus every finite subset @ of B has a 
canonical model and hence also a model in the sense of the propositional 
calculus on the closed atomic formulas of ZA, by Lemma 1 .  Hence, by 
the Finiteness Theorem for propositional calculus, 9 has a model in the 
sense of the propositjonal calculus, and therefore, by Lemma 1, 9 has a 
canonical model. By Lemma 4, since this canonical model satisfies ( F )  
for each F e d ,  it also satisfies d. 

This completes the proof. 

COROLLARY 6 :  Let I be a totally ordered set and let {di: i E I }  be a family 
of sets oj'closed.formulas of LZA such that i f i , j ~ I  and i<j  then 
if each di has a model then so has d= Uiel di. 
PROOF: It is sufficient to show that each finite subset do =(F,, ..., F,} of 
&' has a model. Suppose, say, that F j e d i j ( l  <j<n) and let ik be the 
greatest element of (&, ..., i,f. Then d0cdi,, and so because di, has 
a model so too does do. 

LEMMA 7: I f  F and G are two closed prenex formulas of Zd such that 
A ( F )  n A ( G )  # 0, F and G contain the same relation symbols and variables 
and constants of the same types. 
PROOF: Let b e A ( F ) n A ( G ) .  Since bEA, b=&(B(x)) for some formula 
B(x)  with a single free variable. We show, by induction on the length of 
F that B(x)  and F contain the same relation symbols and variables and 
constants of the same types. 

Fcannot be quantifier free or else d ( F )  would be empty. If Fis  V x H ( x )  
then since b e A ( F ) ,  b € ~ ( ~ ( g ) ) v ( g ~  where g=&(H(x)) .  If bEA(H(g))  
then by our induction hypothesis, H(g)  and B ( x )  contain the same re- 
lation symbols and variables and constants of the same types and hence 
so too do F and B(x).  If b =g then B(x) = H ( x )  because E is one-one and 
so again F and B(x)  contain the same relation symbols and variables and 
constants of the same types. 

If F i s  A x H ( x )  then since k A ( F ) ,  beA(H(a))  for some constant sym- 
bol a of the same type as x. By the induction hypothesis, H(a) and B(x)  
contain the same relation symbols and variables and constants of the 
same types and hence so too do F and B(x).  

Similarly it can be proved that G and B(x)  contain the same relation 
symbols and variables and constants of the same types and therefore so 
too do F and G. 
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THEOREM 8. THE INTERPOLATION LEMMA: Let F and G be two closed for- 
mulas of 9 such that F A G  does not have a model. Then there is a formula 
N of 2, whose relation symbols and types are common to F and G such 
that F+H and G+--tH are both t i~eor~ms,  
PROOF: Since FA G does not have a model, it follows from Lemma 4 that 
( F )  u (G) does not have a canonical model and so is inconsistent in the 
sense of the propositional calculus on the closed atomic formulas of TA, 
by Lemma 1. 

Therefore, by the Interpolation Lemma for the propositional calculus 
there is a closed quantifier free formula C of zA, whose atomic formulas 
are common to ( F )  and (G) such that ( F ) k  C and ( G )  t i e .  The re- 
lation symbols and types which occur in ( F )  are just those that appear in 
F a s  can be seen at once from the definition of < F ) .  Similarly for G. Hence 
the relation symbols and types of C are common to Fand G. By Lemma 4, 
Q(F),  Ft-C and Q(G),  GI- iC.  If d ( F ) n d ( G ) # @ ,  then, by Lemma 7, 
F and G contain the same relation symbols and the same types. In this 
case the Theorem is trivial since it is sufficient to put H= F, We can there- 
fore assume that A (F)  n A ( G )  = 8. 

By the Finiteness Theorem 

Qa, ,  *.*s Qa,,, F t- C 3 (1) 

Q b X ? * * * , Q b p ,  G t T  C, (2) 

where a,, ..., a, are distinct elements of d ( F )  and b,, ..., b, are distinct 
elements of d ( G ) .  Because d(F)nd(G)=8, a i#b j ( l  G i G n ,  l G j G p ) .  
Let a,, say, be an element of greatest rank in the set {a,, . . ., a,, b,, . . ., bp}. 
Then a,,, . . ., Qan- 1, Qb,,  . . ., Qb, do not contain a,. Let C, (z) be the for- 
mula obtained from C by replacing a,, by a variable z of the same type not 
occurring in C. So C= C, (a,) and hence Ct- VzC, (z). Therefore 

Qai, ...,aa,, F l -  \iZC,(Z). 

But an,, . . ., 9,- ,, F, VzC, ( z )  do not contain a,. Also Qa, can be written 
as VxA(x) - tA(a , )  where A ( x )  does not contain x,. Therefore 

52al ,..., Qa,_,,Vy[VXA(X)-,A(Y)],  F k  VzC,(z) 

that is, because Vy[VxA(x)-+A(y)]  is a theorem, 

Qa,,***,SZn,,-It  F t  VzC,(z)* 13) 
On the other hand 

Qbl,-*a,Q&p, Gt-7 C l ( a n ) *  
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Since a,, does not occur in Qbl,  ..., Rbp, G we can therefore deduce that 

a h l , .  ..) Qbp,  G k / 2 Z  1 C1 ( Z ) .  (4) 

We can repeat this procedure starting from (3) and (4), instead of from 
(1) and (2) and so on. Thus we can eliminate one by one the formulas 
Qai, SZbj(l <i<n, 1 < j<p).  After n i - p  steps we obtain a formula H which 
has the same relation symbols and types as C such that F t  Hand GI- 1 H. 

This completes the proof. 

The fo~lowiiig two lemmas will be used in the next chapter. 
Let a€ A .  Let Q, be the intersection of all those subsets X of f2 which have 

the following properties 
1) Q a E X ,  

2) if b ~ d  and b occurs in a formula of X then B,EX. 
6, is therefore the smallest subset of X which has these two properties. 

LEMMA 9: Let a,, ..., a,, be the elements of A ,  other than a, which occur in 
SZ,. Then 6a=6alu--.u6,nu(Q,}. 
PROOF: Clearly 6,, u...u 6,” u (52,) has the properties I)  and 2) above and 
so contains 6,. 

Conversely 6, contains 6,,(l <i<n) and so 0, has the two properties 
which define Oai.  Therefore Oai E O0 and so B,, u...u~,,,u (52,) GO,. 

This completes the proof. 

We deduce at once that for each aeA,  6, is a finite set of formulas of 
SZ. This is obvious if a€Q1 because then 0,= (Q,}, and if it is true for all 
a of rank less than n then the previous lemma shows that it is also true 
for all a of rank n. 

LEMMA 10: Let H(a,, ..., a,,) be a closed formula of 2ZA containing no ele- 
ments of A other than a,, ..., a,. If QRtH(a,, ..., a,,) then Q,,,  ..., O,,,F 
RtHfa,, ..., a,,). 
PROOF: Suppose Qk H(a,, ..., an), then by the Finiteness Theorem there 
is some finite subset SZ’ of SZ such that 52‘ t H(a,, ...) a,J Let ,Z be the set 
of all those finite subsets of fL which contain Bat, ..., and which have 
H(al,  ..,, a,,) as a consequence. .X is not empty and hence contains some 
set Qo=S,, u.-*utfanu(Stbr, ...) f & ) ,  containing the sniatlest number of 
formulas. We will show that p = 0. 
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Suppose that pfO and let b,, ..., b, be arranged in increasing order of 
rank. Let BJx)  be the formula such that b,=~(B,(x)). Then 9,,, ..., 
Qb,, ..., Qnbp-l, v x B , ( ~ ) ~ B , ( ~ , ~ ~ H ( a , ,  ..., a,,). b, does not occur in 9,, 
(1 < i< n) because if it did, by the definition of Ba, we would have f2bp  E 0,; 
and hence 52, - {Qb,} EZ, which contradicts the choice of Q0. Also b, does 
not occur in any of Qbl, . . ., Q b p - l  because if it did therank of b, would be 
less than the rank of one of the bj ( l  G j G p ) .  Finally b, does not occur in 
H(a,, ..., a,,) whichdoesnot containanysymbolsof A other thana,, ..., an. 
Therefore 

@,,, -.., gun, szbl, . . -, l )  V Y  ( VxB,(x) 3 B, (y))  t. H (al, . . ., a,); 

but V J (  vxB,(x)-+B,(y)) is a theorem and so 

g,,, . f - 7 @a,, a b ,  9 .. 52bp - t i- (a 1 I - * 3 a n )  

which again contradicts the choice of 52,. 
This completes the proof. 

PREDICATE CALCULUS WITH EQUALITY, WITH k TYPES OF OBJECTS 

A language 2 with k types of objects is said to be with equality if there 
is a distinguished binary relation symbol E of 9 (EsRg’). 

Let 9 be a language with equality and let 5 ,  y be two variables or con- 
stant symbols (of arbitrary types). The atomic formula E(5, y) will be 
written 5 = y, 

A realization of 9 with domains U,, .. ., U,, is said to be normal if the 
value of E in this realization is the diagonal of (U,  u...u Uk)’, that is the 
set of all pairs (u, zt) for U E  U, u...u U,. 

A closed formula F is said to be a normal cortsequertce of a set -cd of 
closed formulas of 9 if each normal realization which satisfies .d also 
satisfies F. If F is a normal consequence of &‘ we write s4 C: F, or where 
there can be no confusion d t F. A formula F of 9 is called a iiorrrial 
theorem if its closure is satisfied by all normal realizations of 9. 

1)  A x t ~ ) ( ~ ( ~ ) = x ~ ~ ) ) ,  for each integer i ( l  < i<k)  where x(’) is a variable of 
type i; 
2) Ax?’’ ... Ax?) A y y ’ )  ... r\yp’  

Let g3 be the set of the following formulas of 9 

[ (xy~)  = y U l )  1 ,, ... ,, x?) = yF)) --+ ( R ( ~ ~ I ) ,  ..., x.)) + ~ ( , , f j ”  , . . ., YV.’))] 

for each relation symbol R E  R$) (including E, when 11 = 2), and for each 
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sequence il, ..., in, j,, ..., j ,  of 2n integers between 1 and k, where x?'), ..., 
xyn), y y ' )  ..., y p )  are variables which are of types i,, ..., f , , , . f l ,  ..., j,, re- 
spectively ; 
3) Ax?%) ... ,Zx?) /\y?" ... A y P )  
[(X?') = y?') A * * A X?) = y?') + (s (xi'", . . . , x?') -+ s (yy'), , . , , Jl?'))] , 

for each relation symbol S of type (il, . , ., i,) where xy), y?) are variables 
of type i. 

The formulas of 8, are called the axioms of equality for  9. Let be 
a model of g3 with domains U,, ..., uk. 8z contains the formulas 

,,4,,$z) ,p ,y ( j i )  r\up) 
1 

Y'2'2'1, ~ ( ~ y i )  = ( j i )  A X(ziz) = Y$h) ,, Xyi) = X ( i z ) )  ~ Yyi) = Y l  2 

and so because 9 9 3  satisfies these formulas Em, the value of E in 9X, is the 
graph of an equivalence relation on U1 u...u u k .  

Hence we can derive a normal realization 'JJY from 1M1 as follows: the 
domains of 'JJ1' are the images of U,, ..., uk under the canonical map of 
U , u - - - u  U, into U~u...uU~l~~. If c is a constant symbol of 2 with 
value 5% in W, then its value in St?,' is the equivalence class of Em under 
the relation Em. 

If R is a relation symbol (an n-ary relation symbol or one of type 
(il,  ..., in)) whose value in 9X is Rn, its value Rtq, in (9l' is defined to 
be the image of R,  under the canonical map of U,u . . . uU,  into 

Just as in Chapter 3 we can prove that for each formula A of 9 which 
has, respectively, the values and K,,, in W and'331', & is closed under 
the equivalence relation Em and Amp is the image of A,, under the ca- 
nonical map of U, v...u uk into U, u*..u UklEm. 

In particular, if A is a closed formula of 9, A is satisfied in llJl if and 
only if it is satisfied in W. 

uz u'**u u k l ~ ~ '  

PROPOSITION 1 1 : A closed forrnzdla I; of Y is a normal consequence of a set 
J?J of closed formulas of 9 i f  and only it is a consequence of d u 8,. 
PROOF: Suppose F i s  a consequence of dub,. Every normal model of SZ 
satisfies gS and hence satisfies F. Therefore F is a normal consequence 
of d. 

Suppose F is not a consequence of d u E9. Then there i s  some model 
ilJl of d v 8, u (i 8'). The normal model '93' derived from W satisfies 



PREDICATE CALCULUS WITH SEVERAL TYPES OF OBJECTS 91 

d but does not satisfy F. Hence F is not a normal consequence of d. 
The Finiteness Theorem for the predicate calculus with k types of ob- 

jects, with equality, can be deduced from the Finiteness Theorem for 
predicate calculus without equality (Theorem 5 )  in the same way as in 
Chapter 3. For the record we state this result now. 

THEOREM 12: Let d be a set of closed formulas of the language 8 with 
equality such that every finite subset of d has a normal model, then ,d has 
a normal model. 

We also have an Interpolation Lemma for the predicate calculus with 
equality as follows: 

THEOREM 13 : Let F and G be two closed formulas of the language 8 with 
equality such that F A  G does not have a normal nzodel. Then there is a closed 
f o r ~ u I a  H of 2 whose re Ia t~o~  sy~~bo l s ,  odher than e~uaIit31, and types are 
common to F and G, and such that F+ H and G+ 1 Hare normal theorems. 
PROOF: Let 8 be the language of F A  G, the language built up from 
the symbols and types which are in F but not jn G, z2 the language built 
up from the symbols and types common to F and G and S3 the language 
built up from the symbols and types which are in G but not in F. 

It will be sufficient to show that the set 

d = ( F ,  G, &TI " 9 2 ,  €9," T3) 

(by a natural misuse of language we write g9 for the  onj junction of the 
formulas of 8,) does not have a model. For suppose that we have proved 
this. Then by the Interpolation Lemma (Theorem 8) applied to the for- 
mulas &,t ,, 92 A F, €,," 93 A G, there is a closed formula H of z2 such 
that 8,, " ,2, F t  H and b,, " 9 3 ,  G k i H and so F-, H and G-+ -I H are 
normal theorems. 

Suppose then that S J J l  is a model of d. Let V, be the union of the do- 
mains of !JJl of types which are in Y1, and let V,, V, be defined similarly 
for 32 and Z3.  We define a model 33l, of d which has the same domains 
as $%R as follows. 

If R is an n-ary relation symbol of ~ ( R E R S ) )  which has the value W, 
in $%TI then we let Wma, the value of R in !%Ill, be defined by 

R,, = ((q, ..., u&(V1 u V2 u V3)": (ul ,  .. ., un)€Wm and ul,  ..., u,, 

are all elements of V, u V, or all elements of V2 u V3). 

If S is a relation symbol of 9 of type (il, ..., in) which has the value 
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S, in 9X we put S,, =S,. (Note that the types i,, ..., in which occur in S 
either all belong to sp1 u 9, if S occurs in F or all belong to 92 v 9, if 
S occurs in G.  Hence if (u,, ..., u,)ES,,, u,, ..., u, either all belong to 
V, u V, or all belong to V, u V3.) Clearly 93 and 9Xl satisfy the same 
formulas of 9, u 9, and of S2 u Z3 and therefore 'B, is a model of a!. 

on V, u V , u  V, as follows: 
(x, y)eg  if and only if either 

ii) XE V,, ~ E V ,  and for some ZE V,, (x, Z ) E E ~ $  and (z, ~ ) E E , , ,  or 
iii) XE V,, ~ E V ,  and for some ZE V,, (x, z ) E E ~ ,  and (z,  Y)EE,~. 

It is clear that l? is reflexive and symmetric. On V, u V, it is identical 
with Em1 and hence is an equivalence relation on V, v V, since 9 X ,  satis- 
fies €zI ,,s2. Similarly, on V, u V, it is identical with ESrr and hence is an 
equivalence relation on V, u V, since 9Xl satisfies gs2 ,, 93. 

Now suppose ( x ,  y)Egand ( y ,  z)~,!? with, say x, ZE V, and YE V,. Then, 
by definition there exist u, U E  V, such that (x, u), (u, y ) ,  ( y ,  v) ,  (u, z)E~, , .  
Since Em* is an equivalence relation on V, u V,, (u, u)EE@!, and therefore 
(x, Z ) E E % ~  whence (x, Z ) E ~  because x, ZE V,. Therefore ,!?is indeed an 
equivalence relation on V. 

We define an equivalence relation 

i> ( X , . Y ) E E ~ ~ ,  or 

For each n-ary relation symbol R, ( R E R ~ ) ) ,  we define w by 

w=((u,, ..., ufl)€Vn: there is (u l ,  ..., v,)EV" with 
(u,, uJ, ..., (u,,, Y , ) E ~  and (v,, ..., v , ) ~ & , ) .  

For each relation symbol S of type (il, ..., in) we put 

s= S,, = 3m. 

The values of E and of the R and s" define a realization 9% of 9 which 
has the same domains as 'B and 9Xl. 

- u 

Y 

We show first that 93 satisfies g2. Suppose that (ul ,  ..., u , ) E ~ ,  where 
RERS', and that (ul, v l ) ,  ..., (unr v,)~l?.  Then, by the definition of k, 
there is (ui, ..., U;)ER,, with (u,, ui), ..., (u,, u,!J~g. But then (ui, ul), 
..., (=A, u,)EJ!? and so, by the definition of t?, ( v l ,  ..., V , ) E ~ .  This shows 
that the axioms for equality which involve the relation symbol R are satis- 
fied in 6. 

Now suppose that S is a relation symbol of type ( i l ,  ..., in) of 9. If, 
say, S occurs in F then all the types i,, ..., in are in 9, US,. Therefore 
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the axiom of equality for S is satisfied in Zm, since fm, satisfies 

and hence by fm because s"=S,,. 
uP2, - 

1 

Therefore 'JJ1 satisfies d,. 
Next we show that if RERS) and if u,, ..., u, are all in V, u V2 or all 

in V, u V, then 

(1) 
- 

(u l ,  ..., u,,)EK if arid only if ( u l ,  ..., u , ) E R ~ ,  . 

Suppose (ul ,  . . ., U,,)ER,~,  then certainly (u,, . . ., U,)E R .  Conversely 
suppose that (u,, ..., u,)EW and u,, ..., u,, are all in V, u V,. Then by the 
definition of there are u l ,  ..., u, such that (u I ,  u l ) ,  ..., (un, u , ) E ~  and 
(u,, ..,, u n ) ~ R p R I .  It follows that u l ,  ..., u, are either all in V, u V, or all in 

If u, ,  ..., u, are all in V, u V,, since (ui, u i ) ~ l ! ? ( l  6i<n) ,  (ui, U ~ ) E & ~  and 
therefore, because 91, satisfies rf3, u92, (ul ,  ..., U,)E&~.  

Now suppose that ulr . . ., u, are all in V2 LJ V3. If ui€ V3 (1 6 i6 n), as 
(ui, ui)~i!? there is some wi (possibly wi=ui) in V, such that (ui, ~ ~ ~ ~ ) € ~ , ,  

and (wi,  ui)fEw,. If uie V, we put wi=ui  and the same relations hold be- 
tween ui, ui and wE. Because fm, satisfies rf22u,3 and (ul,  ..., u, )ER,~  it 
follows that (w,,  ..., W , , ) E R ~ , .  Hence because Zm, satisfies gP2 uP2 we can 
deduce that (u,, ..., U , , ) E R ~ ~ .  This proves the result (1). 

Therefore & and 93, satisfy the same formulas of P1 u 9, and of 
9, LJ S3. Thus 6 satisfies F and G. Since @ satisfies d,, d, u (F,  G} 
has a model and so, by Proposition 9, F A  G has a normal model which 
contradicts our hypothesis. 

v2 v V3. 

This completes the proof of the Interpolation Lemma. 

LANGUAGES WITH k TYPES OF OBJECTS, WITH EQUALITY, WHICH HAVE 

In this section we restrict ourselves to giving definitions and stating 
results. The proofs of these results can be found in Exercise 1. 

A language 3 with k types of v ~ ~ ~ ~ b l e s ,  with equality and with f u n ~ t ~ o ~  
symbols is a language which consists of 
1) k infinite disjoint sets Y$"', ..., Yg'. The elements of V:) (1 6 i G k )  
are the variables of S of type i; 
2) for each integer n 2 0, a set R$) whose elements are called n-ary relation 
symbols (with variables of arbitrary type). We also assume that R$Z' is 

FUNCTION SYMBOLS 
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not empty and that it contains a distinguished element E which is called 
the identity or equality symbol; 
3) for each sequence (il, ..., in) of integers between I and k, a set S$,-.tinf 
whose elements are called relation symbols of type (il, ..., in); 
4) for each sequence (i, i,, ..., in) (a 2 0 )  of integers between 1 and k, a set 

whose elements are called function symbols of type (i, i,, . . ., in); 
il, ..., in are called the argument types, i the value type. 

We assume that these sets are pairwise disjoint. We define (see Exercise 
1) the set F of terms of 9. 9- is divided into k disjoint sets TI, ..., Yk. 
Ti( 1 < i ,< k) is the set of terms of (value) type i of 9. 

The atomic formulas of 9 are those which are of one of the following 
forms : 

i) R(t,, ..., t,) where RER$) and t i ,  ..., tn are terms of arbitrary type. 
In particular E(t , ,  t z )  is an atomic formula which will be written as t ,  = t ,  ; 

ii) S(tyi), ..., tp)) where S is a relation symbol of type (i l ,  ..., in) and 
t f i ) ,  . .., tp) are terms of types il, ..., in respectively. 

The set of formulas of 9 is the set of function schernas built up with 
the atomic formulas as 0-ary symbols, i and V x (for each XE Vg' u-.. u 
V$)) as unary symbols and v as the only binary symbol. 

1 )  k non-empty sets U,, ..., Uk. The set Ui(l G i 6 k )  is called the domain 
of the realization of type i; 
2) for each integer n 2 0 ,  a map R+R of R$) into g((t.7, u...u Uk)"). We 
insist that E is the identity relation on U,, ..., u k ,  that is the set of pairs 

3) for each sequence ( i , ,  ..., in) of integers between I and k a map S-+s  
*f S$l?...,iIll into P(Ui,  x e . 3  x U J ;  
4) for each sequence (i, it, ..., in> of integers between 1 and k a map f+f 
of Fgi',.*.9in' into the set of maps of U,, x ... x Uin into Ui. 

, in other words S is a map of 
'v$)U...u @into U, u. - -u  Uk such that S(V$))C Ui for each i(1 <i ,<k) .  
Then 6 can be extended in a natural way to a map, which we also denote 
by 6, of 9- into U,u . . .u  uk such that 6 ( Y i ) C U i  for each i(1 <i<k).  

The value F of a formula F in the realization of 9 we have just de- 

scribed is a sub-set of Ur3  x x UcT , which is defined by recursion on 
the length of F as follows: 
a) if F is an atomic formula it can be written R(t,, ..., fn)  where RE-@) 

( i , i ~ ,  ..., in) 
F ,  

We define a normal realization of 2' to consist of 

(24, 24) with U E u l  U***U uk; 

( 1 )  ( k )  

Let 6 be an element of U y s  x -.. x 

( 1 )  (k) 
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or R E S $ ~ - . , ~ " ) .  Then F, the value of F is defined by 
"(1) (k) 

P =  { 6 E U l 9  x... x u p  : (6( t1) ,  ..., d ( t , ) ) E R } ;  

b) F-=PuG, T F =  cF. - - 
V xF= the projection of F along the variable x, that is V xF is the set 

of those G E U T ~  x - - + x  Uk9 such that thereis s o m e 6 ~ € ~ w h i c h i s  equal 
to 6 for a11 variables of 2' except possibly x. 

We can define the notions of a formula F being satisfied by a realization 
'%@ and of a closed formula F being a consequence of a set a2 of closed 
formulas in the same way as at the beginning of this chapter. 

The Finiteness Theorem expressed as in Theorem 12, remains true for 
languages with function symbols. 

The Interpolation Lemma can be stated as 

(1) yfk i  

THEOREM 14: Let F and G be two closed formulas of a language 3 with k 
types of objects, with e ~ u a l ~ t ~ ~ ,  ~ ~ h i c h  contains funct io~ symbols~ If F A  G 
does not have a normal model there is a closed f o r ~ ~ l a  H of 23 whose re- 
lation symbois (other than =), function symbols and types are common to 
F and G and such that F+ H and G-* -1 N are normal theorems. (The types 
of aformula are, by definition, the types of the variables occurring in A 
and the value types of its function symbols.) 

The proof of this result can be found in Exercise 1. 

THE THEORY OF FINITE TYPES 

Let 5 be the smallest set which has the following properties: 
I )  OE2;  
2) if zl, ..., T,EZ then the ordered n-tuple (zl, ..., 7,J is also an element 
of 5. 

The elements of Z are called types. If z is a type other than 0 there are 
types T ~ ,  ..., z, such that z=(zl, ..., zn), since the set of all types which 
have this property satisfies conditions 1) and 2 )  above. Clearly the integer 
n and the types zl, ..., z, are uniquely determined by the type z. 

Given a type z there is an integer N> 0 which has the following prop- 
erty: each sequence zl, ..., 7 k  of types other than 0 which is such that 
zk = z and, for 1 6 i < k, ti  is one of the elements of the n-tuple making up 
zi+ I,  is of length k < N. This can be seen at once because the set of all 
types for which such an integer N exists satisfies the conditions 1) and 2)  
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above. The rank of z is the least integer N with this property. It follows 
that the rank of z is the length of the longest sequence zl, ..., z k  of types 
other than 0 such that Tk = z and, for 1 < i< k ,  zi is one of the elements of 
the n-tuple making up zi+l. 

Let r ( z )  be the rank of the type z which is not 0. We put r(O)=O. We 
have at once that if z=(zl, ..., zn) then r ( z )=  1 +sup { r  (ti), ..., r (zn) f .  

Given a type T we let [z], also called the transitive closure of z, be the 
smallest set with the following properties 

2') if z'=(zl, ..., z,)~[z] then zl, ..., zn are all elements of [z]. 
We can deduce from this definition that if z=(zl, ..., 7,) then [z] = 

[zl] u.-.u [zn] u {z>. For [z] has the two properties defining [zi] (1 < iQ n) 
and so [ z j ]  E [z] whence 

1') t € [ z ] ;  

[TJ u..*u [zn] u (z> P [z]. 

Conversely [zl] u.-.u [z,J u {z] has the two properties which define [z] 
and hence this set contains [z]. It therefore follows that [z] is a finite 
subset of 2, since by the remarks above the set of those z for which [z] 
is a finite subset of 2, has the properties 1) and 2) above and, being a 
subset of 2, must therefore be identical with 2. 

LEMMA 15: Each ~ ~ e ~ e n t  of [z] other than z has rank less than that of z. 

PROOF: This can be proved at once by induction on the rank of z. 

We define an order relation Q on 2 by putting ~ Q C T  if and only if 
~E[cT]. Clearly z ~ z .  If T<CT and o < z  then z and CT are of equal rank, 
but TG[O] and so ~ = c T .  If CT<T and T Q U  it can easily be shown by in- 
duction on the rank of u that CT 6 u. Hence < is indeed an order relation 
on 5. 

We consider a language 3 with equality (in the sense of Chapter 3, so 
that 9 has just objects of one type) and the family of sets ( V ' l : z ~ 2  and 
zfO], where the sets V' are infinite, pairwise disjoint and disjoint from 
9 and the set ( E , : z E ~  and z#O), where the E, are all different and are 
not elements of 3 u  U r Z O  V'. Let V o  be the set of variables of 2. 

For each type z we denote by 9, the language with several types of 
objects (in the sense which we have just explained) defined as follows: 

The types of the objects of 9' are the types CT such that o<z. The set 
of variables of type CT is V". 
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The function symbols of Y' are the function symbols of 2' regarded 

The relation symbols of 2' are 
1) the relation symbols of 9, except for the equality symbol, consid- 

ered as having all their variables of type 0, and the equality symbol of 
Y* is that of 9; and 

2) the symbols E, for of 0, crdz. If B = ( B ~ ,  .. . , on) then E, is an n+ 1-ary 
relation symbol of type (ox, ..., o,, o). 

The variables of type B will be denoted by xu, y" etc. 
Type 0 will also be called the type of the individuals; for instance, 

variables of type 0 will also be called individual variables. The type (0, 0, 
. . ., 0) (a sequence of n zeros) will also be called type of n-ary relations 
(unary for n = 1, binary for n = 2). Type (0) will be called the type of sets 
of individuals, type ((0)) the type of sets of sets of indi~duals  and so on. 

as having arguments and values of type 0. 

If (i = ((il, . . ., (7,) is a type 6 z, the formula 

E ,  (x;', . . .) x:, X U )  

which is an atomic formula of 9' will also be written as 

or as 
($, . . ., x:n) E, xu  

(X?l, . . ., x?) E x u .  

We call the language 2'' the lunguage of order z on 9. The formulas of 
9$ are called formulas oforder z of 9. Since if z < z' each formula of order 
z is also a formula of order 2' in this case 9's 2". The formulas of order 
0 of Y are the ordinary formulas of 2. 

For each type z we let Tr be the set of the following formulas of order z 

Ax" AXfl(Xb # 2) a, p < z, CI # p 
xa A y" ( A xf' . . . Ax: [(x';', . . . , x:) E xa ++ ($, . . . , x?) E y"] -+ xa = fa )  

for each type a <T, with a =(a1, ..., an). This formula is called the Axionz 
of E.xtensionality of order a. 

A realization of order z of Y or a z-realization is defined to be a normal 
realization of 9' which satisfies Tr. Hence a realization of order 0 of 2 
is a normal realization of 2 in the ordinary sense. The domains E,(o < z) 
of a realization of order z of Y are therefore disjoint. If B = ( B ~ ,  . . ., on) 
and UEE,, an element (a,, ..., a,) of E,, x .-- x E,,, such that (al ,  ..., a,, a )  
E&, where E, is the value of E ,  in the given realization, is called a "member" 
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of a in this realization. It follows from the Axioms of Extensionality that 
two elements a, b of E, which have the same “members” are identical. 

Let 93, be a realization of order z of Y, that is, a model of ,T, with 
domains E,(c < z). ClearIy if z‘ 4 z the restriction of 93, to the language 
2,’ and to the domains E,(a 6 7’) is a model of Y,,, and so is a realization 
$I&, of order z’ of 3. 

93,, is said to be the realization of order z’ induced by 93, and 93, is 
said to be built on %Itr,. In particular for z‘=O, we can see that each reali- 
zation of order z induces an ordinary realization of 9 on which it is built. 

THEOREM 16: Let 93 be a real~~ation of order 0 of 9. lirlere is a rea~ization 
93, of order z of 2 which is unique up to isomorphism and which is such that 

I )  93, is bu~lt on %; 
2) each realization fn, of order z of Y built on llJl can be embedded in 9Xz, 

so as to preserve each element of %I and the B, relations (for 0 6 z). 
%I, is called the principal realization of order z (or: principal z-realization) 
over fm. 
PROOF: Let E, be the domain of ‘92, We define the set E,, the domain of 
type a of fmr by recursion on the rank of LT as follows: 

If 5 = (LT~, . . . , a,), E, is a set which is disjoint from all the previously 
defined E, and of cardinal 2m where m is the cardinal of EUx x ... x E,,. 
Therefore there is a one-one map #, of E, onto B(E,,  x -.. x E,,). We let 
8,, the value of E, in W, be defined by 

8, = { (u17 ..., a , , u ) : a , ~ E , , ,  ..., u , E E , ~  and ( a ,  ,..., a,)~cp,(a)}. 

Thus the c‘members’7 of a e E ,  in fmr are the elements of 4,(a). Because 
Cp, is a one-one map the Axiom of Extensionality of order 5 is satisfied. 
We have therefore defined a realization 93, of Y of order z, built on 93 
if we let the function symbols of Y and the relation symbols other than 
the E, have the same values as in 93. 

Let !JlZ be a realization of order z of 3, built on % with domains 
F,(a < 7). Therefore E, = Fo. We define by recursion on the rank of LT a 
one-one map i,, of F, into E, as follows: io is the identity map. If cr=(a,, 
..., 0,) then for each ~ E F ,  let &={(al ,  ..., a,)EFut x ... xF,,:(al, ... ,a,) 
is a “member” of a in %,}. By the Axiom of Extensionality of order 0 the 
map at6 is a one-one map of F, into iF(Fs1 x I * -  x F,,). From the one-one 
maps ic1: F,,-tE,,, . .., iu,,:F,m-tE,n, which have already been defined we 
can derive a one-one map j of iF(F‘, x ... x Fan) into iF(E,, x ... x E,,J 
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We then put i,(a)= (it, ‘.j(&). i, is certainly one-one since it is the compo- 
sition of maps which are one-one. It follows from the definition that 
(al ,  . . ., a,) is a “member” of a in !RE if and only if (i,, (a1), . . ., iun(an>> is a 
“member” of i,(a) in 1171,. Hence the set of maps ia(g < z) together make 
up an embedding of ‘3, into !Dl, which preserves !Dl. Suppose now a 
realization !TIz satisfies the conditions established above for 1171,. Then, in 
particular, 9Jl, can be embedded in 8, by a mapping i preserving each 
element of 1171 and the relations 6, for a < ~ .  Suppose that 0, necessarily 
#0, is a type of least rank for which i does not preserve E,. Since !Dl, is 
embedded in ‘3, there is an element a of F, which is not the image of any 
element of E,. Suppose cr=(ol, ..., a,) and consider the “members” of a 
in %%: they are a-tuples (al, ..., a,,) where a1eFa,, ..., u,EF,,. Since 
crj<rr(l <j<n), i - ’ ( {u j ) )#@; by construction of ma, there is a b~E,:b= 
(it-’{(~-’a~,...,~- ‘u~):(al,...,an)isa “member” ofain’3J.Soaand i(b) 
have the same “members” in !JlT, yet are distinct. This contradicts the 
axiom of extensionality which %, is supposed to satisfy. Hence 9Jlz and 
‘3, are isomorphic, i.e., 1171, is unique, as required. 

Remark. A non-principal realization on !XA can in general be embedded 
in different ways in 1171,; e.g. if E= {a, b}, I;c0, = {{a} ) ,  Fico)) = { ({a}}} ,  
the following map F((o,t+ E(((,,,, is also an embedding: a+ a, b+ b;  
{a>+(a}, {{a>)-+{{a>, {b)) since ({a} ,  {b)) has no c‘members” in E;,, 
other than {a). 

The embedding i of into ‘23, defined in Theorem 16 is the oirly map 
j o f  U (F,:a<z} into u {E,:a<r) which satisfies the condit~ons: 

(i) j preserves each element of 1171, and the E,-relations (0 < z); 
(ii) the image j(U{F,:a<r}) is transitive in U{Ea:a6r}, where a 

subset S of U(E,:o<z} is called transitive whenever 

Cl€EuAO=(C1, ...,fS,,) h(U1,  ..., U , ) E ~ , U ~ ( a ~ E S A . . . A U , E ~ ) .  

The proof of uniqueness of !Dl, itself given in Theorem 16 also applies 

The embedding i of !JIz into %Jl, will be called canonical. 
Suppose now that the language 9 contains the single relation symbol 

= . A realization of 2’ therefore consists of a non-empty set E, say. We 
denote by 1171‘(E) the principal realization of order z built on E. W ( E )  
is called the ~ j e r a r c ~ y  of sim~Ze types < z on the set E. It follows from the 
previous theorem that each realization W ( E )  of order z built on E can be 
canonically embedded in W ( E ) .  

here. 
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Let E, F be two non-empty sets such that EE: F. Clearly each realization 
of order z built on E, and, in particular, the principal realization W ( E ) ,  
becomes a realization of order z built on F if its domain of type 0 is ex- 
tended to F, the domains of type Q < z(a#O) being left unchanged. Hence 
there is a canonical embedding of W ( E )  into W'(F)  which is an ex- 
tension of the identity map of E into F. Let W ( E )  and W ( F )  be two 
realizations of order z built on E and &'respectively. Then there are three 
canonical embeddings a, 8, y such that 

mr(E)  : W ( E )  5 W ( F )  

W(F)Arn(F) .  
W ( F )  is said to be a z-extension of W ( E )  if and only if y W ( F )  is an 

extension (in the sense of realizations of the language 2') of PaW(E).  
Now let E and P be two sets with a non-empty intersection, and let 

W(E) and W ( ~ )  be two realizations of order z built on E and F respec- 
tively. Since W ( E n F )  is the principal realization of order z built on 

The ~-in~e~section of W ( E )  and W ( F )  is the realization W ( E n  F )  built 
on E n F  which is defined as follows: W ( E n F )  is a ~ub-realization of 
W ( E n F )  and if c E W ( E n F )  then ( € W ( E n F )  if and only if 
& 5 ~ a , % " ( E )  and /325~az%rr(F).  

These two definitions can easily be extended to the general case of a 
language Y with a single type of variable. For suppose that W is a reali- 
zation of 2 with domain E. Then being given a realization of order 7 
built on '3.R is equivalent to being given W and a realization W ( E )  of 
order z built on E. Thus given two realizations and % of Y with 
domains E and F respectively let {W, W ( E ) )  and (%, W(F)) be two 
realizations of order z of 9 built on W and % respectively. We say that 
(%,W(F)) is a 7-extension of (W, W(E)) if and only if % is an extension 
of W and W ( F )  is a z-extension of W ( E ) .  

If W and !Jl agree on the set E n F ,  which we suppose is not empty 
(that is to say if the values of the relation and function symbols of 9 in 
W and !Jl agree on E n  F )  then W n % is a realization of 9 with domain 
E n F .  The z-intersec~ion of (W, ~ ( E ) )  and (%, W ( F ) )  is the realization 
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of order z of 9 built on an% which is given by the pair (mnm, 
W ( E n F ) )  where % ' ( E n F )  is the z-intersection of W(E)  and W ( F ) .  

Exercises 

1. Languages with k types of objects which have function symbols. 
i) Give a definition for the sets YI7 . . ., Fk of terms of 9, a language with 
k types of object which has function symbols. Prove that given any normal 

realization of 2' with domains Ul, ,.., U,, each element 6 of U y s  x .-. x 

U ,  9 can be extended in a unique manner to a map $ of .Ti into Ui (for 
each i, 1 < i < k )  in such a way that 

( 1 )  

y ( k )  

a) 8(x ( ' ) )  = 6 (x")) for each variable x('), and 
b) 8( f (ti, ..., t n ) ) = f ( 8 ( t l ) ,  ..., $(in)), for each function symbol f of 

type (i, i,, ..., i,) and each sequence t,, ..., tn of terms of types i l ,  ..., in 
respectively. 
ii) Let 8, be the language with k types of objects, with equality, which 
does not have any function symbob, whose relation symbols are those of 
9 together with a relation symbol S, of type (i, is,  ..., in) for each func- 
tion, symbol f of type (i, i,, ..., in) of 9 .We  assume that the symbols S, 
are all different and do not occur in 9. 

There corresponds to each formula F of So a formula F* of 9 which is 
obtained from 1; by substituting the atomic formula x(~ )  =f(x:"), . . . , x, (in)) 

for each occurrence of the atomic formula Sf(x(', xyl), . .., ~ 2 " ' )  in F. 
Show that for each formula @ of 9 there is an equivalent formula of 

2' which has the same relation symboIs (except perhaps equality), and 
the same function symbols and free variables, and the same types as @ 
and which is of the form F*. 
iii) Let .?Io be the set of the foliowing formulas of ,Lao 

p , x y ~ ) . , .  vx(O[s,(x(i), x ( i l )  1 3 * * * , X n  ( ""91 
and 
Ax:'" . .. ~ ~ f i i n )  p,\,(it p , p )  

[s,(x"', Xy'), ..., Xp ' )  A s,(y(i), X y ' ) ,  ..., Xfi'"') --f X(') = J"i'] 

for each function symbolf(of type (i, i l ,  ..., in)) of 9. 

and the realizations of 9 such that if 
Establish a one-one correspondence between the normal models of do 

is a realization of 9 and mo 
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is the corresponding model of do, for each closed formula F of 9,, F is 
satisfied by %lo if and only if F* is satisfied by %t. 

Deduce from this the Finiteness Theorem and the Interpolation Lemma 
for the language 9. 

Answer. 

i) Let Z be the set of function schemas built with the elements of 
V$"u...u V g )  as 0-ary symbols, and the elements of F$i13-.,in) as n-ary 
symbols, for each sequence (i, il, . . ., in) of integers between 1 and k. 

An element 5 of Z is said to be of type i if < E  V$) or if 5 begins with a 
function symbol f eFgil*--in),  that is with a function symbol whose val- 
ues are of type i. Let Zi be the set of schemas of type i. Then the Zi are 
pairwise disjoint and Z=Z, u-..uZk. 

We define a map J of Z into (0,1] by recursion on the length of the 
elements as follows: 

J ( x )  = 1, for each variable x of 9. 
If ~ E Z  and 5 is not a variable of 9, 5 can be written uniquely in the 

form f (t,, ..., t,) wherefcP$i"..,9i") and ti, ..., ~ , E Z .  We put J(t)=l 
if J(<, )=  ... =J(&,)= 1 and t,, ..., 5, are of types i l ,  ...) in, respectively. 
Otherwise J ( t )  = 0. 

Then we define the set fl of terms of 9 to be the set of elements ~ E Z  
such that J(g)= 1. The set Yi of terms (whose value is) of type i of 9 is 
Zi n Y. 

LEMMA: t is a term of type i if'and only if t is a variable of type i or 
t =f ( t , ,  . . . , t,) with ~ E F $  il*-.* , where t,, ..', t, are terms of types i,, ..., 
i,, respe~tively~ f, t,, ..., t ,  are u ~ i q ~ e l ~  de te rmi~~~d  in this latter case. 
PROOF: If t e f l i  then tG2 and so t is either a variable or can be written 
uniquely as t=f ( t l ,  ..., tn) with fcFgilv*. .*in)  and t,, ..., t,EZ. Since 
J(t)= 1, J( t l )= ... =J(t,)= 1 and so t,, .. ., t, are of types i,, . . ., i,,, re- 
spectively. 

Conversely, if t , ,  ..., t, are terms of types i l ,  ..., in respectively, then 
f (t, ,  ..., t,) i s  a term of type i because J (  f (tl, ...) t,))= 1. 

Now let be a realization of 9 with domains U,, ..., Uk. For each 
f E F g  il ,  ..., in) letfbethevalueoffin %l.fisamapofUi,x..- x UinintoUi. 
Suppose we are given a map 6 such that, for each i( 1 < i < k),  6( V$)) c Up 
We define the extension 8 of 6 to the set of terms by recursion on the 
length of the terms as follows: If t=f  ( t i ,  ..., t,) is a term of type i, with 
f E F $ i i 9  ..., id , t l E T i l ,  ..., &€Ti,,, then 8( t )=f (6( t1) ,  ..., S(t,)).  
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It can be seen at once that this extension of 6 is a map of Fi into Ui for 
each i( I < i< k )  which has the required properties. 

ii) Suppose that Q, is an atomic formula of 9 of the form x(')=tCi), 
where x ( ~ )  is a variable of type i, and t(') is a term of type i. We will prove, 
by induction on the length of t ( ' )  that it is equivalent to a formula of the 
form F". 

This is obvious if t( ' )  is of length 1 because then it is either a variable 
or a constant symbol of type i. If t( ' )  is of length h > l  then t(')= 

f ( t y ' ) ,  ..., tp)), with f € F $  i l , - , * i n )  and where ty'),  ..., tp) are terms of 
types il, . . . , i,, respectively. Then x(') = t ( ' )  is equivalent to 
vx(ii) ... vxp' [xy  =I p') A .'. A xfy = (in) A x ( i )  = f (xp", ,'., xp)] 

I 1 f, 

provided none of the variables xy'),  ..., x'$) occurs in any of the terms 
t,, ..., t,. (An analogous restriction is tacitly understood throughout the 
present exercise.) 

By hypothesis, xy l )= t i i i ) ,  ..., x?)= t?) are respectively equivalent to 
FT, ..., F,*. Thus ~ ( ~ ) = t ( ~ )  is equivalent to 

v ~ ( ~ l )  1 ... V x F ) [ F F  A ... A F,* ,-, xt i )  = f ( x y ' ) ,  ..., xp ' ) ]  

that is, to F", where F is the following formula of go, namely 

vXiil) ... vXi"'[[Fl A A F, A sf(X"), Xi i ' ) ,  ..., X ' > ' ) ] ,  

Further, the function symbols and types which occur in the formula 

f(xy'), . . ., ~3)). By the induction hypothesis they are those which occur 
in FT, ..., F,*, X ( ~ ) = ~ ( X Y ' ) ,  ..., x p ) )  and thus those which occur in F". 

Now let Q, be an arbitrary atomic formula of 9. Q, is R(tY1) ,  ..., tp'), 

say, where R is an n-ary relation symbol ( R E R ~ '  or RES$'*.-'") ) and 
ty l ) ,  ..., tp) are terms of types i,, ..., i, respectively. 

x!n)- (in), and x(i)= x ( ~ )  = t(" are those which occur in xy' )  = t y l ) ,  . . ., - t ,  

Then @ is equivalent to 

VX( i l )  vx2' [ x y l )  = $it) A *.* A xl,in, = p) A q x y l > ,  ,.., x!"')] . 
1 1 ... 

Since xy ' )  = t ?I), , . . , xp) = t F) are equivalent, respectively, to FT, . , ., F,*, 
Q, is equivalent to F" where F is the formula 

Vxf"' ... vxftl'n) [F,  A - - +  h F,, A R (XY'), ..., x, (id)] 

The relation symbols (except perhaps equality), the function symbols, 
the free variables and the types which occur in F* are clearly those of cP. 
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It can now be easily proved, by induction on the length of @, that each 
formula Qj of L? is equivalent to a formula F*, which has the same relation 
and function symbols and the same types as @. Indeed if r f ,  = v Q2 then, 
by the induction hypothesis, @, is equivalent to FT and G2 to FZ. Thus 
r f ,  is equivalent to FT v F: which is equivalent to (F ,  v F,)*. A similar 
proof works if @ = -1 @, 
iii) If "to is a normal model of do with domains U,,  . . ., U, and f is a 
function symbol of 9 of type ( i ,  i,, ...? in) then the value of S, in "to is 
the graph of a map of U,, x x Uin into Ui. Hence from "to we can derive 
a realization "t of 9 which has the same domains as "to. Clearly each 
realization of 23' can be obtained in this way and a formula F of 9, is 
satisfied by "to if and only if F* is satisfied by '28. 

Now let 9 be a set of closed formulas of 9 every finite subset of which 
has a model. By ii) we can assume that each formula of @ is of the form 
F* where F i s  a formula of 9,. Let 

8, = { F :  F * E B )  I 

If {Fl, ..., F,) is a finite subset of W,, (FT,  ..., F:) has, by hypothesis, 
some model and so do u {Fl, . . ., F,) has a model. Hence we can deduce 
from the Finiteness Theorem for the language 9, that du@, has a 
model "to. The realization 9R of 9 which corresponds to "to satisfies 
i@. This proves that the Finiteness Theorem holds for the language 9. 

Finally let Fand  G be two formulas of 2 such that F A  G does not have 
a model. There are two formulas A ,  B of 9, such that A* is equivalent 
to F and B* is equivalent to G,  and which have the same relation symbols 
(except possibly equality), the same function symbols and the same types 
as F, G respectively. 

Let dl be the set of those formulas of sf, which correspond to the 
function symbols which occur in A* and let d2 be the set of those for- 
mulas of d, corresponding to the function symbols which occur in B*. 
The types which occur in dl are those which occur in A*, and those of 
d2 are the same as those which are in B*. 

Since A* A B* does not have a model, ( A ,  B )  u dl u &if2 does not have 
one either. Therefore by the Interpolation Lemma for the language 9, 
with equality, applied to the two formulas sf, A A ,  d2 A B there is a for- 
mula H whose relation and function symbols and types are common to 
A and B which is such that 

d l , A i - N  and d 2 , 3 k 7 € € .  

or @ = Vx@, . 
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We can therefore deduce that A*kH* and B*k--iH* and thus that Ft H* 
and Gt--1 H*. 

This proves the Interpolation Lemma for the language 9. 

2, The relation between the methods of Chapters 2 and 5. 
Let 9 be a language with a single type of variable without function 

symbols. We define Sd and fz as described in this chapter. Let F be a 
formula of Y and let P be the universal formula constructed from F in 
the way explained in Chapter 2. Thus the language of E is that of F aug- 
mented by a finite number of function symbols 41, ..., 4,. 

Define functions f,, ..., f, on d which have the same number of argu- 
ments as (bl, ..., (b,, respectively, such that, for any canonical model 9JI 
of SZ, if %U is extended to a realization 9JI’ of 9(@) by giving ( p i  the value 

f i (  1 < i < m) then F and $ have the same values in %U’. 

Answer. We assume that F is a (not necessarily closed) prenex formula of 
3 and we define. the set {fit ..., f,> by recursion on the number of 
quantifiers in F. If F is quantifier free F= P and there is nothing to prove. 

If F= i\xG(x, x,, ...) x,) then #= AxG. Thus the function symbols 
(b,, ...¶ 4, of Pare  those of e and we give them the values fit ...¶ f, which 
have already been defined for G. Since, by hypothesis, G and G have the 
same value in 9JI’ so too do F and P. 

If F= V x G ( x ,  xl, ..., x,), let (p,, ..., (b, be the function symbols which 
occur in G. Then 

where (b is a new n-ary function symbol. We give (b1, ..., 4, the values 
fl, ..., f, which have already been defined for G and we define f by 

P = G(+XI ... x,, XI ,  .. ., x,) 

f (a19 * * * t a n )  = &(G(x, a,, * * . , a n ) )  

(a1, ...) a n > € P e ( f  (a1, ...) a,), a,, ..., a,)& 

for a,, . . . , an€ A .  
Then - - 

*(f(al ,  . .* ,an),  a,, . * . , a , ) ~ e  
since F=G. Thus 

(a,, ..., a,)€ P o  9JI satisfies G(a, a,, .. ., a,) 

where a==&(G(x, a,, ..., a,)). Therefore, because 9JI is a model of SZ 

(a,, ..., a,)E&9JI satisfies VxG(x, a,, ..., a,) 

and so P=F. 
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3. Refinements of the Uniformity Theorem (for predicate calculus with 
several types of variables). 

a) Show that if Vx, ... Vx,A ,  where A is quantifier free, is a theorem 
then there is a sequence (t:", ..., t t ' )  (1 didp) of ra-tuples of terms of the 
language of A such that Al v ..* v A ,  is a theorem, where A i  is obtained 
by replacing xj in A by ty'. 

b) Deduce that if 4' is a set of universal prenex formulas and E is an 
existential formula which is a consequence of %' then there is a quantifier 
free formula, A ,  such that 4' k A and A t E. 

c) Deduce from b) that if qL is a set of universal formulas, U is a uni- 
versal formula and 4i- U-E then there is a quantifier free formula B 
such that 4 b  U-B and %tBt*E. 

Aaswer. 

a) We consider the canonical realizations of the language 9 of A. The 
domain of type p in such a realization is the set of all those terms of type 
p of 9 whose variables occur free in A .  (If A does not contain any free 
variables or individual constants, we consider instead all the terms of 
type p of 9 u  {u} where u is some given variable.) Since V x ,  ... Vx,A is 
a theorem, the set of formulas {i A,, i A 2 ,  ...} does not have a canonical 
model. Hence it follows from the Finiteness Theorem for propositional 
calculus that there is some integer q such that 7 A ,  A - - I  A i A,  does not 
have a model and therefore A ,  v 

b) By the Finiteness Theorem there is a finite subset '?LI of 4' such that 
42, k E. The conjunction of the formulas of g1 is equivalent to a universal 
formula, say Ay, ... Ay,C. Suppose that E= Vz, ... Vz,D (C and D are 
both quantifier free). Then Vyl ... Vyr Vz, ... V z , ( i C v D )  is a theorem. 
Therefore by (a) there is some formula of 9 of the form 

v A,  is a theorem. 

1 Cl v e.9 v 7 C, v D ,  v v D, 

whichisatheorem.LetAbeD,v...vD,.SinceAy, ... AY,C~C,A. . .AC, 
and 4' t Ayl ... Ay,C it follows that W t D, v I . .  v D,. On the other hand 
since Di i- E for each i( 1 < i < q), D, v 1.- v L), t E. 

c) It is enough to consider closed formulas V,  the case of free variables 
being reduced to this one by use of constants not occurring in %u{ U } .  Let 
%' = % u { U } .  Then 4' t E and so by (b) there is a quantifier free formula 
B such that 4' t B  and B k E. Therefore % t U 4  B, and so %! t U-B and 
'?LkB-E. 
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4. Refinements of the Interpolation Lemma (for a language 2 with 
several types of variables). 

Let U= Ax, ... r\xmAand E= Vyl ... Vy,B, where Aand Bare quanti- 
fier free formulas of 3, such that none of the variables yi occurs in A 
and none of the variables xi occurs in B. 

a) Deduce from the Interpolation Lemma for the proposit~onal calculus 
on the atomic formulas of 2 that if E+ U is a theorem, there is a quanti- 
fier free formula C such that E+ C and C+ U are theorems. 

b) Let F and G be two closed formulas of 9 such that F+G is a theo- 
rem, Deduce from the Interpolation Lemma (Theorem 8) that there is a 
formula H such that P ( H ) c L ? ( F ) n L ? ( G )  and both F+H and H-+G 
are theorems. 

c) Find two formulas F and G of a language with equality such that 
F+G is a theorem, G does not contain = but there is no formula H not 
containing = such that Y ( H )  c L?(F) n 8 ( G )  and both F+G and G-t H 
are theorems. 

Answer. 

a) Since I- E 4  U, the formula B-A is a theorem in the sense of propo- 
sitional calculus. Therefore there is a formula C built up from the atomic 
formulas common to A and B such that both B+C and C 4 A  are theo- 
rems. C only contains variables which are common to A and B and so, 
in particular, C does not contain any of the variables xi nor any of the 
variables yj. It follows therefore that both Vy Vy,B-,C and C-, 
/”\ x1 . . . A xmA are theorems, which is the desired result. (On the other hand 
if A and B are arbitrary formulas of the predicate calculus such that 
FB-tA, there is not necessarily a formula C containing only variables 
common to A and B such that t B+C and I- C+A; take, for example 
A=VyR(y)and B=R(x).) 

b) Theorem 8 shows that there is a formula H which only contains 
relation symbols and types common to F and G such that t- F+H and 
f- H+G; it leaves open the possibility that H contains a constant c which 
does not occur in F, say. Let u be a variable which does not occur in H 
and I€’ be the result of replacing c by u in H ;  then tF+AuH’  and 
f- p,uH’+G. Similarly if H contains a constant c which does not occur in 
G then t F4 V uH’ and f- V uH’+G. So in this way we can get rid of all 
the constants in H which do not occur in both F and G.  

c) Let F be the formula A x  Ay(x=y). If P is a unary relation symbol 
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the formula F-+( AxP(x)  v A x i P ( x ) )  is a theorem. A formula H satis- 
fying the conditions of c) would have to be either T or I, which is 
absurd. 

5. We define the pure type of order n, denoted by n, for each integer n 2 0, 
by recursion as follows : 0 is the type of individuals and n + 1 = (n). If n > 0 
and G E [ ~ ]  then CT is also a pure type of order m<n, and E, is a binary 
relation symbol, If 9 is a first order language with a single type of variable 
which does not contain the symbol E, and n> 1 we let 9: be the language 
which is obtained from 3 by adding the binary relation symbol E and 
types of variables ( l ,2 ,  ..., n). (The language 9" is the language 9' de- 
scribed in this chapter for z = n.) 

For each integer n>O, we denote by S, (the axiom for the hierarchy 
of simp2e pure types Gn), the conjunction of the following formulas of 
9,,, where i, j,<n and the variables x, y ,  z are of types i, j ,  jrespectively; 
for each pair (i, j )  : 

A x  A y i ( x = y )  where i<j(simple types), 
A x  A Y - I ( x E ~ )  where j # i +  1, A y  ~ z [ A x ( x ~ j ~ t + x & z ) + y = z ]  where 

j =  i+ 1 (axiom of extensionality). 
We denote by S," the conjunction of S,, and the formulas A y V x ( x ~ y )  

for i<n  and j =  i+ 1 (each empty set is of type 0). 
We denote by C,, (the axiom for the hierarchy of c~muIa t i~e  types G n), 

the conjunction of the following formulas, where the variables x ,  y ,  z are 
of types i, j ,  k respectively; for each pair (i, j): 

Ax Ay Vz(x&y+z=x) where j < i  and j = k + l ,  
A y [  Ax[x~y-+Vz(z=x)]+Vxf~=y)] wherej=i+ 1 and i = k +  I,  
Ax A y i ( x c y )  wherej=O, 
Ax A y [ A z ( z e x ~ z ~ y ) + x = y ]  where k+l=maxf i , j ) .  
a) Show how to transform 

(i) an n-realization of 9" into a model of S,, and conversely, 
(ii) a model of S," into a model of C,, but not conversely. 

b) (Ordered pairs of simple types.) For each pair ( i , j )  of integers find 
a formula Mij containing three free variables of types i, j ,  k respectively, 
where k= 2 + max fi, j f ,  such that &fij is a one-one map of Ei x E j  into Ek, 
in any realization of 9 : ( k  6 n) which satisfies C, and the conjunction of 
the formulas A x  A y Vz A u [UEZ-(U = x v u = y)]  (existence of pairs), 
where x ,  y ,  u are of type r ,  z is of type r - t  1 (< n) and r<k.  

From this derive a one-one map of Ei, x a * .  x Ei, into Ek where k = 
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N p  <il , . . ., i,> and Np is defined by 
N,<i , ,  i2)=2+max{i,, i2] and 
N p + l ( i l ,  ip9 ip+1)=N2<i1, Np<i27 * " 9  i p + l > > .  

c) (The reduction of finite types to pure types.) Let N be the function 
defined on the set of finite types with pure types as values given by 

N ( 0 )  = 0, 

N(a) = 1 f N(cr,) if c r =  (ol), 

N(a) = 1 + Nn < N(a,) ,  **-,N(on)> 7 

if cr=(criy cr,) and N, is the function defined in b) above. For each 
finite type o=(a,, ..., an) find a formula Mu of 9(a,Nfa)f containing two 
free variables such that in each principal realization of Y'(cr~ [TI, 
N ( ~ ) E [ z ] ) ,  i@, is a one-one map of the domain E, into EN(a).  

Answer. 
a)(i) We take for x ~ y  the disjunction of the following formulas of I?p" 

V X i  VXi+i (x=Xi  A Y = X i + l  A X i & i + l X i + i )  

where O<i+  1 <n and x is a variable of type i. 
If E,, ,.., En are the domains of a realization of 2, then (Eo, ..., En, E )  

is a model of S,. Conversely, given a model (Eo, ..., En, E )  of Sn we can 
derive an n-realization of 3" by putting x q + ,  y = x ~ y  provided that x is 
a variable of type i and y a variable of type i + 1. 

(ii) Let (E,,, . . ., En, E )  be a model of S,". Let E,"= E,, and for m < n - 1 
let E ~ + , = E ~ U E , , , + ~ .  Then for i<j, EfcEj".  Also it follows from the 
axiom for simple types that for each 2~ E i ( m  < n) there is a unique integer 
i, which we will denote by ~ ( 3 )  such that REE,. It follows from S," that 
if ZEY then ~ ( ~ ) = ~ ( ~ ) + l  and also that if X#p and either p(A?)#O or 
,u(F)fO then there is some 8 with ~(~)<max{B(3)7 p ( j ) ]  such that TEZ 
if and only if i 8Ej. These facts show that %R= (I$, . . ., E,C, E) is a model 

It should be noted that if (EA, ..., Ei, E) is a model of C, it is not neces- 
sarily the case that (Ed, E;-E& ..., Ei--EAPl,  E )  is a model of S,,. For 
example, let n = 2, Eh = (a}, El ={a, {a ) }  and E; = {a, {a} ,  {a, {a ) ) }  ; let 
1 = E. Then E; -Ei = { (a ] )  and Ei - E; = ({a, ( a ] ] )  and (a, { a ] }  has 
an "eiementf7 which is in E; -J?; and one which is in EA. This contradicts 
the axiom Ax  ~ y i ( ~ & y )  of S,, where x is a variable of type 0 and y is 
of type 2. 

of c,. 
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b) The desired map is obtained by modifying the usual representation 
of ordered pairs in set theory in such a way that the pairs are of simple 
pure types. Put (x) '=x  and ( x > " ~ ~ = { { x ) " } .  If 2+Ei and Z j € E j  we put 
<zi, Z j )  = {(Zi)m-'+l, { ( X j ) m - j ,  (Xi)"-')), where m =max(i,j), Clearly 
both {Zi}"'-i+l and { { X j } " ' - j ,  are of type m+ 1 and so (ai, Z j )  is 
of type m + 2. (Clearly, in general, there is no one-one map of Ei x Ei into 
Ei+l, for example if Ei is of cardinal 3 then card (Ei x Ei)=9, but card 
(Ei+l) < 8: this shows why the type of the ordered pair must exceed by 
at least 2 the types of its elements.) 

This map can be defined in the language 2': and in a uniform way for 
each realization of L?:, that is to say, by means of the same formula Mij .  
If xi, x j ,  x k  are the variables of Mi,, the fact that Mi, defines a one-one 
map, that is that 

and 
A x !  A x j  A x ,  A X L ( M i j ( X i 7  X j ,  X k )  A M i j ( X i ,  X j ,  X @ + X k  = X ; )  

Axi  A X ;  A x j  A X )  A X k ( M i j ( X i 9  x j ,  XJ A 

h f i j  (xj ,  x ) ,  X k )  --f (xi = xi x j  = x ) ) )  

is a consequence of the axiom of extensionality (for the formula Mij).  We 
need the axiom for the existence of pairs only to show that Mij does define 
a map, i.e. that Axi Axj VxkMi j (x i ,  xj, xk). 

The extension to ordered p-tuples can be carried out in the classical 
way. 

c) We define the maps B, by recursion on the length of G. If CT =0, Mu 
is the identity map, if G = ( ~ T ~ ,  ..., r ~ ~ )  and ZcE, then we put n,,(X)= 
{(iGgI(2J, ..., B,n(3fl)): (ifl, ..., Xn)BbZ} .  It can easily be seen that the 
types of the values of &fu are those given by the function N .  As in b) the 
fact that BU is one-one can be deduced from the axiom of extensionality. 
We do not analyse the conditions needed which ensure that BU is a map. 

6. We adopt the notation established in the previous exercise. For each 
integer n 2 0 we define, by recursion Q;(E) (the set of hereditarily finite 
sets on E of cumulative type n), as follows: 

q ( E )  = E 

B;+'(E) is the union ofCFi;(E) with the set of allfinite subsets ofB;(E). 
Clearly the realization W;(S) of 2: which has domains B;(E), ..., 

Q;(E) and in which E is the restriction of the membership relation to 
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B;(E), is a model of C, provided that no element ofQ;(~)  is a member 
of any element of E. Similarly if Qo(E)=E and Bm*'(E)=Qm(E)w 
P ( W ( E ) )  (where 9' denotes the power set operation), then the realization 
'rrJZ"(E) of 9; which has domainsBO(E), ..., B"(E)  and in which c: is the 
restriction of the membership relation to W ( E )  is also a model of C,. 

a) Show that if no eIement of B"(E) is a member of any element of E 
then W'(E) is, up to isomorphism, the smallest n-model of C, which has 
E as domain of type 0 and which satisfies the axioms 

A X  Ay V Z  ,A,U[UC.Z++(USX v u = y)] (Z) 

where x, y ,  z ,  u are of types i, j ,  k, I respectively with k = max { i, j +  I )  and 
I <  k < n. (Closure with respect to the operation x u ( y } . )  

b) Show that the formulas 

A x  A Y  V z Au [UC.Z++(UEX A u # y)] 

where x, y ,  z, u are of types i, j ,  k, E respectively with k -I- 1 = Z= max {i, j }  
<n are not consequences of the axioms (C) of a) even though they are 
satisfied in ~ ~ ( E ) .  

c) Let '%I;= '%I;(E) and %RZ='%Iz(E). Let '$3 be the set of all those 
finite subsets of E which contain an even number of elements. Find three 
formulas PI, Pz, P3, each containing a single free variable of type 1 such 
that PI defines !$3 in both '%I; and %I2, Pz defines !$3 in %R; but not in 11J1' 
and P3 defines '$3 in %R2 but not in '%I;. 

Answer. 

a) This can easily be proved by induction on n, using the fact that if 
R&,T+'(E) then 2={jjl, . . . ,y,}  with jji&7(l G i i s ) .  Note that the 
hypothesis means this: the elements of E have no 'members' in B"(E), 
i.e., they are 'individuals' as far as Q"(E) is concerned. 

b) Let E be an infinite set. We obtain a realization of 2': if we take 
( E )  uQj(E) as the domain of type I and BF((E)  u~~(~)) as the domain 
of type mi-  1, This realization satisfies the axioms (C) of a), but E -  (2}  
is not in the domain of type 1 for any REE. 

c) To make things clearer we will augment the language 9: by adding 
the constant symbol 0 of type 0, the unary function symbol (1 whose 
variable is of type 0 and value is of type 1 (we write ( y>  for ( ) y )  and the 
binary function symbols u, - whose variables and values are of type 1 
(we write x u z  for uxz and x-z for -xz). 
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These new function symbols are defined in %$ and %Rz by the following 

A X  AJ, [X = ( Y )  * A u (uex * u = Y ) ]  

where u is of type 0, 

A X  A Z  /\v[v = x w z+-+ /\Y(YEV++[YEX v Y E Z ] ) ]  

A X  A Z  AV[v = X - Z++ AY(Y&U+-+[y&X: A 7 y&Z])]  

where u is of type 1. 
By the axiom of extensionality a model % of C2 can be extended in 

at most one way to a model %TI+ of the axioms in the augmented language 
above (and %TI can be so extended if the corresponding existential axioms 
V z A y i  ( v e x )  etc. hold in %R). It follows from this that we can eliminate 
the new symbols by using the following method (which works for all 
“explicitly defined” symbols ; cf. Exercise 1 (ii)). 

With each formula A of the augmented language we associate a formula 
A -  of 2: such that the value of A in %R+ is the same as the value of A -  
in %. To do this it is suficient to replace first each atomic formula t&tl 
in A by a formula 

\JU VU(U = t A z1 = t ,  A u&v) 

where u and u are variables of the same types as t and t ,  which do not 
occur in A ,  and then replace the equations u= t and u= t ,  by their defi- 
nitions (as given by the axioms above). 

We let P, be the formula of 2; with free variable y of type 1 which is 
obtained by eliminating the cew symbols from the formula 

y = 8  v A X [ ( Y E X  A A u  Aa Ab[(a  # b A m u  A beu A U E X ) +  

((a - {a>)  - { b } )  E X ] )  4 @ E X ] .  

Let A be a closed formula of 2’: which is true in %R2 but not in %TI;. 
Then we let Pz = ( i A + P , )  and P3 =(A+P,) .  (Since E is infinite one such 
A is, for example, the formula of 2: corresponding to  the formula 

VX[@EX h AU f \a /\b(a # b A i m u  A i beu A M E X ) ~  

(tu w (4) (bI)&Xl.)  
Finally we note that Dedekind’s method for defining gives us the 

following formula for P3 : 

17 X [(@EX A A Za A a A b [(a # b A 7 U&U A 7 b&U A u&x) + 

((u LJ (.>I u PI) 8x1) -.+ Y&Xl . 



THE HIERARCHY OF FINITE TYPES 113 

7. We use the notation which was established in the preceding exercise. 
In particular, x is a variable of type 2, y, u and w are of type 1 and u and 
b are of type 0. 

We write y n u  for y - ( y - u ) .  
a) Find formulas N ( y ,  u), A (y ,  u, w), S(y, u )  of 9: which define in 9lly) 

i) f and U are finite sets of type 1 of the same cardinal ( j =  i), 
and in !Y.R(2) the relations 

ii) ;+;=@, 
and iii) z=1= (y)’, respectively. 

b) Deduce from a) a correspondence which associates with each for- 
mula Pof  first order arithmetic (Chapter 3 ,  Exercise 2)  a formula F, of 2’: 
such that F is true in the standard model if and only if F, is true in ‘Jn$?), 
and also if and only if F, is true in !W2). 

Answer. 

a) We write y ,  for y - u  and u1 for U-y, so y, n u1 =8. Let y‘ and u‘ 
be variables of type 1 ; then we let N(y ,  u) be the formula 

A X [ ( @ E X A  A y  Au’ / “ \ V b [ ( y ‘ c y l  A U ‘ C U ,  A ~ ’ U U ’ E X A ~ E ~ ~ A  

A 7 m y ’ )  +. (beu, A i bEu‘ A y’ u ( a ]  u u’ u  EX)]) -+ y ,  u u1 E X ] .  

It can be verified that N ( y ,  u) is satisfied if and only if j and U are finite 
and ) = u .  

ii) We take for A ( y ,  u, w )  

VY, V U i ( Y 1  n u 1  = 0 A N ( Y ,  Y , )  A N ( u ,  Mi) A N ( w ,  Yi u.1)) .  

Note that if f and ii are finite Vy ,  V u, (yl n u1 =8 A N(y ,  y l> A N(u, ul)) 
is always satisfied. 

iii) We use the fact that (m + 1)2 = m2 + 2m f 1 and we take for S(y, u) 
the formula 

VYl  VUI [Yi 
AY‘ A U ’  

VY” ’\/u”[A(y’,J”,J’”) A A ( U ’ U ( f f ) , y ” , 2 4 ” )  A U “ C  U 1 ] ) - + Y I U U ~ E X ) ] .  

= 8 A N ( Y ,  YI)  A N ( u ,  #I )  A A x ( 8 E X  A 

{(y’ C Y ,  A 2.4‘ E U 1  A Y ‘ U  U’&X A UEY, A ‘1 f fEY’) -+ 

b) Given the formula F we first replace the atomic formulas y * u =  w by 
(y  + u)2 -(y - u)’ = w + M T  + w + w and then by 

v Y ’ [ ( y ’ +  U = Y  V J” f Y = U) A ( y  + U ) 2  = W f W f W f  W] 
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and finally we replace y = u by N ( y ,  u), y -t u = w by A ( y ,  u, w) and y z  = u 
by S(y ,  u). The formula F‘ that is obtained in this way is true in ‘$I; with 
E infinite if and onIy if I: is true in the standard model of arithmetic. If 
we restrict each variable of type 1, say y ,  by the condition N(y ,  y )  we 
obtain the desired formula F,. (A formal definition of “E is infinite” is 
A y V a (-1 m y )  where y is of type 1 and a i s  of type 0.) 

This exercise “reduces” arithmetic to the theory of the pure types 0,1,2. 
We note that by using the el i~inat ion of quantifiers for atomic Boolean 

rings (Chapter 4, Exercise 7(a)(ii)) we can show that the theory of types 0 
and 1 ,  formulated in the language 9: does not admit a similar reduction. 



CHAPTER 6 

DEFINABILITY 

This chapter concerns certain relations which hold between the formulas of a 
language and their realizations, i.e. the sets defined by these formulas in the real- 
izations of the language. 

As we have already seen (e.g. Chapter 2, Exercise 5 on universal formulas in 
prenex normal form), the syntactic structure of a formula A can imply certain 
obvious relations between its realizationsdn in different models W; at least if the 
models considered are “comparable” in an obvious sense. Conversely one can ask 
the following question. Iffor all models 9R of a set d of formulas, the realizations 
dm have these relations between each other, is A then (equivalent in all models 
of I to) a formula of the syntactic structure in question? The two chief cases 
concern, first, formulas which are stable for extensions and, second, those which 
are invariant for so-called z-realizations of theories of finite types which were 
introduced in the previous chapter. 

In order to compare models which are not trivially “comparable” we investigate 
those objects which “occur” in all models of a set I of formulas, for examples, 
the rational numbers in all the c o ~ u t a t i v e  fields of characteristic zero. The 
concept which is necessary for a precise formulation is that of a structure being 
rigidly contained in all models of I. The main result which we establish is 
that each element of such a structure can be defined by particularly simple 
formulas. 

The last two theorems characterize those subsets of such a “common part” 
which are definable in all models of d, two concepts of definability being treated. 
These characterizations take on an especially simple form when applied to models 
of the theory of types (Exercise 7). These two concepts of definability allow the 
generalization of a number of classical results on recursively enumerable sets of 
axioms to arbitrary sets of axioms. See KREISEL, Model-theoretic invariants : 
applications to recursive and hyperarithmetic operations, in: The Theory of 
Models (North-Holland Publ. Co., Amsterdam, 1965) pp. 190-205, and Mos- 
TOWSKI, Representability of sets in formal systems, Proceedings of Symposia in 
Pure Mathematics, Vol. 5 (American Mathematical Society, 1962) pp. 29-48. 

We consider languages 9 with equality and p types of variables. Am is 
the value of the formula A in the realization 9Jl of 3. If !“ is also a 
realization of 3 and !” is an extension of %R, then, by a natural abuse 
of language, we will use %R n Am. to denote the restriction of to 93, 
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that is, we write %I2 n Am, for Am. n(Ey2”’ x ... x Ey2e‘p’ ) where Ei is the 
domain of 9.R of type i. 

Let 3’ be a language with equality which is of the same similarity class 
as 9, that is 9” has also p types of variables and there i s  a 1-1 mapping 
of V,, R,, S,, F, onto V9,, R,,, Sp, F9, respectively which keeps the types 
of the variables and the types and numbers of arguments unaltered. We 
assume that 3” is disjoint from 9. Then Ext (9, 9’) is the set of the 
following formulas of 9 u 3’ 

i) 

ii) 

Axj Vxi (xj = xi) (1 < j < p) xj is of type j , 

Ax, ... AX, Ax; ... ~ x ; [ ( x ,  = x i  A + - *  A x n = xJ n) 

+ ( R  (xl, . . .) x,) -+ R‘ (xi, . . .) xk))] 
for all relational symbols R of B and all sequences xl, ..., x, admissible 
for R, 

iii) Ax, ... Ax, Ax; ... /\xL[(xl = x i  A . . . A  x, = x;) 
+ f ( x ,  ,..., x,)=ft(X; ,..., x;)] 

for each function symbol f of 3 and all sequences x I ,  ..., x, admissible 
for f. 

LEMMA 1 : The realization %I’ of 3’ is an extension of the realization 9.R of 
2 i f  and only i f  the sum 9.R@ %I’ is a real~~ation o f 2  u 5? which satisfies 
Ext(B, 9’). 

The formula A of 9 is called (@, &’)-invariant if for each model 9X of 
@ and each pair ErJt’, 92” of models of a! such that W, W are extensions 
of %I we have Iu1 n A,,= %I n Kw. (Note that, in general, Am# 92 n Am, 
since 9.R is not assumed to be a model of d ;  see Exercise 1(7).) (An appli- 
cation of the notion of (%, &)-invariance is given in Exercise 1.) 

Throughout this chapter, for any formula A of 9, A’ will denote the 
image of A under the mapping above of B onto 9’. 

Let xI, . . ., x, be the free variables of A ;  then we have 

THEOREM 2. INVARIANCE THEOREM: If A is (%, d)-invariant there is a for- 
mula B such t ~ ~ t  

d ’ u @ u E x t ( B a , 2 i ? ‘ j t  Ax, . . .  Ax, Ax;... Ax; 
[(XI = X i  A . . - A  X,=:X;)-+(A‘t-,B)]. 
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PROOF: We add the constants a,, ..., a,, where ai is of the same type as 
xi,  and introduce a language L P  which is of the same similarity class as 
2 and which is disjoint from 9 and 2”. Since A is (%, &‘)-invariant the set 

d’ u &’” u % u Ext (9,g‘) u Ext (9,Y’) u 
u {A’, --I A”, a, = a; A A a, = a; A a, = a‘; A + + *  A a, = a%> 

does not have any model. Separating the languages 9‘ and 9‘ we there- 
fore have that the set 

[ d ’ u  42u E x t ( 9 , 9 ‘ ) u  {A‘ A a ,  = a; A I .+  A a,, = a:>] u 
u [d”u%uEExt (3 ,  p ) u  {i A” A a l  = a’; A S . .  A a, = a: ] ]  

has no model. Therefore, by the Interpolation Lemma, there is a formula 
Y of 9 u  { a l ,  ..., a,} such that 

d’ u % u Ext (9,2”) u ( a l  = a; A -- ’  A a,, = a;] t A’ Y 
and 

d ” u  %u E x t ( 9 , P )  u ( a l  = a; A - - + A  a, = a;] t-A’’-t--~ Y. 

Thus if we replace ai by xi in Y for 1 < i 6 n we obtain a formula B such 
that, identifying the languages 9‘ and 9“, 

d ’ u 4 2 u E x t ( 9 , 9 ’ ) t  A x  ,... Ax, /\xi ... A X ;  

[(Xi = X i  A * - *  A X, = XL) -+ (A’@ B ) ] .  
This completes the proof. 

We recall that a formula A of the language 2 is said to be existential 
(universal) if it is in prenex normal form and all the quantifiers that occur 
in it are existential (universal) quantifiers. 

The formula A is said to be &‘-stable for extensions if for each pair 
!.Ill, ‘Bl’ of models of d such that %’ is an extension of !.Ill we have that 
2% c 2%’ n 2%. In particular, if A is a closed formula which is true in 
then it is also true in %’. 

A is said to be d-s table  for restrictions if -I A is &-stable for extensions. 
Clearly, given any set of formulas d, all existential formulas are d- 

stable forextensions and alluniversal formulas are &-stable for restrictions. 

THEOREM 3: Let & be a set of closed formulas of 9 and let A and B be two 
.formulas of 9 such that, for each pair !.Ill, $%?I‘ of models of & with %‘I‘ an 
extension of !.Ill, we have Km. n !.Ills&. Then there is a universal formula 
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U o f 8  such that 
d F A + U  and d I - U - + B .  

PROOF: (See also Exercise 2.) Let 2' be the language obtained by adding 
to 3 a set Vf. of new constant symbols of the same cardinal as 9. Let 
A t ,  3, be the two formulas of Y that are obtained by replacing each of 
the free variables of A and B by an element of VL. Let V, be the (possibly 
empty) set of the constants that we have used to form A,  and B,. Let % be 
the set of universal formulas of 8 u  Vf. which are consequences of du {A,). 

It will be sufficient to show that d u 9 LJ {i B,} does not have a model. 
For suppose that we have proved this. Then, by the Finiteness Theorem, 
there is a finite subset eF of 92 such that & u %, I- B, and so d F UF+B,, 
where U, is the conjunction of the formulas in eF. But UF is equivalent 
to a universal formula and on the other hand by the definition of the set 
%, dt-A-+U,. Note also, by Chapter 2, Exercise 5, if a set of formulas 
of 8 has a model, it also has a model of the same cardinal as 9, and we 
need only consider such models. 

Suppose that & u 42 u { i B,f has a model 1)3E and let 9' be the diagram 
of %R written with the symbols of Vi. Then each model %R' of d u 9' is, 
up to isomorphism, an extension of %R. Since B, is not satisfied in 92, by 
the hypothesis of the Theorem, A ,  is not satisfied in W, and so &'u 9' t- 
i As. Hence for some finite subset 2; of T, whose conjunction i s  D;, say, 
du9;t-i A ,  and therefore ~t-D;;-+iA,,orequivalently,~t-A1-,1D;?. 

Let Dg be the formula obtained by replacing the constants of Vi- V, 
which occur in Db by variables, say y l ,  ..., y,, of 8. Then the universal 
formula Ay, . . . A y n i  Ds of 9 u V, is a consequence of & u (A ,  1 and so 
is in This shows that d u % u  9' does not have a model because 
A y1 . . . A yn i Dg-+ i DL is a theorem. Therefore d u "21 u 9 v { i B,) 
does not have a model. But since 9Jl was chosen arbitrarily this proves 
that sll u % u { i B, 1 is  inconsistent. 

COROLLARY: I f  the formula C is &-stable there is an existential formula E 
such that &'I- C-E. 
PROOF: If C is &-stable I C satisfies the hypothesis of Theorem 3 when 
A=B=TC.  

The next Theorem and Exercises 3,4 treat the modifications of the 
notions of invariance and stability appropriate to z-models (Chapter 5). 

We use the notation of Chapter 5. If 0, a'~[z], by a natural misuse of 
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language, we will write ( T E ~  if CT' = (al, . . ., a,) and for some i( 1 < i< n) 
(T = ai, and we will write y~ex"' for the formula (for j #  i) 

... v y j  ... [(y';' ... yp' ... y?) &,.X"']. 

Let the language 2: be of the same similarity type as 9'. 

LEMMA 4. W, is a z-extension of W ifand only  if^^ W~ is a ~-reaZ~zation 
of the language 2?'v9, which satisfies the set of formulas z-Ext(9,  $PI), 
i.e., the set consisting of Ext (9, zl) together with the formulas 

AX" AX; Ay: vy"'X" = x'; A Y<ElX';  y" ' = d y 

for aZZ a, (T'E [TI. 
We use the following notation. If c, a ' ~  [z] we write y " ~  [x'"] (read, " y  

belongs to the transitive closure of x") for the disjunction of the formulas 

 EX"' and V xir . . . V xi,, ( y U ~ x i l e f . .  EX~,,EX"') 

for each finite sequence (il, ..., in,) which satisfies the condition that 
(TEZ~~E. . .EZ~,~E~ ' ,  xij being a variable of type zi,. 

A formula A with free variables xi, .. ., x, is said to be d -  z-invariant 
if, for each pair %R, %W of z-models of d whose restrictions to E,, n Ed 
are equal, and for each n-tuple (Ti, ..., 2,) belonging to  the z-intersection 
of W and '$3' either (Ti, ..., R,)EK in both models or in neither. 

A prenex formula Qlyl .. . QkykBl, where B,  is quantifier free is said to 
be restricted (to [xy], ..., [x:]) if B, is of the form 

(Yi lEft ir l  A * ' . A  Y i , E [ t i p l ) ~ ( y j ~ & C ~ j ~ l  / \ * * . A  YjsECsj,l A C) 

where i,, ..., i,, are the indices of the universal quantifiers and j , ,  .. ., j q  
those of the existential quantifiers and the t, and sj are either individual 
constants or variables. 

THEOREM 5 :  A i s  d-z-invariant ifand only i f  there is a restrictedformula 
B such that .d I- (A-B). 
PROOF: We consider the three languages: .LZ0 which is the restriction of 
2'' to the types in [zi]u.~.u[zn], to which the n constant symbols 
a;', . .., a: have been added; 21 is obtained by replacing E in 9 by a new 
symbol and each type of variable x, y, . . ., by x x ,  y i ,  . . . ; 2'2 is obtained 
in  the same way except that E is replaced by &2 and the variables by x2, y 2 . .  . . 
We write z'=(zl, ..., zn). 
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If A is d - z-invariant 

dl  u -022 u Z' - Ext (20,9,) u 2' - Ext (go, 9 2 )  U 

u TC(a:, ...? a;) t- Al (al, ..., a,) t - ,A2(al ,  ..., a,) 

where TC(a;', ..., a:) is the set of formulas which expresses in the lan- 
guage that each element belongs to the transitive closure of the union 

u... wa:-, i.e. for each o~[z~]u . -~u[z , ] ,  it contains the formula 

Separating the different types of variables and applying the Interpo- 
nJF(JfE[a;'] v * ' *  v f E p 7 7 J ) .  

lation Lemma we obtain a formula 3' of the language 2, such that 

d 1 ~ ~ ' -  EXt(So,Yl)UTCt-A1*B' 

dz u 7' - Ext ( 2 o , L ? z )  u TC t. B' * A z ,  
and 

The set of formulas z' - Ext (So, 9,) u TC is satisfied when E is replaced 
and each variable x of So by xlgl [uy] v ... v xlel  [a:]. Hence 3' by 

has the desired form 3. 
Clearly all formulas 3 of this form are z-invariant. 
The theorems which follow are about classes of models which are not 

"comparable". (For simplicity, we consider languages without function 
symbols.) 

The realization 1132 of the language B is said to be rigidly contained in 
!JX' if there is a unique map 4' of the domains El ,  ..., E,, of '93 into 
E; u...vEJ,suchthat 

# ' (E i )  c: E: (1 < i < P); 
for each constant c of 9, t$'(C) = E', and for each relational symbol R of 
Y the image of R under #' is that induced by R'(E', R' are respectively, 
the values of c and R in W). 
%l is said to be rigidly contained in the class of models of a set d of 

formulas of 9 if 1132 is rigidly contained in each model of d. We do not 
assume that 1132 is a model of d. 

A formula A,  with a single free variable x, is called a definition in 1132 
of the element u (aeEi), if a is the only element which satisfies A, that is 

by a natural misuse of language we will say A= (a>. 
Let M =El u . . . u E,,. 
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THEOREM 6: I f  W is rigidly contained in the class of all models of d then 
for each element a of the domain of 'YX there is an existential formula A,  
of 2 such that 

(i) A,  d e ~ n e ~  the element a in W and, in each model IrJz' of d, A,  d e ~ n e s  

(ii) for  each n-ary relation symbol R of 2 and for each n-tuple (al, . . ., a,) 
#'(a); 

of individuals of %Jl, (al, ..., a , ) d  ifand only if 

dt- Ax,...  AXn[(Aal(xl) A * . . A  Aan(X,))~R(Xl, . . . ,X")] 

and (al ,  ..., a,)$R if and only if 

dk Ax, ... A X , [ ( A , , ( X ~ )  r \ * - * h  A,"(X,})+T R(x1, ..., x,)]. 
PROOF: We adjoin to the language 9 the constants c:, c,"(aeM), which 
are all distinct (and do not occur in 2). Let 9', 9" be the diagrams of 
%Jl written in terms of these constants. Then in each model W' of a?' there 
is a unique way of satisfying g' because %Jl is rigidly contained in the 
class of all models of d,  namely by putting ?:=@(a) for each acM.  
Similarly for any model W" of d there is a unique way of satisfying W ,  
namely by putting 2; = #"(a) for each aEM. Therefore du 9' u 9' 
kci = c:. Hence, by the Finiteness Theorem, there are finite subsets 91, 
53; of 9' and 9" such that d u 9; u k c: = c,". Let B, be the conjunc- 
tion of the formulas which are obtained when the constants of 9;, other 
than ci, are replaced by variables xi (1 d i < h) and the constants of 53; are 
replaced by variables y j (  1 dj 6 k )  and c, is replaced by the variable x. If 
we put A ,  = V x1 . . . V x, V y1 . . . V ykB, we have that V xA,(x) is a con- 
sequence of d since in any model W' of &, 9; v 2Ji is satisfied by 
putting 4 = ?: = #'(b) for each b. The uniqueness of the element satisfying 
A,(.) is a consequence of the fact that du gl v 9; I- ci=c%. Thus we 
have proved (i). 

The completeness result (ii) comes from the fact that #'(I?) is, by 
hypothesis, the value of R in W'. 
COROLLARY: Under the conditions of Theorem 6, Ijr to 9 is added the set 
of constants c, for a€ M,  each model %It' of sl can be extended in a unique 
way to a model of d u d l ,  where &l=(Ax(A , (x )+-+x=c , ) :aEM) .  In 
this model Fa= #'(a). In particular d u dl k i (c, = cb) for all pairs a, b 
of distinct elements of M. 

Let 3 be a language with k types of objects which contains an infinite 
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set C of constants c (each having the same type i(1 G iGk)).  A normal 
realization of 2’ is called a C-realization if E=c for each CEC. A subset 
X of C is said to be dejnable in a C-realization %R of 2’ if there is a for- 
mula A(x ,  x, ,  ..., x,) where x is of type i, and elements a,, ..., a, of M 
of the same types as xl, ...? x, such that 

X =  (aEM:aisoftypeiand(a,a,, ..., a,)EK) 

and A is the value of A (x. xl, ..., x,) in %I. 

realizations by the formula 
Clearly if X is finite, say X =  (c,, ..., c,], then X is definable in all C- 

x = c 1  v . . - v x = c , .  

We have the following converse result: 

THEOREM 7 : If d is a set of closed formulas of B which has a C-model and 
X is definable in all C-models of d, then X is finite. 
PROOF: We note first that a C-realization is, up to isomorphism, a reali- 
zation in which the values of distinct elements of C are distinct. Therefore 
we assume that &’ contains all the formulas c #  c’ for pairs (c, c’)  of dis- 
tinct elements of c. 

We construct the language LT4 and the set of formulas 52 in the way 
explained in Chapter 5. The cardinal of the set of those formulas of D 
which contain a single free variable, of type i, is equal to the cardinal of 
2’&. Hence there is an enumeration of this set in the form 

( A  (x) : j < card . 
Let d: = d W  Q(d) and for j > 0 

1. let d; = u dh+ u ((E(AjX) # c): C€C) 
h< j 

(where the map E was defined on p. 83) if this set has a normal model, and 

2. d; = U dh+, otherwise. 
h< j 

If case 2 applies, then by the Finiteness Theorem, there is a finite set 
(c,,, ..., cn j )  of elements of C such that 

sz (d) u u d; t A x  [ A  j (x) -+ (x = c,, v * * * v x = c,,)] . 
h <  j 

By Corollary 5.6, if d has a model then U(d;:j<card(3’iP,)) has a 
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canonical model. In any such model, if j satisfies the first condition then 
Aj $ C and so Aj # X or A j  is empty, while if j satisfies the second con- 
dition Aj is finite. 

This completes the proof. 

A subset X of C is said to be definable-on C in a C-realization 9% of 3 
if there is a formula A(x ,  xl, ..., x,), where x is of type i, and there are 
elements a,, ..., a, of M of the same types as x l ,  ..., x,, such that 

X = ( c ~ C : ( c ,  a, ,..., a,)EA]. 

Clearly Xis definable-on C in all C-realizations of a set d if there is a 
formula A(x) ,  with a single free variable, such that for all CEC 

C E X  ifandonlyif d t - A ( c )  

c # X  if and only if dt--I A(c). 

We have the following partial converse result (cf. Exercise 8 for a simpli- 
fication in the case of denumerable languages and Exercise 9 for a coun- 
terexample to the full converse): 

and 

THEOREM 8 : Let d be a set of closedform~las of 3 which has a C-model 
and let c:, c:, . . . be co~sfants not in 8. If Xc C is de~nable-on C in all C- 
models of d, then there is a formula A ( x ,  xl, ..., x,) of Y and a family 
{ F j ( x l ,  ..., x,):j<A} of formulas of Y such thatcarddccard 8, carddG 
card C, the set 

d u {Fj(CT, ..., ci):”j < A> 

has a model and for all CEC 
CEX if and only iffor some j < n  

d t-  AX^ . . . A X ,  [ F ~  (x~, . . . , x,) -+ A (c, xl ,  . . . , x,)] 
and c$ X if and only if for some j <  ,I 

d t- Axl, . . ., Ax, [Fj(xl, . . ., x,) -+ i A (c,  xl,  . . ., x,)] . 

(This theorem can also be deduced from a more general result about 
infinite formulas given in the next chapter.) 
PROOF: We will show that if the conclusion of this Theorem does not hold 
then Xis not definable in a certain class of canonical models. Let ( A j ( x > )  
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be an enumeration, possibly transfinite, of all the formulas of Z4 with a 
single free variable (of type i). Since each formula is a finite string of 
symbols and Z4 is infinite the set of these formulas has the same cardinal 
as ZA. We can assume therefore thatj<card(=YJ. 

1. For all k < j  the set of formulas 
Let .d: = d. For j > O  we consider the two cases: 

{ A , ( c ) : c d ,  C € X )  u {l A, (c ) : cEC,  c & X >  

is not a consequence of Uh<, d: u Q  

U h c j  dhfusZ; then let c = c j  and put 
a) either there is a C E X  such that Aj(c) is not a consequence of 

d; = u d: u {l A j ( c j ) } ;  
h <  j 

b) or there is no such c, and hence there is a c $ X  such that i Aj (c )  is 
not a consequence of U,,< dhf u Q; let c=c j  and put 

d; = u d; u (Aj (Cj ) f .  
h c  j 

2. If case 1 does not apply we put d; = Us< dhf . 
By the Corollary to the Finiteness Theorem ujd; has a canonical 

model '$3. If case 1 applies then X# Aj n C so if this case applies for all 
j ,  X is not definable-on C in '33 since each element of %TI has a name in 
2,. Therefore there is some I <  card(Z4) such that the set 

{A, (+CEC,  C € X ]  u {l A,(c):cEC, c $ X )  

is a consequence of Q u  d u  {Aj(cj): j<I) ,  where AJ= i A j  if la) applies 
and AJ=Aj if Ib) applies. 

Therefore for each CEC, { A , ( c ) : c € X )  u { i A , ( c ) : c $ X )  is a conse- 
quence of Du&'u{(AJ(cj): j~lc) for some finite set I, of ordinals less 
than A. Let c:, ..., c,* be the elements of A which occur in A ,  and 
a,, ..., a, those which occur in { A J ( c j ) : j ~ I c > .  Then, by Lemma 5.10, 

( ~ > ( c ~ ) : j E ~ , j  u d u  isa, A - - -  A earn A e,,, A ... A O,*,,] 

t (A , (c ) : cEX)u{ lA , (C) :C&X) .  

Let A" be the conjunction of the AJ(cj)  for jd" ,  and let F,(cT, ..., c:) 
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be obtained by replacing the elements of A ,  other than cT, ..., c,* in 

by new variables and binding these by existential quantifiers. Then, for 
each c, either d k (FC+ A (c)) or d I- (F,+ i A ,  (c)). Clearly the cardinal of 
the set of formulas (F , :CEC)  ,<card C; and it is bounded by the cardinal 
of the collection of finite subsets of { A j ( c j ) : j < ~ ) u { % , : a ~ A ,  a occurs in 

Exercises 

Ai(Cj),j < A>. 

1. We adopt the notation used in the Invariance Theorem. Prove the 
fol~owing results: 

a) If A is a formula which is (42, &’)-invariant and if all universal 
(prenex) formulas which are consequences of &‘ are also consequences of 
@ then the formulas B and 13 (of the Invariance Theorem) are both 
@-stable. 

b) If the conditions of a) hold and 4 is a set of universal formulas then 
there is a quantifier free formula C such that @ t- B-C (see e)). 

c) If 4 is the set of universal formulas which are consequences of d 
and if every existential formula is (4, &’)-invariant then for each formula 
A there is a quantifier free formula B such that .d t. A-B. 

d) Deduce from c) the followi~g “algebraic” criteria for the elimination 
of quantifiers : 

(i) for algebraically closed fields: if there is an algebraically closed 
field, which contains the commutative field C and in which the existential 
formula F is true, then F is true in the algebraic closure of C; 

(ii) similarly for real closed fields, with C an ordered field. 
e) Find a counter-example to the result b) if the requirement that 4 

f )  Find sets of axioms a?‘ and a, and a formula A which is (@, d)-, 
contains onIy universal formulas is omitted. 

but not (4, @)-invariant. 

Answer. 

a) By the Embedding Theorem, each model of 42 can be embedded in 
a model of a?. Suppose then that %I2 and ‘B, are two models of 4, with 
!I?& an extension of 93. Let %I’ be an extension of 9B1 which is a model 
of d. If B is true in m. A is true in m’ since m’ is an extension of m 
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which is a model of d. Consequently B is true in Wl since ‘W is also 
an extension of W,. Similarly for i B. 

b) By Theorem 3, there are existential formulas C ,  and C, such that 
% k B-Cl and @ k i  B-C2 since B and i B are @-stable. Hence, by the 
Finiteness Theorem, there is a finite subset of @ such that @, f- (C,* 
i C,). Let C,  = V x ,  . . . V x,D, and C, = V yI . . . V ylD,, where D, and Dz 
are quantifier free, and let U,, the conjunction of the formulas in q,, be 
Az, ... Az,U. Then the existential formula 

v z ,  ... V Z m 7  u v v x ,  ... Vx,D, v VY, *.’ VYPZ 

is a theorem. Hence, by the Uniformity Theorem (Chapter 3), there is a 
sequence s?’, ..., s, , , ..., t ,  , I , ... u c ,  (1 < i , < p )  of terms such that fi) t (Q  ti) *(it 

W i U(uf), ..., u?’) v W D,  (ty’, ..., tti’) v W D, (sf), ..., sf)) 
1 s i S p  1 S i S p  1 5 i S p  

is a theorem of the propositional calculus. Let C be the disjunction 
W D, ($I, . . ., sf)), then @ t C v C,  and so @ t 1 C,+C. But C-* CI 

is a theorem and % i- C, -P C, and therefore @ i- Ct+C,. 
c) Since d k %, we have, by b), that d t B-C. However in order to be 

able to eliminate quantifiers it is sufficient that we can eliminate them from 
existential formulas (see Chapter 4). 

d) (i) Let d be the set of axioms for an algebra~cally closed field (see 
Chapter 4, Section IV), and let be the set of axioms for a commutative 
field. Clearly dt  % and we know that every commutative field can be 
embedded in an algebraically closed field, namely its algebraic closure. 
Therefore the hypotheses of c) are satisfied. 

(ii) Let d be the set of axioms for a real closed field (see Chapter 4, 
Section V) and let ??l be the set of axioms for an ordered field. (If in place 
of % we took the set W of axioms for a real field, which are orderable 
fields, c) would apply but this would not give a useful criterion since there 
are existential formulas which are not (W, &)-invariant.) 

e) Let 2 be the language of Chapter 4, Exercise 2 and let @ be the set 
of axioms (a, 6, c, e) of Chapter 4, Section 111. Then aIthough %‘k 2/x* 
1(21x+1) and 2(x is existential it is not equivalent to any quantifier 
free formula of 2. 

f )  Let @ and &‘ be as in d) (ii), and A true in all real closed fields, but 

l S i Q p  
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not in all ordered fieids, e.g. A = V x(xz = 2). (This shows that one cannot 
take A itself for B in Theorem 2.) 

2. We adopt the notation used in Theorem 3. 
Prove Theorem 3 by using the Interpolation Lemma (Chapter 5).  

Answer. Let E x t i ( 9 , Y )  be the conjunction of the universal formulas 

Ax, ... Ax, Ax; ... Ax; 
[(XI = X i  A * * * / \  X, = X A ) - + ( R ( X , ,  ..., X,)t ,R’(X;,  ..., XA))] 

for all n-ary relation symbols R of Y and all admissible sequences 
xi, ..., x, for R, and the universal formulas 

Ax, ... A x, Ax; ... Ax; 
[(XI = X i  A * * *  A X, = XA) -+ (f ( X i ,  .. ., X,) = f’ (Xi,  .. ., Xh))] 

for all n-ary function symbols f of Y and all admissible sequences 
x,, ..., x, forf. 

Suppose A and B together contain less than m free variables. Let Zi 
be the language obtained from 9 by adding the new individual constants 
u,(r<m) and 9; be the language obtained from 9’ by adding the new 
constants aL(r<nz). Let A, and B, be the formulas of 2, obtained 
by substituting the constants a, for the free variables in A and B. 
Let Ext, (gi, 9;) be the formula Ext, (9,9’) A a, =a; A -.. A am=ak. 

Let C be the formula 

AY, VY;(YI = Y ; )  i-2 A AY, ~ / Y ~ ~ Y p  = Yb) 

where y j  is a variable of type j (  I < j < p ) .  
By the hypothesis of Theorem 3, 

d u  d’ u {C A Ext , (S i ,  9;) A A;}  t B,. 

Therefore, by the Finiteness Theorem, there are formulas AF, A; which 
are finite  onj junctions of formulas of d and d‘ such that 

A ~ A A ;  ~ C ~ E x t ( 6 2 3 , , Z i ) k A ~ + B ~ ,  

As a consequence 

2; A 4 A AYl(41  (Y l )  = Y d  A - * *  A A Y p ( 4 p ( Y p )  = Y P )  A 

A Ext ( 9 1 ,  2;) I- (-7 AVF v B,)  
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in the notation of Chapter 3. We note that the function symbols of 
A”;, d; which do not occur in 9, u 9; only have as arguments or values 
variables of the types of 9’ and those of i A F  v &, only those of 3. The 
function symbols #j(l < j < p )  have as arguments variables of the types 
of 9 and values of the types of 9’. Hence each term of Yi v 9l whose 
value is a type of 3 is also a term of zl. 

There is a quantifier free formula Y of 9, (see Exercise 3 of Chapter 
5) such that 

A ” 

(0 4 A a; A ~ Y l ( ~ l ( Y 1 )  = Y J  A + ’ . A  ~ Y ~ ( # ~ ( ~ ~ ~ )  = Y P b  

and 
A Ext, (Z1, 2’;) t V 

(ii) v I-1 AVF v 23,. 

Since Vdoes not contain any symbols of &-3 it follows from (i) that 

gs”ufA; ACAExt,(8,diB;))kV. 

Identifying the languages 9 and 3’ we also have that d I - A , - + K  
Similarly d t- V-+B,. The proof is completed by eliminating the symbols 
of zl - 3l in V by using universal quantifiers of 9. 

” 

3. We use the notation of the theory of types (Chapter 5). 
The formula A = Q l x l  . . . QmxmA1 ( A ,  quantifier-free) is called a Z-for- 

mula if A ,  is of the form (xi,ctl A A xik&tk)-+B where i, < . . a  <ik  are the 
indices of the variables occurring in the universal quanti~ers of A and 
where t j (  1 <j<  k )  is either x,, for some n < ij or one of the constants of A ,  
or a free variable of A .  A Z-formula is therefore an existential formula if 
one ignores each variable x j ( j < m )  which is restricted to a variable x,, 
with n<j, or to a constant of A ,  or a free variable of A .  

a) Show that each Z-formula is stable for r-extensions. 
b) Find a T-realization %I and an extension % of %I such that % is a 

z-realization, but not a z-extension of %I. Hence find a &formula A which 
is not stable for all extensions of 2R. 

c) Let d be a set of formulas such that if %I and %I’ are r-models of 
d and if the z-intersection of %R and 2R’ is not empty then the latter is 
also a T-model of d. Show that if A and i A  are both d-stable for 
r-extensions then A is d-z-invariant. Deduce that if C,  and C, are two 
C-formulas such that dk C1-i C, then C,  and C, are d-z-invariant. 
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Answer. 

a) is obvious. (Note that the converse of a) is also true. But the proof 

b) Let z = (0) and let 3’ be the language with a single unary relation 
= { { a } } ,  

which uses Lemma 4 and the method of Exercise 2 is complicated.) 

symbol P. We let % be the realization of 9 given by Eo = {a), 
a d ,  where Eo and E(,) are the domains of %. 

Let 3 be the extension of % given by 

u* = {a, bf, a f b;  q o ,  = E(0) 
a € J i ,  b@, UE {a} ,  bE (a), 

where Z is the value of qo) in %. 
If we take for A the formula V do) Az(ze~(~) - -+P(z ) ) ,  A is a C-formula 

which is satisfied in 9.X. but not in %. 
c) Let %lo be the ?-intersection of 9.X. and W, and let 2i be in the do- 

main of type zi of %,, for i<n. Since % is a z-extension of %&, either 
. . . , 2,) satisfies A in both W,, and in 9.X. or in neither, and similarly 

for %, and %’. Hence A is &‘---invariant. Since, by Exercise 3b) all 
C-formulas are stable for z-extensions C1 and C ,  are &-stable. Since 
dt- (i C,)-C,, C1 and i C, are both &‘-stable for extensions, and hence 
a.f- z-invariant. 

4. We modify the notation of Theorem 5 and Exercise 3 as follows. We 
say that W’ is a (+)-extension of W if (3;n and W’ are z-realizations, %’ 
is a z-extension of % and E, = E& A formula A is said to be d - (TO)>- 
invarian~ if for each pair %R, W of z-models of d such that Eo =Ei  and 
the restrictions of %, W to Eo are equal we have that for each n-tuple 

..., 2,) with fi~Er,nE,i(l <i<n), (Z1, ..., ~,,)EK, if and only if 
(,ti, . . ., X,)E&. The notions of a Z-(zo)-formula and of a (To)-restricted 
formula are obtained from those of a C-formula and of a restricted for- 
mula by dropping all restriction on the variables of type 0. 

a) Show that A is &-(zo)-invariant if and only if there is a formula B 
which is (zo)-restricted to the free variables of A such that I;e t- A t t B .  

b) Let ,d be a set of closed formulas of Pr such that given any z-model 
llJl of & the principal extension of % (see Chapter 5) is also a z-model 
of ,d. Show that if A and i A are both &’-stable for (to)-extensions they 
are also d -  (zO)-invariant. 

c) Find a counter-example to b) when “(zo)” is replaced by “z”. 
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Answer. 

a) Let xy, ..., x? be the free variables of A which are not of type 0. 
We introduce the languages Pi, .S;, 9; and the type T', and add the 
constants a:, ..., a: (as in Lemma 4) and we let TCo(aY, ..., a:), or just 
TC,, be the conjunction of the formulas 

r\y"(y'&[a;'] v . * *  v y"&[U:-J) (i # 0 .  

Since A is (zo)-invariant we have 
dl u &z u z - Ekt(90, LF1) u z - Ext(Po, 9 2 )  U 

u { A x ~  V X ~ ( X ~ = X : ) ~  AX: VXO(XO=X~))UTCO~- 
Al (at,', '.., a:)*Az(a;', ..', a?). 

By the ~n~erpoiation Lemma we can find a formula B', of 9o such that 
d 1 u ~ - ~ x t ( ~ ~ , ~ ~ ) u ~ r \ x y  V x o ( x o = ~ ~ ) ~ ~ T C 0 t A l ~ B ' .  

If we replace E by el and all the variables x of 9, of type other than 
zero by X ~ E ~  [a?] v -.. v xlcl [a:], B' takes the desired form. The converse 
is obvious. 

b) Let %TI and '$I' be two z-models of & such that Eo = Ei and the re- 
strictions of YJI and %TI' to Eo are equal. It follows that the principal 
extensions of ZrJl and %TI' are also equal. If %TIo is their common principal 
extension and if Ti(  1 < i < n) belongs to their T-intersection, Zi is also in 
the domain of type zi of 93,. Since %TI, is a (TO)-extension of %TI and A 
and iAareboth&-(~~)-stable, (&, ..., Z , , ) ~ K ~ i f a n d  onlyif(i?,, ..., 3,) 
eAZOlo, a similar result holds for the pair %TI', 1IJE,. Therefore A is d - (TO)- 
invariant. 

c) Let dl be the set of formulas of the first order language 22 such 
that there are two existential formulas A, ,  A ,  containing the single vari- 
able x and dl t A,++--I Az, but such that there is no quantifier free for- 
mula A' with dl i- Al*A', as in Example I@). We consider the language 
59') and we put 

d = d, u { A d 0 )  Ay"' [ i\z0(zsx++zey) + x = y ] ]  . 
Clearly d satisfies the hypothesis of b). We put A =  p ,x(mX-+AI)  where 
Xis a variable of type (0). Since A t 1 A-\l X(X&XA A2) ,  A and i A are 
&-stable for z-extensions. But A is not &'- 5-invariant because there is no 
formula B restricted to [ X I  such that d t- A-B. Indeed if there were such 



DEFINABILITY 131 

a formula B then by taking 8= {u} and replacing all parts of B of the form 
yoX by y=u we would obtain a quantifier free formula equivalent to A,. 

5. a) Show that 

fields of characteristic zero ; 

contained in all closed algebraic fields of characteristic zero. 

is E. Let A be the conjunction of the formulas 

(i) the field of rational numbers is rigidly contained in all commutative 

(ii) the field of complex rational numbers is contained but not rigidly 

b) Let 9 be the language (of set theory) whose only relational symbol 

V X  AY 7 ( Y E X )  

A X  AY ‘L/z Au [UEZ+-+(UEX v u = y ) ]  

AX Av [ AZ(ZEX ++ZEY) -+ x = y ]  . 

Let Lf2 be the language which is obtained when the individual constant 
c and the ternary relation symbol R are added to 9. Put 

B =  A ~ ~ ( Y E C ) A [ R ( X , ~ , Z ) + + A U [ U E Z + - + ( U E X  v u = . : Y ) ] .  

Show that 
(i) no realization of 2’ is rigidly contained in all models of A,  
(ii) each model of A can be extended in a unique way to a model of By 
(iii) the realization of Y1 whose set of individuals is the set C, of all 

hereditarily finite sets and in which E is ~n (C,  x C,), C is the empty set 
and I? is the relation i= X u ( J ] ,  is rigidly contained in all models of A A B. 

Answer. 

a) (i) is obvious even if we drop the constants 0 and I of the language 
of fields. Using the notation of Theorem 5 we take as the formula A ,  (x, xl) 
the formula x1 + x = x1 and for A ,  (x, xi) the formula (x. x1 = x1 A x # xl). 

(ii) the map z-+Z where Z is the conjugate of z shows that the field 
of complex rationals is not even rigidly contained in itself. 

b) (i) A realization of 9, contained in all models of A,  is < C < * , E ~  
(C, x C,)). This is not even rigidly contained in itself since it is isomorphic 
to all subrealizations C: defined as follows. U E  C, and Cz is the smallest 
class which contains a and is closed under the operation (x, y)-’xu { y } .  

(ii) A implies the existence of the empty set and by the third axiom, 
the axiom of ex~ension~ity, this empty set is unique. Hence the value of 
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c is determined. Similarly, given a model of A, the axiom of extensionality 
determines the value of R. 

(iii) This is obvious because each element of C, can be generated 
from the empty set by the operation (x, y ) + x  u { y ] .  

6. Consider a first order language dia with a single type of object, and the 
language 3' associated with it in Chapter 5. We will assume that 2' con- 
tains a set C of individual constants. Let &' be a set of formulas of 9' 
which has a C-model so that for each pair (c, c'), where c and c' are dis- 
tinct elements of c ,  d k t l c = c ' .  If CTE[T], a set X u  of the hierarchy of 
types built on C is said to belong to a realization W of d7 if X u  is the 
image of an element of W, of type CT, under the canonical map of W into 
%;, where Wo is a C-model isomorphic to the restriction of '3' to the type 
0, and where '3; is the principal realization on 'iJlo. 

Show that if X u  belongs to all C-realizations of d then X u  is heredi- 
tarily finite on C. 

Answer. The set X o  of elements of type 0 which are in the transitive 
closure of X u  is defined, in all models, by the disjunction of all the formulas 

where zI, ..., z, is a finite sequence such that OEZ~E=--EZ,  (using the no- 
tation of Lemma 4). The constant a' denotes the set X u  which, by hypoth- 
esis, belongs to all models of d. By Theorem 7, X o  is therefore finite and 
so Xu is hereditarily finite. 

7. If d is a countable set of closed formulas of the language 2 which 
has a C-model and if XS C is definable-on C in all C-models of d,  show 
that there is a closed formula B and a formula A ( x )  with a single free 
variable x such that dkB+A(c )  if c ~ X a n d  d t B + i A ( c )  if c $ X .  

Answer. By Theorem 8 there is afinite family 

(F j (X t ,  ..., x" ) : j  < N )  

of formulas, and a formula A, (x, x,, ..., x,) such that 

d U { ( v X ,  ... V X n ( F ~  A - - * A  F,)) 
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has a model and 

dt- AX, ... r \xn[ (F1  A . . . A  FN)+Al(c,xl ,  ..., x,)] if C E X  

dt- Ax ,... r \xn[(Fl  A . . . A  F N ) - + i A l ( c , x l  ,..., x,) if c $ X .  

We take as the formula B the formula V x1 ... V x,(Fl A .-- A F,) and 
as A ( x )  the formula V x1 .. . \/x,(F, A ... A F’ A Al). If C E X ,  dt- B-+A(c) 
and if c $ X , d t - i A ( c )  and a fortiori d t - B - + i A ( c ) .  

and 

8. Let -Yo be the language of ordered fields and let do be the set of axioms 
for a real closed field (see Chapter 4, Section V). We consider a set C of 
constants of Po which represent each rational number, and the language 
$P obtained by adding these extra individual constants to -Yo .Give coun- 
ter-examples to the following statements. 

a) If d is countable and Xc C is definable-on C in all C-models of d, 
there is a formula A ( x )  of 2 such that for all CEC, dt-A(c(c) if c ~ X a n d  
d F i A ( c )  if c$X.  

b) If Xis def inable-~~ C in all C-models of d there is a closed formula 
B and a formula A(x)  such that du (Bj has a model and for all CEC, 
d t -B+A(c )  if C E X  and d ‘ r B + i A ( c )  if c$X.  (Obviously we do not 
assume that A&’ is countable.) 

Answer. We let X be a cut of the rationals which is not definable in the 
language 2,. Such a cut certainly exists since there are uncountably many 
cuts of the rationals while the set of cuts definable in 9, is countable 
since Yo  is countable. We are trying to find a set of axioms A&’ 2 do such 
that X is definable-otz C in all models of d. 

a) We add to 8, the two individual constants u and u, and we let 
d l = ( c < ~ < c ’ v c < ~ < c ‘ : c ~ X ,  C’E-X). We put d=doud1. X is 
definable in each model of d either by the formula x < u or by x < u. Sup- 
pose that A ( x )  is a formula of 2 such that dt- d ( c )  if C E X  and other- 
wise d t i A ( c ) .  

Since A ( x )  is a forniula of 9 there is a formula B(x,  y, z )  of -Yo such 
that A (x) = B(x ,  u, u). Consider the models 9X whose domain is the set 
R of real numbers with the usual ordering and which satisfy &’ (so that 
either U or V is the cut X). If E=X, then V y  r\zB(c, y ,  z) is true in Im for 
C E X ;  if V= X then i V y  iz,zB(c, y ,  z) is true in Im for c$X. Since 
V y AzB(x, y? z )  is a formula of 9, and do is complete, for each CEC 
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do t V y AzB(c, y ,  z )  if CEX, and do b i  V y AzB(c, y ,  z )  otherwise. 
This contradicts that X is not definable in .=Yo. 

b) We add to 9, the individual constants u,(a<K,) and consider an 
enumeration cl, ..., c,, ..., of the elements of X.  Let 

d, = ( u ,  < c : c € c  - x, a < K , j  u (u, # ufl:CI < p < ts,} u 
v((u,,<u,, < . . . < u , I ) + ( ~ j < ~ , l ) : a i < K , , i ~ ~ }  

for each integer j .  
do u dl has a model 1132 since every finite subset has a model. Further, 

X is definable in all models of do u d,  since in an uncountable totally 
ordered set at least one element has an infinite number of predecessors. 
If u, is such an element, then x<u ,  defines X OPE C in the model 1132. 

To prove b), we suppose that B,, B , (X)  are two formulas of 9. There 
are therefore two formulas C,(xo,  ..., x,) and C, (x ,  xo,  ..., x,) of 9o 
such that B,  = C, (u,,, .. ., a,,) and B2 = C,(x,  u,,, . .., u,,). If for CEC n X ,  
Se u 531, t B, +BZ (c) and, for CEC - X, 531 v 531, i- B,  + -I B,(c) then because 
C is countable, there is a countable subset 531; of d, such that 

and 
d u d ; t B 1 + - 1 B 2 ( c )  for c$X. 

Let u,,(n =p + 1, p + 2, . . .) be an enumeration of the constants which 
occur in d;, but not in B,+B,(c) and suppose that 6,,<-.- <Gap in 1132. 
We put B*(y,xo, . . ., xp)= C, (xo , .  . ., x,) A C, <x0  A C, < x I  A -.- A c,<x, A 

x , < x , < ~ ~ ~ < x , < y .  Since B,  is true in 1132 and Z2aO<...<Gap the formula 
V x o . - - V x , B * ( c ,  xo,  ..., x,) of .=Yo is true in 1132 for all C E C - X .  But X 
is not definable in 9, and hence there is some C ~ E X  such that 
V x o - * .  Vx,B*(ck, xo, ..., x,) is true in '$3. 

We can now deduce 
(i)foreachintegeri, A x ,  ... Ax,[B*(ck, xo, ..., xp)+C,(ci, xo,  . ..,xp)] 

is true in %I, 
Since, by hypothesis, d u afi i- C, (u,,, . . ., u,,)+ C2 (ci, u,,, . . . , uaP), it 

is sufficient to note that if B*(c,, To, ..., 2,) is true in 1132, do u di is satis- 
fied in the model %R' obtained from 1132 as follows: 

and for ii,, ,, Cap + 2 . .  . we take an increasing sequence of elements from 
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the domain of %l such that c,,<ii,,,,<X for all n<m. Consequently 
C,(ci, ugo, ..., ugP) is true in %l’ and Cz(ci, x,, ..., x,) is therefore true 
in IUI. 

Similarly we have 
(G) for each C E C - X ,  the formula A x  ,... Ax,[B*(ck, x,, ..., xP)- 

-7 C, (c, x,, . . ., xJ] is true in !Bl. 
By (i) and (ii) Ax, ... Ax,[B*(c,, x,, ..., x,)-+iCz(x, x,, ..., x,)] 

defines X on C in IUI. But do is complete and so this formula defines X 
in all models of do, which contradi~ts the choice of do. 



CHAPTER I 

PRINCIPAL MODELS : MODELS OF INFINITE FORMULAS 

The first part of this chapter deals with an important class of realizations of the 
language with a finite number of types which was described in Chapter 5. These 
are the principal (or full) models, where the domain CO is arbitrary but where the 
domain of each of the other types of variable is made up of all the sets, of the 
corresponding type, of the type structure with base CO. The first result reduces 
validity for principal realizations of languages of finire order to validity in the 
principal realizations of certain (appropriately chosen) second order languages. As 
stated in the summary of Chapter 3, second order validity cannot, in general, be 
reduced to first order validity. This follows from the results of Exercise 5 of 
Chapter 3 and Exercises 1 and 5 of this chapter. We give a certain class of second 
order formulas which are equivalent to infinite sets of first order formulas: this is 
the generalization of the embedding theorem which we also mentioned in the 
summary of Chapter 3. 

The infinite systems of axioms just mentioned (and those of previous chapters) 
can be considered as infinite conjunctions of finite formulas. The second part of 
this chapter treats languages which contain other infinitely long expressions, in 
particular the formulas Ax W A , x ( i t l )  where W A i  denotes the infinite dis- 
junction of the finite formulas Ai( iE1) .  Exercise 5 gives a list of common structures 
defined by such formulas. The main result is a simple characterization of the class 
of finite formulas which are valid in all models of a countable system of axioms 
A m ( m  = 1,  2, ...) of the form Ax W, B z x ( n  = 1, 2, ...). This result does not 
extend directly to the uncountable case (see Exercise 4). For recent work on the 
(flourishing) subject of infinite formulas see the book: The Theory of Models 
(North-Holland Publ. Co., Amsterdam, 1965) particularly the papers by KARP, 
KEISLER and SCOTT. 

The last two results of the preceding chapter are generalized to the languages 
here treated; they take an especially simple form in the case of models of the 
theory of types which satisfy the infinite formula Ax W, (x = cn) ,  that is, models 
whose domain CO is the set { C O ,  CI, ...I. 

To state more delicate results on languages containing infinite formulas and their 
realizations, one needs notions from the theory of recursive functions of (infinite) 
ordinals; even the generalization of the Finiteness Theorem to the case of the 
formula A x  Wn (x = c,) above needs notions from the theory of hyperarithmeti- 
city (recursion on recursive ordinals). This theory also provides an explanation of 
the special role played by negation and conjunction among all the propositional 
connectives with an infinite number of variables. 
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We consider the languages dip' of the theory of types which was de- 
scribed in Chapter 5. It follows from the last Theorem of that chapter 
that we can associate with each realization 'D of 2 a realization fm, of 
order z of 2 called the principal realization of order z built on 'D. This 
realization is unique up to isomorphism. In a principal realization the 
relation F, ,  (T=((T,, ..., cr,) on Ebl x ... x E,,x E, is isomorphic to the 
membership relation on ECl x ..- x Eon x P ( E e 1  x ..' x Erin). That is to  say, 
for each subset X of Ek, x * - *  x E,* there is a unique element a of E whose 
"members" in the realization are the elements of X.  

A formula of order z whose closure is satisfied by each principal reali- 
zation of order z of 9 is called a theorem of order z of dip. 

We can assume, without loss of generality, that 2 does not contain 
any constant symbols. For suppose that F(a,, ..., a,) is a formula which 
contains the constant symbols a,, ...¶ a,. Then F(a,, ..., a,) is a theorem 
of order z if and only if F(x,,  . . ., x,) is one too where xl, . . ., x, are vari- 
ables of the same types as a,, ..., an, respectively, which do not occur in 

Let zia0 be the language which i s  obtained from Zr when we regard all 
the variables as being of the same type (and we keep all the relation sym- 
bols of Y). Let dip* be the language obtained from Po by adding the 
new unary relation symbols T, for each o<z. With each formula F of 
dip' we associate a formula F* of dip*, defined by recursion on the length 
of F as follows. 

F(a17 --.> an). 

i) If F(x l l ,  ..., x:) i s  atomic, then 

F" ==F(Xl,...,Xn) A T,,(X,) A * * * A  Tun(&,). 

ii) If F(x';', ..., xi")= i G(x'(', . .., x:), then 

P* = -1 G*(x,, ...,X,) A T,,(X,) A * * *  A Tun(X,). 

iii) If F(xl', ..., xF)= C(x;I, ...¶ x2) v H(xy', ..., x:), then 

F* = (G* V H*) A r,, (XI) A ' 1 -  A Tun(X , ) .  

iv) If F= VxG(x", x;', . . ., x:), then 

P* = Vx[T,(x) A G * ( X , X ~ ,  ..., x,)]. 

The formulas of order (0) of 2* are formed with a new set of variables 
of type (0) whose elements we will write as X ,  Y, Z, ... and a new binary 
relation symbol which we will write e. 
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THEOREM 1 : Let F be a closed formula of 2 of order z. Then F is a theorem 
of order z i f  and only if U+F* is a theorem of order (0) of 9*. 
PROOF : Let YJl* be a model of (1 ,2 ,3)  with domain E *. From YJl* we can 
derive a realization YJl, of order z of 2, whose domain of type Q is T,, 
the value of T, in YJl*, by giving the relation symbols of 2' the values 
which they have in %TI*. By (1) the domains of YJlz are disjoint and by (2) 
and (3) "iz satisfies the axioms of extensionality. 

Each realization 'ill& of order z of 9 can be obtained in this way from 
a model YJl* of (1,2, 3): if E,(Q<z) are the domains of "i, we let the 
domain E* of "i* be UaGr E, and we define the value of To in YJl* by 
Tv = E,. The other relation symbols of 9* are symbols of 2,; they are 
given the same value in YJl* as they have in %TIT. It can be seen at once 
that YJl* satisfies (1, 2, 3) since YJl satisfies the axioms Fz on p. 97. 

Let F be a formula of 9'. It can easily be shown, by induction on the 
length of F, that the values of F and F* in the two associated realizations 
of S7 and 2* are equal. 
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Now let %R* be a principal model of U whose set of individuals (do- 
main of type 0) is E*. We will show that the realization %Rc of order z of 
9 which is associated with it is also a principal realization. To do this 
it will be sufficient to prove that the relation E ,  on Tul x -.- x Tun x Tu 
(where c=(cl, ..., en) and Eu, Tu,, ..., Tan are the values of E,, T,,, ..., T,, 
in m*), is isomorphic to the membership relation on TQt x 1.. x Tun x 
P(T,,, x ..- x Tun), and hence that for each subset Kof Ta1 x .-. x Tun there 
is some a in T, whose “members” in 1)32, are the elements of K. 

Let (ai, . . ., an) be an arbitrary element of K. By (4) there is an element 
d(al, .,., a,) of Tu whose only “member” in %Rz is (al, ..., an). Because 
tm* is a principal realization there is an element X of the domain of type 
(0) of %R* whose “members” in %Iz are the elements +(al, ..., a,) for 
(al ,  ..., an)eK. Therefore, by (9, there is some YET‘ whose “members” 
in mT are the elements (a l ,  ..., a,) of K. 

Each principal realization ’$I, of 2 can be obtained in this way since 
it is sufficient to define the realization YX* of order 0 as above. Then, as 
we have already seen, %R* satisfies (I, 2, 3). %R* also satisfies (4) since 
because %R is principal if c=(cl, ..., c n ) < z  and if a l ~ E U I ,  ..., ~,EE,,, 
then there is some aeE, whose only “member” in ‘$I, is (al ,  ..., an). We 
take for %R* the principal realization of order (0) built on the realization 
thus obtained, and it is obvious that %R* satisfies (5). 

Now let F be a closed formula of 2‘. If F is not a theorem of order z 
there is a principal realization %Rz of order z of 23’ which does not satisfy 
F. In the principal model %R* of U associated with %R,, F* is not satisfied. 
Therefore U 4 F *  is not a theorem of order (0) of 9*. 

If U+F* is not a theorem of order (0) of 2* there is a principal model 
1)32* of U which does not satisfy F*. The realization %Rr of order z of 2 
associated with 1151” is principal and does not satisfy I;. Therefore F is 
not a theorem of order z. 

This completes the proof of Theorem 1. 

Warning. According to the conventions of Chapter 5 ,  the formulas of 
ordinary predicate calculus (Chapter 2) are of order 0 by p. 97, and those 
of the language 2* above are of order 1 by Exercise 5. In the present 
chapter we shall use the more usual terms: ‘first order’ and ‘second order’ 
(and, generally, nth order if the variables occurring in the formula F 
considered have types of rank strictly less than n in the sense of p. 96, i.e., 
the type of the realization P of F has rank G n ) .  
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THE REDUCTION OF A CLASS OF SECOND ORDER FORMULAS 

Let A be a formula of 2$ whose free variables, say, x i ,  . . ., x, are either 
of the type of individuals or of the type of relations between individuals, 
i.e. of type C = ( B ~ ,  ..., B,) where each oj=O (we denote this type by ( p ) ) .  
Let Y , ( m  <n) be the first order language which is obtained by adding to 
9 the symbols si(id m )  which do not occur in 9, where si is of the same 
type as xi. To make things clearer we will write ci for si if xi is of type 0, 
and Ri (ap,-ary relation symbol) for si if xi is of type (p,). Each realization 
W,n of 2Frn induces a realization 'N of 9, namely the restriction of W,,, 
to the language 9. In fact %I," = W u (Si: i < m ] ,  where Si is an element 
of the domain of 91 if si = ci, and an element of the domain E(,,,, of 
of type (pi) if si=Rf: in this case S i ~ E ( , , , )  because each subset of E p i  is 
in the domain of type (pi) of the principal model. 

We say that A is reducible to the class d of formulas of srn if for each 
realization W u (Si: i < m ] ,  (Si : iQ m> satisfies A in W, if and only if Wra 
satisfies each formula of d. 

LEMMA 2: Each formula Axi, . ,  ... Ax,A, of 9', where A ,  is quantij5er free 
is reducible to a (single) universal prenex formula A: of Lfi and each for- 
mula of 2, is reducible to a (single) formula of BZ (A: is called the ca- 
nonical translation of A,). 
PROOF: Since A ,  is quantifier free it is a propositional formula built up 
from the atomic formulas of 2 and the formulas ( t i ,  ..., tPi) E ~ , , ~ )  xi 
(1 < i 6 n ,  xi is of type (pi)). A: is the formula which is obtained from A, 
by first replacing xi by C; if xi is of type 0 and then replacing ( t l ,  ..,, t,,,) 
qpi) xi by Ri( t l ,  ..., tpi ) .  Clearly each atomic formula B of A, is reducible 
to B: and the propositional connectives preserve reducibility. Conversely, 
each quantifier free formula of 9, is reducible to the formula of gr which 
is obtained by first replacing each occurrence of c i  by xi and then replacing 
R;(t,, ..., tPi) by (tl ,  ..., t,,,) xi .  The quantifiers of9,preservereduci- 
bility since the (individual) variables range over the same domain in W 
as in W,. 

Now suppose that  AX^,^... Ax,A, is reducible to A:+,; thus W u  
{ Sj : j  Q i] satisfies A xi + . . . A x,A, if and only if for each value S:+ of si ,. I 
in W of the same type as x i + x ,  W ~ ( ~ ~ : j < i ) u { s ~ + ~ }  satisfies A:+l. 

We now consider the two cases: 
1. xi+, is of type 0 and so S ~ + ~ = C ; + ~ .  In this case  AX^+^... Ax,A, 
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is equivalent to Ax;+,A;+, where At+, is obtained from A , + ,  by 
replacing ci+ , by xi+ 1. Clearly, Ax;+ ,A;+ is a universal prenex for- 
mula of Zi. 

2. xi+, is of type (pi). Let A ; + ,  = Au, ... AuJ,, where X ,  is quantifier 
free. Let T be the set of terms which occur in X ,  and let Q,, ..., Ul be ele- 
ments of E,. Clearly, if there is some R j + ,  such that the realization 
fm'=Wu{.Fj:j<i}u{R~+,, Q,, ..., ill} satisfies i X , ,  then the restriction 
of to the finite set { f : t ~ T )  also satisfies ?XI. Let X ,  be the conjunc- 
tion of all the formulas t,=t;r\...t\t,=t~r\S(t,, ..., tJ-+S(ti ,  ..., t;), 
for each q-ary relation symbol S of Zi+, and each 24-tuple ( t , ,  ..., t,, 
t i ,  ,.., t i )  of terms of 7'. Let D,, . . ., D, be a list of all the diagrams on T 
in the language 64,. If X ,  is the disjunction of the formulas Ds(l <s< r )  
such that the formula X ,  A -I XI A D, is inconsistent then the formula we 
are looking for is Au, ... Au,X,; for suppose that the realization lrn'= 
lrnu { S j : j <  i f  satisfies this formula. Then for each I-tuple (GI, ..., tl,), 9JY 
satisfies one of the diagrams D, and so there is no a;+ , such that W u  
{ j j : j <  i} u (171, ,) satisfies v u ,  ... v u l i X , .  

In the opposite case, there are Q,, ..., G1 such that lrnu {jj:j<i] satis- 
fies X ,  and therefore there is a diagram D, such that X ,  A i X ,  A D, has 
a model. In other words there is some Rj, , such that {.Fi:j< i> u {Ri+l, 
I,, . . . , t&> satisfies -I XI. 

THEOREM 3 :  Let A =Q,x, ... Q,x,A,, be a closed prenex formula of 2' 
where A ,  is quantiJier free and $Qi= V, xi is of type (pi) while i fQi= A 
then xi is either of type 0 or of type ( p i ) .  Then A i s  reducible to a set d of 
closed uni~ersalp~enex formu~as of 64. That is, B, is a model of A if and 
only i f  fm is a ~ ~ o d e l  of d. 
PROOF: The proof is by induction on the number, n, of quantifiers in A .  
Let Ai  = Qiflxi+, ... Q,,x,,A,. We will show that A, is reducible to a set di 
of universal prenex formulas of Pi, 

By Lemma 2, A, is reducible to a set d,, of universal prenex formulas 
of S,, (and this set reduces to a single formula). Now suppose that Aitl  
is reducible to the set d,+, of formulas of Pi+,. 
If Q,+% = V, xi+l is of type (p i )  and therefore { S j : j < i }  satisfies Ai in B, 
if and only if there is some S:+ , E E ( ~ ~ )  such that { S j  : j< i} u {.ti*, ,} satisfies 
A,+ ,. And, by our induction hypothesis, this is equivalent to the existence 
of some sT+ , such that 9X u { S j : j <  i} u {$+ ,} satisfies all the formulas of 
.di+l. Now by the Embedding Theorem (of Chapter 3) the realization 
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YJl u {jj : j < i> can be embedded in a model of di + , if and only if it satis- 
fies the set di of universal formulas of -Pi which are consequences of 
di+l. It follows, therefore, that Ai is reducible to this set di. 

If Q i + l =  A,  then by the induction hypothesis, {Sj:j<i} satisfies Ai in 
‘%TIT if and only if for each ST+ in !BIT, of the same type as xi+l ,  the reali- 
zation ~ ~ l u { ~ ~ ; j < i }  u{s~*,,} satisfies A : + ~ .  It is now sufficient to apply 
Lemma 2 to obtain the desired result. 

For a generalization of this Theorem, see Exercise 2 .  

INFINITE FORMULAS WHICH DEFINE FINITARY RELATIONS 

Let {Ai:ieZ} be a family of formulas of 2’ whose free variables are 
among xl,  . .., x,. Let YJl be a realization of 9 and let Ai be the value of 
Ai in YJl. YJl is said to satisfy the infinite formula v x1 . . . v x, Mi Ai  if and 
only if niel A,#@ If OieI Ai=O then we say that ‘%TI satisfies the infinite 
formula Ax, ... Ax, Wi i Ai which is called the negation of the first 
infinite formula. In what follows we do not discuss general iterations of 
the propositional operations we have just mentioned (infinite conjunction 
M, infinite disjunction W and negation). The two types of formula we 
have described here are sufficient to define several classes of structures 
which cannot be defined by any set of finite first order formulas (see 
Exercise 5). 

We will consider languages with several types of variables. Suppose 
that 9 is a language with equality and that YJl is a model of g9, and YJl’ 
is the normal realization derived from it by taking a quotient realization. 
We have already seen that YJl and YJl’ satisfy the same closed formulas of 
9. In fact we will now show that they satisfy the same infinite formulas 
of 9 as well. Suppose that V x1 ... V xp Mi A i ( x l ,  .. ., x,) is an infinite 
formula and let Ai and xi be the values of A i ( x l ,  ..., x,) in YJl and rml 
respectively. Since Ai is closed with respect to the equivalence relation E, 
it follows that Ai=Ai/B. Therefore nisi Ai= nieI Ai/E and hence 
nieI xi and nisi mi are either both empty or both non-empty. 

LEMMA 4: Let d be a consistent set offinite closed formulas of 3 and let 
{di:  i<,?} be a family of sets offinite closed formulas of 9. If each model 
of d satisfies one of the sets di, there is a set 98 offinite closed formulas 
of 9 and an ordinal j <  ,? such that card(Li9) < card(,?), card(B) 6 card(-P), 
d u 
PROOF: We use the Corollary to the Finiteness Theorem (Chapter 5). 

is consistent and d j  is a consequence of d v 98. 
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Clearly we can assume that ;1 is a cardinal. Let d: = d. For j > O  there 
are two cases to  consider. 

1. There is some k < j  such that dk is a consequence of Uick d:. 
In this case we put d: = U i c j  d:. So in this case d;=d: for 
all j >  k .  

2. If there is no such k C j we put 

where 
There is a j ,  < A  such that the first case applies; for, if not t f jcn d: and 

hence d, would have a model which does not satisfy any dj because it 
satisfies no AT. We let ~ = ( i A ~ : i < j , , } .  So 98 has cardinal <A, and < 
card (9) since the number of formulas of 9 is the same as the cardinal 
of 9 (there are more than card(9) sets of formulas of 9, which are not 
equivalent). 

and is not a consequence of Uic d:. 

THEOREM 5 : Let J be a set of infinite formulas of a language 9, with equal- 
ity, of the form V x1 ... V x, An A j ( x , ,  ..., x,,) where A<A=card(9). Let 
d be a set of formulas of 9 which has a normal model and such that each 
normal model of d satisfies one of the infinite formulas of J. Then there is 
an infinite formula of J ,  say Vx, ... Vx, A, A,(x,, ..., x~), and a family 
(Fi(x, ,  ..., x , , ) : id}  of formulas such t h ~ t  card(I)<card(J) xcard (9), 
card(I)<card(.Y), d u { V x ,  ... Vx,AiRii(xl, .,., x,)} hasanormalmodel 
and for all A< A there is some i d  such that 

d!- Ax, .*. Ax,(Ft4A,). 

PROOF: We will use the notion of a canonical model which we discussed 
in Chapter 5. Since we are concerned with a language with equality we 
will assume that 8, c d. Then each model of d, normal or otherwise, 
satisfies one of the infinite formulas of J and  hence satisfies one of the sets 
(Aj(a, ,  ..., a,):A<A) for a,, ..., a,EA of the same types as x,, ..., x,. 
This family of sets has cardinal=card(J) x card(9). By Lemma 4, there 
is a family (Bi : i€Z)  of formulas of -r;”d such that card(Z)gcard(B) and 
card(I)<card(J) x card(2)  and a set (Ai(a, ,  ..., a,):A<A) such that 
d u ! 2 u ( ( B i : i ~ I }  has a model and has A:(a,, ..., a,) as a consequence 
for each A<A. 

Thus for each A<A there is a finite subset of {Bi:ieZ),  whose con- 
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junction we will denote by B,, and a finite subset of d,  whose conjunc- 
tion we will denote by A,, such that 

k ( A ,  A B,) --f A i ( U 1 ,  . . ., U,!).  

If b,, ..., 6, are the elements of d which occur in B, we have therefore 
by Lemma 5.10 that 

and so 
Oa, A . * '  A Ban A ob ,  A * "  A 68, k A,  A Bn 4 Ai(a1, ..., a,) 

A,  I- (oat A A ea, A ... A 8,, A A ob, A B,) -+ A ~ ( u , ,  ..., a,). 

As in Theorem 6.8 (p. 124) we eliminate the elements of A other than 
a, ,..., a, that occur in But A ... A 0, A Ob, A ... A Bb, A B,, by existential 
quantification, and we denote the resulting formula by F,(a,, ..., a,). The 
formulas FA make up a set whose cardinal is less than or equal to that of 
the set of finite subsets of I. The family of the .F,(a,, ..., a,) has therefore 
the desired properties. 

COROLLARY: g, in the statement of this Theorem, .Y and J are assumed fo 

be countable (thus A = o )  then there is a finite formula B(x, ,  ..., x,)such 
that s;' v { V x1 . . . V x,B(x,, , . ., x,)} has a normal model and for each 
integer p ,  

s;' t A XI . .. AX, fB(x1, . . ., x,) -+ A , ( x ~ ,  .. ., x,)] . 

COUNTABLE LANGUAGES : COUNTABLE SETS OF INFINITE FORMULAS 

guages that we now consider will a11 be assumed to be countable. 
The sets of variables, relation symbols and constant symbols of the lan- 

THEOREM 6: Let s;' be a set of c l o s e ~ ~ n i ~ e  f o r ~ ~ u l a s  of 9 and let J be a 
countable set of infinite formulas of the sort A x ,  ... Ax, W,, Ab(x,, ..., x,) 
( j =  1,2, . . . ; p =p(j)) .  The set of finite formulas of 2 which are satisfied 
by all models of s;' v J is the smallest set dJ offinite formulas of 9 such 
that : 
i) for each JiPlite closed formu~a C of 2 i f  dJ 1- G then GE dJ, and 
ii) for each formula G(x,, ..., x,) and for each integer j ,  i f  for all 11 

d J b  AX, ... A x , [ A ; ( x ,  ,..., x,)-+ G(x, ,..., x,)] 
then A x ,  ... Ax, G(x,, ..., x p ) ~ d J .  
(This result would be false if J were not countable, see Exercise 3.) 



INFINITE FORMULAS 145 

PROOF: Clearly the set of formulas which are satisfied by all models of 
d u J contains dJ. 

Conversely, suppose that F is a formula which is satisfied by all models 
of ,@‘ u J. If u {i F )  has no normal model, F i s  a normal consequence 
of dJ and so F E ~ ’ .  If dJ v (iF) has a normal model, then, by hypoth- 
esis, any such model satisfies the negation of one of the formulas of .I, 
say, V x1 , . . V x, A, i AF(x, ,  . . .) x,). By Theorem 5 there is a formula 
G(x, ..., x,) such that d J v  { i F ,  Vx, ... Vx,G(x,, ..., x,)} has a normal 
model and such that for each integer yz 

d J u { l  F } I -  Ax, ... Ax,[G(x,, ..., x,)-+l A F ( x  ly... ,xp)] 

and consequently 

d J u ( l F ) ! - i \ x ,  ... /jx,[A~(x, ,..., x , ) - + ~  G(x, ,..., x,)]. 

In this case 

dJl- Ax, ... Ax , [Ak(x ,  ,..., x,)+(F v -7G(x1 ,..., x,))]. 

By hypothesis Ax, ... / \ x , [ F v  i G ( x , ,  ..., x p ) ] ~ d J .  Since F i s  a closed 
formula,Fv Ax, ... Ax, iG(x , ,  ..., x,) is a consequence of df and so 
is an element of dJ. Therefore dJ u { -1 F, V x1 . . . V x,G(x,, . . ., x,)} 
does not have a model. It follows that dJ u (-7 F )  does not have a model 
and so .dJi-F. 

COROLLARY : &‘ v J has a modeef i f  and only if dJ has a ~ ~ d ~ l .  
PROOF: If d u J  has a model this model is also a model of df. If d u J  
does not have a model the finite formula i_ is satisfied by all models of 
d u J .  Therefore -L€dJ and so dJ does not have a model. 

Exercises 

1. a) Find second order formulas whose classes of principal models are, 
respectively, 

(i) the well-ordered sets, 
(ii) the well-ordered sets of order type w, 

(iii) the complete ordered sets, 
(iv) the dense complete ordered sets without first or last element with 

a countable subset (of the domain) which is dense in the domain. 



146 PRINCIPAL MODELS 

b) Show that the classes (ii) and (iv) above contain, up to isomorphism, 
a single element. 

Answer. Let 2 be the first order language with equality which has a single 
binary relation symbol <. Let X ,  Y, 2 be variables of type (0) and let 
U be a variable of type (0,O). The rank of each of these variables is 1. 
Let 0 be the formula of 2 which is the conjunction of the axioms for a 
total ordering. 

a) (i)theformulaO A AX Ax(X(x)+ v y [ X ( y ) ~  Az(z<y-+iX(z))])  
of 2('), which we will denote by 3, expresses the fact that each non-empty 
set X (VxX(x)) has a first element, that is, that < is a well-ordering. 
(Compare this with the result of Exercise 7 of Chapter 3.) 

(5) B A  A x [ i \ z i ( z < x ) v  V y  Az(z<x++(z=yvz<y))] is the re- 
quired formula. 

(iii) The formula 

/\x Ay( (X(x )  A Y < x)+ X ( y ) )  A V x ( x ( x ) )  A VX 7 (x(X)) A 

A AX v Y ~ x ( X ) 4 ( x  < Y f\ x(Y))) 
which we denote by C ( X )  expresses the fact that Xis a cut open at the 
right. The complete orders are the models of the formula 

0 A A X V x  A y [ C ( X ) + ( x ( y ) + + y  < x)] 

which we denote by Corn. 
(iv) Let D (  Y) be the formula 

AXIF\y(X<y+ V Z ( X < Z A Z < y A  Y(Z))). 

D( Y )  expresses the fact that Y is a dense subset of the domain. Let W ( Z )  
be the formula of L Z s P ( O )  which expresses the fact that the restriction of < 
to Z is a well-ordering of order type o, and let I( U, Y, Z )  be the formula 
which says that U is the graph of an isomorphism between Y and Z,  
namely the formula 

/\x VY A Z [ Y ( x ) - + ( z ( y )  A [ u ( X , Z ) * Y = Z ] ) ]  

A hY VX /\z [z(Y)-+(y(X) A [ u ( z ,  Y)*X = Z f ) ]  

A A x  AY [ u ( X ,  Y )  -+ ( y ( X )  A z(Y))]. 
Then the desired formula is 

Ax V v ( y  -= x) A A x  Vy(x < y )  A 0 A Corn A 

A V Y V z V u [ D ( Y ) A  w(z)AI(U, Y , z ) ] .  
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b) Clearly the well-orderings of order type w are all isomorphic to the 
natural ordering of the positive integers. By Exercise 3 of Chapter 4, all 
countable dense orderings without first or last element are isomorphic to 
the natural ordering of the rational numbers. It follows that each element 
of the class (iv) is isomorphic to the natural ordering of the continuum. 

2. Let 2’; be the language which is obtained by adding to the Yanguage 
Y for each i <  m y either an individual constant c,(iel) or ap,-ary relation 
symbol Ri(iER) or a (pi- 1)-ary function symbolfi(ieF). Suppose that 
F={n,, ..., nkj with n,<n,+l for i<k .  Let 2, be the language obtained 
from 23’; by replacing, for each i ~ & ‘ , &  by a newp,-ary relation symbol R,. 
For j 6 k  let qj=pnj and let Fj be the formula 

A u ~  ... AuqjF1 VU~~AW[R,~(U~,...,W)++W = 2 1 q j ] .  

a) For each quantifier free formula A’ of 9; find a universal prenex 
formula A ,  of such that for each realization %I?, of 9, for each se- 
quence 5; of elements of the domain E, of %R(i€Z), al c E P i ( I ’ € R ) ,  
f i‘:EP,i-l+Eo(i~F),  s Epi  and R‘ the graph ofA(iEF), %Ru{5j:i~l} 
u { R ~ : i e R j u { f l : i ~ : F j  is a model of A’ if and only if the realization 
iDI u {c;: ~ E I )  u {Ri: ieR u F )  satisfies A,. 

b) Let A’ be a quantifier free formula of A?’;, A ,  the corresponding for- 
mula of 9, as in a) and let A,  be the translation of F, A . * .  A Fk-+A, in Y r  
given by Lemma 2. Show that Q,x ,  ... Q,x,A, is reducible to a class of 
universal prenex formulas of 2’. 

c) 2’ is a language with a single unary relation symbol P. Show that 
there is no set &‘ of formulas of 2’ such that the realization ( E ,  P )  can 
be extended to a realization ( E ,  P, f) which satisfies 

A x f f (f (4) = x A ( P  (4 *-I p if (.)>)I 
if and only if (E ,  P >  satisfies d. 

d) deduce from c) that there is a closed formula V x, Ax, V x3 Ax,A 
of Y(’,’), where A is quantifier free and x, is of type (0, 0), x,, x3, x4 of 
type 0, which is not reducible to any set of formulas of A?’. 

Answer. 

a) Let T be the smallest class of terms of 2; which contains all the 
terms which occur in A’ and such that t , ,  .. ., tpi - ET if fi(tl ,..., tpi - &T 
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( i = z z l ,  ..., nk). For each term tET the degree of a constant is 0 and the 
degree of t=l+max{degree(tj):j<pi}, if t=f i ( t , ,  ..., tpi-l). 

If t is of degree greater than zero, let yt be an individual variable which 
does not occur in A' and let yt # ytt if t # t'. We arrange the yt according 
to the degree of t .  For each t=x(t,, ..., tP.-,) (tET) let R, be the formula 
Ri(tT, ..., t , * , - , ,  yt)wheretl=ytjiftjhasdegree >Oand t7=t j  otherwise. 
Let B be the conjunction of all the formulas R, for tETof degree >O. The 
desired formula is 

AY,, ... Ayts(B-+Af) 

where t i ,  . . . , t, are the terms of degree > 0 which are in T and A' is the 
formula which is obtained by replacing each such t in A' by y t .  

b) Let Ai  = Qi+ lxi + , . . . Q,,X,~ [ (Fj  A ... A F,)-tA], where n 2 i + 1 and 
n j P 1  < i. We will show that Ai is  educible to a set di of universal prenex 
formulas of gi (in the following sense: if 

mi = mu{t;:h < i ,  h ~ I ) u { & : h  < i, h ~ R } u ( x : h  < i ,  heF] 

then is a model of di if and only if 

mu { t i :  h < i ,  h E l }  u { I ; :  h ER u F, h < i} 
satisfies A,, where for hEF, I ;  is the graph off;). 

If i=n the result is a consequence of Lemma 2 and a). 
Suppose that A i + l  is reducible to the class di+' of universal prenex 

formulas of 2Zi+,. If i+ 1 # n j  we apply the Embedding Theorem (for 
languages with function symbols). 

f f i + l = n j ,  Q,+l= ~ ; l e t ~ h e f o r r n u 1 a ~ E d i + ,  be ,A,ul... Au,X, where 
XI is quantifier free. Let T be the set of terms built up from the terms 
which occur in X (as in a)). With each ~ E T  we associate the term t* defined 
by recursion on the degree of t as follows: If the degree of t is 0 then 
t*=t.Ift=h,(tl,  ..., t,),whereq=p,,-l andh#j, thent*=S,,,(tT, ..., t:) 
and if h = j  then t* =yt ,  where yt  is a variable which does not occur in X 
and we assume that if t# t' then y t#y t , .  Let fil, ..., f i L  be elernents of the 
domain of 93. Now if the functioiiA+, issuchthat 93iu{J+l,fi,, ..., GI} 
satisfies i X ,  the same is also true for any function taking the 
same values asfi+, on (f: t ~ T f .  Let X :  be the formula which is obtained 
from XI by replacing t by t* and let X ,  be the conjunction of all the for- 
mulas 

( t r  = S: A . - *  A f ;  = S,*) --f Y t  =t y, 
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where s, t~ T, t = f  + (tl, . . . , t,) and s=f + (sl, . . . , s,) and q =pi+ - 1. There 
is ..A:.,, such that Imi u {A+ satisfies X ,  if and only if mi satisfies 

where yrt,  . . ., yr, is a list of the new variables we have introduced. 
c) ( E ,  P ) ,  with PcE can be extended to a model of 

A x  [f (f (x>> = x A P(x )+-+l  P(f (XI)] 
if and only if P and E - P  have the same cardinal. By the results on the 
elimination of quantifiers (Chapter 4, Exercise 7) for each closed formula 
X of 2, Xis either true in each realization in which P and E - P  are both 
infinite or X is false in all such realizations. We take E, uncountable, Po 
countable, El countable (and infinite) and P,  and El -PI both countable: 
then, for any d,  either both (E,, Po) and ( E l ,  PI> are models of &' or 
neither; but (El, PI) satisfies the formula above, and (Eo,  Po) does not. 

d) ( E ,  P) can be extended to a model of 

if and only if it can be extended to a model of 

Ax VY Az [(B(x, Z)+-+Z = Y) A B(Y,  x) A (P(X)*l P(Y))l. 
The desired formula is now obtained by applying Lemma 2. 

3. a) Let d be a set of finite formulas of 9 and J a set of infinite formulas 
of the sort Ax, ... Axp  W, A,(xl ,  ..., x,). Let d' be the set of formulas 
defined in the statement of Theorem 6. Show that FEJ@ if and only if 
there is a countable subset d, of d and a countable subset 5, of J such 
that F E ~ ; ' .  (Clearly we are not assuming that d is countable.) 

b) Let 2 be the language with a single type of variable defined as fol- 
lows. C , = N ; R $ ) = { R S : t ~ ~ ( N ) }  u(R) where R is (an arbitrary set 
which is) neither in N nor in figf. Let d be the set of the following for- 
mulas of 9 

(Re (.I: n E 5 ,  t EY" 
{l R~(n):~z~t, tEP(N)  
(Vx(R(x)t+1 R<(x) ) : tEqN)}  

and let J =  { Ax W,, (x=n) } .  
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Show that du J does not have a model, but that each countable subset 
of d u J  has a model. Deduce that dJ has a model. 

c) Suppose that Y is the language defined as follows: 

c ,=N,R$")=(R) .  

Let d=@ and let J be the uncountable set 

( Ax W,(x = n))  u (W, ( - - I ) ~ " R  ( n ) :  <EP(N)] 

where (i)<" is i if n E <  and i i if n #<. 

of it does have one. 
Show that d u J  does not have a model but that each countable subset 

Answer. 

a) It is sufficient to show that the closure conditions which we imposed 
on the set dJ are also satisfied by the smallest set dc of finite formulas 
of 2' such that 

(i) dc4dc, 

(ii) for each closed formula G of 3 if d e k G  then 
(iii) for each j and for each formula G(x,, ..., x,) ( p = p ( j ) ) ,  if there 

is a countable subset d, u Jo of d u J such that for each rz 

Ax, ... Ax,(Ai(xl, ..., x,) -+ G ( x , ,  ..., x,)) 

is satisfied in all models of d o u J o t h e n  A x,... Ax,G(x,, ..., x P ) e d c .  
This is because if for each n there is some countable set dn u J, such that 
d, ,u J,l- Ax, ... Axp(Ai(xl, ..., x,)-+G(xl, ..., x,)) then we can take for 
do the countable set Un (d, u J,,). 
b) and c) are obvious when we take into account the fact that in any model 
of A x  W, (x=n)  the value of R can only be one of the sets (n :nEt )  for 
some ~ E Y ( N ) .  

4. Let 2 be a countable language with equality and with k types of vari- 
ables, such that N E  C g ) ,  i.e. such that the natural numbers are constant 
symbols of type 1 of 9. A normal realization of 2' with domains U,, . . . , 
U, is called an o-realization if and only if U ,  = N and i i = n for each n EN, 
where r? is the value of n in the realization. Let d be a set of closed for- 
mulas of 2 which contains the formula n g n '  for each pair (n, d) of 
distinct natural numbers. 
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a) Show that the set of formulas which are satisfied by all o-models of 
d is the smallest set dc4" of formulas of 3 such that 

(i) d z  da7 
(ii) for each closed formula F of 9 if dc4" k F then FE da, and 
(iii) for each formula G(x) of 3, if for each non-negative integer 

n, d a k G ( n )  then A x G ( x ) ~ d ~ .  
bj Use Theorem 5 to show that if X c N  is definable (see Chapter 6) in 

all o-models of d then there are two formulas F and G(x), where x is of 
type 1 , such that for each PEN, 

p € X  if and only if d a u  { F )  !- G ( p )  

p $ X  ifandonlyif d a u ( F ) k i G ( p ) .  
and 

c) Show that a)is false ifthe restriction to countablelan~ages is dropped. 

Answer. 

a) A normal realization of 9 is an o-realization if and only if it satis- 
fies the infinite formula Ax W, (x = n). We can therefore apply Theorem 6. 

b) We first remark that in an o-realization of 9 a subset X of N is de- 
finable if and only if it is definable-an N (since N is the domain of type 1 
of such a realization). 

For each formula A ( x ,  xlt ..., xn) and each integer p let A,(x,, .. ., x,) 
=A@, xi, ..., x,) i fpeXand  i A ( p ,  x,, ..., x,) ifp$X. 

Since X is definable in all o-models of d each such o-model satisfies 
one of the infinite formulas 

Vx, ... Vxn AAP(xr ,  ..., x,) 

for some formula A (x, x1 , . . . , x,) of 9. Thus each model of d satisfies 
either one of these formulas or the formula V x LAp (xfp), where x is of 
type 1 , and each model of dm satisfies one of these infinite formulas, say, 
V x1 . . . V x, A, A,(x,, . . ., x,). By the Corollary to Theorem 5 there is a 
formula B(x,, .. ., x,) such that dsalw u { V x1 . .. V x,B(x,, . . ., x.)} is con- 
sistent and du I- Ax, . . . Ax, [B(x,, . . .) xn)4Ap(xl, .. ., x,)] for each in- 
teger p .  We obtain the desired result by taking v x ,  ... Vx,B(x,, ..., x,) 
for F and Vx, ... Vx,[B(x,, ...) xn)4A (x, xl, ..., x,)] for G(x). (This 
could also be proved by using the method of Theorem 6.8.) 

c) The answer is given by b) of the previous exercise because J= ( Ax 

P 
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Wn(x=n)) that is because the set d defined there does not have any 
w-models but d" is consistent. 

5. a) Using infinite formulas define the following classes of structures 
(i) Archimedean ordered fields, 
(ii) groups generated by p elements a l ,  ..., ap, 

(iii) hereditarily finite sets of type 6%. 
b) Show that each of the above classes is the class of models of a single 

second order formula but that none is the class of models of a set of finite 
first order formulas. 

Answer. 

a) (i) Let 9 be the language of ordered fields. We add to the set d 
of axioms for such fields the formula Ax W, (x<(rn), where (rl is 1 and 
G , , + ~  is the term en+ 1. 

(ii) Let 9 be the language of groups. We add to the set d of axioms 
for a group the formula 

Ax 110.(x = s,) 
n 

where {s , :n~N)  i s  an enumeration of all the terms of the form 
a ; t ~  ... a P n l  n P n ~  

P 1 .., a P l t  1 ... 

where each pij(l < i 6 n ,  1 6 j 6 p )  is + 1 ,  - 1 or 0. 
(iii) Let 9 be the language with the single binary relation symbol = . 

We construct the language 2'' as in Chapter 5. We take as our set of 
axioms the set of axioms for the Theory of Types and, for each c K [z] 

with c=((rl, ..., en), the formula 

where E,(x) is the formula 

Ax: '... Ax? ... A ~ , b f ; ~ [  110. (x;', ..., X ~ E , X )  

A xu W En (x) 
n 

l < r < n + l  

-+ w (X;' = x;' A *.* X p "  = X ? p  
f )  

l < i <  jCn+ 1 

and x is a variable of type (r. 
b) Clearly (see Exercise 1 of Chapter 3) none of these classes is the 

class of models of a set of finite first order formulas. This can be seen if 
in case (i) we refer to Exercise 7 of Chapter 3;  in case (ii) we add a new 
constant a and the axioms s1 fa, ..., sn#a, ... ; and in case (iii) we add a 
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constant do)  of type (0), the constants cl, c2, ..., of type 0 and the axioms 
cnqO,do) for n = 1 , 2, . . ., and c, # c, for each pair of distinct integers (m, n). 

On the other hand each infinite formula of a) is equivalent to a single 
finite second order formula as follows: 

We consider two cases where (the second order variable) Xranges over 
a) the class of all subsets of the domain of the realisation considered, p) 
the family of all its finite subsets (see Chapter 5, Exercise 6 b)). We use 
the notation bottom of p. 137. 

(i) We write A for A X ( [ z e X A  Ay(y+ leX-+yeX)]+leX) and B for 
V X [ (  1 eX A A y [ (y  < z A y e X )  +y + 1 e x ] )  -+zex]. 

In both cases M,(z=cr,)-+A holds. 
In case a) one also has A-+Wn(z=~,,) and in case p) B+Wn(z=on). 

Hence, in both cases 
( A  A B)++&(Z = O n ) ,  

n 

since A z B  holds in case a). Since Wn (x < on) is equivalent to 

v z [ X < Z A ~ ( z = ~ 7 ~ ) ] ,  
n 

we have in a) and p) 

v z ( x  < z A A A B)++W(x < G,,). 
n 

(ii) We only consider case a); the modification needed in case p) i s  
analogous to that treated in (i). 

W(x = sn)- A X [ ( x e X  A Ay[(ya,eX v ya;'eX v - - - v  ya,eX 
n 

v yaF 'eX)  -+ y e x ] )  -+ l e ~ ] .  

(iii) We write y=z  w (zl, ..., z,) (where y and z are variables of type 
(T, (T = (ol, , . ., 0,) and z l ,  . . ., z p  are variables of type C T ~ ,  . . ., cr, respec- 
tively) for 

Ax;' ... Axip((xl, ..., x , ) ~ , y + + [ ( x ~ ,  ..., xp)&,z 

V (XI = Zl A * * *  A X p  = Z,)]).  

Then, in case (a), if x is a variable of type G, 

WE,x- A X ( [ x e X  A Ay A z  A z ,  ... Az,([yeX A y = 
n 

z u ( z l ,  ..., z,)]+(zeX A z , eX . - .A  z,ex)j]-+@eX). 



APPENDIX I 

THE AXIOMATIC METHOD 

The general nature of this method is usually described as follows. In- 
stead of assertions about abstract properties of speczjic objects and con- 
cepts (such as space, material point, probability, etc.), one considers 
statements of the following form: given any collection of objects (whose 
nature is not otherwise specified) and given any set of relations between 
these objects, if the relations satisfy certain logical conditions (called 
axioms) then they also satisfy certain other logical conditions (called 
theorems of the given axiomatic theory). In different branches of ordinary 
mathematics a small number of particular axiomatic systems have been 
isolated and studied. Thereby a good deal of mathematics has been built 
up in a systematic and comprehensible way. But one has not been inter- 
ested in arbitrary axiomatic systems or even in general classes of axiomatic 
systems. Thus the experience of “ordinary” mathematics provides no 
reason for supposing that there are useful results about general classes 
of axiomatic systems which would contribute to the effective use of the 
axiomatic method. 

We shall now give some applications of a study of general classes of 
axiomatic systems, mainly - though not exclusively - of axioms expressed 
in first order predicate logic, a notion which is defined precisely in Chap- 
ters 1 and 2. Broadly speaking, this language can be characterized by 
saying that its formulas express properties of relations defined on a 
domain E and that in the definitions of these properties the quantifiers 
range only over the elements of E and not, say, over the subsets of E. 
For example, the fact that a relation is an order reIation can be expressed 
by a first order formula but not the fact that it is a well-ordering. Or again, 
the fact that a structure is a group (that is to say, that the relation a * b = c 
satisfies the group axioms) can be expressed by a first order formula. 
Similarly the property of being a commutative group is of first order. 
However the fact that a group can be ordered is not expressed by a first 
order formula since this is the property that “there is an ordering of E 
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compatible with the group structure” or, in other words, “there is a subset 
of E 2  such that ...”. Nevertheless the property of being an orderable 
group is equivalent to a certain infinite set of first order conditions. Final- 
ly, the properties of being a group having a finite number of generators 
and of being a countable group are not equivalent to any set, even infinite, 
of first order conditions. 

Thus because of the exclusion of higher order quantifiers the class of 
axiomatic systems for which these general results hold does not include 
all of mathematics. One can make up for this, at least partially, by use of 
infinite systems of axioms. By considering structures which satisfy an 
infinite set of conditions a whole class of problems can be covered which 
are formulated in higher order terms but which can be reduced to prob- 
lems about infinite sets of first order conditions. Examples of this are 
given in Chapters 1-3, mainly in Exercises. The most useful results, all 
connected with one another, are these: 

1. The Finiteness Theorem. This says that if a first order formula A 
holds in all those structures which satisfy a set d of first order formulas, 
then there is some finite subset dl of &’ which implies A .  

2. The Method of Constants (Chapter 3, Exercise 2). This generalizes 
the well-known algebraic principle for introduc~ng transcendental ele- 
ments (where a structure containing an element 5 satisfying p, ( t )#O for 
all n is derived from a structure which contains, for each n, a &, satisfying 
p, ( t , )#O for all i,<n). 

3. The Embedding Theorem. This gives a condition which is both neces- 
sary and sufficient for a structure to be embeddable in a model of a given 
set d of axioms. (The results about groups mentioned above are immedi- 
ate consequences of 1 and 3.) 

Using these theorems we can simplify several known results which deal 
with the passage from finite subsystems to a whole system. They also lead 
to first order (equational) conditions for embeddability. But probably 
their chief interest i s  the way they make the general nature of a problem 
clear by separating what is general and what is particular. Thus at first 
sight it may seem remarkable that there is an algebraic condition, that 
is, a first order condition, necessary and sufficient for the existence of an 
ordering of a field compatible with the field operations (namely, x f  + * + .  f 
x,’ -k 1 $0, for n= 1, 2, .. .). This general result is an immediate conse- 
quence of 3 above; only to decide points of detail is it necessary to look 
carefully at the conditions obtained, for example, to show that this set of 
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conditions cannot be replaced by any finite set. We remark in passing 
that there is an interesting theory which relates the usual algebraic prop- 
erties of certain classes of structures to the syntactic form of the axioms 
defining these classes. Thus the group axioms are all equational, the 
axioms for a field contain Boolean combinations of equations (condition- 
al equations) such as x = 0 v x * x-  ’ = e ; the axioms for a real closed field 
all take the form of a string of universal quantifiers followed by a string 
of existential quantifiers followed by a Boolean combination of equations. 
This theory enables us to answer such questions as ‘Why can we express 
the fact that a field can be ordered by a set of inequations but not by a 
set of equations?’. The answer is that if a set of equations is satisfied by a 
given structure it is satisfied by each homomorphic image of an arbitrary 
substructure of this structure. Thus if a set of equations is satisfied by the 
field of rational numbers it is also satisfied by the field of integers modulo 
2, but the field of rationals can be ordered while that of the integers 
modulo 2 cannot. A very elementary example of this theory is given in 
Exercise 8 of Chapter 3 which provides a useful condition for an axio- 
matic theory to possess a free model. For recent developments see ABRA- 
HAM ROBINSON, Introduction to Model Theory and to the Metamathe- 
matics of Algebra (North-Holland Publ. Co., Amsterdam, 1963). (Chap- 
ter 6 of the present book explains the methods used in this theory.) 

In Chapter 4 there is a more specific use of the notion of a first order 
formula. This use enables us to exploit the full force of certain particular 
constructions. For example, the algebraic theory of resultants leads to an 
equational condition on the coefficients of two polynomials which is 
necessary and sufficient for them to have a common root. But this same 
construct~on provides much more, namely, an analogous set of conditions 
for an arbitrary formula in the theory of algebraically closed fields! A 
similar but more interesting case is that of real closed fields. A long time 
ago Sturm showed that a polynomial vanishes in a closed segment [a, b] 
if and only if certain polynomial inequalities (the terms of which are 
rational combinations of a, b and the coefficients of the given polynomial) 
are satisfied. Artin and Schreier showed that this result depends only on 
the axioms for a reat closed field. Once we have the notion of a first order 
formula it is natural to try to extend this result to aZZ first order formulas 
of the theory of fields. This problem was mentioned in passing by Her- 
brand and completely settled by Tarski who proved that each first order 
formula of this theory is equivalent to a Boolean combination of equa- 
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tions and inequalities. In particular, a formula without free variables is 
either true in all real closed fields or false in them all. Thus although it is 
obvious that not all real closed fields are isomorphic they are nevertheless 
all equivalent with respect to first order formulas which are built up from 
polynomial equations and inequalities. A proof of Artin's Theorem on 
the representation of non-negative forms as sums of squares of rational 
functions follows almost immediately from this result. This is done as an 
exercise in Chapter 4. 

If d is a set of axioms all of whose models are equivalent with respect 
to first order formulas expressible in the language of d, then &' is said 
to be complete. MORLEY (Categoricity in Power, Trans. Amer. Math. Soc. 
114 (1965) 514-538) has recently constructed a remarkable theory of the 
models of complete sets. This theory is closely parallel to Cantor's theory 
of closed subsets of the real line. The closed subsets which we most natu- 
rally think of are all very special. If they are not themselves perfect their 
first or second derivatives are perfect (possibly empty). However, for each 
countable ordinal CI there is a closed set whose a-th derivative is not per- 
fect. In a similar way the ordinals which, in Morley's theory, correspond 
to the complete sets of axioms which have turned up in other branches 
of mathematics are all finite, although for each countable ordinal CI there 
is a (countable) complete set whose corresponding ordinal is CI. 

It follows from the Finiteness Theorem that each set of first order 
axioms which has an infinite model has models of different infinite cardi- 
nals (which are therefore not isomorphic). ~istorically, the first - and the 
best known - systems of axioms, for example, Peano's axioms for arith- 
metic and Dedekind's for the continuum, were introduced to characterize 
uniquely certain infinite structures. If we look at these systems more close- 
ly we see that their intended interpretation does not take into account all 
the general models, but only some of them. In other words it is not only 
the meaning of the logical symbols that is laid down, but also that of cer- 
tain other symbols. In particular, in certain classical systems of axioms 
"set variables" occur and the models considered are those in which these 
variables range over the set of all sub-sets (of the set which we earlier 
denoted by E). Languages which contain such set variables are called 
higher order languages and the particular models just described are called 
p r i n ~ ~ a l  models, where a language is said to be of order n if it contains 
variables over 'p '(E) for each i t n ,  with 'po(E)=E,  @"' ' (E)= @ fpP'(E)], 
'p denoting the power set operation. The axiom systems of Peano and 
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Dedekind are of second order. Some isolated results, for example, the 
reduction of validity of order n (n finite, n>2) to second order validity, 
can be found in Chapter 7, but most of the general results about first order 
systems cannot be extended to the higher order case. We define an inter- 
mediate class of models, the  is, by requiring that the value of one 
of the unary relation symbols be the set of natural numbers and the value 
of one of the binary relation symbols be the successor relation. We con- 
stantly meet classes of such structures in everyday mathematics, for ex- 
ample, vector spaces over the field of rationals; in contrast, the class of 
vector spaces over an arbitrary (not fixed) field is just the class of all 
models (without any restriction) of a set of first order axioms. In Chapter 
7 some results about general models are extended to o-models; only, 
we often have to  require that the sets of axioms be at most countably 
infinite. Much more on the subject of o-models (and, more generally, of 
models defined by infinitely long formulas) can be found in the references 
cited in the summary of Chapter 6. 

The “negative” results about non-categoricity (with respect to first 
order axioms) do have a “positive” side, namely, the existence of non- 
principal models (which in Exercise 3 of Chapter 2 are also called non- 
standard models). Quite recently these models have been used to create 
Non-standard Analysis. This recent work differs from other attempts at 
doing Analysis on a non-Archimedean field K by bringing in the set of 
“integers of K” (which satisfy the axioms of arithmetic considered). The 
existence of non-principal models implies the existence of non-Archime- 
dean fields which contain such (non-Archimedean) “integers” as well as 
non-Archimedean “real numbers” (for example, in a Taylor series 

a,x”, the variable n ranges over all the integers of K and not just over 
the standard ones). This genuine Infinitesimal Analysis is expounded in 
ABRAHAM ROBINSON, Non-standard Analysis (North-Holland Publ. Co., 
Amsterdam, 1966). 

The applications described so far are applications in the strict sense of 
the word in that the methods given in the main text enable us to answer 
questions which are explicitly formulated in ordinary mathematical lan- 
guage. It remains to consider what, in the long run, is the most fruitful 
rljle of new ideas, namely, the possibility of formulating questions that 
we have in mind but which we cannot express precisely in ordinary mathe- 
matical language (besides possible applications to less common branches 
of mathematics). In this connection probably the most striking example 
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is the theory of uniformly definable sets, explained in Chapter 6, which 
is illustrated by the following simple questions. Consider the commutative 
fields of characteristic zero; they all contain a sub-field isomorphic to the 
field of rationals. So we can ask: 

1. Which first order formulas A ( x )  define the same set of rationals in all 
these fields, i.e. are satisfied by the same rationals in each of these fields? 

2. Which first order formulas A(x) ,  satisfied only by rationals, define 
the same set of rationals in all these fields? 

3. Which sets of rationals can be defined in this way? 
4. Which sets of rationals can be defined in each commutative field of 

characteristic zero by a first order formula which may depend on the field? 
Complete answers to these questions follow as corollaries to quite 

general theorems about arbitrary sets of axioms. Questions 3 and 4 are 
equivalent; this provides a new and powerful uniformity condition. The 
answer to question 2 is that they are (some of the) first order formulas 
which define finite sets only. In other words we cannot hope todistinguish 
the rationals by one and the same first order formula in all fields. In fact 
there is a commutative field of characteristic zero in which the rationals 
cannot be distinguished by any first order condition (or as an algebraist 
would put it, they are not algebraically definable). One need only reflect 
for a moment to see that these questions are only interesting if arbitrary 
first order formulas A are considered and not just equations or Boolean 
combinations of equations, Obviously this is another reason why the 
above questions have never been dealt with in the literature of “ordinary” 
mathematics. 

This work on definable sets in general models also extends to the w- 
models described above. It provides an example of an application of 
model theory to two other branches of logic not dealt with in this book, 
namely, the theory of recursive sets and that of hyperarithmetic sets. This 
application is based on the following facts. On the one hand the basic 
notions of recursion theory are those of finite set (of natural numbers) 
and of recursive set; on the other hand, the sets which are uniformly de- 
finable in the usual axiomatic systems for arithmetic are just the finite 
sets, if definability is taken in the sense of 2 above, or if it is taken in the 
sense of 1 above, just the recursive sets. Thus we can generalize recursion 
theory in two directions, either by replacing the usual axioms for arith- 
metic by other axioms or by replacing the class of general models by some 
other class of models such as the w-models mentioned above. 



APPENDIX I1 

FOUNDATIONS OF MATHEMAT~CS 

INTRODUCTION. 
Foundational studies are concerned with describing and analysing so- 

called “intuitive” or “informal” mathematics, i.e., mathematics as under- 
stood by ordinary working mathematicians. 

In the descriptive part of the subject, informal mathematics is reformu- 
lated in a formal language (e.g. that of set theory). Compared with the 
language of informal mathematics such formal languages have a very re- 
stricted vocabulary and a perfectly exact grammar, with a consequent 
increase in precision and freedom from inessential features. Contrary to 
current views discussed at the end of the introduction, this reformulation 
is only a tool in the study of foundations; depending essentially, as does 
any description of an intuitively understood subject, on our conception 
of the objects described: it is only from this point of view, i.e., that of 
meaning, that the formal language expresses correctly the assertions of 
informal mathematics, since, from the point of view of external form, 
formal and informal language have (fortunately !) very little in common. 
It should also be noted that the increased precision brought about by 
formalization, though very useful for technical development, is hardly of 
any use for resolving difficulties arising from defects in the original con- 
cepts (indeed on the contrary, it is by reflecting on informal concepts that 
we are led to a good formalization). For example, in the well known 
“crises” (see Part A, Section 1, below) the contradictions arose from 
principles (axioms, rules of inference) which were quite explicit, so that 
the difficulties were not due to any lack of formal precision; the problem 
was rather to distinguish amongst various formally precise principles 
those which were valid. 

Foundational studies proper are concerned with just this kind of ques- 
tion which may require considerations quite different in character from 
those of ordinary mathematics. In particuIar, in foundations we try to 
find (a theoretical framework permitting the formulation of) good reasons 
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for the basic principles accepted in mathematical practice, while the latter 
is only concerned with derivations from these principles. The methods 
used in a deeper analysis of m a ~ e ~ a t i ~ l  practice often lead to an exten- 
sion of our theoretical understanding. A particularly important example 
is the search for new axioms, which is nothing more than a continuation 
of the process which led to the discovery of the currently accepted princi- 
ples. 

The preceding considerations show that the methods used in founda- 
tions will necessarily go beyond those of mathematical practice : the dis- 
covery of the new concepts and methods needed may involve distinctly 
philosophical considerations, and in particular, one’s conception of the 
nature of mathematics. If (1) one holds the view that intuitive mathe- 
matics is essentially concerned with certain (abstract) objects, one will be 
led to a “realist” theory of these basic objects: in such a system of foun- 
dations the meaning of intuitive statements is analysed in terms of this 
theory and the rules of reasoning are deduced from the laws obeyed by 
the basic objects. Realist foundations are thus analogous to theoretical 
physics which explains ordinary physical phenomena in terms of funda- 
mental constituents of the physical world (elementary particles in the 
current theory). But if, (2), one holds the view that the essence of intuitive 
mathematics consists in proof or, more specifically, the various kinds of 
proof, one will be led to an “idealist” system of foundations, which refers 
to mathematical activity itself. An example of (1) will be found in Part A 
below dealing with set-t~eore~ic semantic foun~ations (in this case the 
interpretations of the formulas are the “realizations” of Chapters 2 and 
7); and examples of (2) in Part B which sketches combinatorial syntactic 
foundations (a rather narrow view of mathematical activity is involved 
here). For defects of both foundations, see Part B, Section 4. 

Two particular difficulties in foundations deserve mention (though they 
arise in any attempt at a general, theoretical understanding). Firstly, in 
order to decide between two rival views, it is essential to adopt a detached 
standpoint. If one accepts one view, either consciously or unconsciously, 
there is a real danger of not taking the other one seriously! For a realist, 
an idealist appears to ignore the fundamental objects and to be lost in 
minor distinctions (analogous perhaps to the difference between obser- 
vations made by the naked eye and with the aid of a microscope - a dis- 
tinction to which no physical importance is ascribed). Conversely, an 
idealist will find it ridiculous to derive the rules of intuitive reasoning from 
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the properties of abstract objects which, for him, have a very dubious 
status, or, at least, are hardly essential to mathematics. Secondly, if the 
viewpoints are of long standing and have consequently survived exami- 
nation at  any rate in respect of their consequences for elementary mathe- 
matics, considerable further development of informal mathematics may 
be needed in order to provide some criterion for deciding between them 
(such a criterion would be analogous to an experimentunz crucis in phys- 
ics). It goes without saying that an already quite highly developed techni- 
cal apparatus may be necessary even for formulating a theoretical view- 
point, and the development of this is one of the principal tasks of mathe- 
matical logic. 

As to the possibility of applying foundational studies to informal 
mathematics, the position is similar to that for any other theoretical analy- 
sis. In Appendix I some applications of semantic analysis are given. 
Syntactic methods have found applications in connection with computers ; 
this is hardly surprising since one of the basic ideas behind this kind of 
analysis is that mathematical reasoning is capable of being mechanised. 
In fact we can say that there is no doubt about the usefulness in principle 
of foundational studies. 

In practice the following situation sometimes arises. If some question, 
say in number theory, is formally undecided by the basic axioms accepted 
in mathematical practice, its solution may require assistance from foun- 
dationaI studies: in the first instance, in order to establish its undecida- 
bility and secondly in order to find new axioms (there are examples of 
these possibilities in Part A, Section 3). But at the present time the situ- 
ation both in arithmetic and analysis is confused: on the one hand we 
do not know of any questions which are seriously studied by working 
mathematicians and which are also independent of the currently accepted 
axioms (see Part 8, Section l(c)); on the other hand mathematicians igno- 
rant of foundational methods are not likely to find any (just as it is un- 
likely that anyone would notice group theoretic aspects of arithmetic 
unless he already knows what a group is). 

FOUNDATIONAL STUDIES AND THE PROBLEM OF ERROR 

One of the standard problems of philosophy is that of determining how 
one might eliminate possible error from naive experience. The founda- 
tional considerations of the present study are only slightly relevant to this 
purpose (and, in particular, formalization itself is quite irrelevant). We 
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cannot rule out the possibility that there may be defects in the basic con- 
cepts; but the two commonly cited examples of erroneous naive ideas are 
hardly conclusive, namely the paradoxes of set theory (Part A, Section 2) 
and the existence in arithmetic of formally undecidable propositions (Part 
A, Section 3). In point of fact, the objections raised by mathematicians to 
the introduction of the idea of set (at that time called “class”) are notori- 
ous, as well as the efforts made to show that mathematical reasoning (even 
in elementary geometry !) is not capable of being mechanised. If anything, 
the naive attitude was excessively conservative. 

POSITIVISM : AN ANTI-PHILOSOPHICAL DOCTRINE 

According to this doctrine, which currently enjoys a certain vogue, 
foundational studies should be confined to their descriptive role ; the 
traditional problems of foundations are ignored rather than resolved on 
the ground that they lack precision. We have already observed certain 
fundamental disadvantages of such a restriction at the beginning of this 
~ntroduction, and they will be considered in greater detail in Part A, Section 
4 (c) in connection with semantic foundations and in Part B, Section 4 in 
connection with combinatorial foundations. But it will be useful to make 
certain general observations about this doctrine at this point. 

The restriction imposed by this doctrine on what is held to be precise 
(or meaningful) requires that statements be formulated in what are called 
“positivist” or ‘‘operational’’ terms, which in mathematics reduce to 
“formal”. This requirement, in turn, derives its plausibility from the dis- 
covery (Part A, Section 4(a)) that elementary logical reasoning (i.e. of first 
order) is, if not formal (mechanical), a t  any rate capable of being formal- 
ized (mechanized). Prior to this discovery the positivist doctrine had no 
real foothold in mathematics. 

It should be observed right away that the intuitive notion of logical 
consequence is involved in the very statement of this discovery since it 
asserts the equivalence of logical consequence and a certain purely formal 
relation; i.e., having accepted the notion of logical consequence, one 
proves that there is a formally precise definition of it. But positivists go 
further: having formulated (quite correctly) a criterion for formal pre- 
cision, they conclude (wrongly) that this criterion defines the limits of 
mathematical thought. However, experience in foundations as well as in 
informal mathematics shows the contrary to be the case. Competent 
mathematicians come to unanimous and quite definite conclusions about 
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questions that are not expressed with formal precision such as e.g. whether 
or not an axiom is valid for a certain intuitive concept (see Part A, Section 
2(c), Part B, Section 2(c)), or whether a definition is satisfactory (e.g. for 
the length of a curve). Sometimes it is claimed that such questions do not 
form part of mathema~cs - a particularly curious view since, on the one 
hand, j t  is not stated to what discipline they do belong and, on the other 
hand, mathematicians do in fact concern themselves with just such ques- 
tions. Since mathematicians find themselves in agreement on such ques- 
tions (this is a point of fact which positivists simply ignore) there does 
not seem to be any reason why they should be dubbed as subjective. To 
summarize: the empirical facts throw doubt on the necessity, and con- 
sequently, in the long run, the fertility of the restrictions imposed by 
positivism but they do not put in question the significance and good sense 
of at any rate the majority of foundational problems (though the excep- 
tions often attract the greatest attention). 

Positivism does seem to have a certain pragmatic value. In connection 
with research, Appendix I describes certain useful consequences of the 
reduction of an abstract concept to a formal one, namely of “validity in 
all mathematical structures” to “formal consequence” [for the case of 
elementary (first order) reasoning]. In addition we remarked earlier that 
the theory of foundations may not be of any particular use in particular 
branches of informal mathematics, at any rate at any given moment. As 
to the position of foundational studies in mathematical education, they 
turn out to attract two distinct groups of students; those who have a 
definite gift for philosophy and those who are particularly bad at it (and, 
perhaps consequently, fascinated by it). The former will not be seduced 
by the positivist view and the latter will be consoled by a jus~ification bad 
as it may be of their tack of ph~osophical talent. Naturally, they will not 
be led to look, say, for new basic axioms, but, in any case, they would not 
have found any; and, after all, it is quite possible to devote oneself to 
technical problems, i.e., problems already formulated in the language of 
mathematical practice. This is true even in mathematical logic e.g. in the 
parts of the subject dealt with in this book. What is lost in this way is, 
however, the most fruitful feature of mathematical logic, namely its speci- 
fically logical aspect; in particular, the problems and conjectures that 
follow from the different views of the nature of mathematics and its 
foundations, which, used properly, are fruitful even for the technical 
development of mathematics. 



PART A 

SET THEORETIC SEMANTIC FOUNDATIONS 

The reader will recall from the preface that passages in square brackets 
presuppose some technical knowledge of mathematical logic. Comments 
in small print concern points of detail of either philosophical or mathe- 
matical interest. 

SUMMARY 
Section 1 analyzes the “adequacy conditions” satisfied by the familiar reduction 

of classical mathematical structures to set theory, and the weaker conditions in- 
volved when intuitive logical consequence or the intuitive structure of the ordinals 
are reduced to set theory [the latter reduction is formulated in terms of realizations 
in a wider sense than that of Chapters 2 and 71. 

Section 2 (a) distinguishes between several concepts involved in the “naive” idea 
of set, and Section 2 (b) describes one of them, the so-called cumulative type 
structure, called s.c.t. [cf. also Exercise 5 of Chapter 51. Section 2 (e) derives 
Zermelo’s axioms for this notion, both in first order and second order form; for 
an informal distinction between languages of different order cf. Appendix I [and 
for a precise one, cf. Chapter 71. 

Section 2 (d) first gives simple examples of assertions which are true for s.c.t., 
but not consequences of Zermelo’s axioms either in first or second order form. 
Finally, it gives a true arithmetic proposition which is not a consequence of the 
first order theory. This is a particular case of Godel’s incompleteness theorem, 
which holds for a wide class of axiomatic systems. (Its general formulation is not 
given because it requires an analysis of the notion of formal system, which in turn 
needs the notions of recursion theory, a part of logic not treated in the present 
book. But the details of Section 2 (d) are not superseded by the general theorem 
because they would be needed to verify that Zermelo’s axioms are covered by it.) 
A distinction between Godel’s incompleteness result and other independence 
results is formulated in terms of second-order consequence. 

Section 3 gives some other assertions valid for the s.c.t. and not derivable from 
Zermelo‘s axioms. It discusses so-called axioms of infinity, which assert the ex- 
istence of sets of high (transfinite) type and their implications for assertions about 
sets of finite type, in particular the natural numbers, or sets of lowest infinite type, 
such as the real numbers. 

Section 4 contains some technical information needed in Part B, Section 4 for 
the examination of philosophic views. Theorem 5 of Section 4 (a), a refinement of 
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Godet’s completeness theorem, gives a mathematical justification for the choice of 
the usual rules of first-order logical deduction, and Section 4 (b), for comparison, 
contains some further facts about second-order logical consequence. Section 4 (c) 
disposes of a well-known view which tries to combine a set theoretic semantic 
foundation with a privileged position of first-order consequence and/or with the 
idea that the notion of set is defined by the usual axioms. 

The basic notions are : set, the membership relation (between sets), and 
the “logical” operations (on sets) of ~ n ~ o n ,  c o m p ~ e i ~ e n t a t ~ o ~ ,  and pro- 
jection. “Semantic” is used because the foundations described in the present 
section accept set theoretic terminology as meaningful, and not only as a 
“facon de parler” in need of further critical analysis: the practical signif- 
icance of this distinction is specially important in Sections 2 and 3 below. 

1. How does one analyze intuitive mathematics in these basic terms? 

In other words: what does one mean by the reduction of (intuitive) 
mathematics to set theory? 

In this reduction each mathematical structure is conceived as a set, 
itself an ordered n-tuple of sets consisting of a collection (universe) and 
refations on it; such sets are called rea~izatioi~s [cf. Chapters 2 and 71. In 
particular, in arithmetic, the basic realization has the colIection N of natu- 
ral numbers as its universe, with the successor relation on N x N; in analy- 
sis, it is the realization whose universe is the collection R of real numbers 
with the order relation on R x R, and a denumerable dense subset Q of R 
(other structures can then be defined in analysis, such as geometry: the 
collection E3 of points in 3 dimensions, with a partial order on E i  (be- 
tweenness) and a metric). 

To each mathematical structure 6 is associated a language (the “lan- 
guage of G”). Roughly speaking, the language refers only to the structure 
and not to the nature of the objects in its universe (and so has meaning 
for structures whose universe consists of arbitrary kinds of objects; some- 
times such a language i s  called : purely logical). In particular, if two struc- 
tures are isomorphic they satisfy corresponding assertions in the languages 
of these structures. An example of such a language consists of all formulae 
built up from symbols R,, ..., Rk for the relations of 6, universal and 
existential quantifiers, negation, conjunction l; see Appendix I for an in- 

The notation of the main text is used. 
-+ : implies (usually denoted by : *) 
7 :not 

A :and (&), A :for all (V) 
v :or, V :there is (3). 
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formal description of this language, the so-called predicate calculus of 
first order whose relation symbols have the same number of arguments 
as the relations of 6. [Of course, if 2, is the first-order language of 6, 
FG of Chapter 7 is also a purely logical language: the difference is that 
to understand an assertion in 2,, one need only know the structure 6 
itself and understand the logical operations of union, complementation, 
projection; to understand an assertion in 9&, one must also know the 
hierarchy of types built up on the universe of 6 up to type z.] 

If A is a formula in the language of 6 whose free variables are xl, . . ., x,, 
we shall denote by A the set of n-tuples of the universe of 6 which satisfy 
A (in 6). 

The reduction of a structure 6 to set theory is expressed by means of 
an adequate axiomatization, which consists of an axiom (or set of axioms) 
d, satisfying the following conditions. 
dG is purely “logical” [formulated in the language of predicate calculus, 
Chapter 2 or Chapter 71. 
6 satisfies dG and hence: there exists a structure that satisfies d,, for 
short: E d = .  
All structures that satisfy d, are isomorphic (and, hence, isomorphic to 
G), for short: UdG.  
All intuitive properties of 6 can be expressed or defined in terms of those 
explicitly mentioned in d, [precisely: defined in terms of the first or 
higher order language of d,], for short: X d G .  
All assertions about 6 that can be proved intuitively follow logically from 
dG: for short: DdG. 

The reduction to set theory involves also a (set theoretic) reduction of 
the notion of intuitive logical consequence: a formula A in a given lan- 
guage is called set ~ ~ e o ~ ~ t ~ c  consequence of a set d of formulae (of the 
same language) if it is satisfied by every realization in the sense of p. 166 
that satisfies all formulas of d. 

Discussion. (i) The notion of logical consequence used in the formulation of DdG is 
the notion of consequence understood in ordinary mathematical reasoningz. Note that 

For instance, in Bourbaki rules of inference are given in the first chapter but never 
referred to afterwards, in contrast to definitions of mathematical structures, e.g. groups. 
Thus knowIedge of these mathematical notions is needed for understanding the de- 
ductions, knowledge of the rules is not. Not surprisingly, since the rules of the first 
chapter were obtained by analysing the meaning of logical operations (Theorem 5 
below), and it is knowledge of this meaning which permits one to follow the deductions. 
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if A is an intuitive consequence of d all realizations, in a wider sense of the word, that 
satisfy .d also satisfy A :  see p. 169 for one such extension. But for formulas of first 
order the two notions of consequence coincide (Theorem 5 of Section 4 below). 

(ii) The difference between “6 satisfies A” where A is formulated in the language 
of G, and “A is consequence of .dG” is, of course, that in the latter case, A is true in 
afl structures that satisfy d ~ ;  in other words, only those properties of G that are ex- 
plicitly formulated in d~ are needed to concIude A. If UdG happens to hold, by the 
fundamental property of logical languages, “6 satisfies A” if and only if “ A  is conse- 
quence of d ~ ” ,  A being purely logical. 

(iii) [By Chapter 7, Exercise 11 there are axioms d~ for the principal intuitive 
structures studied in the 19th century (arithmetic, analysis) satisfying E d G  and U“E 
[where, since 6 is infinite, dG must be a higher order formula to satisfy U“G] .  

(iv) Note that both EdG and UdG are formulated in the language of set theory 
(namely: the first order language Sp,} whose only relation symbol is E, with variables 
ranging over sets and E denoting the membership relation. For the classical structures 
G, both E d G  and U d c  are derived from familiar properties of the basic set theoretic 
notions. 

(v) In contrast, the verification of X d G  and DdG requires a case study such as given 
in Principiu Mathernatica. Clearly X d G  depends on what is regarded as mathematically 
significant about G ;  for example, in the case of arithmetic, X d G  requires that addition 
and multiplication and other ‘ ‘ a r ~ t ~ e t i c a ~ ’  functions be expressed in terms of the 
operations mentioned in d ~ ,  namely, the successor; but not necessarily “empirical” 
properties such as the number of electrons emitted by a particular atom between times 
n and n f 1 for n=O, 1 ,  ,. .. 

(vi) If U d G  and X“G are satisfied, clearly so i s  DBG, by the fundamental invariance 
under isomorphism of assertions formulated in a purely logical language. But even if 
U d G  is not satisfied, a case study may show that, in actual practice, DdO‘Q holds in the 
sense that all assertions about G that have been proved, follow logically from d ~ .  
(This possibility is actually realized at the present time even by certain first order 
axioms for arithmetic, cf. Part B.) 

(vii) We remark in passing that the condition UdG is appropriate for pure mathe- 
matics. But in applications, two abstractly isomorphic structures may not be equally 
effective; for instance, a structure 6’ isomorphic to arithmetic, i.e., another notational 
system for the natural numbers, would be bad for counting if we could not effectively 
decide the successor relation in G’. 

Warning. The adequacy conditions above have been established for the 
classical structures (iv), but not for the basic structure 5 (8 for: funda- 
mental) consisting of all sets with the ~ e ~ b e r ~ h i p  relation, or the intuitive 
structure consisting of all ordinals with the order relation. 

Indeed, if d, is an axiomatization of 5, Ed% asserts that there is a 
realization satisfying A, whose universe is a set. If U d ,  were also satis- 
fied, there would be a set in 1-1 correspondence with the collection of all 
sets. 
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ELEMENTARY RESULTS ON THE INTUITIVE NOTION OF ORDINAL 

To formulate results we need the wider notion of realization mentioned 
above, which we explain for the particular language of set theory, to 
which are added the predicate symbol 0 of one variable, and the predicate 
symbol P of two variables. The variables are not required to range over 
a set, but  may range over all sets. 

The realization of a predicate symbol is again not required to be a set, but 
may be a property of sets in the case of 0 or of pairs of sets in the case of P. 

The extended notion of realization is well illustrated by the following analogous 
situation: In the present paragraph we shall confine ourselves to the structure f of all 
hereditarily finite sets built up from a collection of individuals fcf. Chapter 5,  Example 
61. This structure does not permit an adequate axiomatization SBN of the structure N 
of arithmetic, since a realization in f has necessarily a finite universe. We extend the 
notion of realization as follows: we consider .YE with the two relation symbols Nand 
S with one, resp. two arguments, and the foZlowing structure as ageneralized realization: 

the universe is that of f, E is membership restricted to finite sets, N(X) is the property 
(of sets) of being a natural number, Le., 

x = 0  V A Y [ A z ( z U ( Z } ~ ~ ) - ~ Z ~ ~ ) ~ ( X E ~ - - ~ ~ E ~ ) ]  

and S (x, y )  is the relation: y is the successor of x, i.e., y = x U (x}, short for: 
A z  [zEy* (Z = x V zEx)]. 

In the extended realization, the variables take (finite) sets as values, but their range 
is not finite. 

Returning now to the general case [and using the language L?$'*') 
(Chapter 5) extended by 0 and PI, we require that each ordinal be a set 
and that the structure (0, P )  of the ordinals with the order relation satis- 
fy the following conditions : 
(i) P is a strict ordering of 0, i.e., 
A X  AY [PXY++(OXAOYAX#YA -.Pyx)]. 
(ii) Every initial segment of 0 is a well-ordered set, i.e., 

/2xfOx-+ vy V z [ f , u ( u € y + + P u x )  A 

/ ? u ( u ~ z *  v s  v t [ u  = (s, t )  A S E J ~  A f ~ y  A Pst])  A We(y,z)])  

where (3, t )  denotes the ordered pair and We (y, z )  means that is well 
founded with respect to 5, i.e., if A' is a variable over collections of sets 
[of type (0), as in Chapter 7, Example I], 

Ax r \ U [ ( f J E J i  A XU)+ V W ( W E Y  A X W  A 

r \ W ' [ ( X W ' A  W'EY A W ' # W ) +  ( W ,  W ' ) f Z ] ) ] .  
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(iii) Every pair of sets <jj, 2 )  where Z well orders j j ,  is isomorphic to some 
initial segment of 8 ordered by P. 

These axioms are sufficient to determine (8, P )  uniquely (just as 
Peano’s axioms determine the structure of arithmetic). There are formulas 
of 5FE which define 0 and P explicitly so as to satisfy the conditions 
(i)-(iii) above (just as the property of being a natural number and the 
successor relation were defined above). 

For further information on ordinals and on the notation below, see 
e.g. HAUSDORFF, Set Theory (Chelsea Publ. Co., N.Y., 1957). 

The following notation will be used in the Exercises below. 
x= 0 for A u i  U E  x; x=  y u {z} for A w [WE x+-+(wE y v w =.)I ; x = (yf, 

x=(y, z, w) for x=((y,  z), W) (ordered triples). 
Func(x) for Az(z~x+-+Vuw[z=(u, w ) ] ) ~  ,4uuw([(u, ~ ) E X A ( U ,  W)EX] 

Dom(y, x) for Au(u~y -+Vu [ (u ,  .)EX]) ( y  is the domain of x). 
For each numeral 1, 2, 3, ..., one writes 1={0}, 2=(1) (since 1 u{l}= 

(I}), 3=2u{2) ...; cf. the definition of the natural numbers, p. 169. 
Sf(x) (finite sequence, i.e., a function whose domain i s  a natural num- 

ber > 0) for Func(x) A V y  [iV(y) A Dom(y, x) A y # 01, where N is as on 
p. 169. 

x=Sub(y, z, u) (x is the result of substituting u for z in the finite se- 
quence y )  for 
sf(X)A Sf(y)A A U W [ ( U ,  W)EXc+([(ZC, W ) € y A W # Z ] V [ ( t l , Z ) € y A ~ = u ] ) ] .  

x+y=z (addition) [Chapter 5, Example 71. 
u=@ for the concatenation of y and z, i.e., Sf(y)A Sf(z)A A u [ u ~ x t - ,  

c + ( u ~ y v  vuwr[Dom(u,y)~(w, ~ ) E Z A ( W + V ,  r ) = u ] ) ] .  
x=v for the accumulation of a finite sequence of finite sequences, i.e., 

Sf(x)/t Sf(y) ~ V w [ D o m ( ~ ~ , x ) ~ D o m ( ~ , y ) ~ ~  ~ t l u [ ( u , u ) ~ ~ ~ ~ S f ( u ) ] ~  
A / lu[(o,  u)EX+(O, U)Ey] A A Uuw{[(tl, V)EXA ( u u  fa], W)Ey]+(Uu{U), 

{x, Y } ,  ( A  z) for x=Ou ( Y } ,  { Y }  u (z}, resp. {{v}, {Y ,  z } }  (ordered pair). 

+u= w) (x is the graph of a function). 

uw) E x} . 

2. How does one find laws for the basic set theoretical notions? 

(Conceptual analysis of 8.) Whatever sophisticated theoretical analysis 
may later be given, the discovery of such laws presents itself naively as 
follows : 

One chooses a language, in particular LPE above, and sets down asser- 
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tions ~ ~ h i c ~ 2  are truefor the real i~a~ion (in the wider sense above) in ~~1~~~ 

the variables range over all sets and€ is the membership relation. 
The selection actually made among such true assertions is to some ex- 

tent determined by the “needs” of contemporary mathematics, for ex- 
ample one sets down the properties of 3 which are actually used in estab- 
lishing EdG of UdG for the classical structures 6. But one also formu- 
lates more general principles of which these properties are special cases 
(cf. footnote 3 below). 

Now, mathematicians sometimes ask (specializing Pilate): what is truth (for sets)? 
and (just as Pilate) do not wait for an answer. The interest of further analysis is un- 
deniable: in fact, the whole of Part B will be devoted to  one further analysis of this 
question. But here we shall accept the notion of set theoretic truth (which anyway is 
a corollary to accepting the basic set theoretic notions as meaningful) and see what one 
gets from it. In terms of this notion the problem of giving a foundation or a justification 
for axioms takes the following quite natural form: 

Speaking generally, axioms are set theoretically justified if one has a (precise) concept 
which satisfies the axioms in the wider sense of realization. In particular, d~ is justified 
if EdG is true. 

The formal derivation of EdG from traditional axioms of set theory provides then 
such a justification if we have at  least one precise concept of set which satisfies these 
axioms. Sections 2 (b) and (c) are devoted to this point. 

(a) THE NEED FOR DISTINCTIONS. Long before the set theoretic paradoxes 
led to sophisticated restrictions on definitions (PoincarC’s predicativit~) 
or on methods of proof (Brouwer’s constructivity) there was earlier criti- 
cism of the notion of set because of certain ambiguities. Such criticism is 
not fatal because it is met by making necessary distinctions; however, at 
the time it was justified because the notion of set was introduced as a 
crude mixture containing at least 3 different elements: Sets were consid- 
ered: 

(i) as mere analogues of finite collections (a notion which was supposed 
to be understood) satisfying more or less the same laws; 

(ii) as arbitrary subcollections of a given collection; this occurs through- 
out mathematics (sets of integers, or sets of points; the collection of 
integers and the collection of points (real numbers) being taken to be well 
defined) ; 

(iii) as an abstraction from the more general notion of ~ r o ~ ~ r ~ y ,  a set 
being the collection of objects which have a given property. (Since prop- 
erties defined in diflerent ways may be satisfied by precisely the same ob- 
jects, the notion of set is here conceived as an invariant of properties.) 
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There is little use in mathematics itself of properties for which we have 
no apriori bound on the kinds of objects which satisfy them: but both in 
logic and in everyday language, such properties are used widely. An in- 
stance is the property of being non-empty (which, incidentally, applies to 
itself); or the property of being blue: for, even if it has such a bound, we 
use this property without any clear idea of the class of ail blue things (past, 
present, or future). The possible interest of such properties for mathe- 
matics is taken up at the end of this paragraph. 

Flagrant errors (contradictions) are rare in mathematical uses of the 
notion of set, because in any particular deduction one of the notions i s  
tacitly understood. But the distinctions are essential for analyzing the 
errors known as paradoxes, where several precisely formulated prin~iples 
(axioms, rules of inference) lead to contradictions, though each of them 
is plausible. More exactly, each of the principles is valid for one notion of 
set in the crude mixture, but none of the notions satisfies all these princi- 
ples. Such errors are particularly disagreeable because (by what has just 
been said), unlike a computational error, they cannot be uniquely located. 
It is clear that the distinctions mentioned are needed for the very state- 
ment of such an analysis. 
Example (comprehension axiom). If P is a property of elements of a given 
set a, one forms the set, in sense (ii), of all X E U  which satisfy P, i.e., 

Sometimes a is understood tacitly, when 

is valid, e.g., in analysis where a is the set of integers, y a numerical vari- 
able, and x a variable over sets of integers. [More generally, as in the 
theory of types (Chapter 5), if y is a type z, x a type (T) variable, a being 
now the collection of all objects of type 7.1 

Russell noticed, actually so long after the notion of set was introduced 
into mathematics that the naive doubts about possible ambiguities had 
been almost forgotten, that (**) is contradictory if the tacit understanding 
is ignored [i.e., if the type distinction is removed] and ordinary logical 
rules are applied. In particular, if y#y is put for Py and if any x satisfies 
~ y ( y € x t f y # y ) ,  then also XEX-X#X, which is a contradiction. 

For the notion of set (ii), (**) is not at all plausible, and certainly not 
evident. For the notion (iii), with y ~ x  being interpreted as: the property 
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y has the property x, (**) is indeed evident provided the nzost general kind 
of property is considered, including properties which are not everywhere 
defined. Only in this case the familiar formal laws of logic [which hold 
for the interpretation of the logical symbols in Chapter I ]  cannot be ex- 
pected to be valid, for instance: Either A (is defined and) true or A (is 
defined and) false. So, for the notion (iii), we should accept the property 
x which applies to a property y if and only if y does not apply to itself, 
but this property x is not defined for the argument x. 

Clearly Russell’s paradox, or any of the others, affects the notion of set 
in sense (ii) no more than it affects, for instance, the notion of heredi- 
tarily finite set (built up from the empty set). Here it is obviously false 
that for each P there is afinite set x such that Ay(y~xc*Py) with y ranging 
overfinite sets. An immediate counter example is provided by the prop- 
erties Py :y = y, or: y is a natural number of p. 169 (or, of course, ygy!). 
On the other hand, (*) is clearly valid when all variables range over the 
hereditarily finite sets. Nevertheless, there exists a contemporary problem 
of the paradoxes : 

Is the notion (iii) precise enough to permit a theory as rich as that 
of (ii) given in (b) below? In particuIar, what are its logical laws? 
And if it is rich, is it i ~ p o r t a n ~  for mathemat~cal practice or only for 
foundations? 

Discussion (relating the present section to some general points in the Introduction). 
The distinctions (i)-(iii) above constitute an example of informal precision. The dis- 
cussion of the comprehension axiom illustrates how informal distinctions are used to 
find correct axioms, such as (*), The reader will have observed that the explicit formu- 
lation of (*) did not somehow drop from heaven as a means of clarifying the basic 
notion of set, but was the result of informal analysis, i.e., of the distinction between 
(ii) and (iii). As to (**), its explicit formulation certainly helped to show that the 
original crude mixture of notions was imprecise, but again the informal discussion of 
(iii) was necessary to show why (**) was plausible at all. Quite generally, explicit 
formulation (formalization) may help one to see when one’s ideas are wrong, but it is, 
at best, an auxiliary towards getting them right. 

The step from the informal distinctions (and, generally, from reflection on the 
meaning of a concept) to the formulation of formal axioms is called an in~ormaZ 
~ e r i ~ a ~ ~ o n .  The reader should review, in the light of actual informal derivations such 
as those above and in (b) and (c) below, the positivist doctrine (mentioned at the end 
of the Introduction), which considers informal derivations either as unreliable or as 
irrelevant to mathematics. 

Note, finally, that the choice between different notions which an informal analysis 
has isolated need not be haphazard. Thus, at least for a “realistic” theory of found- 
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ations, considerations of definability give a (partial) criterion for which of two sets of 
notions is (more) jirndumental: The set X is more fundamental than Y if Y can be 
defined from X,  but not conversely. Thus the notion of set (ii) is more fundamental 
than that o f  finite set because the latter can be defined, even in ..YE, from the former, 
but not conversely. 

It is plausible that, if the notion of set (iii) turns out to be precise on further study, 
it is more fundamental than (ii). 

It must of course not be assumed that the notions which are fundamental for a 
realistic theory are particularly easy for us to grasp. 

(b) EXISTENCE OF A PECISB NOTION OF SET (ii) (i.e., set of something, 
satisfying (*)). Quite soon after the publication of Russell's paradox, both 
Russell and Zermelo formulated the precise notion of set, called type 
theory. 

Zermelo's version, the so-called cumulative type structure (s.c.t.) [cf. 
Chapter 5, Example 51 is this: 

C,  is some collection of individuals, i.e., objects which have no mem- 
bers (C, possibly empty); 

C,,,  = C,u p(Ca), i.e., the union of C, and of the collection of all its 
parts; and for limit numbers a, C, = U,<, C,. 

Equivalently, for 
a#O:C,= u C,U!p(C,). 

So, besides the basic (logical) operations on sets, we have here the addi- 
tional operation 9 and its iteration (to transfinite a if a transfinite ordinal 
a is assumed). 

Let E, be the membership relation restricted to C,. 

The formula (**), sometimes called: unrestricted comprehension axiom, is evidently 
fuZse in the structure {C,, ca> for each a, i.e., when the variables in (**) are taken to 
range over C,, e.g., if P ( y )  is y = y since C, $C,. The form (*) is evidently true for 
eacha.ForifusCn, takex = {y:y~aandP(y)istruein<C,,~,>};so,ifa = b +  1 
then y c a  =' y ~ C / i  and since allsubsets of C/icC#+i, xcC@+i,  i.e., xf C,; if a is a limit 
number, and a E Ca, u E Co (for some /3 < a) and so again x 6 C,. 

Zermelo formulated laws, given in (c) below, which are not only the 
basis for all familiar axiomatic systems of set theory, but easily recognized 
to be satisfied by (C,,E,) for all limit ordinals a: so, unless one has theo- 
retical or empirical reasons against naive judgement, in particular against 
s.c.t., the precise notion of set above is a foundation for these axioms 
(particularly since only small a such as w + w, need be assumed). 
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(c) ZERMELO'S AXIOMS. The reader should verify as he reads them that 

1 .  Extensionality (each cl) : 
they are satisfied in each (Cbl ,€J ,  a limit number. 

Axyz ( [ zEX A A U ( U E X + + U E ~ ) ]  + X  = y ) .  

(If C,=@,  even ~ X ~ [ / ~ U ( U E X ~ * U E Y ) ~ X = ~ ]  holds.) 
2. Power set (limit numbers a). If z c x  means: AU(UEZ-+UEX) 

A x  V y A z ( z  E y ts z cx) (since X E  C, => y E C,, *). 

[ 3. Aa A X  V x  A y [ y ~ ~ - ( y ~ a  A X l y ) ) ]  

where PE is extended by second order variables X as in Chapter 7: This 
is needed to express (*) in its intended form; of course it is satisfied by 
( C a , ~ = )  for each a>O, Also basic results, like Theorem 1 below, are 
proved most simply for this form. However, current systems ~ s ~ a l l y  for- 
mulatefirst order schemata instead of 3, restricted to X which are explicitly 
defined by (finite) formulas of -YE.] 

3*. For each formula A(y, xl, ..., x,,) not containing the variable x: 

Ax, ... Ax, V x  A Y ( Y E X + + [ Y E a  A ~ ( Y , x i , * * . ~ x n ) ] ) .  

4. Pairs: ~ x , x ,  vx ~\y [yex++(y=x ,  vy=x , ) ]  (limit a). 

5. Union: AZ \/x ~y [ Y E X ~ + ~ U ( ~ E U A U E Z ) ]  (all a>O). 
Since each structure (C,,E,> is built up by a transfinite iteration from 

individuals, the E relation is well founded. This is expressed by the so- 
called axiom of regularity : 

[ 6. A X A a [ X ( @ ) - +  V X  A Y ( x ( x )  A [ x ( y ) - + . Y $ x ] > ] .  

Remark. The reader may verify that each structure that satisfies the 

Once again, if one restricts oneself to first order axioms, one takes as 

6*. For each formula A ( x )  

axioms 1-6 is isomorphic to some (Ce, E ~ ) .  

schema the following consequences of 6:] 

AaCA(a)+ v x  AYCA(X)A CA(y)- ty4 .x l ) l .  
The axioms 1,2,4,5, [3,6, and consequently] 3*, 6" are satisfied by 
{ C,, E,) with C, = 0 (the hereditarily finite sets). This is excluded by the 

7. Axiom of infinity: VxIi  (x) where I ,  (x) is 

V y  A Z ( ~ E X  A [.EX+ V U ( U E X  A A w ~ w ~ u ~ ( w ~ z v w ~ z ) ] ) ~ ) .  
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This is satisfied by (C,,E,) for all CL>W (hence: infinity, i.e., types of 
infinite ordinal) and all C, ; take y = 8, and u = zu !# (z). Thus I ?  2,4,5,7, 
[3,6, and consequently] 3*, 6* are satisfied by (C, ,  E,) for each limit 
number CI > o. 

The systems [1,2,3,4,5]; 1,2,3*,4,5; [1,2,3,4,5,7]; 1,2,3*,4,5,7 
will be denoted by [d-1, d?, [d], resp. d*. 

EXERCISE 1 : We use the notation of p. 170. For each formula A ( x )  not 
containing the variable y ,  let V ! x A ( x )  denote the formula V x Ay 
[ A  (y)t.x=y] (read: there exists exactly one x satisfying A).  Verify that 
a) Ayz V!x(x=yu (2)) follows from axioms 1 and 4, 
b) for each triple of numerals n, m, p either n+m=p is a consequence of 
dT or n + rn # p  is a consequence of dT. 

Ayzv  {Sf ( Y )  + V! x [x = Sub(y, Z ,  v)]), 

t r \ p  {[sf ( y )  A Sf (2)f 3 \i! X [sf (X) A S = 21). 
r\y(Sf ( y )+  V!X[Sf (X) A x =?]I 

are consequences of d?. 
Show also that Ax([Sf(x)AN(x)]-+Dom(l, x)) is consequence of 1 

and 4. 
[ (a)-(c) show that the function symbols ~ntroduced p. 170 can be elimi- 
nated in the sense of Exercises 1 and 6 of Chapter 5.1 

By p. 168, [U" and hence] U"* is not satisfied, since, if XEC,, z<e,. 
The results below will show that [neither X" nor Dd and hence] 

neither A'"* nor D"* is satisfied, relative to the intuitive s.c.t. In fact D"* 
is violated in the strong form that Ed* is not consequence of .d* [and 
Ed is not consequence of 4; i.e., one cannot prove by use of the princi- 
ples d* that d* has a model a t  all ! 

The results before Theorem 4 are technically very simple. They not 
only give insight into the general state of affairs, but illustrate how useful 
it is technically to use the inte~retat ion of [d and] d* by (Co+w,~,+o>. 

(d) D O  ZERMELO'S AXIOMS AXIOMATIZE S.C.T. IN THE SENSE OF SECTION 1? 

[THEOREM 1 : E", E d -  arenot (even) second order consequences of d ,  d- 
respectively (even if 6 is added). 
PROOF (by cardinality): Let ilJl=<C,+,,~,+~), ilJl- = ( C m , ~ o )  both with 
C,=O. Then ilJl, ilJl- are the least models of .d, d'- resp., and so, in 
particular, every model of d' has cardinal 2 x$") where N'O) = N 09 
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, and every model of d-  is infinite. Since every element of 
%I- is finite, E d -  is false in %I-. Since every element of %I has cardinal 
6 Kfnf for some n, E" is false in %I. Since further both %I and 93- satisfy 
6, Theorem 1 follows. 

Recall that, in contrast, for the classical structures 6, EdG and UdG 
are consequences even of d* ! 

The general idea of the proof will be repeated in Theorem 3 for slap*_ 
because the general reader is not assumed to know what the second order 
systems d- and xi' are !.I 

An obviousfirst failure of D"* [D"] is that Zermelo's axioms say no- 
thing about the possibility of continuing (C,, E,) beyond CI = w +- w [im- 
plicit in Theorem I]. More formally, we have non-sa~ura~jon: 

k\("+ 1 )  = 2"'"' 

THEOREM 2: Let I, be the formula 

1 / y / ' , Z ( y € X  A r , ( y )  A [ Z € X - +  V u ( U € X  A ) , tJ[ tJ€U+-+(VCZVUEZ)]) ,  

where I l ( y )  is as in Axiom 7. Then neither 1, nor 1 i, is a consequence 
of d* even if 6* is added. ( I ,  implies that there are sets of type w + 0.) 

[Note that though 1, is a first order formula it is not (even) a second 
order consequence of d . ]  

For Zermelo's Axioms are satisfied both in (C,+,,E~+,> and in 
(Coio+wr~,+wt ,); 1 I ,  i s  satisfied in the former, I ,  in the latter. In other 
words, Zermelo's Axioms are not saturated, i.e., they leave I, formally 
undecided. 

[This simple result generalizes. Suppose (i) the axioms 5 are satisfied by the full 
s.c.t. and also by <C,, sa) (e.g., n = w + cu if 9 = d), and (ii) the formula Aa of 
2% defines the property x = C, in each <Co, ~ p > ,  i.e., Ca is the only object, if any, 
that satisfies A, in the realization <Cp, ~ g )  of -YE. Then V x A a  is undecided by 9, 
Below more elementary assertions will be shown to be undecided by &*.I 
THEOREM 3 :  Ed' is not a consequence of xi'? even if 6* is added. [This is 
the weakening of Theorem 1 mentioned above.] 
PROOF: ( C w , ~ , )  with C, =0 is the minimal model of xi'?. Since it is infi- 
nite but contains no infinite element, Ed' is false in (C,,E,), E"' ex- 
pressing that there is a structure (ECJ which is a model of &'?. Actually 
every model of 2,4, 5 is infinite provided there is e.g. a null set, i.e., pro- 
vided some special case of 3" is satisfied such as y g y  A y $ y  for A ( y )  in 3". 

Theorem 3, but not its proof, is generalized in Godel's ~nco?~~le teness  
theorem. 
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THEOREM 4: Ed ’ is not conse~uence of d*. 
Remarks. (i) The proof of Theorem 4 generalizes to a large class of axioms 
other than d*, but the reader should consider the particular case of the 
set of axioms s $ , = { A : A  is true in s.c.t.}, for set theoretic formulas A .  
Evidently the resulting axiom system is saturated; what the proof of the 
Theorem shows is that dT cannot be defined in set theoretic language in 
the precise sense of Corollary 1 below. 

(ii) Particularly in Lemmas 4 and 5, one indicates only briefly that the 
conclusions of certain simple arguments [when formulated in YE] are 
consequences of d*. Once one knows that some true statements are not 
consequences of d* (e.g. Ed* itself !), one may doubt these indications. 
Without checking them, one has the following result: e ~ ~ / ? e r  Theorem 4 
i s  true or Dd* is false because these simple intuitive arguments are not 
logical consequences of d*; or, finally, X”* is false as in (i) above. For 
the applications below, these weaker conclusions are enough. 

(iii) Formulas, and, more generally, all syntactic objects [cf. Chapter 01 
are themselves considered to be sets, in particular ordered sequences of 
symbols and the symbols are sets: if this could not be done, Xd* would 
be violated ! Each symbol s is supposed to be defined by a formula of d*, 
i.e., a formula with a single free variable x such that s is the only object 
that satisfies the formula in s.c.t. We shall write x, s for this formula. 
N.B. In Lemmas 1 and 2 below, all that is needed of x, s , and more 
generally of the so-called canonical definitions x, A of other syntactic 
objects A ,  is that A be defined by it in s.c.t. But if one wants simple syn- 
tactic properties to be consequences of .d*, the choice of canonical defi- 
nitions becomes important; e.g., for x, 0 = A y i y g x  (definition of the 
empty set), V x~ is a consequence of d*. But suppose (for closed P) 
P is true but P not a consequence of d*; then P A  x, 8 also defines 0 
in s.c.t., but V X ( P A  x 8 ) is not consequence of d*. 

The reason why objects are defined by means of formulas, and not by 
means of terms is, of course, that 2, does not contain function symbols, 
in contrast, e.g., to the basic language 9, of Part B below. The difference 
is not essential [in the following precise sense. 

For each formula A of =FE and each formula B with the free variable x, we may intro- 
duce constants r A 7  and rl3 ( r A - 7 ) 1  together with the axioms: Vx (x =- r A 1  

U 
El0 

n 
U 

I7 

A x A 1, v y ( y  = = r B ( r A ~ ) ~ n  then the set is LI 
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the formula A ,  and rl3 ( r A  1)l is the formula of YE which expresses B (‘A l), 
i.e., the assertion that the formula A has the property 8. This notation shortens the 
statement of the lemmas below. The reader familiar with Exercises 1 and 6 of Chapter 
5 will know how to eliminate these constants.] 

(iv) An unusual feature of the proof is that relations between formulas 
and their meanings are treated, while in most mathematics, throughout 
any proof, one either talks only about the formal expressions (e.g., in 
numerical arithme~ic) or, more usually, only about their meanings. We 
shall apply here the convention of p. 167 (with s.c.t. as the structure 6): 
a bar over an expression A means the realization of A in s.c.t., in partic- 
ular, if A is a closed formula, 2 means that A is satisfied in s.c.t. 

[In most of the principal text, formuias are used to denote their realizations; of 
course, an exception is the definition of the notion of realization itself, e.g., at the 
beginning of Chapter 2, which involves the relation considered here. This will be taken 
up in Exercise 4 below.] 

Another consequence of the unusual feature here considered is that 
certain purely formal conventions implicit in the ordinary use of symbols 
will have to be made explicit (some of them affect the very statement of 
the present theorem). 

First, each of the expressions A ,  or Ax, or A ( x )  is used to denote the 
same sequence of symbols of PE [cf. Chapter 2, p. 181, A (x) being useful 
when one wants to indicate that A contains the variable (denoted by) x 
and that A ( t )  is obtained from A by substituting the expression (denoted 
by) t for x. [It is clear that the definition of substitution is simplest if the 
free variables of the formulas considered do not have bound occurrences.] 

Second, since the assertion Ed* refers to the language LYE, d* being 
a set of formulas of PE, Theorem 4 becomes specific only if a definite 
choice of symbols in 2, is made, for instance, as follows: 

The relation symbols denoted by = and E are the integer 0, respectively 
1, i.e., the empty set and its unit set; 

the logical symbols, denoted by 7 ,  v , V are 2,3,4; 
and the variables, sometimes denoted by vo, u y ,  u 2 ,  ... are 5,6,  7, ... ; 
thus u, denotes the integer n + 5. 

There are two main reasons for this choice. First, the proof below requires in any 
case a collection of symbols such that each has a canonical definition in 9 i p ~  (for 
details and further conditions, cf. the relation Def after Exercise 2); it would not be 
sufficient to take an arbitrary collection. Second, by choosing the symbols among 
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objects in Cw, we obtain a formula undecided by d* which refers only to Cw, i.e., to 
the hereditarily finite sets. 

The careful reader will notice that the language Z E  need not be a structure in the 
narrow sense, i.e., a set. Specifically [by working directly with D instead of P after 
Lemma 31 the proof below establishes Theorem 4 uniformly for d: as well as for 
d*; the reason why Theorem 4 is stated for the latter is, of course, because Theorem 3 
provides already an (ad hoc) argument for the former. 

EXERCISE 2. By reference to the definitions given on pp. 169-170 show that 
(i) the integer n is the only object (of s.c.t.) which satisfies theformulaE, 

whose only free variable is u ~ ~ ,  where 

Eo is i V U , ( ~ , E U ~ )  

E n + l i s  vv4n(En ~ v 4 n + 6 [ U 4 n + 6 E U 4 n + 4 C , ( U 4 n + 6  =U4n v U 4 i 1 + 6 ~ ~ 4 n ) l ) ;  

(ii) the finite sequence (no,  ..., nk-1> of integers is the only object (2) 
which satisfies 

Since every formula of 3, is a finite sequence of integers, Exercise 2 
provides a schema for associating a canon~cal d~finition for every formula 
of PB. This definition is in turn a finite sequence of integers, and so one 
sees easily that there is a formula Def(y, x) of Y E  which defines in s.c.t. 
the following relation : 

x is afinite sequence of integers and y is the formula of 9, that defines 
x canonically (according to the schema of Exercise 2). 

In other words, if 2 is a given formula A ,  and Def ( y ,  x> is true, then j 
is the formula s, A . [? 

[Though the idea of the construction of Def is quite simple, the reader familiar with 
Chapters 0 and 2 should note certain conventions tacitly assumed in the formulation 
of Exercise 2.  

(a) Since -YE contains no brackets, EO is more properly written: i V U Z E U Z U O ,  be- 
cause it is the sequence <2,4,7, 1,7,5). 

(b) The formulas En are such that the free variable ven has no bound occurrences. 
This will simplify the definition of substitution below. In order to ensure that the 
definitions En of the natural numbers do not use up the total supply of variables, we 
have used only the variables 5,7,9, .... 
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(c) In the construction of a canonical definition for <no, ..., nr-1) it is of course 
assumed that the XO, ..., xlc-1, yl, ..., yr  denote distinct variables, i.e., different integers 
> 4, which do not occur in the formulas Ei, En, (0 < i < k,  0 < j < k)  nor in the 
formulas (abbreviated by): (yj ,  xj) ES, Sf (s), Dom (yk ,  s). In particular, in view of the 
canonical choice of definitions for integers, all the x and y must be > m, where 
rn = 4 max (k ,  no, ..., ne-I). Also, they must be different from the bound variables 
which occur in the formulas Sf, Dom (which variables are denoted by u, u, w, r on 
p. 170). And finally, s must be different from all the variables mentioned. We shall 
suppose that neither u1 nor us occurs in any canonical definition (cf. Lemma l).] 

Capital letters will mean formulas in the language -YE of d* : they are 
not themselves symbols of -YE. The variables x and y are arbitrary, but 
fixed [more precisely, they are different from all variables in canonical 
definitions, and consistent with the rule that free variables have no bound 
occurrences; adopting the canonical definitions of Example 2, one may 
take v1 and v 3  for x and y ] .  

LEMMA 1 : For any A with the single free variable x, there is a (closed) A ,  

such that A , c r V x  ( x ,  A A i A )  is true in s.c. t .;  i .e. ,  the syntactic object A ,  

does not have the property A. (Actually, this is a consequence of A*.) 
PROOF: Obtain first a formula S with variables x and y whose reali- 

zation S is the following relation between syntactic objects (2 = A ,  j j =  A’) : 

( A .  A ’ :  y is the only free variable of A and A’=  V y ( P 1  A A ) } .  

To get S, give first a recursive definition of A’ according to the length 
of A ,  by use of the notations on p. 170 and Exercise 1, and then convert 
recursive definitions into explicit set theoretic ones [Chapter 6 ,  Exercise 71. 

A H )  can be taken for 
A , .  For A, means that the (only) object which satisfies is in fact the 
formal object H itself; but, since A= Vx(S A i A) ,  the object H‘ in the 
relation s to H, satisfies 2. This object is A ,  itself. 

(This construction is Godel’s variant of Cantor’s diagonal argument.) 

0 

If now H= Vx(S A i A),  the formula Vy( 

[EXERCISE 3 :  Definition of the formula S (x, y)  in Lemma 1. 
Form (x): x is a formula of .-YE (where, as mentioned above, free variables nowhere 

have bound occurrences). Starting with the recursive (implicit) definition of the class 
of formulas of PE, one obtains an expression Form (x) which can be proved in d? 
to satisfy the implicit definition; cf. Exercise 6 of Chapter 5.  (If one uses Dedekind’s 
method, the proof requires d*.) 

Vl(v, x): u is the only free variable of the formula x ,  and u has only free occur- 
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rences in x: 

Form ( x )  A Od (u) A A u [(u, 4) EX --f (a U (u}, u) $XI A 

AuAw([Od(zf )Au#v A ( w , u ) E x I +  ‘ ~ ‘ ~ [ Y S W  A(y ,4 )ExA(yU(v~ ,u )Ex l ) ,  

where Od ( u )  stands for v q “ (4 )  A u = 4 + 4 + 51 in the notation of p. 170. 
(Since v i s  a variable it is an odd integer > 4, i.e., Od (u) ;  since u has only free 

occurrences it is nowhere preceded by a quantifier, i.e., by 4; and since u is the only 
free variable, every other variable, i.e., every other integer > 4 n the sequence x, has 
its first occurrence preceded by 4.) 

S (x, y ) :  x is a formula whose sole free variable is the second variable chosen above, 
e.g., us (= 71, Le., V1 ( x ,  7); by Exercise 2, x has a canonical definition, say XI, i.e., 
Def (x ,  XI), with a sole free variable, say w, i.e., V1 (XI, w). Take a variabIe p which 
OCCUTS neither in x nor in XI, say the first such variable and let its definition be 
F (P, x, XI), i.e., 

Od(p) A Au[(@,p)$x A (tc,p)$xi] A Au([aEp A Od(u>l-+ vvf(v,u)fXV(u,u)EXil) .  

Substitutep for 7 in x ,  and for w in XI to get x’, respectively X’I, i.e., x’ = Sub (x, 7, p) ,  
X’I = Sub (XI, w , p ) ,  and 

y = 4p ~ x ‘ I X ’ ,  

i.e., S ( y ,  x )  is 

V1 (x ,  7) A Vxlwpx‘x’l [Def (x ,  xi) A V1 (XI, w) A F ( p ,  x ,  XI) A 

hhhh 

h h m ”  

x‘ = Sub (x, 7 , p )  A X’I = Sub (XI, w,p) A y = 4p ~x’Ix’]. 

This completes the definition of S.] 

COROLLARY 1 : Lemma 1 is enough to show that Xd is false (and, in fact 
Xd% i s  false for any -01% in the language of set theory). For, the set 

t =: ( A ,  : A ,  is closed and A, is true (in s.c.t.)> 

is not the realization of any formula A (if t =a, the A ,  of Lemma 1 gives 
a contradiction). This was observed by Tarski. 

But, if truth of A cannot be defined, and (set theoretic) consequence can 
[and was in Chapters 2,7], see [also] p. 167, one expects 

LEMMA 2: If P (V  with single free variable x)  is the set of coasequences of 
d*, there is a V, such that P, is true, but V, not consequence of d*. 

PROOF: By Lemma 1, there is a V, such that V , * V x ( m  A I Y)is 
true, i.e., 7, is true, if and only if it is not a consequence of d*. But since 
all consequences of d* are true (in s.c.t.), Lemma 2 is proved. (Evidently, 
one does not need here that all consequences of d* be true, but only 
those of ‘form’ Vl.) 

[N.B. The lemma applies equally to higher order consequence, in particular to the 
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second order axioms in (c) because the only assumption is that the consequence relation 
be definable in the realization s.c.t. of YE. So it gives another non-saturation result for 
the second order system.] 

COROLLARY 2: V, is not decided by d*, i.e., neither V ,  nor -I V, is conse- 
quence of d*. 

[EXERCISE 4: (i) Find a formula Sat(a, e,  s, y )  of 2ZE which defines the 
following relation Sat: 

Z c  d x 6, j j  is a formula of 8,, S= ((0, t i):vi  is a free variable of j j ,  and 
t i € G } ,  and the 5 satisfy j in the realization (a, e) of 9, in the sense of 
Chapter 2. 

Z c d  x d, j is a closed formula of 2ZE, and (8 ,s)  is a model of j j ,  

j j  is a formula of 2ZE and j j  is an axiom of Zermelo’s set theory. 

(iij Deduce a definition Sat,(@, e, y)  of the relation: 

(iiij Find a formula Z(y)  which defines the property: 

(iv) Show that f‘is defined by 

Aae(Ay [Z(y)--+Sat,(a, e,  Y ) ]  -+Sato(a,  e , x ) ) .  

Note that, for a given closed formula A of 9,, not containing the 
variables a and e, the relation: (a, e )  satisjks A, is defined simply by re- 
stricting the quantifiers of A to a, and repIacing each atomic formula 
x e y  in A by (x, y)Ee. Exercise 4 is needed because d* contains infinitely 
many formulas, and, more important, because 2 €7 has to be defined for 
variable 2.1 

Discussion of Lemma 2. ‘Whether the non-saturation result of Lemma 2 is 
an improvement over Theorem 2 will depend on closer inspection of the 
,form of V,. For optimal results we shall try to find as simple a formula D 
as possible whose realization = f’, i.e., whose realization is also the set 
of consequences of d”. 

The principal properties of the formula D will be described here; but 
the proof (in particular, of b = Y) and even the precise formula~on of D 
need the work of Chapter 2. 

(i) The formula D is obtained as follows. Lemma 3 provides “rules of 
inference” like those mentioned in footnote 2, and shows that the set of 
formulas of 2ZE deducible from d* by means of these rules is 7. Further, 
the rules can be “expressed” in 2, itself in the sense that there exists a 
formula Dem(y, x) of SE such that Dem is the relation: 

- 
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7 is a deduction of 2 from d* according to the rules (where j is a finite 

Thus, D(x)  is V y  Dem(y, x) .  
(ii) D is more elementary than Y in the sense that the quantifiers of D 

are restricted to C,  (when -YE, i.e., its symbols, are defined as in Exercises 
1,2,3) while certain quantifiers of Yare not restricted to any set (according 
to the definition of set theoretic consequence on p. 167 [or in Chapter 21). 

(iii) Actually, the elementary character of D mentioned in (ii) is best 
expressed in terms of the basic notions of Part B; specifically, the sketch 
of these notions in Part B, Section 0 makes clear that the rules given in 
Lemma 3 are combinatoria~, i.e., “purely formal”. Consequently, if a for- 
mula ED, this fact can be verified in a combinatorial manner [cf. the 
remark after Lemma 31. 

(iv) Lemmas (iv) and (v) show that Ed*- tD1 is a consequence of d*, 
where D ,  is obtained from D as A ,  is obtained from A in Lemma 1 .  Since, 
by Lemma 2, L),  is not a consequence of d*, Theorem 4 follows. 

sequence of formulas of SE, and 2 a formula of 9,). 

[LEMMA 3: P (of Lemma 2)  is D where D = V y Dem @ern containing the variables y 

and x) and 
{ ( B ;  A1, A z ) ,  A :  B is the conjunction of somefinite subset of d*, 

is the following relation, again between syntactic objects: 

A2 is the prenex form of B -+ A given on p .  19, Chapter 2,  
A1 is a ~ r o p o s i ~ ~ o ~ a I  identity of the form 

” F(ti1, ..., f m l )  \I I . .  VF(tin, ..., t tnn),  

where Az is Vxi  ... VxmF, as o n p .  22, Chapter 2. 
PROOF. By the finiteness theorem, if A is a consequence of .a+‘*, it is a consequence of 
some finite subset B of &*, and then B --f A is valid. Apply now Chapter 2, pp. 23-24. 

Note, if V is the (official) definition of validity (= true in all realizations, including 
of course infinite ones) the simplification achieved by Lemma 3 is this. To verify that 
a formula is in Pone would have to ‘look’ at  all realizations, to verify that it is in D, 
one only has to look at finite configurations <B, Ax, Az> and check the conditions 
above. Intuitively it is clear that $AED then this fact can be verified by finitely many 
trials. This fact can itself be formulated in set theoretic language; the formulation 
depends of course on the choice of the formula D, and hence of Dem. What i s  needed 
is a choice for which the formulation is a consequence of d*. If one did not find such 
a Dem, one would apply Remark (ii) above! 

LEMMA 4. Let DA = V x  ( x A 

not contain free variables. Then 

,% D} where A is a closed formula of -!YE, i.e. A does M 
D a i .  Vx(1- A D )  

is a consequence of d*. (Actually the lemma is needed for a particular A only.) 
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Before sketching the proof we remark that A + Vx ( x, A A 0) is not true(ins.c.t.) 
for all (closed) A ;  e.g. it is not true if K IS true, but A is not consequence of d*! By 
Lemmas 2 and 3 an example of such a formula A is D1 above. So the lemma to be 
proved depends essentially on the form of DA. What will be used first is this: for 
proper choice of Dem (in fact, for the obvious choice of Dem) and canonical defi- 
nitions of any finite sequence of symbols <6, 61, 6 2 >  and A in the language YE,  if 
<(6,&, 6 2 ) , A ) ~ D y  then the formula V x V y ( ( n , A J  A -1 A Dem) 
can in fact be formally derived in d*. This is implicit in saying that elementary combi- 
natorial mathematics can be formalized in the axiomatic system d*: for, as pointed 
out after Lemma 3, the verification of the hypothesis <<6, 61, 62), A> EDxproceeds 
by checking a finite number of purely combinatorial conditions, and this process is 
mimicked in a formal derivation from d*. Next, if V x  V y  (14 A 'm A 

A Dem) (with explicitly given y !) is a Consequence of d* so is V x  ( x A A V y Dem). 
The final step is to show that the argument just sketched can itself be formalized in 

d*, i.e. that the assertion with ~ a r ~ a 6 Z e ~  for formulas b, al, az and given A :  

0 

El 
v x  v y  (m A y = (b, al, a2) A Dem) -+ v x  v y  [x = F(b,  al ,  a2) A Dem] 

is a consequence of d* where F(6 ,  al, Q Z )  is a canonical definition of the function 
which associates to each triple (6, f71, L52) the formula V x v y ( 14 A -1 A 

A Dem). Hence also 

Since the variables 6, a, a1 do not occur in the conclusion, 

d* t v x  V y ( J x , A ]  v Dem)+ V x ( P 1  A D ) ,  

as required. 
The detailed verification of this goes back to the canonical definitions used; the 

nature of the problem is probably sufficiently clear from the discussion after Remark 
(iii) on p. 178. 

LEMMA 5 :  Srcppose D satisfies Lemma 4 and, if A H  3 is  consequence of d*, so is 

V x ( A 0). Then if D1 is the formula obtained in Lemma 2 

when V is replaced by D then (Ed* --). 01) is a consequence of d*. 
What one uses is the contrapositive of Lemma 4: if a simple~universa~formula like 

D1 (D1 means: D1 is not consequence of d*) is a consequence of d* then DI holds 
(provided of course d* is not contradictory). Formally, by cases according to whether 
D1 is a consequence of d* : 

A 0) t-t V x ( 

(i) V x  (1x1 A 7 D) + D1 by Lemma 1 without hypothesis; note that 

(ii) If E"* is true and D1 is a consequence of d*, then i DI is not. 
v x (la) is a consequence of d*. 

But if i n L e ~ a 4 w e t a k e  A =-i D1,thenDAtfT Di, V x ( 1 ~ 1  AD}* v x  
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(m A D )  are consequences of d*, and so i V x (  x i DI A D )  + i i D1. 

So, without hypothesis,EJk --f D1 is consequence of d*. 

COROLLARY: Theorem 4 follows because, by Lemma 2, R, is not conse- 
quence of &*.I 
Discussion of Theorem 4. [d and hence] d* fails to characterise s.c.t. in 
the sense of Section 1 because [.d and hence] d* is satisfied by (Ca, fa) 
for all limit numbers c1> o, and so [U" and hence] Ud* is false. 

Further, D"* [and even D"] is not satisfied with respect to intuitive 
reasoning about sets of sufficiently high type, as shown by Theorem 2. 

As far as intuitive reasoning about finite sets is concerned, Dd* is not 
satisfied because Ed* is equivalent to a combinatorial assertion by Lemma 
3 and d* does not decide Ed*, by Theorem 4. 

L r l  

A subject of general interest is the difference between Theorem 4 and the better 
known independence results, for instance in geometry. The obvious difference is of 
course that d* is intended to formulate properties of a particular intuitive notion, 
namely that of set in sense (ii), p. 171, while the axioms of geometry, a t  least nowadays, 
are usually intended as a purely hypothetical deductive system. But a more mathematic- 
al formulation of this difference can also be given by use of the notion of second order 
consequence in Chapter 7. 

[Note that, by the Remark on p. 175 after Axiom 6, the structure (R, s). p. 169, of 
the integers is uniquely determined by the axioms d; so either Ed* is a consequence of 
SB or else i Ed* - and, in fact, it is Ed*. In other words, the independence of Ed* 

depends essentially on replacing the Axiom 3 by the schema 3*. In contract, for in- 
stance the independence of the parallel axiom has nothing to do with the corresponding 
step in geometry. Specifically, consider the axioms of Pasch or Hilbert whose basic 
notions are: Points; the relation of congruence C (a, b, c, d ) :  the segment ab is con- 
gruent to the segment ed; and the (ternary) relation: a is between b and e, i.e. a, b, e 
are collinear and a is between the two others. All the axioms are of first order, except 
the so-called axiom of continuity (Dedekind cut). Sometimes one replaces this axiom 
by a first order schema exactly as one replaced 3 above by the schema 3 * ;  in other 
words, instead of considering arbitrary cuts, one considers oniy those defined by 
formulas in the language above. But the axiom ofparallels is independent of the axiom 
~ ~ c o n r i n ~ i ~ y  of second order and not only uf the first order schema.] 

X"* fails completely by Corollary 1. [This reason is that LYE uses arbi- 
frar-y finite formulas, but not infinite ones: thus the set t of Corollary 1 is 
defined by 

( 
A A , )  V ( /A,/ A &) V * * -  

cf. infinite formulas of Chapter 7, where A , ,  A,, ... is an enumeration of 
the formulas of gE.] 
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Against these “negative” results there is the interesting positive corol- 
lary of Theorems 2 and 4: a purely combinatorial statement such as Ed* 
which is undecided by d*, is a consequence of d*u{12}. 

Naively, the inadequacies above are not surprising just because the 
adequacy of the axiomatizations in Section 1 for the classical structures 
was surprising. The shock comes because one has forgotten the original 
surprise [but cf. Section (c) for other views]. The situation is naturally 
compared with two well known cases in the history of mathematics: the 
irrationality of 4 2  showed that the system of rationals was inadequate 
for Euclidean geometry, and not, of course, that Euclidean constructions 
must be rejected; or 2’O x 2”=2” showed that the notion of 1-1 corre- 
spondence was inadequate for analysing the intuitive concept of dimen- 
sion and not that this concept is mathematically insignificant. But the 
real test of the theoretical value of the set theoretic concepts is to look at  
the development of their theory. 

3. Improving the existing theory d* [d] 

Still accepting the s.c.t., we shall consider two directions of research, 
namely (a) the addition, (b) the elimination of axioms. 

(a) In investigating s.c.t., one may follow the usual mathematical meth- 
od employed in the study of particular structures (natural numbers, real 
numbers etc.), where, as one says, all legitimate methods are used. From 
this point of view the formulation of the axioms of Section 2(c) is only a 
beginning, and the process which led to them is to be continued. The 
results of Section 2(d) show that there is something to be done even if one 
confines oneself to questions formulated in the language of set theory 
because not all such questions are decided by d*[d]. In short, addition 
of axioms is required. 

(i) By Theorem 2, axioms are needed to express the existence of high 
types (so-called: axioms of infinity). One of them is the replacement axiom 
which ensures that for every well ordering (a, al) (al CU’) in C, there is 
a C, where p is the ordinal of <a, a l ) .  
[In second order form: 

AX Aa[(AxEa) V!YX((X,Y>) 
+ v z  Au(u€z+-+  VX[UEU A x((x, u ) ) ] ) ] .  

The general problems involved in formulating such axioms are dis- 
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cussed in: G ~ D E L ,  What is Cantor’s continuum problem; Amer. Math. 
Monthly 54 (1947) 515-525. 

(ii) A special defect of [first order systems such as] ,d*, in particular 
3*, is that C,+ is intended to comprise all subsets of C,, but 3” ’mentions’ 
only those explicitly definable in set theoretic language; in particular, t 
of Corollary 1 (Section 2) which is in Cw+l, is not included. This t is 
‘essentially’ defined in terms of the basic notions here considered, but a 
more radical improvement may well require the use of new primitive 
notions; cf. Corollary 5, Section 4 below. 

[Closer inspection suggests that the defect (i) is theoretically more important than 
(ii): (ii) concerns only the basic operation of the power set construction, while (i) deals 
with the number of iterations of the step, a much more dificult matter conceptually. 
More formally, in (i) we have an inadequacy of both first and second order formu- 
lations of axioms for set theory, in (ii) only of first order systems. In any case (for 
second order consequence as defined in Chapter 7), every assertion of the form: 

the formula A i s  a second order consequence of 3, 
is formulated in the first order language =YE (with s.c.t. as realization of =YE): so, 

finding reasons for such an assertion reduces to finding (possibly new) axioms formu- 
lated in 9 ~ .  Similarly, in the case of infinite formulas A, at least with quantifiers of 
bounded type, the realization Kcan be generally defined by an expression of -YE. For 
more information concerning the relations between (i) and (ii), consult GODEL’S 
Remarks on problems in mathematics, in: The Undecidable, ed. M. Davis (N.Y., 
1965) pp. 84-88]. Naturally, the actual discovery of new axioms is sometimes easier 
via (ii). 

Remark on axioms of infinity and traditional mathematics. Axioms of 
infinity are not only of interest in their own right, but because of their 
possible use in deriving conclusions about sets of low type, e.g. the use 
of the axiom I ,  in the discussion of Theorem 4 for deriving the purely 
a r i t ~ m e t ~ ~  assertion L), fie. of an assertion which, expressed in zE, has 
all its quantifiers restricted to (C,,E,)]. (Evidently the truth of B, does 
not “depend” on the existence of ( C w + w + l , ~ w + w + l ) ,  but its evidence may 
do so !) This situation is parallel to the use of analytic methods in num- 
ber theory where functions of complex variables, i.e. objects of (Cw+z, 
E,+~), are considered, and theorems about them are used to obtain arith- 
metic consequences. Two differences are to be noted. First, as will be dis- 
cussed in more detail in Part B, p. 205, the use of functions of a complex 
variable can be eliminated in existing proofs of analytic number theory 
in the precise (logical) sense that the theorems in question are also conse- 
quences of d2_* of Section 2(d) (practically, the proofs from d? are less 
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easy to follow because complex functions have to be replaced by explicitly 
defined rational approximations). In contrast, D, is not consequence of 
&*, and so certainly not of d?. Second, speaking informally, D, has a 
primarily metamathematical, not arithmetic “interest” ; more specifically, 
it is not known whether some of the open questions,fanziliar from number 
theory are decided by suitable axioms of infinity. 

(b) As to the elimination of axioms from d*, its interest for set theo- 
retic semantic foundations is not too different in kind from the interest 
of ordinary axiomatic studies. Thus in mathematical practice, one wants 
a reduced set of axioms to be satisfied by an ~mportant mathematical 
structure that does not satisfy the original axioms. So, if d* were to be 
reduced to dl one would want d1 to be satisfied by an important con- 
cept (e.g. of set) which does not satisfy &*; but to be foundationally 
significant this concept would have to be basic, i.e. not in turn defined in 
terms of s.c.t.; on the contrary, by the criteria in Section 2(a) on funda- 
mental notions (for a “realistic” foundation !), s.c,t. should be definable 
from this new concept3. 

No such basic notion is known at present. (The general notion of prop- 
erty, i.e. set in sense (iii) of Section 2(a), was mentioned as a possible basic 
notion for foundations, but its logic has not been studied enough to be 
discussed here.) 

N.B. It will be seen below that the possibility of eliminating system- 
atically some axioms of &’* from proofs actually occurring in certain 
branches of mathematical practice is important for the (non set theoretic) 
foundations of mathematics described in Part B. 

14. Historical notes ; additional information on intuitive validity 

We consider a language 9 of the predicate calculus with a finite num- 
The reader should note here the cavalier treatment of the axioms of set theory in 

Bourbaki’s exposition (cf. their treatment of rules of inference, observed in footnote2). 
The set theoretic axioms which intervene in particular deductions are rarely mentioned 
and little attempt is made to eliminate formally unnecessary ones, very much in contrast 
to all their efforts of eliminating unnecessary hypotheses in theorems about e.g. topo- 
logical structures. Bourbaki’s practice is perfectly consistent with the general principles 
on elimination of axioms formulated above if something like set of s.c,t. is tacitly 
understood and no &dependent basic notion is known. (The practice would be hope- 
lessly unscientific if one were seriously interested in an ‘empirical’ justification of the 
kind considered in footnote 4 below: for, if all arg~ments in practice only use a subset 
.dl of the set theoretic axioms d*, experience would at  best justify dl and not d*.) 
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ber of relation and function symbols, and we denote by Vall, Val', . . . the 
sets of formulae of 9, .Ep2, ... which are intuitively valid, by PI, P', ... 
those valid in the sense of Chapters 2 and 7. 

(as al- 
ways with the realization s.c.t.) which help to establish relations between 
the set theoretically defined notions 8' and the primitive intuitive notions 
Val'. 

Demo (cf. Lemma 3) will denote the relation ( A , ,  A )  where A is a 
prenex formula of 9, A is Vx, ... Vx,F and A, is a propositional iden- 
tity of the form F(t:, ..., t:) v ... v F(t l ,  ..., t:); Chapter 2, p. 23: A ,  

is a deduction of A from the empty set 8. Put Do= V y  Demo. 
I. Pcb,. This set theoretic result is proved in Chapter 2,  often called: 

Completeness of the rules of deduction of Lemma 3 for 81. 

From the facts in footnote 2 concerning the notion of validity implicit 
in mathematical practice, follow two properties of the intuitive notion of 
logical validity : 

(a) SOME SET THEORETIC RESULTS, i.e. results formulated in 

- 

11. Val' c Pi, and 111. bo c Vall. 

THEOREM 5 :  Val' =Do= PI. 

Immediate from I, I1 and 111, 

COROLLARY 5 : D o c  8' follows from I1 and 111 without use of I, i.e. 
without use of Lemma 3. 

NB. Do C 71 is thus a set theoretic assertion here derived by use of the primitive 
notion Vall. This use is inessential because Do c 71 can also be derived from purely 
set theoretic principles, in particular from d'"_ : in other words, the condition D" of 
Section 1 is satisfied at least with respect to this particular proof involving VaP. How- 
ever, the corollary may serve as an example of the possible use of intuitive logical 
notions for deriving (new) axioms for sets. 

Historically, the first formal rules for logical validity of first order for- 
mulas (somewhat different from Demo) were formulated by Frege; the 
analogue to I1 was also evident. However (the analogue to) Val1 cb, was 
only suspected, and not proved until 50 years later, by Godel. 

Concerning a possible extension of Theorem 5 to higher order formu- 
lae: we do not know at present a convincing proof of Vd' = P2, and, as 
discussed in the next paragraph, we have no positive results about gener- 
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alizing Do= 81 (the other half of Theorem 5). - To see that this state of 
affairs does not by itself cast doubt on the significance of Val’, compare, 
e.g., our present evidence for Val2= P2 with that for VaF= 71 before 
Codel’s proof. First, in both cases, whenever in actual practice one recog- 
nizes that a formula belongs to F’ u r2, one also recognizes that it is 
intuitively valid ; and conversely. Second, for many A E ~ ’  we do not know 
whether A $ P 2  or AE P2; but no more can we effectively decide for an 
arbitrary A E ~ ,  even after the proof of Theorem 5, whether AEF‘ or 
A$F1 (or, equivalently, whether AEVal’ or A#Val’). 

(b) More facts about PI and P2. Examples 1 and 7 of Chapter 7 show 
that the finiteness theorem does not hold for second order consequence, 
and not even for infinite first order formulas (though, by the summary to 
Chapter 6,  a generalization is known for countably infinite formulas). 

More detailed information can be stated by using the notion of validity 
in (C,,  E,) : we write V i  for the set of formulas in 2’ which are true in all 
realizations of 2 which belong to C,. Evidently, V &  z) V i  if a < p. 

(i) For a > o, PI= V,‘ (Chapter 2, Exercise 2). In contrast: 
(if) Except for 9 containing only monadic relation symbols, VA # Vk+ 

(The assertion: every total ordering has a first element, EVA, being true 
in all finite structures, but $ VL+ 

(ii) For 9=SE, for instance: V:+w+ I # Vi+,, because d has a model 

More generally, suppose I E 9 &  e.g. an axiom of infinity, is such that 
du{lf has a model in C a r f l ,  but not in Cb1: then Y2z+l # F’:I. Clearly, 
there is a bound aE for all such a,, namely the least upper bound of: 
{aI: I E 9 ;  ; a, =O if IEP’, and, if 1#Y2, a, is the least CI :I# V,”). So aE is the 
analogue to o in (i): but little is known about the size of aE. 

(iii) Concerning a possible analogue, say D2, to Do recall that one 
essential respect in which D, is simpler than Y l  is that all quantifiers in 
Do are restricted to range over <C,,E,), which, by (i‘), contrasts with V. 

, So one may ask whether Pz has a definition 0’ in which all quantifiers 
are restricted to (C,,, E ~ ~ ) ;  nothing is known about this. (It is likely that 
a smooth theory of second order formulas will include infinitely long 
expressions.) 

in <Cofco+17Ew+w+l)7 but not in (Cw+w,Em+w)*  

As in Chapter 6, the phrase “restricted to (C3 ,~LX>”  means that each quantifier x 
occurs in the form Vx (Taxn or A x  (Tax +, where the formula Tax is a definition of 
Ca in the realization s.c.t. ; the canonical definitions T have the further property that 
Ta defines C, in each realization (Co, €0) of .YE withp 2 a (cf. Chapter 5,  Exercise 4). 
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Quite trivially one has the following: 
negative result: If (C,,,) is the only model up to isomorphism of the 

formula A , E ~ ;  then P2 #bZ for any D E ~ E  with aN quantiJiers restricted 

This is an immediate consequence of Lemma 2. Put differently: Lemma 
2 shows that second order axiom systems are not saturated with respect 
to all assertions of the form AE V 2  ( A E ~ ' )  while under the assumption 
on ci above, there are second order axiom systems which are saturated 
with respect to all closed formulas whose quantifiers are restricted to C,: 
in other words, all such formulas are decided (in the sense of second order 
consequence). Recall that, by Exercise l(b) of Chapter 3, (C,, E,) is the 
only model of a formula A,  of SE itself only if a is finite; so the negative 
result above corresponds to the fact that P1 cannot be defined by a 
formula whose quantifiers are all restricted to some (C,, E,) where a is 
finite. For reference below observe that d itself decides all formulas of 

whose quantifiers are restricted to (canonical definitions of) C,+" for 
each integer n (and many other a). One such formula is the continuum 
hypothesis (C.H.) which involves only Cm,2; for C.H. asserts that any 
subset of C,,, is either in 1-1 correspondence with C,,, itself or with a 
subset of C,: since 1-1 correspondences between subsets of C,,, are 
elements of C0+,, C.H. itself is expressed by means of a formula whose 
quantifiers are restricted to C,,, resp. elements of C,,,. 

In short: we know somewhat less about Tz than about P I ;  but nothing 
we have said suggests that Pz is less well defined than PI: in fact, the 
same set theoretic notions are used to define both. 

FIRST ORDER CONSEQUENCE? (reminiscent of the positivistic doctrine men- 
tioned in the Introduction). Though the purest form of positivism in the 
theory of foundations is crude formalism, to be considered in Part €3, 
Section 4, a somewhat related, quite common, but even less coherent 
position may be described as follows: 

Roughly, it asserts that Theorem 4 (non saturation) does not establish 
an ~ n a ~ e q ~ a c y  of the axiomatic systems at all : the formulas of zE which 
are not formal consequences of, say, d* shouId not be provable ! And, 
hence, the position is bound to reject attempts such as those discussed in 
Section 3, of discovering new axioms. 

The general reason given is this: There is nothing to discover because 
the notion of set is dejined by, say, d* just as the notion of group is 

to (C,,E,>. 

(C) A PRIVILEGED POSITION FOR FINITE FIRST ORDER FORMULAS AND OF 



SET T H ~ O R E T I ~  SEMANTIC F O ~ N D A T I O ~ S  193 

defined by the axioms of group theory. Thus, any structure 6 which satis- 
fies the axioms of set theory chosen is to be admitted as set theoretic; it 
is then a fact that the axioms are not categorical. 

Clearly, if this is to be accepted, first order axiom systems must be 
tacitly understood since some second order axioms are categorical. So the 
position is bound to reject the appeal to second order consequence made 
in Section 3 and at the end of Section 4(b). In particular, it interprets 
second order decidability, e.g. of C.H. 

[(d --f C.H.)E V 2 ]  v [(d -+ i C.H.)E V’] 

as follows: it is true that (t) is a theorem of set theory, in fact (7) is a for- 
mula of -YE and consequence of d”; but every set theoretic structure 6 
has its own relation of second order consequence, and (t) merely asserts 
that, in each 6, either the first member of (t) or the second member of (t) 
is verified. The position would compare this to the logical triviality: 
Ax A y ( x O y = y O x ) v  i Ax A y ( x O y = y O x ) ,  which holds in each 
group (with 0 realized by the group operation); one does not conclude 
that all groups are commutative or all groups are non commutative. 

A quite evident defect of the comparison is that the axioms of group 
theory are not intended to formulate properties of a particular (pr~vileged) 
structure ; and certainly nothing we know about the general concept of 
group precludes the existence of particular groups such as : integers under 
addition ! 

1. The very notion of a model or realization of given axioms is defined by 
means of the basic set theoretic notions. Substituting the word “struc- 
ture” or “mathematical object” for “set” only transfers the problem of 
Section 3 to the problem ofdiscovering axioms that are valid for structures. 
No proposal for doing this has been made. 
2.  Evidently, if no basic notion of set is accepted, also the notion of second 
order consequence will be relative because it is defined in terms of the 
basic set theoretic notions. However, if the property Y z  is to be inter- 
preted relative to all set theoretic structures (in the sense above) why not 
V1 or D? And Section 2, Lemma 2, shows that D,, which is an assertion 
about Jirst order consequence, is also not invariant for all set theoretic 
structures. 

Quite generally, the position invites the following objections. First, it 
is incoherent in accepting abstract structures but not privileged ones, 

Two less immediate objections to the position go as follows: 
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particularly because, for axioms such as d*, if there is any evidence for 
supposing that some structure satisfies d*, this is provided, at least at 
present, by the p a r ~ c u ~ a r  structure ( Cw+@, E,+,)). Next, the restriction 
to first order formulas is evidently simply taken over from combiliatorial 
foundations, cf. Part B, where the assumption of abstract structures is 
consistently avoided; but the connection is purely superficial as long as 
one uses the terminology of structures. Of course, P 1 = b 0  (Section 4, 
Theorem 5): but this is meaningful only if one accepts s.c.t. to which V1 
refers, and without this one has no reduction of Yl  to Do, because Y l  
has no meaning. (The fact that Theorem 5 assumes abstract infinite struc- 
tures is specially clear from Section 4(b)(i’).) The position tries to get the 
best from both worlds, and speaks of structures rather than formal rules 
so as to keep close to mathematical practice (cf. note 2): but it falls be- 
tween two stools. 

The position just described is similar to positivism in two respects : (i) 
(superficially) in that both positions restrict themselves to first order for- 
mulas and the corresponding formal rules; this similarity is superficial 
because, as already mentioned, the restriction plays quite different roles 
for the two positions, (ii) more important, neither of these positions 
provides a positive contribution to foundations at all; but rather, as 
pointed out in the Introduction, they are merely a consolation for not 
solving basic foundational questions at all.] 



PART B 

COMBINATORIAL FOUNDATIONS 

The reader will quickly find that the body of mathematical reasoning 
here considered (and described more precisely in Sections 0 and 2) is 
quite familiar to him because it is involved in all elementary mathematics. 
Only the explicit formulation of his knowledge may be new to him. This 
kind of reasoning, here called: combinatorial, is also called: finitist or 
syntactic, the difference in terminology reflecting different philosophical 
views on what is essential about this reasoning. 

The present Part B is less thorough than Part A because combinatorial 
foundations require the use of proof theory, a branch of mathematical 
logic not treated in this book and therefore not presupposed. However, 
the reader is supposed to have at least glanced at a formal system such as 
that of BOURBAKI, Chapter I. 

SUMMARY 

The basic notions are: word, i.e., a finite sequence of symbols of a finite alphabet, 
combinatorial function (whose arguments and values are words), and cornbinatorial 
proof of identities (between differently defined combinatorial functions such as: 
@*a)  - (b *b) and (a + b) .(a - b)). These notions are supposed to be known here 
just as the basic set theoretic notions were assumed to be known in Part A (or, for 
that matter, in the main text). The numbering of sections in Parts A and B brings 
out the correspondence between set theoretic and combinatorial foundations. 

Section 0 analyses the basic notions by means of informal distinctions; Section 0 
(a, b) sketches the notions of combinatorial language and combinatorialreali~t~on 
[corresponding to the concepts of language and realization of Chapter 2 for set 
theoretic foundations], and Section 0 (c) the ‘translation’ of combinatorial mathe- 
matics into set theory. 

Section 1 formulates ‘adequacy conditions’ for a reduction of intuitive mathe- 
matical reasoning to combinatorial principles, and relates these conditions to 
Hilbert’s consistency problem (Section 1 (b)). In Section 1 (c) there are examples 
of substantial parts of mathematics for which Hilbert’s problem has a positive 
solution. 

Section 2 (c) describes a formal system .(Pc that is related to combinatorial 
mathematical practice somewhat as Zermelo’s axioms in Part A, Section 2 (c) are 
related to set theoretic practice. Section 2 (d) gives Godel’s incompleteness theorem 
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for SPC,  establishing a e ~ ~ ~ ~ ~ u ~ f f ~ ~ u ~ ~ ~  valid assertion which is not formally 
derivable in Yc. [Since there is no reason to suppose that each combinatorially 
formulated assertion is either combinatorially provable or combinatorially refu- 
table, mere ~ f f ~ ~ u ~ ~ ~ r u ~ j f f ~  of YC does not establish inadequacy of YC with respect 
to combinatorial reasoning.] 

At the end of Section 2 and in Section 3 the consequences of the incompleteness 
theorem for Hilbert’s problem are analysed. 

Section 4 (a, b) reviews the facts established in Part A, Sections 1-4, Part B, 
Sections 1-3, with respect to the two views of foundations which identify mathe- 
matics with (i) the theory of sets and (ii) combinatorial reasoning. In particular, 
the adequacy conditions of Part A, Section 1 and Part B, Section 1 are related to 
the possibility of separating mathematical questions from questions about the 
existence or objectivity of objects other than sets in case (i), and noncombinatorial 
(abstract) notions in case (ii). An (unavoidable) weakness of each view is that the 
analysis of the relevant adequacy conditions cannot be formulated in terms of the 
notions accepted by the view considered [cf. Theorem 5 of Part A]. Section 4 (c) 
criticises crude formalism, as promised in the Introduction. 

Warning. The proofs treated here must be distinguished from formal 
derivations, i.e. from sequences of formulas obtained by mechanical appli- 
cation of formal rules: the distinction is analogous to that between under- 
standing and copying a mathematical proof. In particular, given a (com- 
binatorial) realization of a formal language, a formal derivation defines 
or describes a proof. This corresponds in the set-theoretic case to the 
definition of a set by a formula, namely the set of objects satisfying the 
formula [its realization in the sense of Chapter 21. The concept of formula 
of the predicate calculus is chosen in such a way that the syntactic re- 
lations between the parts of a formula correspond to (set-theoretic) re- 
lations between their corresponding realizations. In the combinatorial 
theory, in addition formal rules are chosen in such a way that a combi- 
natorial proof can be associated with every finite sequence of formulas 
constructed according to these rules; again syntactic relations between 
parts of such a sequence correspond to natural relations between the 
corresponding proofs. 

Proponents of the formalist doctrine mentioned in the Introduction 
either refuse to accept the distinction between proof and formal derivation 
as legitimate (because they do not accept the idea of proof) or alternative- 
ly regard it as not precise enough for mathematics. In the Introduction we 
criticised some assump~ions of this doctrine; we shall return briefly to the 
question in Section 4 after having described the principal consequences of 
this distinction, 
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0. Combinatorial reasoning 

The objects with which this kind of reasoning is concerned, and whence 
it takes its name, are finite combinations of concrete objects such as let- 
ters of an alphabet, numerals, symbols of a formal language etc.. A com- 
binatorial function of n variables is a mechanical rule together with a 
combinatorial proof of functionality, i.e. a proof establishing that if the 
rule is applied to any n objects (chosen among the combinations of objects 
under consideration) it will determine a value after a finite number of 
steps; to be more precise, the rule is applied to a description (of an object) 
which, in general, is distinct from the object itself. Finally, for a proof to be 
combinatorial it must only involve (a finite number of) combinatorial 
functions and the sequence of the basic objects, i.e. the successive gener- 
ation of all the finite configurations considered. 

The reader will find a detailed analysis of mechanical rules in the theory 
of recursive functions and a partial analysis of combinatorial proof below. 
A general idea of these concepts can be obtained by considering a typical 
example : the combinatorial function of addition in numerical arithmetic. 

(i) The objects and their description. The alphabet of numerical arith- 
metic consists of two symbols: the individual constant 1 ,  and the function 
symbol S (of one variable). Consequently, the terms (words) are 1, S1, 
SS1, ..., also denoted by So l ,  S1l, S’I, ..., respectively. 

What is typical here, is that it is possible to decide quite mechanically 
whether or not two terms designate the same object. This decision only 
involves a finite number of observations of the identity, or non-identity, 
of the given concrete objects (cf. the act of recognizing a letter of the 
alphabet). What is not typical is the fact that every object considered here 
is a term, whereas, in the general case, every object has a particular term 
associated with it, called its canonical description : the structure of this term 
reflects how the object is (conceived to have been) constructed. It should 
be noted that the descriptions allowed in combinatorial reasoning are 
such that the corresponding canonical description can be recovered from 
any other description by a purely mechanical process: this reduces, apos- 
teriori, the importance of canonical descriptions of objects (in contrast 
to the case of functions: see (a) below). 

N.B. It follows from the last remark that as long as only objects are considered, the 
combinatorial theory approximates set-theoretic analysis. The latter, being a realist 
theory rejects, as a matter of principle, reference to descriptions of the objects treated 
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(sets with type structure) - a principle which leads to the axiom of extensionality of 
Part A, Section 2. On the other hand this principle is not satisfied in constructive 
mathematics in the wide sense of the term (Section 3 below) in which functions and 
even constructive proofs are admissible as objects. 

In (combinatorial) mathe~atical practice the act of recognizing that two expressions 
are identical is accepted as part of the data without further anaIysis. Such an analysis 
is needed here since the importance of combinatorial reasoning forfoundations depends 
precisely on the particular (elementary) nature of these acts, which are on a par with 
the simplest sense perceptions, the objects being conceived as finite spatio-temporal 
configurations. Thus the only abstract objects which have a place in this theory are 
proofs, but they are not in turn the subject of combinatorial reasoning. (€'roofs, con- 
sidered as mental acts, are clearly not finite configurations of concrete objects: in 
particular, it will be seen that they involve the idea of an infinire sequence, namely the 
infinite sequence of all finite combinations.) 

The central role of the act of recognizing that two expressions are 
identical is reflected formally by the restriction to languages whose only 
relation symbol is = . 

(ii) Mechanical rules and their description. The two place function sym- 
bol + is added to the alphabet of (i) (we shall write t + t' instead of + t, t'). 
Starting from the formulas 

a f 1 = Sa and a -t- Sb = S(a + b) (*> 

terms are substituted for the letters a and b and the substitution rule for 
equality is applied, viz: if the equations t ,  =t2 and t'=t" have been de- 
rived, then in t ' = f  one or more occurrences of the form t ,  may be re- 
placed by t,. 

N.B. The formulas (*) define or describe the rule for addition provided one under- 
stands the syntactic operation of substitution and, in particular, knows when two 
expressions are equal. In terms of computers the formulas (*) correspond to the in- 
struction tape and the kind of understanding required corresponds to the mechanism 
of the computer designed to react to these instructions. 

Analysis is full of non-mechanical rules (or, rather, definitions) for 
mathematical functions (this is one of the essential differences between 
school and university mathematics). For example, if rl ,  r2, ..., is a se- 
quence, p ,  of rationals lying between 0 and 1 ,  then a sequence A,, A , ,  ..., 
of intervals converging to the lower bound of p is defined by the following 
"rule": A,= [0, l];A,+t is the left half of A ,  if A ,  contains an element of 
p ,  and, if not, then it is the right half. In general we do not know which 
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of these alternatives hold. In the theory of recursive functions it is shown 
that many of the usual definitions of functions used in analysis are not 
equivalent to any function defined by a mechanical rule and so certainly 
not to one defined by a combinatorial rule. (Thus such conclusions do not 
require any analysis of the concept of combinatorial proof, the definitions 
referred to being grossly non-constructive : in contrast to the principal 
problems of Section 3 below.) 

(iii) C~mb~nator~al  f~nctions. In order to show that the mechanical rule 
(ii) is functional, i.e., can be regarded as a combinatorial function, we 
have to give a combinatorial proof that for any integers n and m the rule 
permits one to derive a formula of the form S"1+ Sml= SP1.Theproof pro- 
ceeds by induction, which, in combinatorial mathematics, comes to this: 
we visualize the construction ofthe sequence Sol, S1l, Szl,. . . andassociate 
with each step in this construction a suitable application of the rules (*). 
To be combinatorially convincing this sequence of applicat~ons must in 
turn be visualizable. In detail (for given n) : If m = 0, we deduce S"1 + S"1 = 
S"+'l by replacing a by S"1 in the first formula of (*); if m # 0, we replace 
b by S"-'l in the second formula of (*) which gives S"1+ Sml= S(S"1 i- 

1). It remains to be shown that the ~ar t icu lar )  rules for equality of 
(ii) suffice to determine the value; we go back to the sequence Sol,S1l, 
...; suppose given a derivation of a formula of the form S"1 +Sm-'l= 
Sql we extend it to a derivation of S"1 +Sml = Sqf'l by taking S"1 -i- 
Sm-X 1 for t,, Sq for t,, S"l+Sml for t' and S(Snl+Sm-'l) for t". To 
summarize, (the rule defined by) the term a + b is a function on the alphabet 
of (i) because for any integers n and m, a formula of the type S"1+ S"1 
= Spl is derivable. One shows similarly that, for given n and m, p is unique. 

More generally, for any term t of the alphabet consisting of the vari- 
ables a, by ..., c, the constant 1 and the function symbols S and +, the 
mechanical rule which corresponds to t in the sense explained in (ii) defines 
a function on the words Sol, S'l, ... . 

s m -  1 

N.B. The kind of understanding required for applying a mechanical rule is clearly 
not sufficient for following the reasoning above; the distinction is reflected by the 
syntactic dis~inction between formulas without and with variabIes. 

The explanations given under (i) along with the reader's previous knowledge and 
intuitive understanding, should suffice to make the combinatorial character of the rule 
for addition obvious. However it is not so easy to give an explicit formulation of what 
is essentially involved in recognizing this fact: in other words, to formulate in full 
generality, the possibilities of the combinatoriaf imagination which are implicitly prp. 
supposed in the proof that the addition rule defines a function. (These possibilities 
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determine the combinatorialfy valid principles of proof. A formulation would provide, 
inter alia, an enumeration (naturafIy, not combinatorial) of all combinatorial functions: 
see Section 3). 

(iv) Proofs of identities and their relation to formal derivations. Let 9’ 
be the system of rules obtained by adding the variables a, b, ..., c to the 
alphabet of (ii) and applying the rules of (ii) to all equations of the ex- 
tended alphabet. Let t(w,m,.,,,,) be the term obtained by replacing a, b, 
. . ,, c by S”1, S”1, ..., Spl respectively in t ,  and finally let i be the combi- 
natorial function defined by the term t in the sense of (iii). 

A combinatorial proof of (the identity) t= i’ shows, by definition, that 
can be de- 

rived by means of the rules of (ii). 
(a) It should be noted that a proof of i= t‘ can be obtained from a for- 

mal derivation (by means of the rules of a’) of the formula t=t’ since 
B’ i s  closed with respect to substitution of terms Sol, S’1, ... for the 
variables. 

(p) On the other hand, although, for example 1 +a = Sa is clearly an 
identity, as can be seen by induction on a, the formula 1 +a= Sa is not 
derivable (in 9’) since any derivable formula must be true in the (set- 
theoretic) model defined as follows: the variables range over the ordinals 
and the realizations of 1, S and + are the ordinal 1, successor and the 
usual addition for ordinals. But 1 + w # w +. 1. 

(It is quite easy to avoid the use of the abstract concept of ordinal and 
thus give a combinatorial proof that 1 +a=Sa is not derivable: let the 
variables range over ordered pairs of integers, ( p ,  q ) ,  where p > 0, 4 > 0 
and p + q > O ;  put T=(O,  I ) ,  S( (n ,  m))=(n, m + l ) ,  ( n ,  m>+<O, q)= 
- ( n , m + q )  and ( n , m > T ( p + I , q ) = ( n + p + l , q ) ;  then <O,I)T( 

for any integers n, m, .. ., p ,  the formula t(n,m, ..., - - tf(n,,,, _,_, 

- -  

Z(1,0>7;:(0, I>.) 

N.B. (a) and (8) establish respectively the (combinatorial) validity and incom 
ness of the system B+ with respect to the combinatorial theory of addition. Briefly the 
development is as follows: starting with mechanical rules for addition (in this case in 
the form of the formal system of (ii)), we verify that they define a function by means 
of the argument of (iii); then we construct a formal system containing variables (in 
this case a+) and ask whether or not the assertion i _= if is equivalent to the derivability 
of the formula t = t’ in the system. (Since the very meaning of this question involves 
the basic combinatoriaf concepts, a reader who has followed (2) and (B)  without 
difficulty may assume that he has at least a partial understanding of these concepts!) 

The reader will note the use of “psychological” terminology which is not in the least 
surprising since this combinatorial theory is intended to be “idealist”. 
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Finally it should be noted that the combinatorial (though not mechani- 
cal) statement 

The formula 1 + a  = Sa is not derivable in W ' 
is similar in character to the identity 1 + a=Sa itself; namely, for any 
sequence of formulas in the language of 9 + , it  can be ascertained mechani- 
cally whether it is constructed in accordance with the rules of W +  (just 
as, in connection with the identity 1 +a = Sa, for any integer n, the values 
of I + S"1 and of SS"1 can be mechanically computed) and also whether 
1 + a  = Sa is the last formula of the given sequence. The argument of (p) 
shows that the answer to one or the other of these questions must be 
negative. 

This elementary character of statements of non-derivability is essential 
to all that follows. 

(a) COMBINATORIAL LANGUAGES AND REALIZATIONS. We adopt the lan- 
guages of the predicate calculus with equality sketched in App. I [see also 
Chapter 31, modified as follows: no quantifiers are used (and therefore 
all the variables in the formulas considered are free); each language is 
supposed to be given by means of combinatorial functions which enumer- 
ate, possibly with repetitions, the various kinds of symbols (i.e. we do not 
allow the sets of symbols to be arbitrary disjoint sets). Frequently we shall 
restrict the languages to ones with a finite number of ~nd~vidual constants 
and function and relation symbols and an (infin~te) sequence of variables 
enumerated by a specific function. 

- -  

N.B. These enumerating functions, each of them of course given by a specific 
definition, constitute part of the definition of the language; consequently two languages 
with different (descriptions of) enumerating functions will be considered distinct even 
if the sets of symbols so defined are identical; in particular, we shall distinguish a finite 
enumeration (presented in the form of a finite sequence, is.,  as a combinatorial object) 
from an infinite e n ~ e r a t i o n  of the same set in the absence of a conibinatorial proof 
of their equivalence. These distinctions are needed because, contrary to the case of 
objects considered in (i) on p. 197, it is not always possible to decide by a purely combi- 
natorial argument whether two functions enumerate the same set, i.e., whether the sets 
of their values are identical. At this point the combinatorial theory diverges sharply 
from set theory. 

Let 2 be a (combinatorial) language. A combinatorial realization 8 

(i) a non-empty enumeration U (finite or infinite) of  combinatoria1 
of 2 consists, by definition of: 
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objects, called the universe of %, or, alternatively, the domain of the vari- 
ables, 

(ii) an element (among those enumerated by U )  corresponding to each 
individual constant, 

(iii) an n-place combinatorial function (taking arguments and values 
among the elements enumerated by U )  for each n-place function symbol, 

(iv) an n-place characteristic function (taking only two distinct values, 
T and I.) for each n-place relation symbol. 

N.B. (iv) shows that we could without loss of generality restrict the languages to 
those having = as their only relation symbol. If 9 contains an infinite sequence of 
function symbols, say of 2 variables, enumerated by the function p, defined over a 
domain UO, the definition of realization must be altered as follows: % contains a 
combinatorial function @ of 3 variables (the first ranging over UO, the other two over 
U )  such that for every element uo of UO, the function @UOXY of the two variables x 
and y ,  is by definition, the realization of the symbol quo. 

(b) COMBINATORIAL REALIZATION OF A FORMULA: CO~BINATORIAL VA 

LIDITY. Let 9 be a (combinatorial) language, 3 a realization of 2' and A 
a formula of 9. A combinatorial proof 71 will be called a realization of 
the formula A in 9? if, for two distinct objects, say T and i, either 

(1) A is [closed i-e.,] a formula without variables, A is the truth value 
of A [i.e., the value of A given by the valuation of the propositional cal- 
culus in Chapter l], when we put G t  = T if s and t denote the same ele- 
ment (among those enumerated by U )  and otherwise== I; and finally 

is a (mechanical) verification that A= T [it should be noted that the 
valuation rules of Chapter 1 are clearly mechanical]; or 

(2) the free variables (i.e. all the variables) in A are among x i ,  ..., x, 
and rc is a combinatorial proof of the identity: For any elements I,, ..., X, 
(among those enumerated by U )  the calculation of 2 according to (1) 
gives the value T. (Thus in general, i.e., if U is not a finite enumeration, 
71 is no longer a mechanical calculation.) 

It follows immediately that for any %, one can find a proof (realization) 
of A if the formula E+A is valid set-theoretically where E is the conjunc- 
tion of the axioms of equality for all the terms occurring in A. Conversely, 
if E-+A is not valid, a realization '$3 of the language of A and elements 
XI ,  . .., I, in the universe of (Ji can be found such that A= 1. (Clearly we 
do not assume here that every element enumerated by U has a name in 
2, ie., corresponds to a term of 2.1 
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~ ~ s c u s s i o n .  Languages with quantifiers are not considered here simply 
because the familiar logical laws are not valid combinatorially for the obvi- 
ous extension of the notion of realization to quantified formulas. For 
example consider a quantifier free formula A whose (free) variables are 
xl,  . .., x,, x and y ;  and the 'natural' definition: 

The pair ( n , f )  ( f a  function symbol with n+ I arguments, not occur- 
ring in A )  realizes fix V y A  if n is a combinatorial proof of 

A(.% ... Y X,,X,f(Xl, . ' . * X U ,  x)); 

the pair ( x , @  (g a function symbol with n arguments, not occurring 
in A )  realizes V x  f i y i A  if 71 is a combinatorial proof of 

l A ( %  .--, x,, S(X,, " ' Y  x,), y ) ;  

the triple (n,f; S) realizes fix V y A  v V x  A y i  A if 71 is a combinatorial 
proof of 

A (xi, . . ., x,, ~,f(xi, - 1  - 7  x,, x)) v 7 A (xi, 1. - 9  x,, (xi, x&Y). 

Clearly there is no reason to suppose that Ax V y A  v V x A y i  A (which 
is valid for all set theoretic realizations) is also valid in the co~binatorial 
sense just defined. 

In fact, it is intuitively plausible for certain A that there are no ~ e c ~ a ~ i c a i ~ y  defined 
functions f and 2 such that, for all f1, ..., 2% and for each R and 7 in the universe 
considered, A ( x I ,  ..., xn,  x , f ( x ~ ,  ..., xn, x)) v 1 A(m, ..., ~ n ,  g h ,  ..., ~ n ) ,  y)betrue, 
let alone combinatorially provable. (This statement will be made precise in the next 
paragraph.) 

(c) SET THEORETIC TRANSLATIONS OF COMBINATORIAL IDENTITIES, NON- 
COMBINATORIAL PROOFS OF THE TRANSLATIONS. Evidently, in the present 
section one assumes both the set theoretic and the combinatorial notions 
to be known: Combinatorial foundations are independent of this sec- 
tion; but the notions here presented are needed to formulate adequacy 
conditions in the next section. 

To any combinatorial language 9 and combinatorial realization 3 one 
associates in an obvious way a language 9* and a realization %* in the 
set theoretic sense, cf. Part A, Section 1. 

The combinatorial objects of 2 and 3 (symbols, alphabet, words in 
the universe of 3) are regarded as sets; in particular, a word is the set 
which is the finite sequence of the sets which are the letters of the word 
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considered; 2 and (31 being given by (enumerating) combinatorial func- 
tions) one associates with each enumeration the set enumerated, and with 
each combinatorial function its graph. Thus one abstracts from the par- 
ticular definitions which are used to give us these sets. So, 
2* is the collection of sets corresponding to the different kinds of sym- 

bols of 9, %* has as its universe the set of words belonging to the domain 
of %, and as realization of a function symbolf or relation symbol R the 
set corresponding tofx, resp. R,. 

The essential role of the particular definitions and enumerations for 
the combinatorial notions of language and realization can be seen as fof- 
lows: 

(u) there are (set theoretic) languages and realizations 2') (31' which 
do not correspond to any combinatorial pair (2, (31) according to the 
correspondence: (9, %)*(9*, %*), 

(8) there are combinatorial realizations which are set theoretically 
equivalent (i.e., to which the same set theoretic realization is associated) 
but not combinatorially (i.e., the isomorphism above can either not be 
combinatorially defined, or, if defined, not combinatorially proved). The 
reader should compare this point with the need for a canonical choice of 
definitions for objects in s.c.t., cf. Part A, Lemma 3. 

( E )  is an immediate corollary to the following result of the theory of 
recursive functions: there are sets which are not enumerable by means of 
mechanically definable functions and a fortiori, not by means of com- 
binatorial functions. 

(8) follows from a more delicate analysis of combinatorial proofs which 
shows the existence of two combinatorial functions which have the same 
graph, but are such that this fact cannot be proved combinatorially. 

The t r ~ ~ ~ ~ u t j o n  of an identity A for a given combinatorial realization 
(whose variables are among xtr ..., xn) is, by definition, the assertion: 
Ax, ... Ax,A is true in the associated set theoretic realization. 

It is clear that if Ax, ... Ax,A is not true in the associated set theoretic 
realization, there is no combinatorial realization i.e., proof, of A .  

The general nature of non-combinatorial proofs of (translations of) 
identities for combinatorial realizations can be formulated as follows: for 
a given pair 9, %. 

First (elementary case): one considers realizations in %* of quantified 
formulas (to which no combinatorial meaning has been assigned); using 
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the principles which are valid for the set ~ ~ e ~ r e ~ i c  meaning of the extended 
language, one obtains Ax, ... i\x,,A. This kind of proof is familiar from 
the parts of arithmetic or the theory of sequences of rationals which are 
commonly called “non-constructive” ; cf. p. 198. 

Second: one embeds %* in a realization which is not associated with 
any combinatorial realization at all, and appeals in the proof to prop- 
erties of the extended realization. This is familiar (cf. Part A, Section 3(a)) 
from analytic number theory where the structure of the natural numbers, 
a subset of C, (cf. Part A), is embedded in the complex plane (c C,+l) 
or even in the space of functions ( c C,+ 2 )  on the complex plane. A very 
simple example of this second process was used on p. 200 where one ap- 
pealed to the or~~naIs  in a non-derivability result about the formal system 
(i) there described, the non-derivability result being an identity of the 
kind under discussion. 

In this last case, so to speak simply by looking at the proof, one could 
eliminate the use of these essentially non-combinatorial realizations : in- 
stead of the collection of all the ordinals it was obviously sufficient to 
consider 02, and instead of this abstract ordinal, one considered a simple 
ordering of ordinal o2 for which all that was needed of m2 could be 
proved. Similarly, inspection of the existing proofs in analytic number 
theory shows that, at the cost of some additional explicit detail, one can 
confine oneself to the rational complex plane, use only approximations 
to the functions studied, and thus bypass completely the introduction of 
the non-combinatorial realizations (Cw+l,~,+I) or ( C w + 2 , ~ w + Z ) .  

It is by no means obvious that the foIiowing use of abstract realizations 
is eliminable. (Con~is~ency proofs.) Consider the axioms d* of Zermelo’s 
set theory, some formula A and the combinatorial identity: “the formula 
A A i A is not formally derivable from &* by means of the formal rules 
of Part A, Lemma 3”. We consider (Cw+,,~,+,), note that &* holds 
there, that the formal rules preserve truth (in any structure), A A i A is 
not true in (C,+w,~,+, ) ,  and so it cannot be formally derivable. 
Discussion. This argument, though simple, is obviously not empty because 
it depends on verifying that &* satisfies (Cw+w,~w+,). If one had used 
the unrestricted comprehension axiom (**) of Part A, Section I(a), in- 
stead of &* the conclusion would have been false. (As pointed out in Part 
A, Section 1 (b), this unrestricted comprehension is evidently false for 

The fact that embedding a structure G in a richer one often leads to 
(C*+w,Efu+*>.) 
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simple proofs about (5 is quite familiar from modern mathematics. Here 
one uses (C,+ , ,E~+~)  to derive a result about (C*>,E,), the assertion of 
formal non-derivability having been translated into an assertion about 
(C,, E,) by means of the development of arithmetic in (C,, E,) (Part A). 

Just because the proof above is so simple, using nothing about the 
formal rules except that they preserve truth, it is quite implausible that it 
can be eusi€y modified to yield a combinatoria1 proof of non-derivab~ity, 
in contrast to the non-derivability result for the formal system on p. 200 
or known analytic number theory. 

With the informal background provided in the present section, the 
brief exposition below of the problems of combinatorial foundations 
should be quite intelligible. 

1. How does one analyse i n t ~ t i ~ e  mathematics in terms of the basic 
combinatorial notions? 

Since much of intuitive mathematics presents itself as being about ab- 
stract objects (such as (C,, E,) for CI 3 w) which are not combinatorial a t  
all, the analysis cannot study these objects themselves ; a coherent alter- 
native (cf. introduction on “idealist” foundations) is to study reasoning 
about these objects. A precise formulation of such an alternative is Hil- 
bert’s p r o g ~ u r n ~ ~ ,  which states adequacy conditions. 

(a) REPRESENTATION (DESCRIPTION) OF MAT~EMATICAL REASONING BY 

MEANS OF FORMAL SYSTEMS. As was pointed out at the beginning of the 
Introduction, the step from intuitive reasoning to its formulation in a 
formal language does not proceed by means of niechanical rules because 
the representation approximates not the external form (the words) of the 
intuitive reasoning, but its sense or meaning. But granted this step (as 
being part of the data) the problem remains to establish c o ~ b ~ n u ~ o r ~ u l I y  
the basic r e € u t j o ~ ~  of ~ ~ t u ~ i i v e  reusoning (such as the consequence relation) 
i.e., to define combinatorially the corresponding relations for the repre- 
sentation, and to prove, again combinatorially, their properties. 

Just what has to be established will be formulated in adequacy condi- 
tions in (b) and (d) below. Essentially, (b) corresponds to Ed“ in Part A, 
Section 1 and (d) to UdG. As is to be expected, Theorems 4 and [S, or its 
particular case] Lemma 3, p. 184 of Part A (or, more precisely, suitable 
generalizations) will be decisive. The results will be summarized and 
examined in Section 4(a, b). 
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Discussion. For the sake of the discussion in Section 4, the reader should 
compare here the role of (i) [Theorem 5 or] Lemma 3 for combinatorial 
foundations with (ii) corresponding results in set theoretic foundations. 
(i) If one accepts the basic set theoretic notions in terms of which the 
notion of consequence can be defined, Theorem 5 provides a mathematical 
proof that a certain combinatorial definition of the consequence relation 
[for formulas offirst order] is correct. If one stays within the combina- 
torial framework one only has the “empirical” fact: it so happens that 
any formula of first order which we recognize as logically valid can also 
be generated by means of certain formal rules (Lemma 3 of Part A). 
(Similarly, accepting set theoretic notions one shows by use of the theory 
of recursive functions, that the relation of second order consequence is 
not definable by means of any mechanical rule. Within the combinatorial 
framework we could only say that we do not know a definition, and for 
any particular proposal we could exhibit a counterexample, but without, 
of course, having a combinatorial formulation, let alone proof of this 
general fact.) (ii) A corresponding result for set theoretic foundations, say 
for the intuitive structure N of arithmetic, would be a proof that N satis- 
fies Peano’s axioms dN. Within set theoretic foundations, dN is simply 
accepted; one cannot express the reasoning which shows that N satisfies 
dN and one must be content to use suitable informal ter~inology. 

(Hilbert’s consistency problem). A m ~ ~ i ~ a l  requ~remen~ can be stated in 
terms of the translations described in Section O(d) above: 

Consider a combinatorial language 3’ and a combinatorial realization 
93. For any formula A of 9 let A ,  be the canonical translation in 9E of 
the (combinatorial) assertion expressing that A holds in 3, i.e., that .4 is 
realized in the realization ’3 of 9. 

(i) If A holds (in 93 combinatorially) can we formally derive A,  from d* 
(or even in d?)? 
(ii) Given any formal derivation of A,, does A hold in %? 
These questions are so formulated that it makes at least sense to look for 
purely &o~~inator ia l  solutions. 

Precisely, suppose the formula Dem(s, A ,  ) of 2? defines in % the 
relation: the sequence of formulae s in ZylE is a formal derivation of A ,  
from d*. There is such a formula, e.g. if %=gC and 9=9c, p. 212. 

Question (i) is answered by means of a combinatorial function f whose 

(b)  DUCTI ION OF INTUITIVE PRINCIPLES TO COMBINATORIAL PRINCIPLES 

We wish to know, at least for closed formulas A in 8: 
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arguments are formulas of 9 and values are sequences of formulas of 
ZpE together with a combinatorial proof of A-+Dem(fA, A ,  ). Estab- 
lishing this is nothing else but showing effectively that combinatorial 
mathematics can be developed in set theory; [this was already used in 
Lemma 4 of Part A]. 

Question (ii) simply takes the form, for variabie s: do we have a com- 
binatorial proof of: Dem(s, A ,  )+A?  Note that, for a combinatorial 
formulation of these questions, one uses essentially the combinatorid 
character of the relation Dem. 

A positive solution of question (ii) constitutes a genuine elimination of 
the assumptions oj ’  set theory. For, the intuitive basis for the assertion 
Dem(s, A ,  ) + A  is simply that of the ‘consistency proof’ at the end of 
Section O(d). One considers the meaning of the formulas appearing in s, 
i.e. their realizations in s.c.t., concludes the truth of each, hence of A,, 
and hence that A holds in 3, at least for closed formulas A .  This argument 
clearly collapses if one does not accept the existential assumptions ex- 
pressed by &*. After all, if one does not accept them there is no difference 
between d* and, say, the inconsistent axiom (**) in Part A, Section 2(a), 
at least before its inconsistency was discovered; and one would be ill 
advised to conclude that A holds in %, on being given a formal derivation 
of A ,  from (**) ! On the other hand, a combinatorial proof of Dem(s, A ,  ) 
-+A (for variable A ranging over all closed formulas of ai”>> docs not refer 
to the meanings of the formulas in s because these meanings (realizations) 
are not combinatorial at all, but only to their formal (syntactic) prop- 
erties. 

Discussion. The paragraph above shows the necessity of a positive solution of question 
(ii) if one is to speak of a combinatorial reduction at all: without it, not even the 
purely combinatorial uses which we make of set theoretic assumptions would be 
combinatorially justified. But a positive solution is also as much as we can require 
without further analysis because the formulas AT are the only formulas in -YE to 
which we have associated a meaning in terms of combinatorial notions. (An extension 
is possible provided one extends the notion of combinatorial realization to richer 
languages in a less naive manner than end of Section 0 (b).) 

- 

Even without further analysis (for details see Section 3 below) Theorem 
4 of Part A makes a positive solution of question (ii) for the axiomatic 
system d* implausible. However, question (ii) makes sense (not only for 
d* but) for  any formal system which represents reasoning about abstract ob- 
jects (even for the ‘elementary’ kind of nonconstructive proof on p. 204 
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provided only some translation of combinatorial statements into the 
formal language considered, has been given, analogously to the trans- 
lation A into A ,  above). So Hilbert’s programme is not refuted bygeneraZ 
(posjtivistic) considerations provided there is some prima facie noncon- 
structive formal system for which question (ii) can be positively solved. 
This is done in (c) below. This affects the anti-philosophic doctrine men- 
tioned at the end of the introduction, cf. aIso Section 4(c) below. 
Remark on Hilbert’s consistency problem. Consistency (of d*) asserts 
that, for any formula B of LFE, and variables x, y for sequences of such 
formulas we have (a combinatorial proof of) 

Dem (x, B )  -+ i Dem ( y ,  -1 B )  (t) 
(where the formula Dem of the combinatorial language 9 defines the 
proof relation for d* in %; cf. Part A, Lemma 3); or, if L is the trans- 
lation of some false combinatorial formula, e.g. of 0=1, we have 

i Deni(x, I), (tt) 
where, for the translation of arithmetic in 9, of Part A, (0= is 

((t), (I-?) are evidently equivalent by use of the fact that any formula is 
formally derivable from a false formula.) 
Granted (i), question (ii) is combinatorially equivalent to the consistency 
problem. 

VY1 VY2 [: Au-1 (UEY1) A A U(UEY,C+U =Yl> A Y1 =y21 9 

First, consistency is a special case of (ii) by taking O= 1 for A .  
Conversely, by (i), we have iA-+Dem[f  (?A) ,  i A T  1 ;  therefore 

i D e m [ f ( i A ) ,  i A , ] - + i i A  and so i D e m [ f ( i A ) ,  i A T  ]+A. 
Joining this to a special case of (t) (with A ,  for B a n d f ( i A )  for the 
variable y )  we have Dem(x, A ,  )+A.  

The advantage of the consistency statement (tt> over question (ii) is 
merely that one variable in (ii) (over closed formulas A of is replaced 
by a constant 1. But the significance of the consistency problem for 
combinatorial foundations depends on its consequences, namely the 
necessary and sufficient conditions mentioned in the discussion, which 
are obvious for (ii) but not directly for (ff). 

(c) POSITIVE RESULTS ON HILBERT’S PROBLEM. (Naturally, since these 
results are formuiated precisely and established in proof theory, we can 
only indicate them here.) 

Let Y be a (combinatorial) language in the sense of Section O(b), and 
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% a combinatorial realization of 9, and suppose given a combinatorial 
realization of the formula A of dp whose variables (necessarily free) are 
among xi, ..., x,; i.e. we have a combinatorial proof of A for the given 
realization of 2. 
WEAK RESULT (‘weak‘ for combinatorial foundations because it is formu- 
lated by use of both set theoretic and combinatorial notions): 

If all the variables of the formula B of dp are among y,, ..., y,,, and if 
y1 . . . A y,B is a c o n s e ~ u ~ n ~ e  of x,A in the set  heo ore tic sense 

then there is also a combinator~~l proof of Bfor the given real~zatior~ of 3. 
To show this we use not merely the existence of some formalization of 

logical consequence, but the following particular property of the formal 
rules indicated in Part A, p. 184 [more precisely, in Lemma 3, based on 
the Uniformity Theorem of Chapter 21. If A y1 . . . A y , B  is derived by these 
rules from Ax, .. . Ax,A then B is derived by purely propositional infer- 
ences from some conjunction A ,  A ... A A,  where Ai is obtained from A 
by replacing each x by a suitable term. By (b) above such a derivation 
defines a combinatorial proof of (A,  A ... A A k ) 4 B  and, together with the 
given realization of A ,  also a realization of B. 

The particular property of these rules is not satisfied by the usual for- 
malizations, e.g. in Bourbaki, where modus ponens (from X and X+ Y 
derive Y )  is included among the formal rules, when a derivation of B from 
Ax, ... Ax,A may contain formulas with alternating quantifiers; as seen 
in (b), if the notion of combinatorial realization is extended in the ‘obvi- 
ous’ way, some of the formal rules (such as A v i A )  are then not com- 
binatorially valid. 
COMBINATORIAL VERSION. The general scheme of formulating a combi- 
natorial problem should by now be obvious. The intuitive notion of logi- 
cal consequence is itself not admitted, but one puts down all formal rules 
which are evidently valid from one’s understanding of this notion. In 
particular, modus ponens above is certainly included. Let Dem,(s, X ) ,  
with variables X over formulas in 2’ and s over sequences of such for- 
mulas, define the relation (as always, in the realization of S considered) : 
s is a formal derivation of X in the ‘full’ system just described. Let 
Dem,(s, X )  be the correspondjng relation for a special system 9 of rules 
(e.g. those of Part A, Lemma 3). We ask: is there a combina~orial function 
f whose arguments and values are sequences of formulas in 9 such that 

x1 . . . 

Dem, (s ,  X )  4 Dem, (fs, X )  
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is combinatorially provable? (The converse is obvious, because the special 
rules are included in the 'full' system.) 

The weak result (together with completeness of the full system) only 
allows us to conclude this. There is a mechanical rule which defines a 
functionffor which the translation of Dem,(s, X)-+Demy( fs, X )  is true; 

namely, given s and X, decde if Dem,(s, X )  is true; if not, the implication 
holds; if it is true, X is valid; enumerate the formal derivations of the 
system Y, until you reach a derivation of X; there must be one because 
all formal theorems of 9 are valid, and all valid theorems are formally 
derivable in 9'. But this argument leaves open, first whether there is a 
combinatorialf and second, whether, for such an the assertion can be 
combinatorially proved. Not only is there a conceptual difference between 
the two results, but the mathematical methods used in proving them are 
quite different. 

Discussion. The result establishes that elementary non-constructive argu- 
ments (in the sense of p. 204) can be eliminated. 

This certainly includes a non-trivial part of current mathematics (which 
presents itself as non-constructive). [In the case of arithmetic the result 
applies to the following modification of the system in Chapter 3, Exercise 
2(d): we may add function symbols and equations (as axioms) for which 
we have combinatorial realizations, for instancef(0, y )  = l,f (sx, y )  = y - f x  
for exponentiation y"; but to apply the results above, (i)  we must restrict 
the induction schema to purely universal formulas A (in the extended no- 
tation) since (ii) for other A ,  we do not have a suitable notion of combina- 
torial realization. As to (i), if Ax is A y B ( x , y ) , [ A o ~  Az(Az-+Asz)]+ 
AxAx is a (formal) consequence of Ax Ay[(B(O, Y)A Az[B(z,  y)-+ 
B(sz, y)])+B(x, y ) ]  and this is a consequence of Ax Ay[(B(O, y )  A 

A (  A z < x > [ B ( z ,  y)-+B(sz, y)])-+B(x,  y ) ] .  For this we have a combina- 
torial realization, since, if B(x, y )  defines a combinatorial relation, SO does 
(Az<.x) [B(z, y)-+B(sz, y)] ,  for variables ranging over the natural num- 
bers. As to (ii), permitting any wider class of A seems, at least without 
sophisticated analysis, quite unacceptable because we have not even de- 
jined a (combinatorial) realization for the induction schema applied to 
non-universal A .  The reader should note that viewed in terms of set 
theoretic foundations, a restriction of formulas A in the induction schema, 
as in (ii)* is quite artificial (cf. also footnote 3 of Part A); analysed in 
combinatorial terms the opposite is true.] 
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(d) REDUCTION OF INTUITIVE PRINCIPLES TO COMBINATORIAL PRINCIPLES 

(continued). Given an intuitive structure 6 and its language ZG, a kind 
of maximal requirement on combinatorial foundations is to find a (corn- 
binatorially defined) formal system which is valid for 6 and saturated 
with respect to 9,. For, combinatorial foundations concern reasoning 
about 6, and such a formal system would decide all questions about (5‘ 

(formulated in 3,). 
[Chapter 4 contains several examples, mainly for first order languages, 

despite the fact that none of the axioms considered is categorical, i.e. none 
determines the structure (5‘ considered (by Exercise I ,  Chapter 3). Note 
that the non-categoricity result for arithmetic in Exercise 2, Chapter 3, 
has no interest for combinatorial foundations, while Theorem 4 of Part A 
shows that the maximal requirement above is certainly not satisfied by the 
axioms .d* for set theory.] 

The theory of recursive functions allows one to formulate (and then 
prove) a really conclusive generalization of Theorem 4: no consistent 
extension of d? whose set of axioms is definable by means of a mechani- 
cal rule is saturated; not even with respect to arithmetic statements, in 
particular, not even for translations of combinatorial assertions in the 
sense of Section O(c). 

2. How do we find laws (axioms) for the basic combinatorial notions? 

In what follows we use notation from Part A, Section 2(a). 
(a) For general orientation on this problem the reader should compare 

the crude mixture of notions that come under the naive idea of set with 
the mixture of the kinds of proof that are loosely called constructive: 
hereditarily finite sets (i) might be compared to mechanical calculations, 
sets of the hierarchy of types (ii) to combinatorial proofs, and abstract 
properties (iii) to so-called intuitionistic proofs. We do not go into detail 
because we cannot expect the reader to be equally familiar with the vari- 
ous notions involved: for instance he will know more about sets in sense 
(ii) than about combinatorial proofs. On the other hand the literature on 
intuitionism is much richer than that dealing with abstract properties: see 
the end of Section 3. 

(b) THE LANGUAGE pc AND ITS REALIZATION ‘sic (‘C’ for ‘combinatorial’ 
or, alternatively, ‘concatenation’). 2ZC consists of a single relation symbol 
(=), two individual constants 0 and 1 (or T and I), two 1-place function 
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symbols so and sl, and an infinite sequence of function symbols fl, fi, ..., 
with two arguments. 

The universe of %, consists of finite sequences of two concrete objects: 
the elements 0 and 1: are the two sequences consisting of a single element: 
.io and S, are the combinatorial functions which attach 0 and T respectively 
to the end of an element of the universe; the functionsd(i= 1,2, ...) are 
defined by the rules given under (c) below. 

N.B. Adequacy of 9 c  and %C from the point of view of definability (cf. Part A, 
Section 1,  XJBG for the set-theoretic analysis): a systematic exposition will be found 
in SMULLYAN'S monograph, Theory of Formal Systems (Princeton, 1961), in which 
inter alia, functions of a finite number of variables and words constructed from a 
finite alphabet are defined in %c by use of the language 2~. (The reader will have to 
verify the combinatoria1 character of these definitions for himself since the author does 
not pay explicit attention to this question.) In particular the language 2~ can itself be 
defined in %C by means of formulas of .Fc (cf. Theorem 4, Part A) in such a way that 
a sequence of symbols is the concatenation of those elements (sequences) of the 
universe of %C to which the symbols correspond. 
Exarnpfe. If we take (the sequence) <Of> for the constant 0, < O i i >  for I,  and (Offl> 
for =, then the formula 0 = 1 is the sequence (OiUifiOfi) which is defined by the 
term S ~ ~ I ~ O S I S I S I S O ~ I ~ .  

It can be easily seen that with these definitions of the symbols 0,l and =, we have 
unique readability [cf. Chapter 01, i.e., given the object (element of Xc) that codes a 
sequence of these symbols it is always possible to recover the latter from the object. 
This would not be possible if, for example, we made 0 correspond to 0 and to 1 ; 
for then, whatever object a corresponded to the relation symbol =, it would necessarily 
be a sequence of the objects O and f and would therefore also code a sequence con- 
sisting of the symbols 0, I. 

(c) A FORMAL SYSTEM Y,, formulated in .9c and (combinatorially) valid 
in %,. We adopt all the rules valid for all combinatorial realizations (see 
Section O(b)). In addition, the following: 

(i) axioms for the successor functions: sox=soy-+x=y, slx=sly+ 
x=y ,  1sox=x, 1s1x=x, 1sox=s1y, 1sox=0,  1sox=1, l S I X = ' O ,  

l s l x = l ;  1 0 = 1 ;  
(ii) schema for proof by induction: for any formula Ax of dp,, Ax can 

be inferred from 
A0 A A1 A (AX --+ ASOX) A (AX 3 ASsX); 

(iii) schema for definition by recursion; we let C" denote the set of 
symbols (0, 1, so, s1,J;:r<n} (n=l ,  2, ...), C=U, C"; consider an enu- 
meration (u;, u;, u& u;) of all quadruples of terms (uo, ul ,  uo, u l )  where 



214 COMBINATORIAL FOUNDATIONS 

the u are built up on ( y>uC,  the v on {x, y, z)uC, and, moreover, each 
u:, ul is built up on {y}uC",  each v:? v; on (x, y ,  z)uC". (This is evident- 
ly possible.) 

Writing v [ z ]  for v ,  we have the axioms: 

f"(0,  Y )  = a:? f n ( h  Y )  = 4 ? 

f,(so+% Y> = a f n ( x ,  Y)l ,  fajslx, Y )  = 0; [ fn(x3 Y > I .  
The validity of (i) (in %,) is obvious, and the validity of (ii) can be 

shown by induction (whence the name of this schema). It remains to con- 
sider (iii); it can be seen that the model constituted by the universe of 
illc, 0, T, io, S ,  can be extended in a unique manner to provide a model 
satisfying (iii). The mechanical rules involved in the definition of the func- 
tionsx (n= 1,2, ...) are just those defined in the sense of Section O(ii) by 
the axioms (iii) themselves. The fact that these rules define functions (over 
the universe of can be shown by induction: see Section 0 (iii). 

N.B. The proof of the validity of 9 c  illustrates the relation between combina~orial 
proofs regarded as mental acts and formal derivations: one has to have understood 
the method of proof by induction in order to see the validity of the formal rules which 
are intended to  describe these proofs. 

It is shown in works on proof theory that the language $Pc and the rules of Y C  are 
sufficient to formulate most of (informal) combinatorial mathematics so far developed 
including, for example, the partial solution of Hilbert's consistency problem mentioned 
in Section l(c). The position of this system with respect to combinatorial mathematics 
is therefore comparable to that of Zermelo's axioms (Part A, Section 2) for informal 
set theoretic mathematics. 

(d) DOES 9~ PROVIDE AN AXIOMATISATION OF THE ~OMBI~ATORIAL THEO- 

RY OF ill2,? 9, is clearly inadequate for defining all combinatorial func- 
tions over the universe of %, if the combinatorial validity of Yc is 
granted: (c) above yields an enumeration of the functionsx by means of 
a combinatorial function and hence, using Cantor's diagonal method, a 
combinatorial function different from all those defined in ,4Pc (N.B. This 
construction involves the infinite sequencef;,; cf. p. 197, line 10.) 

Similarly we find a formula of the language -YC itself which is combi- 
natorially valid but which cannot be derived in 9,: Godel's method (of 
Theorem 4 of Part A, but freed from its specifically set-theoretic context) 
shows that 

i Dem (x, s*) 

is not derivable in 9,, where, for a given definition of the language 9, 
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(see (b) above), Dem(x, y)  is the (combinatorial) relation: 2 is a sequence 
of formulas constructed according to the rules of 9, and j is the last for- 
mula of 2, and where s* is the canonical definition of the formula O =  1, 
i.e., of the element of the universe which, on the definition of 9, con- 
sidered, is the formula O =  1. 

But, on the other hand, the proof of the validity of Yc shows that 
iDem(x ,  s*) i s  valid in $Ic (where ‘proof’ and ‘validity’ are, of course, 
taken in the combinatorial sense). 

The proof of the validity of .4pc also proves the validity of the following 
schema of which iDem(x ,  s*) is a special case (with O= 1 instead of A) .  

For any formula A of 2ZC let s, be its canonical description (for the 
given definition of Zc); then 

Dem (x, sA) -+ A 

is valid. This schema, which is formulated in =Yc, therefore provides an 
extension of the system 9,. 

There is another, stronger, extension corresponding to an enumeration of all the 
functions defined in 9, or, alternatively, to the operation of associating with every 
closed term of BC its value. That this operation is a combinatorial function follows 
from the proof that the rules for.f* define combinatoria1 functions. 

CONSEQUENCES FOR HILBERT’S PROGRAMME (to be more precise the prob- 
lem is to carry out Hilbert’s programme for every formal system suggested 
by mathematical practice). 

The facts just described, show that the principles of reasoning formu- 
lated in Yc are not sufficient to carry out Hilbert’s programme for the 
system Yc, and the analogue applies to, roughly, every formal system 
which is a valid extension of Yc: this fact is known as Godel’s second 
incompleteness theorem (for a precise formulation of this theorem, the 
concept of formal system has to be analysed which requires the Theory of 
Recursive Functions). 

Godel’s Theorem by itself does not at all imply that Hilbert’s programme 
cannot be carried through since it leaves open the following possibility: 
for every formal system 9’ suggested by mathematical practice (including 
set theory) it is possible to find a combinatorial system YF and a com- 
binatorial realization SF for which Y, is valid and such that the con- 
sistency statement iDem,(x, s*) is provable in YF. 



216 COMBINATORIAL FOUNDATIONS 

Certainly this presupposes that for every 9 in question there is a com- 
binatorial proof which cannot be formulated in s in the sense of Section 
O(a)(iv). This latter possibility, though intuitively implausible, cannot be 
excluded without a deeper analysis of the notion of combinatorial proof; 
for, just because of the incompleteness theorem, for alf (consistent) .F 
there are correct proofs which cannot be formulated in 9, In other words, 
the possibility considered cannot be excluded without making use of some 
more subtle property of combinatorial proofs than, say, their set-theo- 
retic validity. 

In the absence of such an analysis we only have the following result: 
there is no formal system Y such that 

(i) there is a formal derivation in Y of every statement formulated in 
LPC'which is valid in '$Ic (in the combinatorial sense), 

(ii) the validity of 9 (in '$Ic) can be established by combinatorial 
reasoning. 

3. Development of the theory 

We shall now consider the hypothesis stated at the end of Section 2. From 
the discussion above, a positive solution to Hilbert's programme would 
require a case study (cf. Part A, Section 1 concerning X"" and OdG) of 
all the formal systems suggested by mathematical practice (this is the 
reason why it is of interest for Hilbert's programme to find a single sys- 
tem which covers the whole of mathematical practice). 

On the other hand a negative solution could be obtained as follows: 
we first construct a formal system 9 satisfying condition (i), but of course 
not (ii) (end of Section 2); then we try to find a particular system of mathe- 
matical practice for which Hilbert's programme cannot be carried through 
using the methods of 9. 

In the article on mathematical logic in: Lectures on Modern Mathe- 
matics, vol. 3 (ed. Saaty, 1965), a system is described which can be seen 
to satisfy condition (i) and in which it is not possible to establish the 
consistency of ordinary [i.e., first order] arithmetic [Chapter 3, Exercise 
21. The idea behind the construction of this system is that combinatorial 
proofs can be generated by iterations of the type of extension considered 
on p. 215: the principal problem is clearly that of ensuring that all iter- 
ations shall be included which are such that every formal derivation has 
a combinatorial realization. (By Section 2(d)(ii) such a system could not 
possess a cornbinatorial model as a whole, i.e., there could be no combi- 
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~atorjaZ proof showing that every derivation in such an 9’ has a combi- 
natorial realization.) 

(of 
forming the set of all subsets of a given set) is the operation which gener- 
ates the hierarchy of types and the principal problem there is to formulate 
axioms in the language of set theory which ensure the existence of as many 
iterations of this operation as possible; in other words to find axioms of 
infinity which express the existence of high types. 

N.B. For a better understanding of the problems presented by Hilbert’s programme, 
the reader should compare it with the problem of squaring the circle: {a) the formu- 
lation of a system Y satisfying (i) corresponds to the (mathematical) characterization 
of the geometrical idea of ruler-and-compass constructions, namely that every point 
constructed by such means has Pythagorean coordinates (i.e., expressible by means of 
rational operations and square roots); (p) the proof that i Dem (x, s*) is not derivable 
in 9’ corresponds to the proof that Ji 2/(1 - x2) dx is not Pythagorean. In modern 
texts, at  any rate those influenced by formalism, there is often no discussion of (a), 
which requires an axiomatic analysis of geometric concepts, in particular, the intro- 
duction of coordinates on the basis of intuitive geometric axioms. The omission is 
hardly surprising since the very possibility of such an analysis is embarrassing for the 
formalist doctrine: see the Introduction. (The formulation of Y is more problematic 
than {a) because the intuitive idea of combinatorial proof is less clear than the intuitive 
idea of a ruler-and-compass construction.) 

The comparison described above suggests the very interesting problem of setting up 
a theory of proofs which are ‘graspable’ (intelligible) and not merely valid and, in 
particular, of intelligible combinatorial proofs. The corresponding geometric problem 
would be to find a theory of ‘feasible’ constructions which only involve points ‘close’ 
to the starting points and which are stable for ‘small’ changes in the data (this clearly 
requires the discovery of the metric appropriate to geometric intuition). Although such 
a theory of intelligible proofs would not be part of logic in the strict sense of the word, 
since logic is only concerned with questions of validity of one kind and another, it is 
quite likely that it would make use of the methods of combinatorial foundations. 

There is a striking parallel to Part A, Section 3:  the operation 

It only remains to say something about the intuitionistic conception of 
mathematical thought (Section 2(a)): this conception goes beyond com- 
binatorial mathematics since it also admits abstract objects such as func- 
tions, functions of functions etc. provided that these, in turn, refer only to 
objects of mathematical thought : in particular, set-theoretic concepts in 
their realist sense are not included. Thus the intuitionistic conception is 
idealist; its positive side consists in accepting abstract constructions and 
it is this which distinguishes it from combinatorial mathematics. 

N.B. The negative, and better-known, side to intuitionism consists in general 
polemics directed against set-theoretic concepts ; these arguments are no more con- 
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vincing than those of realists directed against ideaiists (“What kind of an animal is a 
proof?”) or those of formalists against the others (“Where are those abstract objects?’). 
All of these critiques are weak because they overlook the fact that there are more things 
in heaven and on earth than are dreamt of in philosophy (Le., in the particular philo- 
sophical system accepted by the critic). This by no means detracts from the interest of 
positive results obtained within a limited framework which show, for instance, that the 
objects accepted suffice for an explanation of the phenomena considered. 

Hilbert’s programme can obviously be reformulated with intuitionistic 
concepts replacing those of Section 2. This extension corresponds perhaps 
to taking the notion (iii) of set in Part A, Section 2(a) instead of Zermelo’s. 
For further details, see the article 1.c. 

4. Critieal s~mmary 

(a) COMPARISON BETWEEN SET-THEORETIC AND COMBINATORIAL FOUN- 
DATIONS. Both provide an answer to the question (in old fashioned Ian- 
guage) : what is mathematics? The former formulates a ~urt~cuZar “real- 
istic” view, and therefore concentrates on objects, not on the reasoning 
about them; its answer is that mathematics is the theory of sets (for a suit- 
able precise notion of set). The latter formulates a particular “idealist” 
view, regards abstract mathematical objects as figures of speech, and 
wants to show that our way of using these figures of speech is coherent. 
What is particular about this view is that, according to it and contrary 
to appearances, our mathematical reasoning is ‘essentially’ combinatorial; 
‘essentially’ in the logical sense (cf. Section 3), namely that the v ~ Z ~ ~ ~ ~ ~  
of our conclusions which can be formulated combinatorially at all, can 
also be established by combinatorial methods. This view, if correct, not 
only asserts a unity of mathematical reasoning, but one of a very remark- 
able kind: since school mathema~ics is typical of combinatorial mathe- 
matics, it presents the whole of mathematics as being of the same kind as 
school mathematics! 

Both set theoretic and combinatorial foundations separate mathematical 
questions from (ontological) questions about the existence, i.e., objectivity, 
of abstract objects or abstract notions outside the foundational scheme 
considered. But they draw the dividing line at quite different points. 
One must therefore not assume from the success of one such separation 
that also the other separation is correct. 

Specifically, consider the separation between set theoretic notions and 
classical intuitive structures presented, for instance, in our geometric con- 
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ceptions (continuum) or in our ideas about chance (probability.). If the 
corresponding adequacy conditions of Part A, Section l(a) are satisfied 
(for one of these notions G) then we have the required separation (au- 
tonomy of set theoretic mathematics). Thus E"" suffices to show that if 
a purely set theoretic conclusion, i.e., one formulated in SE, follows by 
use of intuitive properties dG of 6, then it also follows from set theoretic 
principles, i.e. those used to establish Ed". If in addition U"" is satis- 
fied, this situation is not changed by use of other intuitive properties (for- 
mulated in the given language of 6) provided only the intuitive concep- 
tion is coherent. [As pointed out in the discussion of Part B, Section l(a), 
within the set theoretic framework one cannot formulate why the ade- 
quacy conditions are correct, and therefore the problem of deriving these 
conditions is properly considered to be foundational (though it is almost 
always mathematicians who solve it; cf. end of Introduction).] 

As pointed out in Part A, Section l(a), and Section 2(a), the adequacy 
conditions are satisfied for the cZassicaZ intuitive structures, but in a some- 
what weaker sense for ordinals, and, as far as we know, not for the general 
notion of property, i.e., notion (iii) of Section 2(a). 

In contrast, in combinatorial foundations, the separation between 
combinatorial notions on the one hand and the basic set theoretic notions 
on the other has been established only in a quite narrow, though not at 
all trivial, part of mathematics (Part B, Section l(c)). And, modulo the 
characterization of combinatorial proof mentioned in Part B, Section 3, 
this separation does not hold beyond ordinary [i.e., first order] arithmetic 
[Exercise 2, Chapter 31. For those parts of mathematical reasoning for 
which the adequacy conditions Part B, Section l(b) andpart B, Section l(d) 
hold, essentially the same conclusions about separation apply as mentioned 
above for EdG and UdG respectively. 

It goes without saying that both set-theoretic and combinatorial foun- 
dations are a t  best auxiliaries for studying the abstract objects themselves 
which they eliminate! 

(b) DOCTRINAIRE FOUNDATIONS, by definition, support their own po- 
sition largely by criticizing rival foundational schemes. This criticism 
permits them to ignore those defects (of their own position) whose for- 
mulation requires the use of notions not accepted by them, i.e., notions 
from a rival scheme [for instance, in the case of combinatorial founda- 
tions, the defect that the relation of second order consequence is not 
combinatorially definable; cf. discussion of Part B, Section I(a)]. - The 
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reader will have noticed in this connection that an interest in combina- 
torial foundations is often associated with a critique of set theoretic no- 
tions, and, incidentally, an interest in set-theoretic foundations with a 
critique of such notions as that of property in Part A, Section 2(a) or of 
intuitionist~c construction in Part B, Section 3, the reason, obviously, 
being that we do not have a set-theoretic foundation for these notions. 

If a doctrinaire (combinatorial) standpoint is adopted, the importance 
of Godel’s Theorem 4 of Part A lies precisely in the fact that here the 
failure of combinatorial foundations can be formulated in combinatorial 
terms itself. But from a less legalistic point of view a conceptual frame- 
work is defective iJ‘it does not allow (theoretical) explanations of facts f o r  
which an alternative theory has an expIanation, one purpose of theory 
being the extension of the range of theoretical understanding. [From this 
point of view, Theorem 5 of Part A, constitutes already a failure of com- 
binatorial foundations, because in terms of set-theoretic notions we have 
a good reason for the choice of formal rules, while in combinatorial foun- 
dations the choice of the formal rules must be taken as part of the data 
(cf. discussion of Part B, Section l(a)).] 

Another inadequacy of combinatorial foundations (cf. last paragraph 
of Part B, Section 2) is that within the combinatorial framework one can- 
not define, i.e., establish the extent of, combinatorial mathematics, but 
within a wider (constructive) framework one can at  least try! (cf. Part B, 
Section 3). 

At the present stage of knowledge we do not have the notions needed 
to solve, or even to formulate precisely, the analogous question for the 
whole of mathematics, namely: are there sufficiently abstract, yet precise 
notions to characterize the extent of the whole of mathematics? 

(c) CRUDE FORMALISM, mentioned at the end of the Introduction, is a 
glorious doctrine, which happily proposes an answer. This doctrine does 
not even accept the basic combinatorial notions and holds that mathe- 
matics consists of assertions of the form : a concretely given configuration 
has been constructed by means of a given mechanical rule (in terms of 
Part B, Section O(b): only closed formulas of a combinatorial language are 
considered). No general statements about such configurations belong to 
mathematics. Consequently, of course, not even the minimal adequacy 
condition of Part B, Section l(b) (Nilbert’s consistency problem) can be 
formulated, since a variable x appears in it. 

This doctrine is certainly free from failures in the narrow (legalistic) 
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sense of (b) above, by the very simple device that next to nothing can be 
formulated in the terms it accepts! Obviously, this cult of impotence is 
based on the conviction that there are no (theoretical) explanations of such 
basic phenomena of mathematical experience as the validity of (com- 
binatorial) conclusions derived from properties of abstract intuitive con- 
c e p t ~ ~ .  

It must have occurred to the reader that, according to this doctrine, 
what is essential to mathematics are mechanical manipulations, while he 
learned at school that these are the antithesis of mathematics: “Don’t 
just copy a proof, understand it” (and, moreover, even then he under- 
stood the instruction). 

So the doctrine certainly does not sound very sensible, besides being 
inconsistent with mathematical practice. But its most significant fault is 
this: it has led people to believe in, or  at least to  assert, the impossibility 
of explanations where, in fact, there are already explanations to look at, 
in particular, the positive solutions of Hilbert’s problem in Part B, Section 
I(c). Evidently, the general claim of the doctrine is refuted by any one 
(non-trivial) theoretical explanation (cf. pp. 208, 209). 

The principal problems of the two foundations here considered are 
these. In set-theoretic foundations we search for new axioms (i.e., prop- 
erties satisfied by the cumulative type structure); in combinatorial foun- 
dations we search for a more detailed analysis of the basic combinatorial 
notions (and thus a convincing characterisation of the limits of combina- 
torial reasoning). Based on such research one can then develop new 
foundational schemes. The limitations of Hilbert’s original programme 
do not exclude other “idealist” foundations satisfying adequacy con- 
ditions analogous to those of Part B, Section l(c); recall Part B, Section 
3, where at  least one positive proposal beyond Hilbert’s original program 
is mentioned. 

Finally it should be noted that (1) realist and (2) idealist foundations in the sence of 
p. 161 are not necessudy in conflict, for even if the objects of (1) are accepted, (2) is also 
needed to analyze the kind of knowledge we have of these objects. Rut conflicts are 
likely by p. 174 lines 8 and 9. 

.I Bourbaki flirts with this doctrine and proposes an “empirical” explanation in 
terms of past experience with formal systems. This is not thought through because it 
says nothing about the (statistical) principles to be used in evaluating the past ex- 
perience. Since these principles themselves use at least combinatorial mathematics the 
examination of such principles leads back to much the same questions as those of 
Part B. Cf. Iast sentence of Part A. 



PART C 

SEMANTIC VERSUS SYNTACTIC (COMBINATORIAL) 
INTRODUCTION TO MATHEMATICAL LOGIC 

N.B. “Semantic” stands, as usual, for : set-theoretic semantic ; in syntactic analysis 
the corresponding basic combinatorial notions have to be understood (those of Part B, 
Section 2 instead of those of Part A, Section 2). 

1. The advantages of a semantic analysis are these: 
(a) By Part B, Sections 1 and 4, syntactic or proof theoretic analysis 

begins where semantic analysis leaves off: The choice of axioms and the 
relation of logical consequence come from semantic analysis; they con- 
stitute the data of the proof theoretic analysis. 

(b) By Part A, Section 2 and Part B, Section 3 there are parts of current 
mathematics which do have a semantic foundation in terms of s.c.t., but 
do not have a combinatorial syntactic foundation (and are not known to 
have a constructive foundation). 

[(c) Several of the basic results in first order (classical) predicate logic can be stated 
and proved combinatorially. But they are more easily proved “semanticalfy”, i.e., by 
using the fact that the rules are valid and complete for the notion of consequence of 
Chapter 2;  cf. Part B, Section 1 (c). 

2. The weakness of semantic analysis is that several of the results of 1 (c) hold not 
only for rules which are semantically sound and complete, but for a wide class satis- 
fying fairly simple combinatorial conditions, for instance the Interpolatjon Lemma. 
Therefore the semantic proof hides the fuli genevalify of the results concerned.] 




