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Foreword

I am very happy to have this opportunity to introduce Luca Vigan ò’s book on Labelled
Non-Classical Logics.

I put forward the methodology of labelled deductive systems to the participants of
Logic Colloquium’90 (Labelled Deductive systems, a Position Paper, In J. Oikkonen
and J. Vaananen, editors, Logic Colloquium’90, Volume 2 of Lecture Notes in Logic,
pages 66–68, Springer, Berlin, 1993), in an attempt to bring labelling as a recognised
and significant component of our logic culture. It was a response to earlier isolated
uses of labels by various distinguished authors, as a means to achieve local proof-
theoretic goals. Labelling was used in many different areas such as resource labelling
in relevance logics, prefix tableaux in modal logics, annotated logic programs in logic
programming, proof tracing in truth maintenance systems, and various side annotations
in higher-order proof theory, arithmetic and analysis. This widespread local use of
labels was an indication of an underlying logical pattern, namely the simultaneous
side-by-side manipulation of several kinds of logical information. It was clear that
there was a need to establish the labelled deductive systems methodology.

Modal logic is one major area where labelling can be developed quickly and sys-
tematically with a view of demonstrating its power and significant advantage. In modal
logic the labels can play a double role. On the one hand they can bring the semantics
into the syntax by naming possible worlds (as labels) and on the other hand the very
same labels can act as proof theoretical resource labels.

This conceptual advantage in the case of modal logics is due to the natural corre-
spondence between the possible world semantical interpretation and natural deduction.
(Consider strict implication �. The � introduction rule says that � � � � � iff
��� � �. If � is a theory of a world then ��� is a theory of an accessible world.)
We can therefore expect a sharpening of the proof theory of modal logic through the use
of labels, yielding a wealth of results, both on the algorithmic front (complexity) and
on the conceptual front (Skolemisation, 	-calculus, quantifiers, nominals, and more).

The present book demonstrates admirably and skillfully the advantages of labelled
deductive systems in non-classical logics, and pioneers, in my opinion, the way modal
logic is going to be studied in the future.

xiii
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I welcome this excellent book as well as the author, who will no doubt produce
more excellent work in years to come.

Dov M. Gabbay
August De Morgan Professor of Logic
King’s College, London



1 INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

Non-classical logics such as modal, temporal, relevance or substructural logics are
extensions or restrictions of classical logic that provide languages for formalizing
and reasoning about knowledge, belief, time, space, resources, and other dynamic
‘state-oriented’ properties. As such, they are increasingly applied in various fields of
computer science, artificial intelligence, engineering, cognitive science and compu-
tational linguistics, as well as in philosophy and mathematics, where most of them
actually originated. For instance, non-classical logics are used for formalizing com-
putability and provability [36, 37, 157], for representing knowledge, belief, common
sense and contextual reasoning [82, 111, 123, 155, 208, 209], for planning and spatial
reasoning [50, 56, 191], and for the formal specification and verification of distributed
and concurrent systems, of programs, of circuit designs and of protocols for computer
security or other safety critical applications [59, 69, 124, 156, 189, 218, 219].

In this book we do not consider applications,but rather investigate theoretical aspects
of non-classical logics, so the question of which logic, among the many available ones,
is best suited for a specific problem will not be an issue for us. Nevertheless, even
without a particular application in mind, there are general questions that we must
answer, such as: How are we going to present, reason with and about non-classical
logics? And, in particular: can we give a uniform and modular presentation of related
logics, so as to be able to abstract and reuse insights and results when switching from
one logic to the other? In other words: is there a general methodology, a framework,

1
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Figure 1.1. Evolution of state (example)

for presenting and working with non-classical logics, independent of the particular
application and the logic we have chosen for it?

We build such a framework for presenting and using large families of non-classical
logics, focussing in particular on modal and relevance logics, and suggest generaliza-
tions necessary to capture other logics. However, we also show that our framework
is not a panacea for the above problems, and that in some cases there are tradeoffs or
even theoretical and practical limitations that must be taken into account.

To motivate and illustrate the approach that we pursue, let us consider in more detail
how we can reason about evolution of state in an arbitrary non-classical logic. For
concreteness, consider Figure 1.1. We represent different states and actions on them by
means of circles connected by arrows: states are characterized by the set of formulas
holding at them (e.g. the state 
� is characterized by the associated set of formulas ��)
and are connected by transition relations denoting actions (in this case, we have one
binary relation �) telling us how to move from one state to the other (e.g. from state

� we can access the states 
�, 
� and 
�, but 
� only accesses itself).

This representation naturally suggests that we adopt for non-classical logics a
semantics based on possible worlds as developed by Kripke [150, 152] and thus often
referred to as Kripke semantics (but see also the precursory work of Carnap [47, 48],
Hintikka [132] and Kanger [146]). 1 For example, we can identify the representation in
Figure 1.1 with the standard Kripke semantics for propositional modal logics [58, 141],
and consider a Kripke frame consisting of a set of possible worlds � connected by
a binary accessibility relation �. A Kripke model � is the extension of a frame
with a function� mapping elements of� and propositional variables to truth values,
based on which we define a truth relation �� to evaluate formulas of the logic at each
possible world. That is, a propositional modal formula � is evaluated not globally
in � but locally at some particular 
 	 �; in symbols, �� 
��.2 For example,
we evaluate classical (material) implication 
 by a straightforward extension of the

1Kripke semantics is also often referred to as possible world semantics or relational semantics.
2Other notation is possible, e.g. ��� � as in [58] or ��� �� � � as in [57].
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standard clause for propositional classical logic,

�
� 
�� 
 � iff �� 
�� implies �� 
�� �

while the meaning of the modal operator � at some world 
 is interpreted in terms
of conditions holding at others: the formula �� holds at 
 	 � iff � holds at each
world 
� 	� accessible from 
 according to �, i.e.

�
� 
��� iff �� 
��� for all 
� such that �
�
�� 	 � �

Although propositional modal logics provide quite a powerful language for for-
malizing state-oriented properties, we can extend this language in various ways. For
instance, we can introduce other operators of arbitrary arity, e.g. other unary modal op-
erators, binary substructural implication, unary non-classical negation, and so on. We
can also move from the propositional to the quantified case by introducing quantifiers,
e.g. the universal quantifier �, which we treat in each world 
 as ranging only over
the domain of quantification associated to 
; we can then obtain different languages
by modifying the properties of the domains of quantification (e.g. we can require that
when we move from a world to another world accessible from it, objects persist or that
no new objects are created). All these changes reflect themselves directly in modifica-
tions to our frames and models, e.g. selecting one specific � 	� as the actual world
and using the other worlds only to determine the truth of formulas at �; or connecting
worlds with different binary relations (as is the case in multi-modal logics), or even
introducing relations of different arities (e.g. to model implications in substructural
logics).

The range of possibilities is enormous and different combinations of such changes
yield not only different classes of non-classical logics and semantics for them (e.g.
modal or relevance logics), but also different families of logics in a class (e.g. the
normal modal logics �, �, ��, etc.; the relevance logics 	, �, , etc.). A large
number of these logics have been studied and new ones are frequently proposed,
prompted by theoretical or practical needs. The result is a multi-dimensional space of
logics, each logic demanding, at a minimum, a semantics and a deduction system, and
a set of metatheorems relating them together. This development is often non-trivial
and, in many cases, has not been systematized; i.e. the characterization of a new logic
may demand novel extensions of old techniques or even the invention of completely
new ones. Thus a framework in which we can reason with and about non-classical
logics in a uniform and modular way is called for.

1.2 CONTRIBUTION

1.2.1 A framework for non-classical logics

We are now in a position to state our contribution more clearly. The particular families
of non-classical logics we consider here are extensions or restrictions of classical
logic with non-classical logical operators that can be interpreted using a Kripke-style
semantics consisting of a set of worlds between which relations have been defined.
While the meaning of classical operators and quantifiers in some world 
 is defined
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only in terms of conditions holding at 
, the meaning of a non-classical operator at
some world is defined in terms of conditions at other worlds by associating each �–ary
non-classical operator with an �+�–ary relation on worlds. Thus, e.g., the operators�
and� of modal logic can be interpreted in terms of a binary relation (as we saw above),
relevant implication can be interpreted using a ternary relation [77], and non-classical
negation can be interpreted again using a binary relation [74, 78]. In each case a
family of logics in a particular class is defined by variations of the behavior of the
relations alone. We show how to exploit this view of non-classical logics as a basis for
a framework, where we can

(i) exploit modularity in the semantics so that related logics (their deduction systems
and their implementations) result from modifications just to the behavior of the
relations, and

(ii) prove metatheoretical results in a modular fashion; i.e. the proofs are param-
eterized, along with the presentations themselves, over the properties of the
relations.

We develop our framework by examining how (ideas from) two complementary
proposals for dealing with the enormous range of non-classical logics combine together
in practice.

The first is the use of a generic theorem prover, based on a Logical Framework [18,
125, 166, 181], which can be used to implement deduction systems for many logics
in a uniform manner. These theorem provers are based on a metalogic in which the
syntax and inference rules of object logics are encoded, so that theorems of the object
logic are constructed by proving theorems in the metalogic.

The second is that of labelling (or labelled deduction [17, 87, 90]), a method for
giving uniform presentations of logics typically associated with radically different
deduction systems, e.g. modal, substructural, or non-monotonic logics. In the labelled
deduction approach, instead of a consequence relation being defined over formulas
(� � � � � � � � � ), it is defined over pairs consisting of a label and a formula (� � � 
�� �

��� � � � ). The labels then allow information needed to formalize the more subtle
metatheoretical aspects of the relation to be tracked. For modal logic, for instance, we
might want to distinguish between ‘local’ (with respect to some world) and ‘global’
(with respect to some frame or model) consequence, so the label might keep track of
the possible world in which the formula lives. Or for a substructural logic, where the
consequence relation should be sensitive to operations like weakening and contraction,
the labels might track resources and their use.

We study this combination in the case of modal and relevance logics, and show how
it can provide simple and usable presentations and implementations of large families
of logics, including the modal logics �, �, �, 	, ��, ��, ����, ����, �� and their
quantified extensions, and the relevance logics 	�, 	, �, � and .

1.2.2 Why combine paradigms?

Why should the labelling and Logical Framework paradigms be combined when Log-
ical Frameworks themselves should suffice to present and implement logics? We
contend, and we hope our development illustrates, that the combination is sensible and
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advantageous since each paradigm can provide something that the other lacks. On
one hand, labelling can help tailor the consequence relation of a logic to fit better that
of the metalogic. On the other, a Logical Framework provides a means of directly
implementing certain kinds of labelled presentations as natural deduction systems, and
thus provides a concrete metalogic for reasoning about the correctness of the imple-
mentation, and may, as in the case of Isabelle [181], the generic theorem prover we
employ, support structured theory development. Below we consider these points in
more detail.

Non-classical logics are usually presented in terms of Hilbert systems (i.e. Hilbert-
style axiomatizations), but these are notoriously difficult to use in practice. Thus
alternative, more ‘natural’, deduction systems must be found.

Many of the Logical Framework logics that have been actively studied, e.g. the
type theory of the Edinburgh LF [125], the higher-order logic of Isabelle, and even
programming languages like �-Prolog [85], lend themselves well to the representa-
tion of logics that can be presented as collections of inference rules for proof under
assumption. An example of such a rule is the standard implication introduction rule

�� � � �

� � � 
 �

 �

of natural deduction (ND) [106, 186].
Unfortunately, natural deduction, even though usually recognized as one of the

more practical foundations for a deduction system, is often considered badly suited for
non-classical logics. The problem is that proof under assumption typically requires a
deduction theorem:

if assuming � true we can show � true, then � 
 � is true.

But for implications weaker or substantially different from intuitionistic 
, this fails
(at least for the conventional reading of ‘if-then’ that we get in natural deduction). To
illustrate, take the example of modal logic. The standard Kripke completeness theorem
tells us that � is provable if and only if � is true at every world in every suitable Kripke
model �, in symbols: � � iff �� 
�� for all 
 	 �. The deduction theorem, as
formulated above, then corresponds to

��
 	� ��� 
���� �
 	� ��� 
����� �
 	� ��� 
�� 
 �� �

where � is implication in the meta-language and 
 is implication in the object
language. But this is false; the semantics of 
 in a Kripke model is just the weaker:

�
 	� ���� 
�� � �
� 
���� �

� 
�� 
 �� � (1.1)

Thus a naı̈ve attempt to embed modal logic in a ND system will fail.3

Approaches to building ND presentations of non-classical logics other than intu-
itionistic logic have introduced various technical devices to get around the problem.

3Note that more complex versions of the deduction theorem do hold for some non-classical logics, see, e.g.,
[77, 87, 182].
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For instance, Dunn [77], for some relevance logics, considers ‘relevant’ natural deduc-
tion, where rules have side conditions on discharged assumptions. In the case of modal
logics, Bull and Segerberg [46], Fitting [87] and Prawitz [186], among others, have
shown that some, albeit not all, logics based on � can be given a natural deduction
presentation in which we have 
� together with the rule

� � �
�� � ��

��

where�� indicates that each assumption in � has � as its main logical operator. 4 The
problem with this rule is that it carries a non-local side condition, i.e. a condition on
the complete set of assumptions. While Logical Frameworks work well in encoding
certain kinds of natural deduction systems, namely those with rules that are ordinary
(insensitive to thinning or contraction of assumptions), pure (have no non-local side
conditions), and single-conclusioned, encodings of systems that do not meet these
criteria, such as the systems based on �� above, can require considerable ingenuity. 5

Of course, there may be other sets of inference rules, which are pure, that present the
same logic. For example, a pure presentation of �� for the Edinburgh LF can be found
in [9,  4.4], where two judgements (true and valid) are used which, in essence, factor
the deduction system into two parts, in one of which only propositional reasoning is
possible. Although it may be possible to develop other presentations in this fashion,
there does not appear to be a systematic way for doing this; each new modal system
requires insight and its own justification of soundness and completeness with respect
to the corresponding Kripke semantics. Further, even when given such presentations,
we have no reason to expect them to have the same combinational properties as their
corresponding Hilbert systems; e.g. given pure presentations of the modal logics ��
and �� (i.e. �), we do not know if their combination corresponds to ��� (i.e. ��).

To summarize, in the case of propositional modal logics (but analogous problems
apply for the quantified case and for other non-classical logics), ingenuity is required
not only for inventing natural deduction systems in the first place (in fact, Bull and
Segerberg [46, p.30] point out that “only exceptional systems ... seem to be charac-
terizable in terms of reasonably simple rules”), but also for the Logical Framework
encoding of the rules we have invented. The continuing primacy of Hilbert presenta-
tions in non-classical logics, despite the difficulty in actually using them, is evidence
that these inventions have not been completely successful.

4Different approaches to proof under assumption in modal logics, based on modified deduction systems
(ND, sequent or tableaux systems), have been proposed, e.g. [10, 73, 87, 158, 233, 235]; see �7 for a
detailed comparison and discussion. Note also that there are approaches to the presentation of non-classical
logics that are based on neither Hilbert-style axiomatizations nor natural deduction, e.g. the semantics-based
approach [126, 169, 170, 171], in which a non-classical logic is translated into a ‘suitable’ first-order theory.
We return to this below.
5We use the vocabulary of [6], which should be consulted for a technical discussion of consequence relations
and degrees of impurity of natural deduction rules, and which notes (� 5.5) that “every ordinary, pure single-
conclusioned natural deduction system can, e.g., quite easily be implemented on the Edinburgh LF.” Note,
however, that with sufficient effort a Logical Framework can implement any (recursively enumerable)
deduction system, but the resulting encoding does not necessarily ‘fit’ well; see [103], where a concept of a
natural representation in a Logical Framework is formalized and investigated.
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1.2.3 Our framework: labelled deduction systems for non-classical
logics

In our framework we present non-classical logics as natural deduction systems, namely
as labelled natural deduction systems. We show that the combination of the labelling
and Logical Framework paradigms provides systems that, unlike those considered
above, fit well in a standard Logical Framework, in that our inference rules are ordinary,
pure and single-conclusioned.

To illustrate, consider again the deduction theorem and suppose that we extend
natural deduction to be over pairs drawn from the language of modal logic and labels;
i.e. instead of � � we consider � 
��, where the label 
 represents a possible world,
and intuitively we have: � � iff � 
�� for all 
 	�. This provides a language in
which we can formulate a deduction theorem corresponding to (1.1), namely

if assuming 
�� true we can show 
�� true, then 
�� 
 � is true,

and thus provides a basis for a ND system of the sort we need. Moreover, we can use
the same notation to express the general behavior of non-classical operators like � in
a way that is independent of the (relational) details of the Kripke models providing the
semantics, i.e. � 
��� iff � 
��� for all 
� 	� accessible from 
. We formalize
this by considering two kinds of formulas, namely labelled formulas of the form

��, intuitively expressing that the propositional modal formula � holds at world 
,
and relational formulas of the form 
�
 �, capturing the modal accessibility relation
(i.e. expressing that 
� is accessible from 
). This allows us to give ND introduction
and elimination rules for � and other modal operators that are fixed for all the logics
we consider, e.g. for � we have the rules

�
�
��....

���

���

��

and 
��� 
�
�


���
��

where �� has the side condition that 
 � is different from 
 and does not occur in
any assumption on which 
 ��� depends other than 
�
 �.6 Then we can produce
ND systems for particular modal logics simply by formalizing the details of particular
accessibility relations, i.e. by specifying how we can infer relational formulas.

Similar insights and intuitions apply for other propositional non-classical logics. We
present a propositional non-classical logic in terms of a ND system consisting of two
parts: a base system for manipulating labelled formulas, and a separate labelling alge-
bra for reasoning about the labels, i.e. for manipulating relational formulas. (The term
‘labelling algebra’ is adopted from Gabbay’s Labelled Deductive Systems (���) [90].)

The base system is a labelled ND presentation of classical logic extended (or
restricted) with introduction and elimination rules for the non-classical operators; the
base system thus presents the base logic of a family of propositional non-classical
logics (e.g. the base ND system ���� presents the propositional modal logic �).

6Note that this is a side condition that can be directly encoded in a Logical Framework; see [6] and �5, �6
and �7.



8 LABELLED NON-CLASSICAL LOGICS

The labelling algebras we consider are relational theories comprised of Horn clause
axioms formalizing the relations between worlds in Kripke models (i.e. for reasoning
about relational formulas of appropriate arities).

These two parts are separate and communicate through an interface provided by the
rules for the non-classical operators; the intuition behind all this is that for a family or
class of related logics the base system stays fixed and we obtain a presentation of the
particular logic we want by ‘plugging in’ the appropriate relational theory.

1.2.4 Finding a ‘good’ presentation

In order to provide a labelled presentation of a propositional non-classical logic we
thus need two things: a base deduction system and a general notion of a labelling
algebra. However, for each of these there may be more than one possible candidate.
For instance in this book we consider ND and sequent systems but not the closely
related tableaux systems. Also, we focus mainly on labelling algebras corresponding
to Horn relational theories, which is one possibility out of many, and perhaps not even
the most obvious one. Why restrict ourselves to Horn clause logic, instead of first or
even higher-order logic?

What we need are criteria for assessing the relative merits of the range of possibil-
ities. We can, of course, consider the basic metatheoretical properties that deduction
systems are expected to satisfy, such as normalization of derivations and the subfor-
mula property, but we can extend this list. There are also pragmatic considerations,
such as ‘is it easy to use?’. For example, Horn relational theories can be directly
encoded in the Horn fragment of the metalogics we use for our implementations (it
is not necessary first to embed first-order logic or formalize additional judgements;
see [102, 125]). But there are other theoretical considerations; for instance, when in-
troducing their Labelled Deductive Systems for substructural logics, D’Agostino and
Gabbay [63, p. 244] write:

The labelling algebra represents this metalevel information as a separate component of
a standard derivation system and can be treated as an independent parameter. In the
��� approach, logical systems are not studied statically, in isolation, but dynamically,
observing the process of their generation and their interaction (via modifications of the
labelling algebras) on the basis of a fixed proof-theoretical hard core (the underlying
system of deduction). [their emphasis]

In other words, a good presentation should correspond not just to some logic, but
to a space of logics, which vary in a well-behaved way according to the details of the
labelling algebra; e.g. we would expect that a labelled presentation of �� combined
with one of � does result in ��. By this standard, for instance, while the presentation
of �� in [9] could be seen as a labelled deduction system where the two judgements
correspond to labels, it would not be a good one since there is no labelling algebra to
vary.7

7This is not meant as a criticism of that presentation, which was not motivated by such concerns.
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1.2.5 Properties and limitations of our labelled deduction framework

The labelled deduction framework we propose does well by the above measures since
it cleanly separates the labelling algebras (our Horn relational theories) from the base
systems. We show that our framework has good, modular, compositional properties,
behaving in the way we would expect when we combine labelling algebras together,
and providing a natural hierarchy of systems that inherit theorems and derived rules.
We have implemented our approach in Isabelle, which supports management of sepa-
rate theories and their structured combination, and the result is a parameterized proof
development environment where (although this is not a formally quantifiable prop-
erty) proof construction is natural and intuitive. Moreover, we use the parameterized
relational theories to prove, in a parameterized way, metatheoretical properties such
as correctness of our encodings in Isabelle, and soundness and completeness of our
labelled ND systems with respect to the corresponding Kripke semantics. (We provide
a modified canonical model construction that accounts for the explicit formalization
of labels and of the relations between them). These theorems show that our imple-
mentation not only properly captures non-classical provability within our hierarchies
of logics, but also a satisfactory notion of proof under assumption, i.e. consequence.

In our framework we are able to interpret the ‘separate’ in the previous quotation
of D’Agostino and Gabbay in a strong way: not only do we have a separation between
the base systems and the labelling algebras, but that separation is maintained even
when building derivations: in the relational theory we reason only about relational
formulas, while in the base system we exploit labelled and relational formulas to
infer only labelled formulas, so that a derivation in the base system may depend on a
derivation in the relational theory but not vice versa. That is, derivations of labelled
formulas consist of a tree built from the base system, which is decorated with a fringe of
derivations in the relational theory alone. Moreover, we exploit this separation to show
that derivations in our labelled ND systems normalize, i.e. they reduce to a normal form,
which we can then characterize further by identifying particular sequences of labelled
formulas, and showing that in these sequences there is an ordering on inferences. By
exploiting this ordering, we can then show that derivations in normal form satisfy a
subformula property, in the sense that the formulas appearing in a normal derivation
� of 
�� must be subformulas of � or of the assumptions of �.

Thus, our natural deduction systems have ‘good’ structural properties, in that they
possess a well-defined structure, which we can exploit also to investigate advantages
and limitations of our framework.

To illustrate some of these advantages and limitations, consider again propositional
modal logics. Our treatment has obvious similarities to traditional semantic embed-
dings (i.e. translations of modal logics into predicate logic [126, 169, 170, 171]), but it
offers advantages in comparison: our formalization does not require all of first-order
logic and it yields structured labelled ND systems where the separation between the
base system and the relational theories gives us better normalization results, in that the
normal form of a derivation in our approach preserves more structure than the normal
form of a derivation in the translation approach. (As we point out below, we can use
this extra structure to investigate the complexity of the decision problem for the logics
we present).
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This extra structure depends on the choices we have made, namely the use of a
‘partial’ translation (i.e. the introduction of labels and relational formulas) and the
extension of fixed base systems with separate Horn relational theories. In fact, it turns
out that the structural properties of our systems are directly related to the behavior of
falsum (�) in the base system: falsum is able to propagate between different worlds,
i.e. from
��we can derive
 ��� in any world
�, a property we call global falsum. We
show that global falsum is enough to present, among others, many of the non-classical
logics we are likely to encounter in practice, but not enough to present all non-classical
logics with first or higher-order definable frames (in contrast to traditional semantic
embeddings).

Having identified this property of falsum, we can vary it to produce different
candidate ‘hard cores’. We investigate the other two obvious possibilities. The first of
these, an extension we call universal falsum, allows� to propagate not only from one
world to another, but also between worlds and the labelling algebra (assuming that the
labelling algebra is also extended with falsum). The second, a restriction where � is
no longer able to propagate even between different worlds, we call local falsum.

A system with universal falsum is strictly more general than one with global falsum.
In fact, we can show that it is essentially equivalent to a traditional semantic embedding
in first-order logic, and therefore able to treat not just the logics we can capture with
global falsum and Horn relational theories, but any first-order (or even higher-order)
axiomatizable non-classical logic. However, in exchange for this greater scope we lose
the better behaved proof theory of a system with global falsum, and the result does not
seem to offer any advantages over semantic embedding in first-order logic (where there
is no separation at all). If we restrict ourselves to a local falsum on the other hand, we
obtain deduction systems that possess interesting paraconsistency properties but are in
general not suitable for presenting the usual non-classical logics. Thus a base system
with global falsum seems to be the weakest base system that we can extend to a useful
range of labelled ND systems for non-classical logics.

1.2.6 Introducing quantifiers

The development and results are similar when we move to the quantified case (in this
book we consider only quantified modal logics [89, 104, 141] as a significant case
study). Here difficulties not present in the propositional case arise, since quantifiers
introduce additional complexity to the range of possible semantics that might be
appropriate for the logic of an intended application: we must choose not only properties
of the accessibility relation in the Kripke model, as in the propositional case, but also
how the domains of individuals change between worlds (e.g. varying or constant
domains). Since these two choices can be made independently, the result is a two-
dimensional space of possible quantified modal logics. 8 We give a labelled presentation
of quantified modal logics that is modular in two dimensions, reflecting these two
degrees of freedom. As before, it is based on a fixed base ND system (now��
��, for

8Other dimensions are possible, e.g. non-rigid designators [89, 104], but here we consider only the rigid
case.



1. INTRODUCTION 11

quantified �) where extensions are made by independently instantiating two separate
theories: a relational theory (as before), and a domain theory, which formalizes the
behavior of the domains of quantification. This second theory requires the introduction
of labelled terms, 
��, expressing the existence of the term (variable or constant) � at
world 
. Thus � 
����� iff � 
������ for all � such that � 
��. This formulation
naturally suggests that we adopt quantifier rules similar to those of free logic [28],
i.e. ��
�� contains the following introduction and elimination rules for �:

�
���....

������


�����
� �

and

����� 
��


������
��

where � � has the side condition that � does not occur in any assumption on which

������ depends other than 
��.

We give predicate extensions (with varying, increasing, decreasing or constant
domains) of propositional modal logics by appropriately instantiating the relational
and domain theories extending the base system. As in the propositional case, the
metatheory of our quantified systems is also modular, in that we can prove, e.g.,
soundness, completeness and normalization in a parameterized way. Furthermore, we
show that there are tradeoffs in formalizations of the base system and the theories
extending it: we show not only that we can extend the results (and the arguments about
advantages and limitations) from the propositional to the quantified case, but also that,
in the latter, new tradeoffs must be considered.

1.2.7 Substructural and complexity analysis

Normalization of derivations and the subformula property allow us not only to assess
the merits and limits of our approach, they are also pragmatically useful. In particular,
we can exploit them to show that we can use our framework to establish complexity
results: we develop a proof-theoretical method for establishing the decidability of
(some of) the logics we present and for bounding the computational complexity of
decision procedures for these logics.

These kinds of analyses are more easily carried out when logics are presented
as sequent systems (although ND systems could be used as well). We therefore
introduce cut-free labelled sequent systems, which we then show equivalent to our
normalizing labelled ND systems. As before, we separate fixed base systems from
the theories extending them. For example, the base sequent system ����, presenting
the propositional modal logic �, contains the following left and right rules for �,
corresponding to the elimination and introduction rules in the ND system ����:

� � 
�
� 
������� � ��


������� � ��
�� and

���� 
�
� � ��� 
���

��� � ��� 
���
�
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where � is the sequent symbol, � and �� are multisets of labelled formulas, � is a
multiset of relational formulas, and � has the side condition that 
 � does not occur
in ��� � ��� 
���.

���� also contains axioms (i.e. initial sequents), left and right rules for the other
logical operators (e.g. implication), and structural rules, weakenings and contractions,
which tell us how we can alter the structure of sequents by deleting or duplicating
formulas (when reading the rules backwards, i.e. upwards, as is usually done); for
example:

��� � ��


������ � ��
���

��� � ��

��� � ��� 
��
��


���
������ � ��


������ � ��
���

��� � ��� 
���
��

��� � ��� 
��
�� �

Our sequent systems satisfy a subformula property, in that proofs of a sequent� may
contain only subformulas of the labelled formulas in �. In other words, the subformula
property tells us which formulas are allowed to appear in proofs. However, it does
not limit the number of times these formulas may appear in a sequent. In fact, we
can immediately see that, when reasoning backwards, the contraction rules are always
applicable. In order to show that proof search terminates and establish decidability
and complexity results, we must therefore find a way of bounding applications of these
rules, and so bound the number of times we can make use of formulas in proofs. This is
achieved by a substructural analysis of our sequent systems, i.e. by a proof-theoretical
analysis of applications of the structural rules (in particular, contractions).

Although contraction-elimination is in general impossible in non-classical logics
(analogously to the necessity of contracting universally quantified formulas in first-
order logic), we are able to show that bounds on applications of contraction do exist for
particular logics. Specifically, our substructural analysis shows that contraction can be
bounded in our sequent systems for the propositional modal logics �, �, �� and ��.
(And we discuss extensions to other logics.) This, combined with an analysis of the
accessibility relation of the corresponding Kripke frames, yields decision procedures
with bounded space requirements, specifically, Polynomial Space. Moreover, as a by-
product of our substructural analysis, we are able to give proof-theoretical justifications
and partial refinements of the rules of standard (unlabelled) sequent systems for these
logics.

1.3 MAIN RESULTS

We summarize our main results as follows.

Presentation. We give modular presentations of non-classical logics in terms of
labelled natural deduction systems. A family of related logics is presented by extending
a fixed base system with separate Horn relational theories formalizing the properties
of the relations in the corresponding Kripke semantics. In the case of quantified modal
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logics, we extend the base system also with domain theories formalizing the behavior
of the domains of quantification (varying, increasing, decreasing or constant domains).

Soundness and completeness. We uniformly show that our labelled natural deduction
systems are sound and complete with respect to the corresponding Kripke semantics.
The use of explicit labels leads to a modular proof of soundness and completeness for
all the logics we consider, which differs from the standard one for unlabelled deduction
systems: we provide a modified canonical model construction that accounts for the
explicit formalization of labels, of the relations, and of the properties of the domains
of quantification.

Proof theory. We exploit proof-theoretical results to explore tradeoffs in the formula-
tion of the base system and the theories extending it. For example, in the propositional
case, we show that when the relational theory can be formulated as a set of Horn
clauses (as opposed to a set of first or higher-order axioms), then derivations normalize
and satisfy the subformula property, and there is a strong separation between the base
system and the relational theory; i.e. derivations in the base system may depend on
derivations in the relational theory, but not vice versa. Analogous properties hold
for quantified modal logics. We then exploit these structural properties to delineate
advantages and limitations of our labelled deduction framework.

Implementation. We show that our labelled natural deduction systems can be en-
coded in a Logical Framework based on a minimal metalogic with higher-order quan-
tification, e.g. the metalogic of Isabelle [181] or the Edinburgh LF [125]. We imple-
ment our approach in Isabelle and the result is a simple and natural environment for
interactive proof development in which it is possible to structure non-classical logics
hierarchically, extending a logic with new properties to generate a new one, and having
theorems inherited by these extensions.

Substructural analysis. We exploit our normalization results for labelled natural
deduction systems to give a new proof-theoretical method for bounding the complexity
of the decision problem for non-classical logics. We present logics in a uniform
way as cut-free labelled sequent systems, which we show equivalent to normalizing
labelled natural deduction systems, and then restrict the structural rules for particular
sequent systems; we consider the systems for �, �, �� and �� as case studies.
This substructural analysis, combined with an analysis of the accessibility relation
of the corresponding Kripke frames, yields decision procedures with bounded space
requirements, specifically Polynomial Space. Moreover, it also yields justifications
(and, in some cases, refinements) of the rules of standard sequent systems.

1.4 SYNOPSIS

The rest of this book consists of twelve chapters, 2 – 13, divided into two parts, and
of a final chapter, 14, in which we draw conclusions. In Part I, 2 – 7, we introduce
labelled deduction systems for non-classical logics. In Part II, 8 – 13, we perform
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a substructural and complexity analysis of (some of) our modal sequent systems. The
contents of these chapters are as follows.

Part I

In 2 we formalize labelled ND deduction systems for propositional modal logics
and analyze their metatheoretical properties; specifically, soundness and completeness
with respect to the corresponding Kripke semantics, normalization of derivations,
and the subformula property. We then exploit these structural properties to delineate
advantages and limitations of our systems.

In 3 we generalize the development of 2 to formalize and analyze labelled ND
systems for propositional non-classical logics.

In 4 we extend the developmentof 2 to formalize and analyze labelled ND systems
for quantified modal logics.

In 5 we encode our labelled ND systems in Isabelle, prove our encodings correct,
and show how our approach supports modular (interactive) proof construction.

In 6 we exploit the normalizing labelled ND systems of the previous chapters to
present non-classical logics in terms of cut-free labelled sequent systems.

In 7 we summarize the results of Part I and compare with related work.

Part II

In 8 we prove preliminary results that we exploit to perform a substructural and
complexity analysis of our labelled sequent systems for propositional modal logics.

In 9, 10 and 11 we investigate applications of structural rules in our sequent
systems for �, �, and �� and ��, respectively. We show that in each of these systems
applications of the contraction rules can be bounded, and that our analyses can be
exploited to justify and refine the corresponding standard sequent systems.

In 12, based on the results in 9 – 11, we give decision procedures with bounded
space requirements for the logics we considered.

In 13 we summarize the results of Part II and compare with related work.

Notation

Most of the notation and terminology we use is standard. Nevertheless, in order to keep
this book as self-contained as possible, we have tried to be systematic about providing
explicit definitions (and listing all definitions, symbols and topics in the index). We do
assume some familiarity on the part of readers with the basic ideas underlying standard
deduction systems and semantics for modal, relevance, and other non-classical logics.
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2 LABELLED NATURAL DEDUCTION
SYSTEMS FOR PROPOSITIONAL

MODAL LOGICS

We give a framework for presenting families of propositional modal logics (including
the logics �, �, �, 	, ��, ����, ���� and ��) in a uniform and modular way
as labelled natural deduction (ND) systems. Our approach is based on a separation
between a base ND system and a labelling algebra, which interact through a fixed
interface. While the base system stays fixed, ND systems for different modal logics
are generated by ‘plugging in’ appropriate algebras, i.e. by adding rules formalizing
the properties of the corresponding accessibility relations. This leads to a hierarchical
structuring of systems with inheritance of theorems. Moreover, it allows modular
proofs of metatheoretical properties, in that these proofs, along with the presentations
themselves, are parameterized over the properties of the relations.

The outline of this chapter is as follows. In 2.1 we give a uniform and modular pre-
sentation of propositional modal logics in terms of a base ND system ���� extended
with separate Horn relational theories. In 2.2 we prove the soundness and complete-
ness of our systems with respect to the corresponding Kripke semantics, by providing
a modified canonical model construction that accounts for the explicit formalization
of labels and of the relations between them. In 2.3 we consider proof-theoretical
properties of our systems; in particular, we show that derivations normalize, and that
derivations in normal form possess a well-defined structure and satisfy a subformula
property. We then exploit these properties to contrast our approach with related for-
malizations and investigate the tradeoffs in possible presentations.

In 5 we will then present our encodings of modal and other non-classical logics in
the generic theorem prover Isabelle, prove their correctness (i.e. that they are faithful

17



18 LABELLED NON-CLASSICAL LOGICS

and adequate with respect to the ND systems they implement), and, corresponding to
our example ND derivations, give proof scripts from Isabelle sessions that demonstrate
modular (interactive) proof construction with our implementations.

2.1 A MODULAR PRESENTATION OF PROPOSITIONAL MODAL
LOGICS

2.1.1 The base system ����

We begin by reviewing the standard syntax of propositional modal logics.

Definition 2.1.1 The language of propositional modal logics consists of a denumer-
able infinite set of propositional variables, the brackets ‘(’ and ‘)’, and the following
primitive logical operators:

the classical connectives� (falsum) and
 (implication, ‘implies’), and

the modal operator � (necessity, ‘box’).

The propositional variables and � stand for the indecomposable propositions, which
we also call atomic formulas.

The set of propositional well-formed modal formulas (hereafter simply called propo-
sitional modal formulas) is the smallest set that contains the atomic formulas and is
closed under the following formation rules:

1. if � and � are formulas, then so is �� 
 ��;

2. if � is a formula, then so is ����; and

3. all formulas are given by the above clauses.

Other connectives and modal operators, e.g. � (negation, ‘not’), � (conjunction,
‘and’), � (disjunction, ‘or’), and � (possibility, ‘diamond’), can be defined in the
usual manner, e.g. ���� ���� �� 
 �� and ���� ���� ����������.

We call boxed formula a formula of the form ��, i.e. a formula that has a � as its
main logical operator, and we call box-free formula a formula that does not contain
any � (or, in general, any modal operator, as we define� in terms of �). �

Notation 2.1.2 Let �, �, � and � be formulas. In order to simplify our notation,
we will omit brackets whenever no confusion can arise. We will always discard the
outermost brackets and we will discard brackets in the case of negation; for example,
we will write � 
 � for �� 
 �� and �� �� for �� ��������. Furthermore, we
adopt the convention that �, � and � are of equal binding strength and bind tighter
than �, which binds tighter than �, which binds tighter than 
. So, for example,
���� �� 
 �� ��� stands for �������� � ����� 
 ����� � �����. �

Based on these definitions, we introduce the language of our labelled presentations
of propositional modal logics.
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Definition 2.1.3 Let � be a set of labels and � a binary relation over � . If 
and � are labels and � is a propositional modal formula, then � � is a relational
well-formed formula (hereafter simply called relational formula or rwff for short)
and �� is a labelled well-formed formula (hereafter simply called labelled formula
or lwff for short). �

Definition 2.1.4 The grade of an lwff ��, in symbols ���������, is the number of
times 
 and � occur in �. �

Notation 2.1.5 For the rest of this chapter, we assume that the variables , �, �, 
, � � �
range over labels, the variables �, �, � � � range over propositional modal formulas, �
is an arbitrary rwff or lwff, and

� � ������ � � � � ����� and � � ������ � � � � �����

are arbitrary sets of lwffs and rwffs. All variables may be annotated with subscripts or
superscripts. �

The rules given in Figure 2.1 determine ����, the base ND system presenting the
modal logic �. That ���� presents � is proved in Theorem 2.2.5 below. Note also
that we do not enforce Prawitz’s side condition on �� that � �� �; see the discussion
of the different types of falsum in 2.3, in particular the rule for ‘global falsum’ in
Fact 2.3.1 and Footnote 4. For brevity, in the following we also use the derived rules
of ���� given in Figure 2.2; their derivations are given in Example 2.1.14 below.

Formally, a ND system (or ND calculus) is a collection of rules formalizing proof
under assumption. The system ���� consists of an introduction rule, ��, and an
elimination rule, ��, for each logical operator � except falsum, i.e. �, for which only
an elimination rule is given. In other words, the rules define the behavior of logical
operators: they introduce or eliminate instances of the operators of the logic. We call
the formula below the line in a rule the conclusion of the rule, and the formulas above
the line the premises of the rule. In an application of an elimination rule, we call the
premise in which the eliminated operator is exhibited the major premise of the rule
and the other premises, if any, the minor premises. At some rule applications, e.g. ��,
the conclusion becomes independent of some or all assumptions, e.g. � �. When this
is the case, we say that we discharge the assumptions in question, and display this by
enclosing them in square brackets; the remaining assumptions, if any, we call open
assumptions. Further notation and terminology for ND systems is introduced below,
e.g. Definition 2.1.11; for a full account see [186] or [106, 221, 230].

Note that there is a close correspondence between our rules for� and
; this holds
since we express ��� as the metalevel implication � � � ��� for an arbitrary
world � accessible from . Furthermore, as we anticipated in 1, the introduction and
elimination rules for � are independent of the properties of �; the derived rules for�
enjoy the same independence since� is defined in terms of � and �.
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Figure 2.1. The rules of ����
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In��, � is different from  and � and does not occur in any assumption on which the
upper occurrence of ��� depends other than ��� and � �.

Figure 2.2. Some derived rules of ����

2.1.2 Relational theories

Modal logics are traditionally [57, 58, 141] presented by extending a Hilbert system for
propositional classical logic with a collection of axiom schemas and inference rules. 1

For example, the axiom schemas and rules given in Figure 2.3 determine a Hilbert
system ���� for �. Note that we consider axiom schemas instead of axioms: any
substitutional instance of an axiom schema or theorem of a Hilbert system is also a
theorem of that system (and of its extensions).

Of particular interest to us are normal modal logics. A normal modal logic is
any set of formulas which contains the theorems of ����, and which is closed under
modus ponens and necessitation. Hilbert systems for other normal modal logics are
obtained by extending ���� with axiom schemas formalizing the behavior of the
modal operator �. Examples of such axiom schemas are given in Table 2.1, where

1In fact, modal and other non-classical logics were investigated long before a semantics for them had been
devised. For a brief but detailed history of modal logics see the overview in [32].
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Axiom schemas:

1. All axiom schemas for propositional classical logic.

2. The axiom schema �: ��� 
 �� 
 ��� 
 ���.

Inference rules:

1. Modus ponens: if � 
 � and � are theorems, then so is �.

2. Necessitation: If � is a theorem, then so is ��.

Figure 2.3. ����, a Hilbert system for �

Table 2.1. Some modal axiom schemas

Name Axiom schema Name Axiom schema

� ��� 
 �� 
 ��� 
 ��� � ���� 
 �� � ���� 
 ��

� �� 
 ��  ��� 
 �� 
 ���

� �� 
 � �� ��� � ��

	 � 
 ��� � !" ���� 
 �� 
 ��

� �� 
 ��� #$% ����� 
 ��� 
 �� 
 �

� �� 
 ��� #! ����� 
 ��� 
 �� 
 ��

� ��� 
 ��� � ��� 
 ���

�&' ��� 
 ��� ( ���� 
 �� 
 ���� 
 ���

) ��� 
 �� (*+ ���� 
 �� 
 ���

for simplicity we employ also the defined operators; extensive lists of modal axiom
schemas can be found in, e.g., [57, 58, 141].

We here present particular normal propositional modal logics by extending the
labelled ND system ���� with relational theories, which axiomatize properties of �
formalizing the accessibility relation� in Kripke frames.

Correspondence theory [164, 204, 227, 228] provides a tool for telling us which
modal axiom schemas correspond to which axioms for �. For example, the � axiom
�� 
 � corresponds to the first-order axiom ����, and the � axiom�� 
 ���
corresponds to the first-order axiom ��������� � �� �� 
 � ��.

Not all modal axiom schemas can be captured in a first-order setting, e.g. the
McKinsey axiom �, and the Löb axiom of provability logic #� [36]. So there is an
important decision that we must make: Should our relational theories be axiomatized
in higher-order logic (and thus allow the formalization of all normal propositional
modal logics), first-order logic, or some subset thereof?
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This decision is important. We show in 2.3 that different choices of interface
between���� and the relational theory (labelling algebra) result in essentially different
systems. Our choice is based on our intention to ‘encode’ these theories as sets of rules
using a metalogic corresponding to minimal implicational predicate logic (see also
5.1.1). Thus, we choose to admit precisely those theories of � that can be directly
formulated in the Horn-fragment of this metalogic without requiring additional axioms
(e.g. for auxiliary predicates) or judgements (e.g. for equality). We further justify this
choice by showing that it captures a large family of propositional modal logics including
most of the common ones; in the next chapters, we then show that the Horn-fragment
is sufficient to formalize large families of propositional and quantified non-classical
logics. Moreover, and most importantly, the use of the Horn-fragment results in ND
systems where derivations have good normalization properties, in contrast with what
we get from systems where relational properties are axiomatized in first or higher-order
logic.

2.1.3 Horn relational theories

Definition 2.1.6 A Horn relational formula is a closed formula of the form

�� � � �������� �� � � � � � ��� ��� 
 ��� ��� �

where � � ,, and the �� and �� are terms built from the labels �� � � � � � and
constant function symbols (i.e. Skolem function constants; see Proposition 2.1.8 below).
Corresponding to each such formula is a Horn relational rule

��� �� � � � ��� ��
��� ��

�

which has no premises when � � ,. A Horn relational theory ��� � is a theory
generated by a set of such rules. �

In first-order logic the addition of a Horn formula to a theory is equivalent to adding
the corresponding rule; thus, in the context of our metatheories we shall talk about
additions based on either formulas or rules as is convenient.

We now illustrate that restricting our attention to Horn theories is often sufficient in
practice. Let �, �, � and � be natural numbers, and let�� [��] stand for a sequence of
� consecutive�’s [�’s]; for example������� is������. A large and important
class of propositional modal logics falls under the generalized Geach axiom schema

�
�
�
�� 
 ����� �

which corresponds to the semantic notion of ��� ���� �� convergency (or ‘incestuality’
in the terminology of [58]),

��������� � �� � 
 ������� � ������ �

where �� � means  � � and ���� � means ���� � � ��� ��.
There are instances of ��� ���� �� convergency that explicitly require the equality

predicate�, e.g. ��� ,� ,� ,� yields vacuity, ������ 
  � ��. For simplicity, here
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we do not consider theories with equality, and we introduce the subclass of restricted
��� ���� �� convergency axioms as the class of properties of the accessibility relation
that can be expressed as Horn rules in the theory of one binary predicate �. 2 These
theories yield, among others, labelled ND systems for most of the propositional modal
logics usually of interest, e.g. �, �, �, 	, ��, ��, ����, ����, ��, etc.

Definition 2.1.7 Restricted ��� ���� �� convergency axioms are closed formulas of
the form

���������� � �� �� 
 ������� � ������ �

where � � � � , implies � � � � ,. �

Proposition 2.1.8 If �� is a theory corresponding to a collection of restricted
��� ���� �� convergency axioms, then there is a Horn relational theory ��� � con-
servatively extending it.

Proof As noted in [216], the restriction that � � � � , implies � � � � , is a
necessary and sufficient condition for equality to be inessential (the necessity can be
checked semantically). Now, for each convergency axiom � 	 in ��, let �	 be formed
by prenexing quantifiers followed by skolemizing remaining existential quantifiers.
�	 must be of the form

�� � � ��
����� �� � � � � � ��� ��� 
 ����� ��� � � � � � ���� ����� �

where  � ��� �� ,, and where Skolem functions occur only in the consequent. We
can translate �	 into  Horn relational formulas, �	

 for � 	 ��� � � � �  �, of the form

�� � � ��
����� �� � � � � � ��� ��� 
 ��� ��� �

Let ��� � be the theory generated by the union of the � 	
 rules. The conservativity of

��� � follows by the theorem on functional extensions [213, p. 55], and the observation
that Skolem constants occur only positively in the � 	

 . An alternative proof of the
conservativityof��� � can be obtained by adapting Theorem��������� in [230, p. 137].

�

Some properties corresponding to instances of restricted ��� ���� �� convergency
are given in Table 2.2. We also present there the Horn relational rules that result
from applying the above translation to these axioms, together with the corresponding
characteristic modal axiom schemas. (An axiom schema is said to characterize the
class of frames (and thus of modal logics) in which it is valid [227, 228].) Horn
relational rules for some properties of � that are not instances of restricted ��� ���� ��
convergency are given in Table 2.3.

Various combinations of Horn relational rules define labelled ND systems for com-
mon propositional modal logics:

2Equality can however be easily introduced, provided that we add also rules to characterize its properties.
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Table 2.2. Some ��� ���� �� convergency properties of �, corresponding character-
istic axiom schemas and Horn relational rules

Property �� � � ����� Axiom schema Horn relational rule

Seriality �,� ,� �� �� �� �� 
 �� � !��
ser

Reflexivity �,� ,� �� ,� �� �� 
 � �
refl

Symmetry �,� �� ,� �� 	� � 
 ���
� �

��
symm

Transitivity �,� �� �� ,� �� �� 
 ���
� � �� �

� �
trans

Euclideaness ��� �� ,� �� ���� 
 ���
� � � �

���
eucl

Convergency ��� �� �� �� ����� 
 ���
� � � �

����� �� ��
conv1

� � � �

����� �� ��
conv2

Contextuality ��� �� �� ,� �&'� ��� 
 ���
� � � � ��


��

cxt

Density �,� �� �� ,� )� ��� 
 ��
� �

�"�� ��
dens1

� �

"�� ����
dens2

Where � , � and � are (Skolem) function constants.

Definition 2.1.9 The labelled ND system���� � �������� � for the propositional
modal logic � is obtained by extending ���� with a given Horn relational theory
��� �. �

Notation 2.1.10 We refer to the system ���� � ���� � ��� � also as ������,
where � is a string consisting of the standard names of the characteristic axioms
corresponding to the relational rules contained in ��� �. �

Then, for example, the systems �����, �����, ����	�, ������ and ������,
and their synonyms ����, ����, ��	�, ����� and �����, present the modal logics
�, �, 	, �� and ��.
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Table 2.3. Further properties of �, corresponding characteristic axiom schemas and
Horn relational rules

Property Axiom schema Horn relational rule

Weak reflexivity ���� 
 ��

�

�
wrefl

Weak symmetry ��� 
 ����

� � �

��
wsymm

Weak transitivity ���� 
 ����

� � � �� �

� �
wtrans

Weak euclideaness ���� 
 ����

� � � � �

���
weucl

������

eucl

��
trans

������������

eucl
�������������

�������

conv1�conv2

��
�������

ser�eucl

��
ser

�������������

����	�

symm

������������

������

refl

�������������trans

�������������

������

eucl

�������������
�����

ser

��������������������������

�����

refl
�������������

�����

trans
�������������

�����

conv1�conv2

���������������������������
����

where ���� � �����, ���� � �����, ��	� � ����	�, ����� � ������,
������� � ������� and ����� � ������ � ����	�� � �������.

Figure 2.4. A hierarchy of propositional modal systems (fragment)

Figure 2.4 shows a fragment of the resulting hierarchical dependency. For example,
������, i.e. �����, is obtained by extending ���� with the rules refl and trans, or
alternatively by extending ����� with trans or ����� with refl.

Our approach of extending ���� with a relational theory ��� � provides a general
method for presenting logics in a modular and transparent way. The relational theory
can be viewed as an independent parameter: the base system ���� stays fixed for a
given family of related logics and we generate (a labelled ND system for) the logic
we want in the family by combining ���� with the appropriate relational theory. In
2.3 we return to the question of extensions to full first or higher-order theories: we
show there that it is possible to generalize our presentation, but, perhaps surprisingly,
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for some extensions the ‘interface’ between ���� and the relational theory must be
changed if completeness with respect to the corresponding Kripke semantics is to be
preserved, and the metatheoretical properties of the system change.

Note that when the relational theory ��� � contains Skolem function constants,
e.g. in the case of ����, then our language must be extended accordingly. More
specifically, we extend the definitions of lwffs and rwffs to � ��� and ��� �� , where
the labels ��’s are now terms built from labels and Skolem functions. We can then
distinguish atomic labels �, i.e. ‘variable-labels’, and composite labels � �, i.e. ‘term-
labels’ built from the application of Skolem functions, e.g. � �� �
��. Rules must also
be changed accordingly, and �� in particular should then read:

�����....
���
����

��

where the atomic label (i.e. variable) � is different from the possibly composite label
� and does not occur in any assumption on which ��� depends other than �� �. For
simplicity, we will continue using the variables , �, �, etc., to range over labels
although these may now be built using Skolem function constants.

2.1.4 Derivations

We adapt the standard definition of Prawitz [186] to define derivations of lwffs and
rwffs relative to a given relational theory ��� � used to extend ����.

Definition 2.1.11 A derivation of an lwff or rwff � from a set of lwffs � and a set of
rwffs � in a ND system ���� � ���� � ��� � is a tree formed using the rules in
����, ending with � and depending only on � � �. We write ��� ����� � when �
can be so derived. A derivation of � in ���� depending on the empty set, ����� �, is
a proof of � in ����, and we then say that � is a ����-theorem. �

We also call a derivation [proof] in ���� a ����-derivation [����-proof ], and we
will omit the ‘����’ when the details of the particular logic are not relevant or are
clear from context.

When � is an rwff � � we have:

Fact 2.1.12

(i) ��� ����� � � iff � � 	 �.

(ii) ��� ��������� � � � iff � ���� � � �. �

Notation 2.1.13 We systematically use �, possibly annotated, to range over deriva-
tions; when we do not need to refer to a derivation, we simply display it with vertical
dots. We write �

� to specify that the formula � is the conclusion of the derivation �.
Similarly, we distinguish a possibly empty set of occurrences of the open or discharged
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assumption � in � by writing
�
�

or ���
�

. Further, we sometimes combine derivations

graphically; for example, we can combine the derivations

�� ��
��
��

and
�� �� ��

��
��

to

�� ��
��
�� �� ��

��
��

�

Finally, in longer derivations we use superscripts to associate discharged assumptions
with rule applications. �

We conclude this section with a few examples of derivations; Isabelle proofs corre-
sponding to some of these derivations are given in 5.1.3.

Example 2.1.14 We begin with three examples of relational reasoning. To illustrate
that ����� � ������ � ����	�� � ������� we give ������-derivations of
the rules symm and trans, corresponding to the axiom schemas 	 and �, respectively:

�
� �

��
symm �

�
� � �

refl

�� 
eucl

��
� �

��
�� �

� �
trans

�

��
� � �

refl

��
eucl ��

�� �

� �
eucl

�

Similarly, we can derive in����	�� the rule eucl, corresponding to the axiom schema
�, as follows:

��
� �

��
� �

�� �
eucl

�

��
� �

��
symm ��

� �

�� �
trans

�

We now derive the rules for � and � using the rules of ����. The rules for �
follow immediately from the ones for 
, i.e.

����
�
��

� ��
� �

�

����
�

��
�� 
 �


�

� �� ��
��

�� �
�� 
 � ��

��

� �
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Then we can use these rules to derive the ones for �, where the side condition on the
application of�� follows from the condition on the application of ��:

��� � �

���
�� �

��� ���� � �

�� ��
��

���

���
��

��
��

� �� �� ���

(2.1)

���

����� �� ��
�
���

���
��

�

� �� ��

���� 
 ���

������ �� ���

�
���

���

�

���
��

�� �� � ��

�� �� ���

��
��

��� ���

� (2.2)

Note that, dually, we could take � as primitive and derive the rules for � where
�� ���� �� ��, e.g.

�� ��
�
���

���
��

�

��� ����

��� ����

�� ���

�
���

���
��

��
��

�� ���

� �� �� � ��

� (2.3)

In other words, � and�, and the corresponding rules, are interdefinable in ����.
Using the rules for � we can give the following �����-proof of the characteristic

axiom corresponding to convergency, i.e. ������ ���� 
 ���.

�������

�������
�� ��� �� ���

�� ��� �� ��
conv1

��� �� ����
��

�� ��� �� ���

�� ��� �� ��
conv2

����
��

���� ���

���� ���

���� 
 ��� 
��

� (2.4)
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As a final example, taken from [90, p. 48], we give a ����-derivation of ����
from the assumptions ����, ����� 
 �� and � �.

����� 
 ��

���� 
 ���

���� � �

����
��

��� ���

���
��

���

�

��� ���

����
��

���� ��� � �

����
��

�

�

2.2 SOUNDNESS AND COMPLETENESS

We now introduce a Kripke semantics for our ND systems and prove that any system
���� obtained by extending ���� with a Horn relational theory ��� � is sound and
complete with respect to its semantics.

Definition 2.2.1 A (Kripke) frame for ���� is a pair �����, where � is a non-
empty set of worlds and � � � ��. A (Kripke) model for ���� is a triple
� � �������, where ����� is a frame for ����, and the valuation � maps
an element of � and a propositional variable to a truth value (0 or 1). We say
that a frame ����� and a model ������� have some property of binary relations
(e.g. transitivity) iff � has that property. �

Note that our models do not contain functions corresponding to possible Skolem
functions in the signature. When such constants are present the appropriate Skolem
expansion of the model [230, p. 137] is required.

Definition 2.2.2 Given a set of lwffs � and a set of rwffs �, we call the ordered pair
����� a proof context. When �� � �� and �� � ��, we write ������� � �������
and say that ������� is included in �������. When 
�� 	 �, we write 
�� 	 �����
irrespective of �, and when � � 	 �, we write � � 	 ����� irrespective of �.
Finally, we say that a label  occurs in �����, in symbols  � �����, if there exists
an � such that �� 	 � or there exists a � such that � � 	 � or ��  	 �. �

Definition 2.2.3 Truth for an rwff or lwff � in a model �, �� �, is the smallest
relation �� satisfying:

�� � � iff �� �� 	 �;
�� �# iff ��� #� � �;
�� �� 
 � iff �� �� implies �� ��;
�� ��� iff for all �, �� � � implies �� ���.

When �� �, we say that � is true in�. By extension:
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�� � means that �� �� for all �� 	 �;
�� � means that �� � � for all � � 	 �;
�� ����� means that �� � and �� �;
� �� � � means that �� � implies �� � �;
� � � � means that � �� � � for all�;
��� �� �� means that �� ����� implies �� ��;
��� � �� means that ��� �� �� for all�.

�

Truth for lwffs built using other operators can be defined in the usual manner, where
�
� �� for every  by Definition 2.2.3. For example:

�� � �� iff �
� ��

iff �� �� implies �� �� -
�� ��� iff �

� �� ��
iff for some � � �� � � and �� ��� �

Note also that, as a further simplification, we do not define an interpretation function
mapping labels into worlds in �. To reduce notational overhead, we instead directly
identify the label  with the world  	 �, i.e. we identify � with �; similarly we
identify a Skolem function ! of arity � with an identically named �–ary total function
over� in the corresponding Skolem expansion of the model. Furthermore, truth for
lwffs is related to the standard truth relation for unlabelled modal logics, e.g. [58], by
observing that �� �� iff ��� �.

The explicit embedding of properties of the models and the capability of explicitly
reasoning about them, via rwffs and relational rules, require us to consider soundness
and completeness also for rwffs, where we show that � ����� � � iff � � � �.

Definition 2.2.4 The system ���� � ���� � ��� � is sound iff

(i) � ����� � � implies � � � �, and

(ii) ��� ����� �� implies ��� � ��.

���� is complete iff the converses hold, i.e. iff

(i) � � � � implies � ����� � �, and

(ii) ��� � �� implies ��� ����� ��. �

By Lemma 2.2.6 and Lemma 2.2.16 below, we have:

Theorem 2.2.5 ���� � ���� � ��� � is sound and complete. �

2.2.1 Soundness

Lemma 2.2.6 ���� � ���� � ��� � is sound.

Proof Throughout the proof let� � ������� be an arbitrary model for ����. We
prove (i) of Definition 2.2.4 by induction on the structure of the derivation of� � from



2. LABELLED ND SYSTEMS FOR PROPOSITIONAL MODAL LOGICS 31

�. The base case, where �� 	 �, is trivial. There is one step case for each Horn
relational rule of ��� �, and we treat only transitivity and convergency as examples;
the cases for the other rules follow similarly.

For transitivity, assume that � is transitive and consider an application of the rule
trans,

��
� �

��
�� �

� �
trans

�

where �� and �� are the derivations �� ����� � � and �� ����� �� �, with
� � �� � ��. By the induction hypotheses, �� ����� � � implies �� � � �,
and �� ����� �� � implies �� � �� �. Assume �� �. Then, from the induction
hypotheses we obtain �� � � and �� �� �, i.e. �� �� 	 � and ��� �� 	 �. Since
� is transitive, we conclude �� � � by Definition 2.2.3.

When Skolem constants are present, � is a Skolem expansion; for example, for
convergency we assume that � is convergent and consider applications of the rules
conv1 and conv2,

��
� �

��
� �

����� �� ��
conv1

and
��
� �

��
� �

�� ��� �� ��
conv2

�

where �� and �� are the derivations �� ����� � � and �� ����� � �, with
� � �� � ��. By Proposition 2.1.8, the theory ��� � generated by conv1 and
conv2 is a conservative extension of the first-order theory �� corresponding to the
convergency axiom. By Theorem ���������� in [230, p. 137], each model of the theory
�� has a Skolem expansion, contained in �, which is a model of ��� �. Assume
�� �. Then, from the induction hypotheses we obtain �� � � and �� � �,
i.e. �� �� 	 � and �� �� 	 �. Since� is convergent, we conclude �� �� ��� �� ��
and �� ����� �� �� by Definition 2.2.3.

We prove (ii) of Definition 2.2.4 by induction on the structure of the derivation of
�� from � and �. The base case, where �� 	 �, is trivial. There is one step for
each inference rule of ����, and we treat only applications of the rules for � and �
as examples; the steps for applications of 
 � and 
 � follow by a straightforward
adaptation of the standard proofs for propositional logic.

Consider an application of the rule ��,

��� 
 ��
�
���

��
��

�

where � is the derivation ���� ����� ���, with �� � � � ��� 
 ��. By the
induction hypothesis, ���� ����� ��� implies ���� � ���. We assume �� �����
and prove �� ��. Since �� ��� for any �, from the induction hypothesis we obtain
�
� ��, and therefore �� �� 
 �, i.e. �� �� and �� �� by Definition 2.2.3.
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Consider an application of the rule ��,

�� ��
�
���

���
��

�

where � is the derivation ���� ����� ���, with �� � �� ����. By the induction
hypothesis, ���� ����� ��� implies ���� � ���. Assume �� �����. Considering
the restriction on the application of ��, we can extend � to � � � � � �� �� for an
arbitrary � �� �����, and assume �� ��. Since �� �� implies �� ��, from the
induction hypothesis we obtain �� ���, that is �� ��� for an arbitrary � �� �����
such that �� � �. We conclude �� ��� by Definition 2.2.3.

Consider an application of the rule ��,

��
���

��
� �

���
��

�

where �� and �� are the derivations ���� ����� ��� and �� ����� � �, with
� � �� ���. Assume �� �����. Then, from the induction hypotheses we obtain
�� ��� and �� � �, and thus �� ��� by Definition 2.2.3. �

2.2.2 Completeness

We begin by giving some preliminary definitions and results.

Definition 2.2.7 Let ���� � ���� � ��� � be a consistent system, i.e. ����� ��
for every . A proof context ����� is ����-consistent iff ��� ����� �� for every .
����� is ����-inconsistent iff it is not ����-consistent. �

When speaking in general terms,we will omit the ‘����’ and simply speak of consistent
and inconsistent proof contexts.

Fact 2.2.8 If ����� is consistent, then for every  and every �, either ����������
is consistent or �� � �� ������ is consistent. �

Definition 2.2.9 For any system ���� � ���� � ��� �, let ����� be the deductive
closure of � under ����, i.e.

����� ���� �� � � � ����� � �� �

�

Note that, by Fact 2.1.12,

����� � �� � � � ���� � � �� �
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��� ����� � iff ������� ����� � �

and that ����� might be empty when � is empty and, e.g., ���� is ���� or �����.

Definition 2.2.10 A proof context ����� is maximally consistent iff

(i) it is consistent,

(ii) � � �����, and

(iii) for every  and every �, either �� 	 � or � �� 	 �. �

Completeness follows by a Henkin-style proof, where a canonical model

�� � ��� ��� ����

is built to show the contrapositives of the conditions in Definition 2.2.4, i.e.

� ����� � � implies � �
�

�

� � �

and

��� ����� �� implies ��� �
�

�

�� �

In standard proofs for unlabelled modal logics, e.g. [58], the set �� is obtained by
progressively building maximally consistent sets of formulas, where consistency is
locally checked within each set. In our case, given the presence of labelled formulas
and explicit assumptions on the relations between the labels, i.e. �, we modify the
Lindenbaum lemma (Lemma 2.2.11 below) to extend ����� to one single maximally
consistent proof context �������, where consistency is ‘globally’ checked also against
the additional assumptions in �.3 The elements of�� are then built by partitioning
�� and �� with respect to the labels, and accessibility is defined by exploiting the
information in ��. Moreover, in standard proofs the way in which �� is built
depends on the particular propositional modal logic�, in particular on the accessibility
conditions holding for �. In our case, the proof is independent of the details of �,
since the same procedure applies for any logic.

In the Lindenbaum lemma for predicate logic a maximally consistent and $-
complete set of formulas is inductively built by adding for every formula ����� a
witness to its truth, namely a formula ���%�� for some new individual constant %.
This ensures that the resulting set is $-complete, i.e. that if, for every closed term �,
����� is contained in the set, then so is ����. A similar procedure applies here in
the case of lwffs of the form � ���. That is, together with � ��� we consistently
add �� �� and � � for some new �, which acts as a witness world to the truth of
� ���. This ensures that the maximally consistent proof context ������� is such

3We consider only consistent proof contexts. If ����� is inconsistent, then ��� ����� ��� for all ���,
and thus completeness immediately holds for lwffs. Our labelling algebra does not allow us to define
inconsistency for a set of rwffs, but, if ����� is inconsistent, the canonical model built in the following is
nonetheless a counter-model to non-derivable rwffs.
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that if � � 	 ������� implies ��� 	 ������� for every �, then ��� 	 �������,
as shown in Lemma 2.2.12 below. Note that in the standard completeness proof for
unlabelled modal logics, one shows instead that if 
 	�� and ��

�


� ���, then
�� also contains a world 
� accessible from 
 that serves as a witness world to the
truth of 
� ���, i.e. ��

�


�� ��.

Lemma 2.2.11 Every consistent proof context ����� can be extended to a maximally
consistent proof context �������.

Proof We first extend the language of ���� with infinitely many new constants for
witness worlds. Systematically let 
 range over labels, � range over the new constants
for witness worlds, and � range over both. All these may be subscripted. Let & �� &�� � � �
be an enumeration of all lwffs in the extended language; when & � is ���, we write � &�
for �� � �. Starting from ������� � �����, we inductively build a sequence of
consistent proof contexts by defining �� ��������� to be:

�������, if ��� � �&�������� is inconsistent; else

��� � �&��������, if &��� is not �� ���; else

��� � ��� ���� �� ������ � ������ for a � �� ��� � ��� ��������, if &���
is �� ���.

Every ������� is consistent. To show this we show that if ��� � ��� �������� is
consistent, then so is ��� � ��� ���� �� ������ � ������ for a � �� ��� � ��� �
�������; the other cases follow by construction. We proceed by contraposition.
Suppose that

�� � ��� ���� �� ������ � ����� ����� �� ��

where � �� ��� � ��� ��������. Then, by ��,

�� � ��� ������� � ����� ����� ��� �

and �� yields

�� � ��� ������� ����� ���� �

Since also

�� � ��� ������� ����� �� ��� �

by �� we have

�� � ��� ������� ����� ��� �

i.e. ��� � ��� �������� is inconsistent. Contradiction.
Now define

�� �
�
���

�� and �� �
�
���

�������� �
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We show that ������� is maximally consistent by proving that it satisfies the conditions
in Definition 2.2.10. For (i), note that

if �
�
���

���
�
���

��� is consistent, then so is �
�
���

���
�
���

��������� �

Now suppose that ������� is inconsistent. Then for some finite ������� included in
������� there exists a � such that ����� ����� ���. Every lwff & 	 ������� is in
some ��� ����. For each & 	 �������, let �
 be the least � such that & 	 ��� ����, and
let � � max��
 � & 	 ��������. Then ������� � �������, and ������� is inconsistent,
which is not the case. Condition (ii) is satisfied by definition of ��. For (iii), suppose
that &��� �	 �������. Then &��� �	 ����������� and �����&�������� is inconsistent.
Thus, by Fact 2.2.8, ��� ��� &�������� is consistent, and� &��� is consistently added
to some ��� ���� during the construction, and therefore� & ��� 	 �������. �

The following lemma states some properties of maximally consistent proof contexts.

Lemma 2.2.12 Let ������� be a maximally consistent proof context. Then

(i) �� ����� ����� iff ����� 	 ��.

(ii) ����� ����� ��� iff ��� 	 ��.

(iii) ��� 
 � 	 �� iff ��� 	 �� implies ��� 	 ��.

(iv) ����� 	 �� iff ����� 	 �� implies �� �� 	 �� for all �� .

Proof (i) and (ii) follow immediately by definition and Fact 2.1.12. We only treat (iv);
(iii) follows analogously. For the left-to-right direction, suppose that � ���� 	 ��.
Then, by (ii), ����� ����� �����, and, by ��, we have �� ����� ����� implies
����� ����� �� �� for all �� . By (i) and (ii), conclude ����� 	 �� implies �� �� 	
�� for all �� . For the converse, suppose that ����� �	 ��. Then ��� ��� 	 ��,
and, by the construction of �������, there exists a �� such that ����� 	 �� and
�� �� �	 ��. �

We can now define the canonical model�� � ��� ��� ����.

Definition 2.2.13 Given a maximal consistent proof context �������, we define the
canonical model�� � ��� ��� ���� for the system ���� as follows:

�� � �� � � � ��������;

���� ��� 	 �� iff ����� 	 ��;

����� #� � � iff ��# 	 ��. �

Note that the standard definition of�� , i.e.

���� ��� 	 �
� iff �� � �� 	 ��� � �� �

is not applicable in our setting, since �� � �� 	 ��� � �� does not imply �����
����� . We would therefore be unable to prove completeness for rwffs, since there
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would be cases, e.g. when ���� � ���� and � � ��, where ����� ����� but
���� ��� 	 �� and thus ��

�

����� . Hence, we instead define ���� ��� 	 �� iff
����� 	 ��; note that therefore ����� 	 �� implies �� � �� 	 ��� � �� . As a
further comparison with the standard definition, note that in the canonical model the
label � can be identified with the set of formulas �� � ��� 	 ���. Moreover, we
immediately have:

Fact 2.2.14 ����� 	 �� iff �� ��
�

����� . �

The deductive closure of �� ensures not only completeness for rwffs, as shown in
Lemma 2.2.16 below, but also that the conditions on �� are satisfied, so that ��

is really a model for ����. As an example, we show that if ���� contains %'���
and %'���, then �� is convergent. Consider an arbitrary proof context ����� from
which we build�� . Assume ���� ��� 	 �� and ���� �	� 	 �� . Then ����� 	 ��

and ����	 	 ��. Since �� is deductively closed, by (i) in Lemma 2.2.12, we have
�������� �� � �	� 	 �� and �	������ �� � �	� 	 ��. Thus, there exists a �
 such that
��� � �
� 	 �� and ��	� �
� 	 �� , and�� is indeed convergent.

By Lemma 2.2.12 and Fact 2.2.14, it follows that:

Lemma 2.2.15 ��� 	 ������� iff ����� ��
�

���.

Proof We proceed by induction on the grade of ���, and we treat only the step case
where��� is �����; the other cases follow analogously. For the left-to-right direction,
assume ����� 	 ��. Then, by Lemma 2.2.12, � ���� 	 �� implies �� �� 	 ��, for
all �� . Fact 2.2.14 and the induction hypothesis yield����� ��

�

�� �� for all �� such

that �� ��
�

����� , i.e. ����� ��
�

����� by Definition 2.2.3. For the converse,
assume ��� ��� 	 ��. Then, by Lemma 2.2.12, � ���� 	 �� and �� � �� 	 ��,

for some �� . Fact 2.2.14 and the induction hypothesis yield �� ��
�

����� and

����� ��
�

�� � ��, i.e. ����� ��
�

��� ��� by Definition 2.2.3. �

We can now finally show that:

Lemma 2.2.16 ���� � ���� � ��� � is complete.

Proof (i) If � ����� 
��
� , then 
��
� �	 ��, and thus ��
�
�

�


��
� by
Fact 2.2.14. (ii) If ��� ����� 
��, then �� � �
� ������ is consistent; otherwise
there exists a 
� such that � � �
� � ���� ����� 
���, and then ��� �����

��. Therefore, by Lemma 2.2.11, �� � �
� ������ is included in a maximally
consistent proof context �����
� ���������. Then, by Lemma 2.2.15, ����
� �
������� ��

�


� ��, i.e. ����
� ��������
�
�

�


��, and thus��� �
�

�


��.
�
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2.3 NORMALIZATION AND ITS CONSEQUENCES

We have given a modular presentation of propositional modal logics as labelled ND
systems based on two separate parts: a base system ���� and Horn relational theories
extending it. In this section we consider alternatives for defining hierarchies of logics
and systems, and classify them based on their metatheoretical properties. We organize
this investigation around the interface between the two parts: since the rules for �
cannot be sensibly changed, this amounts to studying how falsum, i.e. �, propagates
between worlds. We show that this question directly relates to which kinds of relational
theories we can formalize while retaining completeness.

We start in 2.3.1 with the base system ���� we have developed above, where
we have what we call global falsum: � can propagate from one world to another
(Fact 2.3.1). We prove that in this system derivations have good normalization proper-
ties (Theorem 2.3.5, Corollary 2.3.6, Lemma 2.3.11 and Lemma 2.3.13) in comparison
with what we get from semantic embedding (Theorem 2.3.14). Then, in 2.3.2, we
show that in exchange for these structural properties, we cannot use ���� as a base to
present all modal logics with first-order axiomatizable frames (Theorem 2.3.17).

In 2.3.3 we consider what happens if we allow � to propagate between the base
system and the labelling algebra in either direction, i.e. if we introduce what we call a
universal falsum. By doing this, we lose the good normalization properties of ����
(Fact 2.3.18) in exchange for a system ���uf �, i.e. ���� with universal falsum, that
is essentially equivalent to semantic embedding in first-order logic (Theorem 2.3.20).

Finally, in 2.3.4 we investigate the properties of��� lf �, i.e����with local falsum,
the base system we get by restricting�� in ���� so that all references are local to one
world. Here, unlike in ����, we cannot propagate� freely from one world to another
(Proposition 2.3.22). We argue that though certain modal logics can be formalized in
extensions of ���lf �, the system lacks basic properties, such as duality between �
and� (Proposition 2.3.24) or normal form derivations (Proposition 2.3.26), which we
might look for in a ‘good’ presentation.

2.3.1 Global falsum and normalization

We begin by observing that in ����, and therefore in ���� � ��� � as well, �
propagates ‘globally’ between all worlds. We call this property global falsum, and as
an immediate consequence of �� (where no assumptions are discharged) we have:

Fact 2.3.1 The rule
��
���

gf is derivable in ����. �

We can exploit gf to exhibit the propagation of falsum in the derivations of the rules
for �. That is, we can replace the (undischarging) applications of �� in (2.1) and
(2.2) with applications of gf. For example, we can transform (2.2) as follows.
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���

����� �� ��
�
���

���
��

�

� �� ��

���� 
 ���

������ �� ���

�
���

���

�

���
gf

�� �� � ��

�� �� ���

��
��

��� ���

�

Dually, we can use gf to give an alternative version of the derivation (2.3) of �� from
��, i.e.

�� ��
�
���

���
��

�

��� ����

��� ����

�� ���

�
���

���
��

��
gf

�� ���

� �� �� � ��

�

To show normalization, we follow, where possible, Prawitz [186], and like him,
we introduce some restrictions to simplify the development; in particular, we restrict
applications of�� to the case where the conclusion �� is atomic (i.e. � is atomic). 4

Lemma 2.3.2 If ��� ����� ��, then there is a ����-derivation of �� from ���
where the conclusions of applications of �� are atomic.

Proof We show that any application of �� with a non-atomic conclusion can be
replaced with a derivation in which �� is applied only to lwffs of smaller grade.
There are two possible cases, depending on whether the conclusion is �� 
 � or
���.

4 When presenting classical first-order logic, Prawitz [186] first introduces a natural deduction system
consisting of an elimination rule for � and introduction and elimination rules for all the other connectives,
and then, to show normalization, restricts his attention to the functionally complete �, �, �, � fragment,
where �� is restricted to atomic conclusions (that are also different from �). In this way he avoids having
to treat the rules for � and �, which behave ‘badly’ for normalization. Here, since we have already focused
on the functionally complete �, �, � system, we do not need further restrictions than the one on ��
(where however we allow the atomic conclusion � to be falsum itself, albeit labelled differently as in gf ). In
�3.3, where we discuss normalization for a ND system for an arbitrary non-classical logic with a ‘classical’
negation, we follow Prawitz’s development more closely.
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(Case 1)

���� 
 �� 
 ��
�
���

�� 
 �
��

�

��� 
 ���
��� 
 ��� �����

��

�

��

�

��� 
 �� 
 �

 ��

�
���

�� ���

�� 
 �

��

�

(Case 2)

���� 
 ��
�
���

���
��

�

���� 
 ���
������ �� ���

���
��

���

�

��
��

��� 
 � 
 ��

�
���

��� ���

��� ���

�

By iterating these transformations, we transforman arbitraryderivation�������� ��
into a ����-derivation of �� from ��� where the conclusions of applications of��
are atomic. �

An immediate consequence of this lemma is the equivalence of the restricted and
the unrestricted ND systems. In the rest of this section we will therefore assume
applications of �� to be restricted in this way.

We now show that the derivation of an lwff can be reduced to a normal form
that does not contain unnecessary detours and satisfies a subformula property. In
our ND systems for propositional modal logics there is only one possible form of
detour, the application of an elimination rule immediately below the application of the
corresponding introduction rule, which we remove by the reduction operations defined
below; the intuition for this is that if an lwff is introduced and then immediately
eliminated, then we can avoid introducing it in the first place. 5

Definition 2.3.3 Any lwff �� in a derivation is the root of a tree of rule applications
leading back to assumptions. The lwffs in this tree other than �� we call side lwffs
of ��. A maximal lwff in a derivation is an lwff that is both the conclusion of an
introduction rule and the major premise of an elimination rule. �

Maximal lwffs are removed from a derivation by (finitely many applications of) proper
reductions. Two possible configurations, for 
 and �, result in a maximal lwff in a

5ND systems for other non-classical logics allow additional forms of detour; see, e.g., �3.3.
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derivation; they, and their corresponding proper reductions in ���� are

����
��
��

�� 
 �

 � ��

��
��


�

�

��
��
��
��

(2.5)

�� ��
�
���

���
��

� �
���

��

�

� �
������
���

(2.6)

where������ is obtained from� by systematically substituting � for �, with a suitable
renaming of the variables to avoid possible (variable) clashes. Note that we only show
the part of the derivation where the reduction, denoted by�, actually takes place; the
missing parts remain unchanged.

Definition 2.3.4 A derivation is in normal form (is a normal derivation) iff it contains
no maximal lwffs. �

Theorem 2.3.5 Every derivation of �� from ��� in ���� reduces to a derivation
in normal form.

Proof If � is a derivation of �� from ��� in ����, then from the set of maximal
lwffs of � pick some ��� which has the highest grade and has maximal lwffs only of
lower grade as side lwffs. Let �� be the proper reduction of � at ���. � � is also a
derivation of �� from ��� in ���� and no new maximal lwff as large, or larger than
��� has been introduced. Hence, by a finite number of similar reductions we obtain a
derivation of �� from ��� in ���� containing no maximal lwffs. �

Note that we do not define normal derivations of rwffs; no ‘maximal rwffs’ can
be introduced in ��� �, since Horn relational theories contain only rwffs of the form
� �. In fact, since all rwffs are atomic, maximal rwffs cannot exist in the first place.
Thus, in the following we will sometimes speak simply of normal derivations, meaning
derivations of lwffs that are in normal form. Since derivations in a Horn relational
theory ��� � cannot introduce maximal lwffs (and all the rwffs are of the form � �),

by replacing � � with ��
� �

in (2.6), we have:

Corollary 2.3.6 Every derivation of �� from ��� in ���� � ��� � reduces to a
derivation in normal form. �

2.3.1.1 The form of normal derivations. By inspection of the rules of ���� �
��� � and by Fact 2.1.12, it follows that we have a separation between the base system
and the relational theories extending it, i.e.
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Fact 2.3.7 The two parts of the deduction system�������� � are strictly separated:
derivations of lwffs can depend on derivations of rwffs, but not vice versa. �

Thus, a derivation of an lwff consists of a central subderivation � in which only rules
of the base system ���� are applied, ‘decorated’ with subderivations of rwffs in the
relational theory, which attach onto � through instances of ��.

We now show that normal derivations possess a well-defined structure that has
several desirable properties. Specifically, by analyzing the structure of a normal
derivation, we can characterize the form of the central subderivations in the base
system: we can identify particular sequences of formulas, and show that in these
sequences there is an ordering on inferences. By exploiting this ordering, we can then
show a subformula property for our modal ND systems. 6

To analyze the structure of normal derivations, we adapt standard terminology and
results [186, 187, 221, 230].

Definition 2.3.8 A thread in a derivation� in�������� � is a sequence of formulas
��� � � � � �� such that (i) �� is an assumption of �, (ii) �� stands immediately above
����, for � � � ( �, and (iii) �� is the conclusion of �.

We further characterize a thread in terms of the formulas occurring in it: an lwff-
thread is a thread where ��� � � � � �� are all lwffs, and an rwff-thread is a thread where
��� � � � � �� are all rwffs.

A track in a derivation � is an initial part of an lwff-thread in � which stops
either at the first minor premise of an elimination rule in the lwff-thread or at the
conclusion of the lwff-thread. In other words, a track can only pass through the major
premises of elimination rules of ����, and it ends either at the first minor premise of
an application of 
� (the only ‘primitive’ elimination rule of ���� that has an lwff
as minor premise) or at the conclusion of �. We call main track a track that is also an
lwff-thread and ends at the conclusion of the derivation. �

Example 2.3.9 As a first example, consider the following normal�����-derivation�
of the characteristic axiom �, together with its underlying tree (with numbers substituted
for the formulas): the rwff-threads of �, displayed with dashed lines, are ��� �� and

6In �6.3 we exploit the soundness and completeness of our normalizing ND systems with respect to the
corresponding Kripke semantics to show that we can give cut-free sequent systems that are sound and
complete with respect to the same semantics; in Part II we then use these sequent systems to bound the
complexity of the decision problem for some of the propositional modal logics we present. Note also that
there are other applications of normalization, such as interpolation, that we do not explicitly consider here.
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��� ��; the main (and only) track of �, displayed with dotted lines, is ��� �� .� /� 0�.
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As a second example, consider the following normal ����-derivation � of the char-
acteristic axiom �, together with its underlying tree: the lwff-threads of � are
��� �� /� 0� 1� �,� and ��� .� /� 0� 1� �,�; the tracks of �, displayed with dotted lines,
are ��� �� /� 0� 1� �,�, which is also the main track of �, and ��� .�.
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We adapt the standard definition of subformula as follows.

Definition 2.3.10 � is a subformula of � iff (i) � is �; or (ii) � is �� 
 �� and �
is a subformula of �� or ��; or (iii) � is ��� and � is a subformula of ��. We say
that ��� is a (labelled) subformula of �� iff � is a subformula of �. �

Lemma 2.3.11 Let � be a normal derivation, and let � be a track ����, ����, � � � ,
���� in �. Then � contains an lwff ����, called the minimal lwff, which separates
two possibly empty parts of �, called the elimination part and the introduction part of
�, where:

(i) each� ��� in the elimination part, i.e. � ( �, is a major premise of an elimination
rule and contains �������� as a subformula;

(ii) ����, provided that � �� �, is premise of an introduction rule or of ��;

(iii) each � ��� in the introduction part except the last one, i.e. � ( � ( �, is a
premise of an introduction rule and is a subformula of ��������. �
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�

��

�

�
� �

Figure 2.5. The form of tracks in a normal derivation of an lwff in ���� � ��� �

In other words, a track in normal derivation is divided into at most three parts, each
of which might be empty: an elimination part containing only major premises of
elimination rules, a�-part in which�� is applied, and an introduction part containing
only premises of introduction rules.

The lemma follows immediately by observing that in a track � in a normal derivation
no introduction rule application can precede an application of an elimination rule. In
other words, the lwffs in � that are major premises of elimination rules precede all lwffs
in � that are premises of introduction rules or of ��, as shown in Figure 2.5.

Mirroring [186], we can exploit the form of tracks in normal derivations to show
that our ND systems are consistent, i.e. � �� in �������� �. It also follows that a
normal derivation � in ���� ���� � consists of a central normal subderivation � in
���� ‘decorated’ with subderivations of rwffs in ��� �, which attach onto � through
instances of ��, and where � consists of a sequence of tracks, all of which have the
form described in Lemma 2.3.11 and in Figure 2.5. Note that the observation about the
subderivations in��� � (the way they are connected to the central����-subderivation)
holds for all, normal or ‘non-normal’, derivations in ���� � ��� �. Moreover, if ��
is added explicitly, together with its rules, then ��� �-derivations appear also at the
fringes of the introduction part through instances of�� (and the lemma can be suitably
modified). As a final remark, note that, like in [187], the definition of normal form
in our systems can be further refined, e.g. by requiring minimal lwffs to be atomic, to
define derivations in fully normal form or in expanded normal form. 7

The above results allow us to show that normal derivations in �������� � satisfy
the following subformula property.

Definition 2.3.12 Given a derivation ��� � ��, let � be the set of subformulas
of the formulas in �� � ��� 	 � � ���� for some ��, i.e. � is the set consisting
of the subformulas of the assumptions � and of the conclusion ��. We say that

7Like for the definition of normal form, the definitions of fully and expanded normal form depend on the
rules of the particular system we employ. Note also that in the proof of Lemma 5.1.3 we exploit the fact
that derivations in the metalogic of Isabelle reduce to expanded normal form [179], and that in the proof of
Theorem 2.3.20 we directly exploit Prawitz’s results for the ND system for first-order logic.
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��� � �� satisfies the subformula property iff for all lwffs ��� used in the derivation
(i) � 	 �; or (ii) � is an assumption � 
 � discharged by an application of ��,
where � 	 �; or (iii) � is an occurrence of � obtained by 
� from an assumption
� 
 � discharged by an application of ��, where � 	 �; or (iv) � is an occurrence
of � obtained by an application of �� that does not discharge any assumption (i.e. an
occurrence of � obtained by an application of gf). �

In other words, we define ��� � �� to have the subformula property iff for all
��� in the derivation, either � is a subformula of the assumptions or of the conclusion
of the derivation, or � is the negation of such a subformula and is discharged by ��,
or � is an occurrence of� immediately below the negation of a subformula, or, by gf,
� is an occurrence of � immediately below another occurrence of � that is labelled
differently.

Lemma 2.3.13 Every normal derivation of �� from ��� in ���� ���� � satisfies
the subformula property. �

This follows immediately from the standard proof, which is based on the introduction
of an ordering of the tracks in a normal derivation depending on their distance from
the main track.

To summarize, our labelled ND systems have the following properties.

Theorem 2.3.14

(i) The deduction machinery is minimal: labelled ND systems formalize a minimum
fragment of first-order logic required by the semantics of propositional modal
logics with Horn axiomatizable properties of the relations.

(ii) Derivations are strictly separated: derivations of lwffs may depend, via the rules
for �, on derivations of rwffs, but not vice versa.

(iii) Derivations normalize: derivations of lwffs have a well-structured normal form
that satisfies the subformula property. �

For comparison, consider the semantic embedding approach, e.g. [126, 169, 171], in
which a propositional modal logic is encoded as a first-order theory by axiomatizing an
appropriate definition of truth: (i) a propositional modal logic with Horn axiomatizable
properties of the relations constitutes a theory of full first-order logic, as opposed to an
extension of labelled propositional logic with Horn-clauses; (ii) all structure is lost as
propositions and relations are flattened into first-order formulas; (iii) there are normal
forms, those of ND for first-order logic, but derivations of lwffs are mingled with
derivations of rwffs, as opposed to the separation between the base system and the
relational theory that we have enforced.

This separation is in the philosophical spirit of labelled deduction and it also provides
extra structure that is pragmatically useful: since derivations of rwffs use only the
resources of the relational theory, we may be able to employ system-specific reasoners
to automate proof construction. We can also exploit the existence of normal forms
to design equivalent cut-free labelled sequent systems and automate proof search
(see 6 and Part II). However, in exchange for this extra structure there are limits
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to the generality of the formulation: the properties in Theorem 2.3.14 depend on
design decisions we have made, in particular, the use of Horn relational theories.
This, of course, places stronger limitations on what we can formalize than a semantic
embedding in first-order logic, as we show in the next sections.

2.3.2 Global falsum and first-order relational theories

So far, we have considered extensions of ���� with Horn relational theories. There
is, however, no reason why we should not have relational theories that make use of
an arbitrary logic. We just have to extend the language and add appropriate rules and
axioms. However, irrespective of which logic we allow in the labelling algebra, the
rules of ���� dictate that the only way that derivations there can contribute to lwff
derivations is via propositions of the form � �, thus our normalization results in fact
extend to���� extended with an arbitrary relational theory��� �: any normal deriva-
tion of an lwff in �������� � satisfies the subformula property and is structured as a
central normal derivation � in the base system ���� ‘decorated’ with subderivations
in the relational theory ��� �, which attach onto � through instances of ��. That is,
by the above results, we have:8

Lemma 2.3.15 Let ��� � be an arbitrary relational theory. The two parts of the
labelled ND system ���� � ��� � are strictly separated: derivations of lwffs can
depend on derivations of rwffs, but not vice versa. Derivations of lwffs in�������� �
normalize, and any normal derivation in ���� � ��� � satisfies the subformula
property. �

For concreteness, consider now an extension of the labelling algebra to a first-order
theory.

Notation 2.3.16 To keep distinct the syntax of the base system from the labelling
algebra, we build formulas in the labelling algebra using the connectives � (‘falsum’)
and � (‘implies’), and the quantifier

�
(‘for all’). We henceforth assume that the

possibly subscripted variable ) ranges over such formulas. �

In Figure 2.6 we give the rules of��, the first-order ND system of �; formulas over
other connectives and quantifiers, e.g. � (‘not’), � (‘and’),  (‘or’),

�
(‘for some’),

and corresponding rules, are defined as usual, e.g.

)�  )�

�)��....
)

�)��....
)

)  �

�

First-order properties of � are now added as axioms (or rules) directly in their full
form, and a first-order relational theory ���	� � �� � �� is obtained by extending

8Note that we are talking about labelled subformulas, and not about subformulas of arbitrary, non-atomic,
relational formulas built according to Notation 2.3.16.
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�) � ��....
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�)��....
)�

)� � )�
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�
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In
�
�, the variablemust not occur free in any open assumption on which ) depends.

Figure 2.6. The rules of ��

Table 2.4. Some first-order properties of � and corresponding rules

Property Rule

Irreflexivity �
�� �� ��

irrefl

Intransitivity �

�

�
�

���� � � �� �� � � �� ���
intrans

Antisymmetry �

�

���� � � �� � �  � ��
antisymm

Asymmetry �

�

��� � � � ��� ���
asymm

Connectedness �

�

�
�

����   � �  �� �
conn

Note that none of these properties corresponds to a modal axiom schema.

�� with a collection �� of such axioms. For example, for instances of restricted
��� ���� �� convergency we now add the corresponding instances of the (schematic)
rule

�

�

�
�

����� � � �� �� �
�

������ � ������
rconv

�

and for irreflexivity we add

�
�� ����

irrefl �

In Table 2.4 we give other first-order properties of �, which, like irreflexivity, cannot
be expressed as Horn relational rules. Note that some of them explicitly require
equality. Most importantly, none of these properties can be axiomatized by means of
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modal axioms [118, 140]; thus our language allows us to capture logics that cannot
be presented by means of Hilbert-style axiomatizations. However, simply adding a
first-order relational theory to ���� may result in an incomplete system. Namely, we
have:

Theorem 2.3.17 There are systems ���� � ���	� with ���	� � �� � �� that are
incomplete with respect to the corresponding Kripke models with accessibility relation
defined by a collection �� of first-order axioms.

Proof We give an example of incompleteness. According to [227, p. 173], the Kripke
model with accessibility relation defined by

�� � �
�


�

�
�

���� � � � �� � ��� �  �� ��� �

corresponds to the modal logic with axiom schema �:

����� 
 �� 
 ���� 
 �� �

or, equivalently, ���� 
 �� � ���� 
 ��. If we assume that � and � are
different propositional variables, then, reasoning backwards from the conclusion to the
assumptions, a normal proof of this in ���� � �� � �� must have the form

�� ����� 
 ���� �� ��� �������

�
���

���� 
 � 
��

����� 
 ��
���

� ����� 
 �� 
 ���� 
 ��

��

�

What might � be? We can use Lemma 2.3.15 to explore all the possibilities. 9 Since
� is a propositional variable, � must end in an application of an elimination rule; by
examining the possibilities we see that it must be an application of ��, since it is not
possible to derive ��� directly from the available hypotheses using other elimination
rules. Thus the only candidate for � is

�� ����� 
 ����

�������

�� ��� ���� 
 ��� �� ��
 �������

��
�� �

���
��

���� 
 � 
��

����� 
 ��
��


��
��

��� ���

(2.7)

9Alternatively, we can exploit the fact that derivations in ���� � ����� reduce to an expanded normal
form in which all minimal lwffs are atomic, and thus dispose of the assumption that � and � are different
propositional variables.
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where �� is a derivation purely in the relational theory �� � ��. But

� �� � � � �� � in �� � ��,

so ���� � �� � �� cannot prove the characteristic axiom for the models with
accessibility relation defined by ��, i.e. ���� � �� � �� is not complete with
respect to its corresponding semantics. �

Note that � �� � � � �� � in �� � �� � �
�


�

��� � 
 ���. Therefore,
this particular counter-example to completeness does not hold for extensions of systems
where � is symmetric, e.g. ���	�, for which, however, other counter-examples can
be found. Note also that incompleteness can be shown by means of other modal
formulas, but the provability of the corresponding modal axiom is ‘philosophically’
the first requirement to be fulfilled by the addition of a relational rule (or axiom).
For instance, by similar reasoning, we can show that ��� 
 �� is not provable in
���� � �� � �

�

�

��� ���.

2.3.3 Universal falsum

The reason for the incompleteness of ���� � ���	� in the proof of Theorem 2.3.17
is easy to identify: we could imagine replacing �� in (2.7) above with

���� 
 ���
�������

�� ��� �� ��
 ��� � � ���....
�� �

���
��

���

�

�
���

�� �
���

since we can show that

� �� � �� ��� � � � �� � in �� � ��.

What we need is some rule ��� to allow us to propagate falsum not only between worlds,
like gf, but also between the base system and the relational theory; i.e. collapsing ��
and � together. We can achieve this by adding the rules

��
�

uf� and �
��

uf�

to ���� to obtain the system ���uf � which has what we call a universal falsum.
However, it immediately follows that with universal falsum we lose the separation
between the two parts of the deduction system described above. In other words, we
have:

Fact 2.3.18 In ���uf �, and, a fortiori, in ���uf � � ���	�, the two parts of the
deduction system are not separated: derivations of lwffs can depend on derivations of
rwffs, and vice versa. �
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In fact, we can show that ���uf � � ���	�, unlike ���� � ��� �, is essentially
equivalent to the usual semantic embedding of propositional modal logics in first-
order logic.

Definition 2.3.19 We define a translation �!� of formulas of ���uf � � ���	� into
formulas of first-order logic as follows.

��� � � -
�� �� � ��� �� -

�)� � )�� � �)�� 
 �)�� -�� �)�� � ���)�� -
��� � ��)� � ) 	 �� -

���� � � -
��#� � * �� -

��� 
 �� � ���� 
 ���� -
����� � ������ �� 
 ������ -

��� � ����� � �� 	 �� �

�

Theorem 2.3.20 Let �� be an arbitrary collection of first-order axioms about �, and
� an arbitrary lwff or rwff. The following are equivalent:

(i) ��� � � in ���uf � � �� � ��.

(ii) ��� ���� ��� � ��� in (the ND system for) first-order logic.

Proof Since reasoning about labels is directly translated, we only treat the case when
� in an lwff. Transforming a derivation in ���uf � � �� � �� into a derivation in
the standard [186] ND system for first-order logic is simple, since we can find derived
rules in first-order logic corresponding to each rule of ��� uf �. For example

�� ���....
���

��� ���

�

���� ����....�����
��� �� 
 ����� 
 ��

������ �� 
 ������ � � ����� ������

(2.8)

where the side condition on � �, that � is different from  and does not occur free in the
assumptions on which ��� �� 
 ����� depends, is satisfied since, by the condition on
��, � is different from  and does not occur in any assumption on which ��� depends
other than � �. The other rules are dealt with similarly.

The other direction is trickier. However, we know that derivations in the ND system
for first-order logic have expanded normal forms [187], thus we can assume that � is
an expanded normal derivation of ��� ���� ��� � ����, and observe that it is possible
to translate this derivation directly into ���uf � � �� � ��; e.g. if we reverse � in
(2.8), we can see that since a normal derivation of ����� must have exactly the form
(the sequence of introduction rules) given there, and, by induction, the same translation
can be performed on the subderivation of ����� from �� ��, it is possible to translate
this into a derivation in ���uf � ��� � ��. We can do the same with the other rules.
All we have to do is, occasionally, insert additional rules translating between falsum
for rwffs and falsum for lwffs. �
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Since semantic embedding of a propositional modal logic in first-order logic is
sound and complete with respect to the appropriate Kripke semantics [169], it then
follows that:

Corollary 2.3.21 ���uf � � ���	� is sound and complete. �

2.3.4 Local falsum

In ����, rwffs interact with lwffs through the �� rule and this changes the label of
the major premise into that of the conclusion. This is however not the only rule that
changes worlds: ��, as we have discussed, also has this property. To complete our
investigation of alternative formulations, we consider the other end of the spectrum
from universal falsum where, by restricting ��, falsum is local and cannot move
arbitrarily between worlds:

��� 
 ��....
��
��

lf
�

Call ���lf � the system obtained from ���� by replacing�� with its restricted form
lf. In ���lf � we can propagate� forwards indirectly: given �� we have ���, and
thus ��� when � �; i.e.

��
���

lf
� �

���
��

� (2.9)

But we cannot propagate� to an arbitrary world, i.e.

Proposition 2.3.22 There is no derivation of ��� from �� in ��� lf � where � is an
arbitrary label.

Proof Since ���lf � is a fragment of ����, a derivation� of ��� from �� in ��� lf �
would have a normal derivation � � in ����. Since any such derivation needs to
make use of ��, which, by Lemma 2.3.23 below, must already be present in the
un-normalized form of �, no such derivation can exist in ��� lf �. �

Lemma 2.3.23 If there are no applications of �� in a derivation in ����, then
normalization of the derivation cannot introduce one.

Proof By examining the transformations involved in reducing a derivation to normal
form. �

In the same way, we can prove that, since gf is not derivable, the duality of � and
� fails for ���lf �, i.e.

Proposition 2.3.24 The connectives � and� are not interdefinable in ��� lf �.
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Proof Consider the derivation (2.1) in Example 2.1.14, and assume that � is a suitable
derivation of �� in ���lf �. Then, since � is also a derivation in ����, it has a
normal form �� in ����. However, by Lemma 2.3.23 and Lemma 2.3.25 below, such
a derivation in ���lf � does not exist, since ��, and thus �, must contain unrestricted
applications of ��. �

Lemma 2.3.25 A normal form derived rule in ���� suitable for the substitution (2.1)
in Example 2.1.14 involves a step application

��� 
 ��
....

���

��
��

where we are not able to assume that ��.

Proof By examination of the possible normal derivations. �

Note that � and � are not even ‘intuitionistically’ related in ��� lf �, in the sense
that� �� does not imply ���, and � �� does not imply���.

Proposition 2.3.24 shows that��� lf � is not in general suitable for formalizing modal
logics, since we are not able to propagate falsum to inaccessible worlds. However, it
is easy to show that in fact we only ever have to deal with worlds accessible in some
way from each other. Given, as we have observed, that we can propagate� forwards
in ���lf �, if � is symmetrical we also have a backwards propagation:

��
���

lf
��

� �
symm

���
��

�

Thus ���lf � can be used to formalize certain logics after a fashion (if the relational
theory ���	� is inconsistent or if � is universal, so that � � for all  and �, then we
get this much more simply).10 However, the resulting formalization is unsatisfactory,
since it lacks important metatheoretical properties that we get in ����; namely, we
have:

Proposition 2.3.26 Derivations in ��� lf � do not have normal forms satisfying the
subformula property.

Proof As we observed in (2.9), there is a derivation of ��� from � � and �� in
���lf �. However, there cannot be a normal one satisfying the subformula property,
i.e. ��� is not a subformula in (2.9). �

10Given that ����
�, i.e. ���
�, is sound and complete with respect to the class of universal frames [58,
p. 178], it is possible to prove that ��� � ��� in ����
� iff ��� � ��� in ���lf�
�, since, when � is
universal, � and� are interdefinable, and �� and lf are interderivable (but the derivations are not normal).
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While this could of course be obviated by suitably extending the definition of
subformula, we leave further investigation of systems based on local falsum as future
work.



3 LABELLED NATURAL DEDUCTION
SYSTEMS FOR PROPOSITIONAL

NON-CLASSICAL LOGICS

In the previous chapter we investigated labelled natural deduction presentations of
propositional modal logics. Here we explore the generalizations needed to build ND
systems for large families of propositional non-classical logics, including relevance
logics (and, more generally, substructural logics [75, 76, 196]), where we can treat non-
classical negation as a modal operator and also consider explicitly positive fragments.
(The metatheory of positive logics is different from that for ‘full’ logics; see, e.g.,
Dunn’s semantic analysis of positive modal logics in [80].) We generalize our frame-
work to provide a uniform treatment of a wide range of non-classical operators (�,
�, relevant and intuitionistic implication, non-classical negation, etc.), where we base
our presentations on an abstract classification of non-classical operators as ‘universal’
or ‘existential’, and associated general metatheorems. We proceed as follows.

In 3.1 we formalize modular presentations of propositional non-classical logics
as extensions of fixed base systems with Horn relational theories; we provide several
examples of relevance logics, including in particular a labelled presentation of the
relevance logic , which also shows the advantages of our approach over Hilbert-style
axiomatizations. In 3.2 we give parameterized proofs of soundness and completeness
of our systems with respect to the corresponding Kripke-style semantics, and discuss
the possible incompleteness of unrestricted positive fragments. In 3.3 we consider
the proof-theoretical properties of our systems, including normalization and the sub-
formula property. In 5.2 we will then present the Isabelle encodings of our systems,
demonstrate their correctness, and give example proofs.

53
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3.1 MODULAR PRESENTATIONS OF PROPOSITIONAL
NON-CLASSICAL LOGICS

In this section we formalize our presentations. In 3.1.1 we introduce the fundamentals
of how a labelled ND presentation relates to a Kripke semantics. In 3.1.2 and 3.1.3
we define the base ND systems and the associated class of relational theories over
which it is parameterized. In 3.1.4 we give examples of labelled ND presentations
for non-classical logics.

3.1.1 Labels and Kripke models

We generalize Definition 2.1.3 to arbitrary propositional non-classical logics. Let �
be a set of labels ranging over worlds in a Kripke model, and � an �+�–ary relation
over � . If �� ��� � � � � �� are labels and � is a formula, then we call ���� � � � �� a
relational formula (rwff ) and ��� a labelled formula (lwff ). Formulas are built from
logical operators, which are partitioned into two families: ‘local’ and ‘non-local’.

If a formula� is built from a local operator" of arity�, i.e. � � "� � � � � ��, then
the truth of the lwff ��� depends only on the (local) truth of ��� �, � � � , ����. Typical
local operators are conjunction (�), disjunction (�), material (classical) implication
(
), and local (classical) negation (�); for notational simplicity, we omit brackets
where possible and write binary operators in infix notation.

Where �� is the truth relation for lwffs in the model�, we have:1

�
� ��� � � iff �� ��� and �

� ���- (3.1)

�
� ��� � � iff �� ��� or �� ���- (3.2)

�
� ��� 
 � iff �� ��� implies �� ���- (3.3)

�
� �� �� iff �

� ���� (3.4)

A non-local operator � of arity � is associated with an �+�–ary relation � on
worlds, and the truth of ����� � � � �� is evaluated non-locally at the worlds �-
accessible from �, i.e. in terms of the truth of ������ � � � � ����� where ���� � � � ��.
Examples of non-local operators and associated relations are the unary modal operator
� and the binary accessibility relation on possible worlds, or relevant implication �
and the ternary compossibility relation.

We extend �� to express truths for rwffs in a Kripke model � with an �+�–ary
relation� as

�
� ���� � � � �� iff ��� ��� � � � � ��� 	 � � (3.5)

1Note that 	 can be defined in terms of � and falsum (�) like we did in �2. When this is the case, we
can compare, like for modal logics in �2.3, the systems/logics obtained when (i) �� 	� 	� iff �� 	��
implies �� 
��, and (ii) � is a global falsum, i.e. �� 	�� implies �� 
��, with the (paraconsistent)
systems/logics where (i�) �� 	� 	 � iff �� 	�� implies �� 	��, and (ii�) � is a local falsum,
i.e. �� 	�� implies �� 	��.
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and we call � a universal non-local operator when the metalevel quantification in
the evaluation clause of � is universal (and the body is an implication), i.e.

�
� ����� � � � �� iff for all ��� � � � � �� ���

� ���� � � � ��

and �
� ����� and � � � and �

� ���������� imply �
� ������ � (3.6)

Similarly,� is an existential non-local operator when the metalevel quantification is
existential (and the body is a conjunction), i.e.

�
� ����� � � � �� iff there exist ��� � � � � �� ��� ���� � � � ��

and �
� ����� and � � � and �

� ��������� and �
� ������ � (3.7)

In these terms, � and relevant � are universal non-local operators, � is existential,
and their evaluation clauses are special cases of (3.6) and (3.7), e.g.

�
� ���� � �� iff for all ��� �� ���� ���� ��

and �
� ������ imply �

� ������ � (3.8)

Note that many but not all non-local operators fall under this classification. For
example, to capture the binary until operator of temporal logics, whose first argument
has a universal character while its second argument has an existential one, we would
need to extend the language of our framework appropriately.

A uniform treatment of negation plays a central role in our framework. However, in
the Kripke semantics for relevance (and other) logics, both a formula and its ‘negation’
may be true at a world, which cannot be the case with � . Thus a new operator is
introduced, a non-local negation #, formalized by a unary function � on worlds [77]:

�
� ��#� iff �

� ���� � (3.9)

Informally,�� is the world that does not deny what� asserts, i.e.� and�� are compatible
worlds. We generalize this by introducing the constant �� that expresses incoherence
of compatible worlds,

�
� +��� iff for some � ��� ��#� and �

� ����� �

and replace (3.9) with

�
� ��#� iff for all + ��� ���� implies �� +���� (3.10)

where �� +��� for every world +.
Some remarks. First, when relevant implication is present, we can define #� as

� � �� and postulate ���� + for every +, so that (3.10) is just a special case of
(3.8). (That � and �� are ‘compossible’ according to every +, as stated by ���� +,
is justified by the meaning of �.) Second, when � � ��, e.g. for modal or classical
logic, �� reduces to �, # to �, and (3.10) to (3.4). 2 Finally, we remark that there

2Note that, similarly, relevant implication 
 reduces to classical implication � when we postulate that
�� �		� 	� iff 	 � 	� � 	� and �� �	 	 	. Note also that when both �� and � are present we may
be required to find a semantic means of distinguishing them.
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is an alternative approach to non-local negation, e.g. for relevance, linear and ortho-
logic [74, 78, 99, 109, 117, 197], which uses a binary incompatibility relation ,
between worlds:

�
� ��#� iff for all + ��� +�� implies +,�� � (3.11)

Then �� is the ‘strongest’ world + for which +,� does not hold. This can be shown to
be equivalent to our approach; for a detailed discussion and comparison of (3.11) with
(3.9) see [78].

We define the language of a propositional non-classical logic � and of the corre-
sponding ND system ���� as follows.

Definition 3.1.1 Let $ and % be two finite sets of indices. The language of a propo-
sitional non-classical logic � and of the corresponding ND system ���� is a tuple
��� �� �� -� . �. � is a set of labels closed under � of type � 
 � . � is a
denumerably infinite set of propositional variables. - is the set whose members are

(i) the constant�� (and/or�);

(ii) local and/or non-local negation (or neither for positive logics);

(iii) a set of local operators �"� � " 	 $�; and

(iv) a set of non-local operators ��� � � 	 %� with an associated set � � ��� � � 	
%� of relations of the appropriate arities.

. is the set of rwffs and lwffs: if �� ��� � � � � �� are labels, �� has arity ���, and � is
a formula built up from members of � and -, then � � � �� � � � �� is an rwff and ��� is
an lwff. �

Note that by associating different relations to universal and existential non-local op-
erators we make no a priori assumptions about their interrelationships; we show in
Theorem 3.2.12 in 3.2.3 below that when the relations are not independent, incom-
pleteness may arise.

We now generalize Notation 2.1.2 and Definitions 2.1.4, 2.2.1, 2.2.2 and 2.2.3.

Notation 3.1.2 In order to simplify our notation, we will omit brackets whenever no
confusion can arise, and write binary local and non-local operators in infix notation.
Furthermore, we adopt the convention that �, # and � are of equal binding strength
and bind tighter than �, which binds tighter than �, which binds tighter than 
. �

Definition 3.1.3 The grade of an lwff ���, in symbols: ����������, is the number of
local and non-local operators that occur in �. �

Definition 3.1.4 Given a set of lwffs � and a set of rwffs �, we call the ordered pair
����� a proof context. When �� � �� and �� � ��, we write ������� � �������.
When ��� 	 �, we write ��� 	 ����� irrespective of �, and when �� � �� � � � �� 	
�, we write �� � �� � � � �� 	 ����� irrespective of �. Finally, we say that a label �
occurs in �����, in symbols � � �����, if there exists an � such that ��� 	 � or if �
is an argument of an rwff in �. �
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Definition 3.1.5 A (Kripke) frame for ���� is a tuple ��� ���� ��, where � is a
non-empty set of worlds, � 	 � is the actual world, � � ��� � � 	 /� is the set of
relations over� corresponding to �, and � is a function of type� 
�. A (Kripke)
model� � ��� ���� ���� for ���� consists of a frame and a function� mapping
elements of� and propositional variables to truth values �, or ��, where

�
� ��# iff ���� #� � � � (3.12)

�� is extended to lwffs with local and non-local operators and to rwffs as above, and
when �� �, for � an lwff or an rwff, we say that � is true in�. By extension:

�� � means that �� ��� for all ��� 	 �;
�� � means that �� �� � �� � � � �� for all �� � �� � � � �� 	 �;
�� ����� means that �� � and �� �;
� �� �� � �� � � � �� means that �� � implies �� �� � �� � � � ��;
� � �� � �� � � � �� means that � �� �� � �� � � � �� for all�;
��� �� ��� means that �� ����� implies �� ���;
��� � ��� means that ��� �� ��� for all�.

�

A propositional non-classical logic � is characterized by its language and by its
models, i.e. the conditions independently imposed on each � �, on �, etc. Moreover,
some logics, e.g. intuitionistic and relevance logics, require truth to be monotonic. To
express this, we define a partial order & on worlds, where for intuitionistic logic &
coincides with the accessibility relation, while for relevance logics it can be defined in
terms of �, i.e. � & + iff � , � +, where , is the label denoting the actual world; for
modal logic& reduces to equality. Then we require that� satisfy the atomic monotony
condition, i.e. for any �� and �� and for any propositional variable #,

if �� ���# and �
� �� & �� , then �

� �� �# � (3.13)

One might be tempted to generalize this immediately to arbitrary formulas. In fact,
this generalization holds for the ‘usual’ non-classical logics, such as intuitionistic and
relevance logics, where we can prove by induction on the structure of � that

if �� ���� and �
� �� & �� , then �

� �� �� � (3.14)

But there are logics for which (3.14) does not hold for every formula. For example,
[84, 142] combine intuitionistic implication � with classical implication 
, and
show that (3.14) holds for � � � (in fact it holds, as one would expect, for every
intuitionistic formula) but it fails for� 
 �. This problem is solved there by restricting
(3.14) to persistent formulas. Formally, a formula � of the ‘intuitionistic/classical’
logic in [84] is persistent iff

(i) it is atomic, or

(ii) it is of the form � � � or #�, where # is intuitionistic (and thus non-local)
negation, or
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(iii) it is of the form � � � or � � �, and � and � are both persistent.

Similar definitions of persistency can be given for other non-classical logics, depending
on the particular language we are considering, and we can then restrict (3.14) to the
following general property, the monotony condition, which is provable from (3.13) by
induction on the structure of �.

Property 3.1.6 For any �� and �� , and for any persistent formula �,

if �� ���� and �� �� & �� � then �� �� �� .
�

Monotony is defined also for rwffs: for an �+�–ary relation � � we require that

for all � ( �, if �� �� �� � � � ���� �� ���� � � � �� and �
� � & �� �

then �
� �� �� � � � ���� � ���� � � � �� (3.15)

and

if �� �� �� � � � ���� �� and �
� �� & �, then �

� �� �� � � � ���� � � (3.16)

In the following we assume formulas of the form � & + to be special cases of relational
formulas, i.e. � , � +, but we note that we could introduce them explicitly as a third
kind of formulas, independent of lwffs and rwffs (proof-theory and semantics are then
extended accordingly). This assumption allows us to treat the properties of the partial
order, reflexivity and transitivity, as instances of (3.15) and (3.16).

Definition 3.1.7 As a notational simplification, we will often restrict our attention
to (ND systems for) propositional non-classical logics with a restricted language
containing the local operators �, � and 
, one universal non-local operator � �of
arity � associated with a �+�–ary relation ��, one existential non-local operator
��of arity � associated with an �+�–ary relation ��, non-local negation #, and the
constant ��. (Since the language might not contain (non-local) �, we take # as a
primitive operator as opposed to defined in terms of �� and�.)

From Definition 3.1.5, a model for an ND system built from such a language is the
tuple � � ��� �������� ����, and truth for an rwff or lwff � in �, �� �, is the
smallest relation �� satisfying (3.1), (3.2) and (3.3) for local operators, (3.5) and
(3.6) for �� and ��, (3.5) and (3.7) for �� and ��, (3.10), (3.12), (3.13), (3.15)
and (3.16) for �� and ��. �

Finally note that we do not, here, consider logics like the relevance logic � for
which models with more than one actual world are needed [192, 201]. These logics
can be presented by employing a set ' of actual worlds and modifying the postulates
of the relational theory with a precondition testing membership in '; for example the
identity postulate � , � � (see below) is replaced with ‘ 	 ' implies ���’.
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3.1.2 The base system ����

We now introduce the base system ��(� formalizing a ND presentation of the base
propositional non-classical logic (. ��(� provides the rules we need to reason about
lwffs. Our formalization is motivated by pragmatic concerns: the base system should

(i) make no assumptions about the relational theories extending it,

(ii) be adequate for the logics we are interested in, and

(iii) have good proof-theoretical properties.

In 2 we provided a base system for a large family of propositional modal logics
that satisfies all these criteria. Unfortunately, in the more general case considered
here, things are not so clear-cut: the base system (and the base logic) depends on the
particular family of non-classical logics we consider, and thus to achieve (ii) and (iii)
we have to replace (i) with

(i’) make as few assumptions as possible about the relational theories extending it,
ideally none at all.

(See 3.1.3, where we discuss ‘complementary rules’, and 3.3, where we discuss
extensions with first-order relational theories.)

The labelled ND system��(�consists of an introduction rule,��, and an elimination
rule, ��, for each logical operator � except �� (and, if present, �), for which only
an elimination rule is given. We begin by considering the simplest logical operators,
the local ones, for which, like for modal logics in 2, we adapt the traditional ND
rules [186] by adding labels. For example, for classical (local) implication 
 we give
the rules

�����....
���

��� 
 �

�

and ��� 
 � ���
���


� � (3.17)

Rules for �, � and other local operators are adapted similarly, e.g.

��� ���
��� ��

�� and
��� � �

�����....
%��

�����....
%��

%��
��

�

For the non-local operators�� and�� we give the rules
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������� ! ! ! ����������� ��
� � �� � � � ���....

�����

������ � � � ��
���

������ � � � �� ����� ! ! ! ��������� �� � �� � � � ��
�����

���

����� ! ! !����� �� � �� � � � ��
������ � � � ��

���

������ � � � ��

������� ! ! ! ������� ��
� � �� � � � ���....

+��

+��
���

(3.18)

where, in��� and���, each �	 and each �
, for � � 0 � � and � � & � �, is fresh.
That is, in ���, the labels ��� � � � � �� are all different from � and each other, and do
not occur in any assumption on which ����� depends other than those listed; in���,
the labels ��� � � � � �� are all different from �� + and each other, and do not occur in
any assumption on which the upper occurrence of +�� depends other than those listed.
Note that the introduction and elimination rules for �� and �� are independent of
the properties of �� and ��.3

Comparing these rules with (3.1), (3.2), (3.3), (3.6) and (3.7), we see that they
reflect the semantic definitions. When we treat negation, however, the correspondence
between the rules and the semantics is more subtle, and we must choose which kind
of negation we want to formalize. We begin by providing the rules

������....
+���
��#�

#�

and ��#� ����
+���

#� � (3.19)

which reflect (3.10). These rules capture only a minimal non-local negation. If we
want a base system capable of formalizing intuitionistic or classical non-local negation
we respectively need the additional rules

3Moreover, analogously to� and�, note the close correspondence between our rules for�� and�, which
holds because we express 	����� � � � �� in terms of a metalevel implication.
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+���
���

���2 and

���#��....
+���
����

���3

� (3.20)

Finally, we express monotony at the level of lwffs using the rule

���� �� & ��

�� ��
monl (3.21)

where � is a persistent formula.4 Since monl reflects Property 3.1.6, the finer details
of its definition, including the side condition on its application, depend on the logic we
are considering.

3.1.3 Relational theories

We present particular non-classical logics by extending (the appropriate) base system
��(� with a relational theory axiomatizing the properties of � and of the relations
�� in a Kripke model. Correspondence theory [227, 228] and known correspondence
results, e.g. [164, 192, 201], allow us to determine which possible axiom schemas
correspond to which semantic properties. As we observed in 2.1.2, some of these
properties can only be expressed using higher-order logic, but for other properties
first-order logic, or even fragments of it, is enough. Following our choice in 2.1.3, we
restrict our attention to properties axiomatizable using Horn relational rules, i.e. rules
of the form

�� �
�
� � � � �

�
� ! ! ! �� �

�
� � � � ���

�� �
�
� � � � �

�
�

where the ��	 are terms built from labels and function symbols. (Some properties of� �,
e.g. assoc1 and assoc2 below, can be expressed as Horn relational rules only after the
introduction of Skolem function constants; like for modal logics, cf. Proposition 2.1.8,
we can show that the introduction of such constants constitutes a conservative exten-
sion.) A Horn relational theory ��� � is a theory generated by a set of such rules.

Even with such a restriction, we are able to capture many families of common
propositional non-classical logics, including logics in the modal Geach hierarchy (�,
�, ��, ���� and��; cf. 2), and various relevance logics (e.g.	,�,� and; cf. 3.1.4).
For example, the modal axiom schema �� 
 ��� corresponds to the transitivity of
the accessibility relation, formalized by the Horn relational rule

�� + +� %
�� %

trans �

4If this restriction is not imposed, then the result is not sound for some logics, e.g. an (attempted) encoding
of intuitionistic implication collapses to classical implication, similar to what is shown to happen for Hilbert
systems in [84, 142], as remarked above.
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The axiom schemas of relevance logic � � � and �� � �� � ��� � �� �
�� � ��� correspond to identity (���� , � ��, formalized by iden) and associativity
(���+�%������ +  �� % � 
 ���� + % � ���� ���, formalized by assoc1 and
assoc2) for the compossibility relation:

� , � �
iden �� +  � % �

� + % � ��� +� %� �� �
assoc1

�� +  � % �
� � � ��� +� %� �� � �

assoc2 (3.22)

where � is a �–ary Skolem function constant.
For negation we give Horn rules that impose different behaviors of the � function.

For example, we can add the rules

� & ���
��2

��� & �
��3

� & ��
ortho1

�� & �
ortho2

to encode intuitionistic (��2), classical (��2 and ��3), or ortho (ortho1 and ortho2)
negation.

Tables 3.2 and 3.3 in 3.1.4 below list further axiom schemas of relevance logics,
together with the corresponding properties of the compossibility relation � and of the
� function, as well as the corresponding Horn rules.

Finally, corresponding to (3.15) and (3.16), for each � � we have �+� rules for the
monotony properties of rwffs:

�� �� � � � ���� �� ���� � � � �� � & ��

�� �� � � � ���� � ���� � � � ��
mon�����

�� �� � � � ���� �� �� & �

�� �� � � � ���� �
mon�����

where , � � ( � in the schematic rule mon�����.
Negation and monotony again raise the question of what exactly a base system (and

a base logic) should be. The rules we have just given can be seen as rwff complements
of the lwff rules given earlier. For instance, for an intuitionistic negation, i.e. where the
base system contains ���2, we need also the rule ��2, while for a classical negation,
i.e. with ���3, we need also ��2 and ��3; similarly, the mon�� rules complement
monl. Only by requiring these complementary rules can we establish desired proof-
theoretical results (see, e.g., the proof of Theorem 3.3.9). Thus it is convenient, on
pragmatic grounds, to assume that a base system ��(� is extended with a theory
��� � that includes these minimal relational rules (a characterization of the systems,
and logics, in which this complementarity is not satisfied, e.g. ���2 without ��2, or
���3 with only ��3, is out of the scope of this book).

Definition 3.1.8 The labelled ND system ���� � ��(����� � for the propositional
non-classical logic� is the extension of an appropriate base system ��(� with a given
Horn relational theory ��� �. �

Note that we employ the same notational convention as in 2: when the relational
theory ��� � contains Skolem function constants, then our language and rules must



3. LABELLED ND SYSTEMS FOR PROPOSITIONAL NON-CLASSICAL LOGICS 63

Table 3.1. The systems �����, ����� and �����

���� ��(� ��� � (includes at least)
����� rules for ����
������, #

monl mon�� rules (for �� and ��)
��� �� rules for ����
������, #

monl mon�� rules (for �� and ��)
���2 ��2

����� rules for ����
������, #
monl mon�� rules (for �� and ��)
���3 ��2, ��3

be extended to distinguish atomic and composite labels. As before, we will continue
using the meta-variables �, +, %, etc., although labels may now be built using Skolem
function constants.

Consider now the restricted language of Definition 3.1.7 (with the operators �, �,

, ��, ��, # and ��). Mirroring Prawitz [186, 187], in Table 3.1 we distinguish
three families of ND systems according to their treatment of (non-local) negation:
minimal, intuitionistic or classical; we make the distinction by considering the rules
for��, while Prawitz considers the rules for�.

The minimal system ����� is determined by a base system including monl (with
the appropriate restrictions) and introductionand elimination rules for local, e.g. (3.17),
and non-local operators, e.g. (3.18) and (3.19), and by a relational theory including,
at least, the mon�� rules, to complement monl.5 The intuitionistic system ��� ��
is obtained by extending ����� with ���2 and the complementary rule ��2, and
the classical system����� is obtained by extending ����� with ���3 and the
complementary rules ��2 and ��3. Alternatively, we can obtain ����� by extending
����� with���3 and ��3 (the derivation of���2 from these rules is straightforward).
Furthermore, we can extend�����with the rules ortho1 and ortho2 to formalize ortho
negation, where � � �� � ���. For each of these systems, we can then further extend
the theory ��� � with rules expressing properties of � and the relations to obtain
presentations of particular logics.

We conclude this section by generalizing Definition 2.1.11 and Fact 2.1.12; No-
tation 2.1.13 for derivations in modal logics also generalizes straightforwardly to
derivations in ��(� � ��� �.

Definition 3.1.9 A derivation of an lwff or rwff � from a set of lwffs � and a set of
rwffs � in a ND system ���� � ��(� � ��� � is a tree formed using the rules in
����, ending with � and depending only on � � �. We write ��� ����� � when �

5Note that, unlike Prawitz’s, our minimal system does not satisfy the inversion principle, since it contains
monl which is neither an introduction nor an elimination rule. Also, we do not enforce the restriction that
the conclusions of the elimination rules for �� or� are different from �� and �.
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Axiom schemas:

A1: �� �.

A2: � � � � �.

A3: � � � � �.

A4: �� � � �.

A5: � � � � �.

A6: � � �� � ��� �� � �� � �� � �� [or � � �� � ��� �� � �� � �].

A7: �� � �� � �� � ��� ��� � � ��.

A8: �� � �� � �� � ��� �� � � � ��.

Inference rules:

R1: � � � �
�

modus ponens �

R2: � �
� � �

adjunction �

R3:
�� � � � �

�� � ��� ��� ��
affixing �

along with their disjunctive forms, where if �� ! ! ! ��

�
is a rule, then its disjunctive

form is the rule � � �� ! ! ! � � ��

� � �
.

Figure 3.1. ��	��, a Hilbert system for 	�

can be so derived. A derivation of � in ���� depending on the empty set, ����� �, is
a proof of � in ����, and we then say that � is a ����-theorem. �

Fact 3.1.10 ��� ��������� � �� � �� � � � �� iff � ���� � �� � �� � � � ��. �

3.1.4 Examples of propositional non-classical logics

Our framework can be specialized to present large families of (fragments of and full)
non-classical logics. Among others, propositional modal and relevance logics. The
important, though relatively simple, case of modal logics is discussed at length in
2, albeit for a slightly different notation. Here we consider examples of relevance
logics, which, like modal logics, are traditionally [1, 2, 201] presented by using Hilbert
systems. For example, the axiom schemas and inference rules given in Figure 3.1
determine a Hilbert system ��	�� for the basic positive relevance logic	�, e.g. [188,
192, 199].
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��� ���
��� � �

��
��� � �

���
���

��� � �
���

���

���
��� � �

���
���

��� � �
���

��� � �

�����....
%��

�����....
%��

%��
��

�+��� ��� + %�....
%��

��� � �
��

���� � +�� �� + %
%��

��
��� � , � +

+��
monl

�� + % � , �
� + %

mon���� �� + % � , +
�� %

mon����

�� + % � , % 
� � + 

mon����
� , � �

iden

In��, + and % are different from � and each other, and do not occur in any assumption
on which ��� � � depends other than those listed.

Figure 3.2. The natural deduction system ��	��

Hilbert systems for other propositional relevance logics are obtained by extending
��	�� with axiom schemas and rules formalizing the behavior of the non-local op-
erators � and #. Examples of such axiom schemas and rules are given in Tables 3.2
and 3.3, where we also indicate the corresponding properties of the compossibility
relation � and of the � function. Note that most of these correspondences hold only
under the assumption of the postulates for ��	��. For example, 41 corresponds
to ���+�� , � + 
 ��� +�, which simplifies to ������ �� under the assumption
of identity ���� , � ��. Extensive lists of such correspondence results can be found
in [192, 201].

In Figure 3.2 we give a labelled ND system ��	�� for the logic 	�. ��	��
is an instance of a minimal base system, where � � � is defined as the binary
universal modal operator ���� associated with the ternary relation �, and which
we can extend with Horn rules formalizing properties of � and � to present other
propositional relevance logics. In Table 3.4 we give examples of labelled ND systems
for some common propositional relevance logics, together with the corresponding
Hilbert systems.
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Table 3.2. Some axiom schemas and inference rules of relevance logics and corre-
sponding properties of � and �

Name Axiom schema/Inference rule Property

41 � � �� � ��� � ��� � or � , � + 
 ��� +

(idempotence)

4�, �� � �� � �� � ��� ��� �� �� + % 
 �� � ��+� %

(transitivity)

4�� �� � ��� ��� � ��� �� � ��� �� � + % � 
 �� + ��%� �

(suffixing)

4�� �� � ��� ��� � ��� �� � ��� �� � + % � 
 �� � �+%� �

(associativity or prefixing)

4�� �� � �� � ���� �� � �� �� + % 
 �� � + + %

(contraction)

4�� ��� � ��� ��� � �� , �

(specialized assertion)

4�� � � ��� � ��� �� �� + % 
 � +� %

(commutativity or assertion)

4�. � � ��� �� �� + % 
 �� , � % �� , + %�

or � , , � �� , , �� (mingle)

4�/ � � �� � �� � , , � or �� + % 
 � , + %

(thinning)

4�0 � � �� � �� �� + % 
 � , � %

(positive paradox)

� � � #�
� � #�

contraposition � , � + 
 � , +� ��

(antitonicity)

4�1 �� � #��� �� � #�� �� + % 
 �� %� +�

(inversion)

4�, ##� � � ��� � � (period two)

4�� � � #� � , ,�, (excluded middle)

�� 	 
 �  ���� ����	 
 � � ��� � and �� 	 �
��  ���� ����
 � � � �	� �.

All the properties of � are outermost universally quantified, e.g. the property corresponding to
��� is in fact �	�
������ 	 
 �  � �� 
 �	�� �, which by the above definitions is equivalent
to �	�
��������	 
 � � �� �� � ����� 	 � � � �
 � ���, or to �	�
��������	 
 � �
��� � � �����	 � � �� 
 � ��� by prenexing quantifiers.

Using the definition of the partial order we could write 	 � 
 for � � 	 
.
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Table 3.3. Some axiom schemas and inference rules of relevance logics and corre-
sponding Horn rules

Name Horn relational rules

41 ��� �
idem or � , � +

�� � +
idem

4�,
�� + %

� � + ����� +� %�
trans1 and

�� + %
�� ����� +� %� %

trans2

4��
�� +  � % �

� � % ����� +� %� �� �
suff1 and

�� +  � % �
� + ����� +� %� �� � �

suff2

4��
�� +  � % �

� + % ����� +� %� �� �
assoc1 and

�� +  � % �
� � ����� +� %� �� � �

assoc2

4��
�� + %

�� + ����� +� %�
cont1 and

�� + %
� ����� +� %� + %

cont2

4�� �� , �
specassert

4�� �� + %
� + � %

comm

4�/ � , , �
thin or �� + %

� , + %
thin

4�0 �� + %
� , � %

pospar

� � , � +
� , +� ��

anti

4�1 �� + %
�� %� +�

inv

4�, � , � ���
��2 and � , ��� �

��3

4�� � , ,�,
exmid

Where the ��’s are Skolem function constants. Note that the property of � corresponding to the ‘mingle’
axiom ��� cannot be expressed by a Horn relational rule but by a first-order rule; we return to this at the
end of this chapter when we discuss the logic ��.
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Table 3.4. Extensions of 	�: Hilbert systems and labelled ND systems for some
propositional relevance logics

Logic � Hilbert system ���� Labelled ND system ����

�� ��	�� � �4���4��� ��	�� � �suff1� suff2� assoc1� assoc2�

�� ����� � �4��� ����� � �cont1� cont2�

�� ����� � �4��� ����� � �specassert�

� ����� � �4��� ����� � �comm�

��� ����� � �4�/� ����� � �thin�

5� ���� � �4�/� ���� � �thin�

� ������ � �4��� � ������ � �comm�

	 ��	�� � �4�,��� ��	�� � �#��#�����3� ��2� ��3� anti�

 ��	� � �4���4���4��� ��	� � �suff1� suff2� cont1� cont2� comm�

4�1� inv�

� ��	�� � �4���4��� � ��	�� � �#��#�����3� ��2� ��3�

4���4�1�4�,� suff1� suff2� cont1� cont2� comm� inv�

# ��	� � �4��� ��	� � �exmid�

� ��� � �4�/� ��� � �thin�

Note that we have chosen the ‘economical’ system���� given by [2, 200], where, e.g., �	 is redundant as
it can be derived using ��� and ��; similarly, in ���� we can trivially derive the rule anti using inv, and,
albeit less trivially, the rule idem using identity and contraction, e.g.

� � 	 	
iden

� ���� � 	 � 	� 	 	
cont2

� � 	 	
iden

� � 	 ���� � 	 � 	�
cont1

�		 	
mon����

�

Alternative, equivalent, axiomatizations are possible, for � and other logics [1, 2, 188, 192, 199]. Note also
that �� is positive intuitionistic logic, � is ‘basic’ classical logic and � is ‘full’ classical logic.

We postpone proofs that our systems are what we claim they are, i.e. equivalent
to the corresponding Hilbert systems, until 3.2, where we show the soundness and
completeness of our presentations with respect to the corresponding Kripke semantics
(proofs of soundness and completeness of Hilbert systems can be found in various
textbooks, e.g. [201]).

Here we are interested rather in comparing the modularity of the two presentations.
As an example, we compare our system ��� with the Hilbert system ��� and show
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the advantages of our approach in the modular way we present the relevance logic 
so that it can be extended to obtain (positive and full) intuitionistic and classical logic.

Routley and Meyer [200] show that there is a problem with Hilbert systems for
relevance logics: ���� is a subsystem of the system ��5�� for positive intuitionistic
logic 5�, but ��� is a subsystem only of the system ���� for ‘full’ classical logic �.
That is, the Hilbert system ��5� for ‘full’ intuitionistic logic 5 cannot be modularly
obtained by simply adding new axioms to ���; ��5� can be obtained from���, but
only in a specialized fashion, if relevant negation is rejected in favor of an intuitionistic
one [200, p. 227].

Now consider our systems, and note that since ##� � � is an axiom of ���, we
have ‘based’��� on the classical version of��(� with���3. As shown in Table 3.4,
a ND system ��5�� for positive intuitionistic logic 5� is obtained from ���� by
adding the rule

� , , �
thin

corresponding to the (intuitionistically valid) ‘thinning’ axiom schema�� �� � ��,
so that the ternary � reduces to a binary partial order (in fact to the usual accessibil-
ity relation of Kripke models for intuitionistic logic), and � reduces to intuitionistic
implication. However, extending ��� with the rule thin yields classical logic: in
Example 3.1.12 below we show that we are then able to prove � , � ,, so that, essen-
tially, all the worlds collapse; i.e. � � �� � ���, � reduces to 
, and # to � . This
should not come as a surprise, since ��� contains, like ���, a classical treatment
of negation (because of the axiom schema 4�, and the corresponding rules���3, ��2
and ��3). That is, with reference to Table 3.1, we have ��� � ����. But Table 3.1
also tells us that this problem can be naturally overcome in our setting. To restore the
modularity of the extensions and obtain a ND system ��5� for full intuitionistic logic
5, we just need to consider the system ����, intuitionistic ���, i.e. ��� with
an intuitionistic treatment of negation, which we obtain from ��� by substituting
���3 with ���2 and deleting ��3. Indeed, ���� is an intermediate system between
���� and ���, i.e. ���� ) ���� ) ���, and we can extend it with thin to
obtain full intuitionistic logic in a modular way.

Proposition 3.1.11 Adding the rule thin to ���� results in ��5�. �

This follows immediately by showing that� reduces to a partial order, and that relevant
�, #, �� and the corresponding relevance rules reduce to intuitionistic �, #, � and
the corresponding intuitionistic rules.

We conclude this section with some examples of derivations, the Isabelle formal-
izations of which are given in 5.2.1.

Example 3.1.12 We begin by showing that using the antitonicity rule we can derive
a labelled equivalent of a contraposition rule ‘weaker’ than �, i.e. ‘if � � � then
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#� � #�’:6

���#���
,��� � �+�����

�� , � +��

� , +� ��
anti

����
��

%���
#�

+�#� #��

,�#� � #� ���

� (3.23)

Using the inversion rule inv and the rule ��2, we can prove the axiom schema for
contraposition 4�1, and, similarly, derive a labelled equivalent of the contraposition
rule �:

���� � #��� �������

��+ % ��� �� , � +��

�� % �
mon����

���� %�
inv

%��#�
��

�%���� � , % %��
��2

%����
monl

����
#�

��#� #��

+�� � #� ���

,��� � #��� �� � #��
���

�

We can prove 4�, using the ‘classical’ rules ���3 and ��3, i.e.

���##��� �� , � +��

+�##�
monl

�+��#���

%���
#�

+���� ���3� � , +�� +
��3

+��
monl

,�##� � � ���

� (3.24)

Finally, we show that when we extend ��� with thin we can prove � , � ,:

�
� , � ,�

� ,� ,� ,�
idem

� ,� ,�� ,��
inv

� , ,�� ,
��3

� ,� ,�� ,
mon����

� , , ,��
��2

� ,� , ,
mon����

� , ,� ,
comm

� , � ,
mon����

where � is

� , , ��
thin

� , ��� ,�
anti

� , � ���
��2

� , � ,�
mon����

�

�

6As discussed in [188, 192], adding this rule together with axiom schemas for the De Morgan laws,
�� � �� � �� � �� and �� � �� � �� � ��, yields �����, an axiomatization of ��,
which is an intermediate logic between �� and �. ���� can then be obtained from����� by adding the
axiom schema �� �, making the De Morgan laws redundant.
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3.2 SOUNDNESS AND COMPLETENESS

In this section we show that every non-classical system ���� obtained by extending
��(� with a Horn relational theory ��� � is sound and complete with respect to the
corresponding Kripke semantics. For notational simplicity, we consider again the
restricted language of Definition 3.1.7 (with the operators �, �, 
, � �, ��, # and
��); the results generalize straightforwardly to unrestricted languages.

Like for modal logics, the explicit embedding of properties of the models and the
capability of explicitly reasoning about them, via rwffs and relational rules, require us
to consider soundness and completeness also for rwffs, where we show that � �����

�� � �� � � � �� iff � � �� � �� � � � ��.

Definition 3.2.1 The system ���� � ��(� � ��� � is sound iff

(i) � ����� �� � �� � � � �� implies � � �� � �� � � � ��, and

(ii) ��� ����� ��� implies ��� � ���.

���� is complete iff the converses hold, i.e. iff

(i) � � �� � �� � � � �� implies � ����� �� � �� � � � ��, and

(ii) ��� � ��� implies ��� ����� ���. �

By Lemma 3.2.3 and Lemma 3.2.11 below, we have:

Theorem 3.2.2 ���� � ��(� � ��� � is sound and complete. �

3.2.1 Soundness

We generalize Lemma 2.2.6.

Lemma 3.2.3 ���� � ��(� � ��� � is sound.

Proof Throughout the proof let � � ��� �������� ���� be an arbitrary model
for ����. We prove (i) by induction on the structure of the derivation of the rwff
�� � �� � � � �� from �. The base case, �� � �� � � � �� 	 �, is trivial, and there is one
step case for each Horn relational rule of ��� �. We treat only one example, which
involves Skolem functions; soundness of the other rules follows similarly. 7 Consider
applications of the rules assoc1 and assoc2 for a ternary relation � �,

��
�� � + 

��
��  % �

�� + % � ��� +� %� �� �
assoc1 and

��
�� � + 

��
��  % �

�� � � ��� +� %� �� � �
assoc2 �

7Recall that our models do not contain functions corresponding to possible Skolem functions in the signature.
When such constants are present the appropriate Skolem expansion of the model is required [230, p. 137];
for example, for associativity the signature of the relational theory is conservatively extended with a 
–ary
Skolem function constant � , and � is also added to the model. As for propositional modal logics, we do not
interpret labels, but simply identify them with the identically named worlds.
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where �� is the derivation �� ����� �� � + , and �� is the derivation �� �����
��  % �, with � � �� � ��. Assume that �� is associative and that �� �. Then
from the induction hypotheses we obtain �� �� � +  and �� ��  % �, and we
conclude �� �� + % � ��� +� %� �� � and �� �� � � ��� +� %� �� � �.

We prove (ii) by induction on the structure of the derivation of ��� from � and �.
The base case, ��� 	 �, is trivial, and there is one step case for each inference rule
of ��(�. We treat only applications of ���, ���, ���, ���, #�, #�, ���2 and
���3; soundness of the rules for local operators is straightforward, and soundness of
monl with respect to Property 3.1.6 is immediate by the restriction on its application.

Consider an application of the rule ���,

������� ! ! ! ����������� ��
� � �� � � � ���

��
�����

������ � � � ��
���

�

where �� is the derivation ����� ����� �����, with �� � � � ������� � � � �
���������� and �� � � � ��� � �� � � � ���. The induction hypothesis is ���
�� ����� ����� implies ����� � �����. Assume �� �����. Considering
the restriction on the application of ���, we can extend � and � to �� � � �
�������� � � � � �

�
��������� and �� � �� ��� � ��� � � � �

�
�� for arbitrary ���� � � � � �

�
� ��

�����, and assume �� �� and �� ��. Since �� �� implies �� �� and �� ��

implies �� ��, from the induction hypothesis we obtain �� ������ for arbi-
trary ���� � � � � �

�
� �� ����� such that �� �� � ��� � � � �

�
� and �� ������� � � � ��

�

����������. We conclude �� ������ � � � �� from the definition of ��.
Consider an application of the rule ���,

��
������ � � � ��

��
����� ! ! !

����

���������

��

�� � �� � � � ��
�����

���
�

where �� is the derivation ����� ����� ������ � � � ��; �� is the derivation
����� ����� �����, for � � � � �� �; �� is the derivation �� ����� �� � �� � � � ��;
� �

�
������� �� and � �

�
�������. Assume �� �����. Then, from the induc-

tion hypotheses we obtain �� ������ � � � ��, �� ������ � � � ��
� ���������, and

�� �� � �� � � � ��, and thus �� ����� from the definition of ��.
Consider an application of the rule ���,

��
����� ! ! !

��

�����

����

�� � �� � � � ��
������ � � � ��

���
�

where �� is the derivation ����� ����� �����, for � � � � �; ���� is the derivation
���� ����� �� � �� � � � ��; � �

�
����� �� and � �

�
���������. Assume ��

�����. Then, from the induction hypotheses we obtain �� ������ � � � ��
� �����

and �� �� � �� � � � ��, and thus �� ������ � � � �� from the definition of ��.
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For ���, let � be the derivation

��
������ � � � ��

������� ! ! ! ������� ��
� � �� � � � ���

��
+��

+��
���

�

That is, � is ��� ����� +��, where, by the restriction on ���, the labels ��� � � � � ��
do not occur in ����� and are different from � and +. Moreover, � � is the derivation
��� ����� ������ � � � ��, and �� is the derivation � � ������� � � � � �������� �
��� � �� � � � ��� ����� +��. By the induction hypothesis for��, we have that��� ��

������ � � � ��, and thus, from the definition of ��, there exist +�� � � � � +� such
that �� +����� � � � ��

� +���� and �� �� � +� � � � +�. We can then extend � and
� to �� � � � �������� � � � � �

�
����� and �� � � � ��� � ��� � � � �

�
�� for arbitrary

���� � � � � �
�
� �� �����, and from the induction hypothesis for �� we conclude ��� ��

+��.
Consider an application of the rule #�,

������
��
+���
��#�

#�
�

where �� is the derivation ���� ����� +���, with �� � � � ������. The induction
hypothesis is ���� ����� +��� implies ���� � +���. We assume �� ����� and
prove �� ��#�. Since �� +���, from the induction hypothesis we obtain �� ��,
and therefore �� ������. We conclude �� ��#� from the definition of ��.

Consider an application of the rule #�,

��
��#�

��
����

+���
#�

�

where �� and �� are the derivations ����� ����� ��#� and ����� ����� ����, with
� � �� � �� and � � �� � ��. The induction hypotheses are ����� ����� ��#�
implies ����� � ��#�, and ����� ����� ���� implies ����� � ����. Assume
�� �����. Then, from the induction hypotheses we obtain �� ��#� and �� ����,
and thus �� +��� from the definition of ��.

Consider an application of the rule ���2,

��
+���
���

���2
�

where �� is the derivation ��� ����� +���. The induction hypothesis is ��� �����

+��� implies ��� � +���. Since �� +���, from the induction hypothesis we obtain
�
� �����, and thus we conclude that ��� � ���.

For ���3, consider

���#��
��
+���
����

���3
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where �� is the derivation ���� ����� +���, with �� � � � ���#��. The induction
hypothesis is ���� ����� +��� implies ���� �� +���. We assume �� ����� and
prove�� ����. Since �� +���, from the induction hypothesis we obtain �� ��, and
therefore �� ���#��. We conclude �� ���� from the definition of ��. �

3.2.2 Completeness

Completeness follows by a Henkin-style proof, where a canonical model

�� � ��� � �� ���� ���� � �� ����

is built to show the contrapositives of the conditions in Definition 3.2.1, i.e.

� ����� �� � �� � � � �� implies � �
�

�

�� � �� � � � �� �

and

��� ����� ��� implies ��� �
�

�

��� �

In standard completeness proofs for ‘unlabelled’ non-classical logics (with respect to a
Kripke-style semantics), a counter-model for underivable formulas is built by defining
a notion of maximality for sets of formulas, and then using an extension result (such as
the Lindenbaum Lemma, the Zorn Lemma or the Belnap Extension Lemma, e.g. [77])
to show that every set of formulas is contained in some maximal set; the canonical
model is then obtained by repeated applications of the extension lemma. There are
several possible definitions of maximality that can be considered, depending on the
logic. For instance, maximality can be defined in terms of consistency (as is usually
done, and as we did in 2.2.2, for propositional modal logics), in terms of notions
weaker than consistency for paraconsistent logics such as relevance logics, or we
can simply build the canonical model by extending disjoint ‘theory – counter-theory
pairs’ [2, 77, 80].

The latter approach is more general than the other ones as it does not rely on negation
and thus applies also to positive fragments. We take here a similar approach, but
instead of introducing counter-theories, we start by defining what it means for a proof
context ����� to be maximal with respect to an underivable lwff ���. Then, given
the presence of labelled formulas and explicit assumptions on the relations between
the labels, i.e. the rwffs in �, we modify the Lindenbaum Lemma (see Lemma 3.2.6
below) to extend ����� to a single proof context ������� maximal with respect to
���, where maximality is ‘globally’ checked also against the additional assumptions
in �. The elements of�� are then built by partitioning�� and �� with respect to the
labels, and the relations are defined by exploiting the information in � �. Therefore
only one application of the extension lemma is needed, in that we simultaneously build
all elements of�� . Moreover, and most importantly, our proof is independent of the
details of the logic �, since the same procedure applies to any fragment of any logic.



3. LABELLED ND SYSTEMS FOR PROPOSITIONAL NON-CLASSICAL LOGICS 75

Definition 3.2.4 For any system ���� � ��(� � ��� �, let ����� be the deductive
closure of � under ����, i.e.

����� ���� ��� � �� � � � �� � � ����� �� � �� � � � ��� �

�

Like for propositional modal logics, note that, by Fact 3.1.10,

����� � ��� � �� � � � �� � � ���� � �� � �� � � � ���,

��� ����� � iff ������� ����� �, and

����� might be empty when � is empty.

Definition 3.2.5 A proof context ����� is maximal with respect to ��� iff

(i) � � �����, and

(ii) +�� �	 ����� iff � � �+����� ����� ���. �

Note that, when ����� is maximal with respect to ���, both ��� �	 ����� and
��� ����� ���. Moreover, +��� �	 ����� and ��� ����� +��� for any +, for
otherwise ��� ����� ���. Also note that ��� ����� +�� iff ������� ����� +��, and
that � ����� �� � �� � � � �� iff ����� ����� �� � �� � � � ��.

In the Lindenbaum lemma for first-order logic, a maximally consistent set of for-
mulas is inductively built by adding for every formula ��* � a witness to its truth,
namely a formula * �%�� for some new constant %. A similar procedure applies here
in the case of existential non-local operators: if the addition of 
�� ��� � � � �� does
not yield a derivation of ���, then we also add ������ � � � � ����� and �� 
 �� � � � ��,
for some new ��� � � � � ��, which act as witness worlds to the truth of 
����� � � � ��.
This ensures that the proof context ������� is maximal with respect to ���, as shown
in Lemma 3.2.6 below. As a comparison, recall from 2.2.2 that in the standard com-
pleteness proof for unlabelled propositional modal logics one shows instead that if

 	 �� and ��

�


���, then, by the extension lemma, �� also contains a world

� accessible from 
 that serves as a witness to the truth of 
���, i.e. ��

�


���.

Lemma 3.2.6 If ��� ����� ���, then ����� can be extended to a proof context
������� that is maximal with respect to ���.

Proof We first extend the language of ���� with infinitely many new constants for
witness worlds. Systematically let � range over the new constants for witness worlds,
and 
 range over labels (including � and ,) and over the new constants; � and 
 may
be subscripted. Let &�� &�� � � � be an enumeration of all lwffs in the extended language.
Starting from ������� � �����, we inductively build a sequence of proof contexts
by defining ����������� as follows:

if �� � �&������� ����� ���, then ����������� � �������

if �� � �&������� ����� ���, then
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– if &��� is 
����� � � � ��, then we add witnesses to its truth, i.e. for ��� � � � � ��
�� ��� � �
����� � � � �������,

���� � �� � �
����� � � � ��� ������ � � � � ������
���� � �� � ��

�
 �� � � � ���

– if &��� is not 
����� � � � ��, then ����������� � ��� � �&��������

Every ������� is such that ����� ����� ���. To show this we show that

if ����� ����� ��� then ��������� ����� ��� �

The only non-trivial case is the addition of witnesses to the truth of 
�� ��� � � � ��.
Suppose that

�� � �
��
��� � � � ��� ������ � � � � ��������� � ��

� 
 �� � � � ��� ����� ���

where ��� � � � � �� �� ��� ��
����� � � � �������. Then we can apply���, and thus

�� � �
��
��� � � � ������ ����� ��� �

Contradiction.
Now define

�� �
�
���

�� and �� �
�
���

�������� �

Then, ����� 	 ������� and ��� �	 �������. Moreover, ������� is maximal
with respect to ���. Condition (i) in Definition 3.2.5 is satisfied by definition of
��, and we show that condition (ii) holds as well. �� � �+������

����� ���
implies +�� 	 �� by construction. For the converse, assume that +�� 	 ��. If
����+������ ����� ���, then, since ����� ����� +��, by transitivity of derivations
we have that ����� ����� ���. Contradiction. �

When � ����� �� � �� � � � ��, then we simply extend � to �� � �����, so
that �� � �� � � � �� �	 ��, since by definition of the deductive closure �� �����
�� 

� � � � 
� iff �� 

� � � � 
� 	 ��.

The following lemma states some properties of a proof context �� ����� maximal
with respect to ���.

Lemma 3.2.7 Let ������� be maximal with respect to ���. Then we have:

(i) �� ����� �� � �� � � � �� iff �� � �� � � � �� 	 ��.

(ii) ����� ����� 
�� iff 
�� 	 ��.

(iii) 
����� � � � �� 	 �� iff �� 

� � � � 
� 	 �� and 
���� 	 �� and ... and

�������� 	 �� imply 
���� 	 ��, for all 
�� � � � � 
�.

(iv) 
����� � � � �� 	 �� iff �� 

� � � � 
� 	 �� and 
���� 	 �� and ... and

���� 	 ��, for some 
�� � � � � 
�.
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(v) 
�#� 	 �� iff 
��� �	 ��.

(vi) 
��� � �� 	 �� iff 
��� 	 �� and 
��� 	 ��.

(vii) 
��� � �� 	 �� iff 
��� 	 �� or 
��� 	 ��.

(viii) 
��� 
 �� 	 �� iff 
��� 	 �� implies 
��� 	 ��.

Proof The proof of (i) is straightforward.
(ii) Suppose that ����� ����� 
��. If 
�� �	 ��, then, since ������� is maximal

with respect to ���, ����
������ ����� ���, and thus, by transitivity of derivations,
����� ����� ���. Contradiction. The converse holds by definition.

(iii) Suppose that 
����� � � � �� 	 ��. Then ����� ����� 
����� � � � �� by
(ii). Now if �� 

� � � � 
� 	 �� and 
���� 	 �� and ... and 
�������� 	 ��,
we conclude 
���� 	 �� by (i), (ii) and ���. For the converse, assume that

����� � � � �� �	 ��, and prove that there exist
�� � � � � 
� such that�� 

� � � � 
�

	 �� and 
���� 	 �� and ... and 
�������� 	 �� and 
���� �	 ��. By (i) and (ii),
the assumption yields

�� � �
����� � � � �����
� ����� ��� �

Now if for all 
�� � � � � 
�,

�� � �
����� � � � � 
�����������
� � ���

� � � � 
�� ����� 
���� �

then, by���, we have ����� ����� 
����� � � � ��, and thus ����� ����� ��� by
transitivity of derivations. Contradiction.

(iv) Suppose that �� 

� � � � 
� 	 �� and 
���� 	 �� and ... and 
��������

	 �� imply 
���� �	 ��, for all 
�� � � � � 
�. Then, by (i) and (ii), we have

�� � �
����� � � � � 
��������� � �
�������
� � ��� 

� � � � 
�� ����� ���

for all 
�� � � � � 
�. Now, if 
����� � � � �� 	 ��, then, by (ii), ����� �����

����� � � � ��, and thus����� ����� ��� by���. Contradiction. For the converse
suppose that 
����� � � � �� �	 ��. Then

�� � �
����� � � � �����
� ����� ��� �

If for some 
�� � � � � 
�, �� 

� � � � 
� 	 �� and 
���� 	 �� and ... and 
���� 	
��, then, by (i), (ii) and ���, we have ����� ����� 
����� � � � ��, and thus
����� ����� ���, by transitivity of derivations. Contradiction.

(v) Suppose that 
�#�� 	 ��. If also 
���� 	 ��, then, by (ii) and #�, we
have ����� ����� +���, and thus ����� ����� ���. Contradiction. For the converse
suppose that 
�#�� �	 ��. Then

�� � �
�#�����
� ����� ��� �

If 
���� �	 ��, then �� � �
�������� ����� ���, and thus ����� ����� ���.
Contradiction.

The proofs of (vi) and (vii) are straightforward, and we treat only (vii) as an example.
Suppose that 
��� � �� 	 ��. If 
��� �	 �� and 
��� �	 ��, then

�� � �
������
� ����� ��� and �� � �
������

� ����� ��� �
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and thus ����� ����� ��� by (ii) and ��. Contradiction. For the converse suppose
that 
��� 	 �� for � � � or � � �. If 
��� � �� �	 ��, then

�� � �
��� � �����
� ����� ��� �

By (ii) and ��� for � � � or � � �, the assumption yields ����� ����� 
��� � ��,
and thus ����� ����� ���, by transitivity of derivations. Contradiction.

(viii) Suppose that 
��� 
 �� 	 �� and 
��� 	 ��. If 
��� �	 ��, then

�� � �
������
� ����� ��� �

By (ii) and
�, the assumptions yield ����� ����� 
���, and thus ����� ����� ���
by transitivity of derivations. Contradiction. For the converse suppose that 
�� � 	 ��

implies 
��� 	 ��. If 
��� 
 �� �	 ��, then

�� � �
��� 
 �����
� ����� ��� �

By (ii) and
�, the assumptions yield����� ����� 
��� 
 ��, and thus����� �����
��� by transitivity of derivations. Contradiction. �

We can now define the canonical model�� � ��� � �� ���� ���� � �� ����.

Definition 3.2.8 Given a proof context ������� maximal with respect to ���, we
define the canonical model�� for the system ���� as follows:

�� � �
 � 
 � ��������, where �� � , and 
�� � 
�;

�
�
�� � � � � 
�� 	 ��� iff �� 

� � � � 
� 	 ��, and
�
�
�� � � � � 
�� 	 ��� iff �� 

� � � � 
� 	 ��;

���
� #� � � iff 
�# 	 ��. �

The standard definition of��� , i.e.

�
�
�� � � � � 
�� 	 �
�� iff

��� � �
��� � � � �� 	 
� �� 	 
�� � � � � ���� 	 
���� � 
� � (3.25)

is not applicable in our setting, since (3.25) does not imply ����� �� 

� � � � 
�.
We would therefore be unable to prove completeness for rwffs, since there would
be cases where ����� �� 

� � � � 
� but �
�
�� � � � � 
�� 	 ��� and thus ��

�

�� 

� � � � 
�. Hence, we instead define �
�
�� � � � � 
�� 	 ��� iff�� 

� � � � 
�

	 ��; note that therefore �� 

� � � � 
� 	 �� implies (3.25). An analogous ob-
servation holds for ��� . As a further comparison with the standard definition of
the canonical model, note that the label 
 can be identified with the set of formulas
�� � 
�� 	 ���. Moreover, we immediately have:

Fact 3.2.9 �� 

� � � � 
� 	 �� iff �� ��
�

�� 

� � � � 
�. �
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The deductive closure of �� ensures not only completeness for rwffs, as shown in
Lemma 3.2.11 below, but also that the conditions on ��� and ��� are satisfied, so
that �� is really a model for ����. As an example, we show that if ���� contains
assoc1 and assoc2 for a ternary relation ��, then ��� is associative. Consider an
arbitrary proof context �����, from which we build �� . Assume ��� +� � 	 ���

and �� %� �� 	 ��� . Then �� � +  	 �� and ��  % � 	 ��. But �� is deductively
closed, and thus �� + % � ��� +� %� �� � 	 �� and �� � � ��� +� %� �� � � 	 ��, by
assoc1 and assoc2. Hence, there exists a world  such that �+� %� � 	 ��� and
��� � �� 	 ��� , and��� is indeed associative.

By Lemma 3.2.7 and Fact 3.2.9, it follows that:

Lemma 3.2.10 
�� 	 ������� iff ����� ��
�


��.

Proof We proceed by induction on the grade of 
��, i.e. on the number of local and
non-local operators that occur in �, and we treat only the step case where 
�� is

����� � � � ��; the other cases follow analogously.

For the left-to-right direction, assume that 
����� � � � �� 	 ��. Then, by
Lemma 3.2.7, �� 

� � � � 
� 	 �� and 
���� 	 �� and ... and 
�������� 	 ��

imply 
���� 	 ��, for all 
�� � � � � 
�. Fact 3.2.9 and the induction hypotheses
yield ����� ��

�


���� for all 
�� � � � � 
� such that �� ��
�

�� 

� � � � 
�

and ����� ��
�


���� and ... and ����� ��
�


��������, i.e. ����� ��
�


����� � � � �� from the definition of truth.
For the right-to-left direction, assume that 
����� � � � �� �	 ��. Then, by

Lemma 3.2.7, we have ��

� � � � 
� 	 �� and 
���� 	 �� and ... and 
��������

	 �� and 
���� �	 ��, for some 
�� � � � � 
�. Fact 3.2.9 and the induction hypotheses
yield �� ��

�

�� 

� � � � 
� and ����� ��
�


���� and ... and ����� ��
�


�������� and �����
�
�

�


����, i.e. �����
�
�

�


����� � � � �� from the
definition of truth. �

We can now finally show that:

Lemma 3.2.11 ���� � ��(� � ��� � is complete.

Proof (i) If � ����� �� � �� � � � ��, then �� � �� � � � �� �	 ��, and thus ��
�
�

�

�� � �� � � � ��, by Fact 3.2.9. Hence, � �
�

�

�� � �� � � � ��.
(ii) If ��� ����� ���, then we extend ����� to a proof context ������� maximal

with respect to ���. Then, by Lemma 3.2.10, �����
�
�

�

���, and thus ��� �
�

�

���. �

3.2.3 Positive fragments and interrelated relations

In 3.1 we argued that an unrestricted monl rule produces an unsound system in which
intuitionistic and classical implication are equivalent, and that soundness is restored
when applications of monl are restricted to persistent formulas. We show now that
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the soundness and completeness of our systems (Theorem 3.2.2) depends on another
restriction we imposed in 3.1, namely that there are no a priori assumptions on the
interrelationships of the different relations associated with universal and existential
operators. If this restriction is withdrawn and the relations are interrelated, e.g.� � �
��, then incompleteness may arise.

To illustrate this, we consider positive fragments of (classical) modal logics. With-
out negation we cannot define� in terms of� and derive the rules for�. Indeed, there
is no a priori reason why � and � must be related at all. Therefore, we characterize
the positive fragments containing both � and� by the interrelationships between � �

and ��, which are specified by a (possibly empty) collection of the Horn relational
rules

�� �

�� �
���� and

�� �

�� �
���� �

Using these rules, we can prove theorems that relate � and �. For instance, using
���� we can prove

���� � ��� 
 ��� ��� � (3.26)

and using ���� we can prove

���� 
 ��� 
 ��� 
 �� � (3.27)

That these theorems are provable is not surprising: correspondence theory provides a
means of showing that (3.26) corresponds to the semantic condition �� � �� and
that (3.27) corresponds to�� � ��.

Now consider

���� � �� 
 ��� � ��� � (3.28)

which corresponds to �� � ��, and therefore is true in the models satisfying this
property. By analysis of normal form proofs, see 3.3, we can show that (3.28) is
not provable using ����.8 Hence, positive modal systems where �� and �� are not
independent but are related by ���� are incomplete with respect to Kripke models
����������� where�� � ��. This illustrates that:

Theorem 3.2.12 If the relations ��’s associated with the operators are not indepen-
dent, then there are positive fragments of (our ND systems for) non-classical logics
that are incomplete with respect to the corresponding Kripke semantics. �

A similar problem holds for Hilbert-style presentations, as pointed out by Dunn in [80];
he ensures the completeness of the ‘absolutely’ positive fragment of modal logic
(i.e. without negation and implication) by extending his Hilbert-style system with
postulates equivalent to (3.26) and (3.28). Similarly, we could restore completeness

8This is because the proof of (3.28) requires properties of classical negation. Thus, instead of ‘strengthening’
the deduction system, we could try to restore completeness by adopting a semantics with a ‘weaker’ negation.
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in our setting by giving up our claim to a fixed base system extended with relational
theories, and adding a rule directly encoding (3.28), e.g.

���� � �� 
 ��� ����
�

However, such a rule is not in the (philosophical) spirit of natural deduction since it
does not contribute to the theory of meaning of the operators. Moreover, it complicates
proof normalization arguments.

3.3 NORMALIZATION AND ITS CONSEQUENCES

In this section we generalize the results of 2.3 to show that each derivation of an lwff
in ��(� � ��� � can be reduced to a normal form that does not contain unnecessary
detours and satisfies a subformula property.

There are two possible forms of detours in a derivation and we eliminate them by
the reduction operations defined below. For brevity, we consider again the restricted
language of Definition 3.1.7 (with the operators �, �, 
, ��, ��, # and ��), and
we only show the part of the derivation where the reduction actually takes place; the
missing parts remain unchanged.

The first, and simplest, form of detour is the application of an elimination rule
immediately below the application of the corresponding introduction rule. That is,
as we observed for propositional modal logics, if an lwff is introduced and then
immediately eliminated, then we can avoid introducing it in the first place. Formally,
Definition 2.3.3 generalizes straightforwardly to ��(� � ��� � as follows:

Definition 3.3.1 Any lwff ��� in a derivation is the root of a tree of rule applications
leading back to assumptions. The lwffs in this tree other than ��� we call side lwffs
of ���. A maximal lwff in a derivation is an lwff that is both the conclusion of an
introduction rule and the major premise of an elimination rule. �

Maximal lwffs are removed from a derivation by (finitely many applications of) proper
reductions. There is one proper reduction for each operator. The proper reductions for
universal and existential non-local operators are as follows, where the substitutions are
allowed by the side conditions on ��� and ���.

Proper reduction for ��:

������� ! ! ! ����������� ��
� � �� � � � ���

�
�����

������ � � � ��
���

��
+���� ! ! !

����

+��������

��

�� � +� � � � +�
+����

���

�

��
+���� ! ! !

����

+��������

��

�� � +� � � � +�
��+����� � � � � +�����

+����

�
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Proper reduction for ��:

��
����� ! ! !

��

�����

��

�� � �� � � � ��
������ � � � ��

���

�+����� ! ! ! �+����� ��
� � +� � � � +��

�
%��

%��
���

�

��
����� ! ! !

��

�����

��

�� � �� � � � ��
�����+�� � � � � ���+��

%��

�

The proper reduction for 
 is the same as the reduction (2.5), while the proper
reductions for negation and for local operators can be easily adapted from the standard
‘unlabelled’ reductions, e.g. for negation:

������
��
+���
��#�

#� ��
����

+���
#�

�

��
����
��
+���

�

Let us call indirect rules the rules ���, ��, ���2 and monl. The second form
of detour arises when the conclusion of an indirect rule is the major premise of an
elimination rule. Consider the different cases. At applications of � ��, occurrences
of the same lwff appear immediately below each other, and this can constitute a detour
in which lwffs that potentially interact in a proper reduction are too far apart. The
same problem holds for applications of ��, and a similar one for applications of monl.
Furthermore, when the conclusion of���2 is the major premise of an elimination, then
we can easily show that the elimination is an unnecessary inference.

To remove this second form of detour we permute the order of application of indirect
and elimination rules. Formally we define:

Definition 3.3.2 A permutable lwff in a derivation is an lwff that is both the conclusion
of an indirect rule and the major premise of an elimination rule. �

Permutable lwffs are removed from a derivation by (finitely many applications of)
permutative reductions. The difference with respect to Prawitz [186, 187] is twofold.
First, we explicitly define ���2 to be an indirect rule, since, unlike Prawitz’s �
elimination rule for intuitionistic logic (and unlike our rule �� for modal logics),
we cannot restrict ���2 to applications where the conclusion is an atomic lwff. For
instance, to replace

�
+���

������ � � � ��
���2 with

�
+���
�����

���2 ! ! !
�

+���
�����

���2

�
+���

�� � �� � � � ��
�*�

������ � � � ��
���

we would need a rule �*� that would violate the separation between base system
and relational theory. (See also the discussion on ���3 before Lemma 3.3.5 below.)
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Second, although it is not an elimination rule, we define monl to be an indirect rule
since, like ���, �� and ���2, it can interrupt a potential reduction.

As notation, we write

��� 6
+��

���

for an application of an elimination (or indirect) rule ��� with major premise ��� and
conclusion +��, where 6 represents the finite sequence of derivations of the minor
premises of the rule. The (schematic) permutative reductions for � ��, �� and ���2
are as follows.

Permutative reductions for ���:

�
������ � � � ��

������ ! ! ! ������ ��
� � �� � � � ���

��
+��

+��
���

6
%��

���

� �
������ � � � ��

������ ! ! ! ������ ��
� � �� � � � ���

��
+�� 6

%��
���

%��
���

�

Permutative reductions for ��:

�
��� � �

�����
��
%��

�����
��
%��

%��
��

6
���

���

� �
��� � �

�����
��
%�� 6

���
���

�����
��
%�� 6

���
���

���
��

�

Permutative reductions for ���2:

�
+���
���

���2
6

%��
���

�

�
+���
%��

���2
�

The permutative reductions for monl are more complex and we consider them in
detail. First, note that since monl can be only applied to persistent formulas, we need
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not consider permuting it with 
 � (cf. the discussions in 3.1.1 and 3.1.3). Now
let � � � and � � � be persistent formulas. In the permutative reductions of monl
with applications of �� or ��, the application of monl is ‘pushed’ to lwffs of smaller
grade, e.g.

��
��� � �

��
� & +

+�� � �
monl

�+���
��
%��

�+���
��
%��

%��
��

�
��

��� � �

�����
��

� & +

+��
monl

��
%��

�����
��

� & +

+��
monl

��
%��

%��
��

�

The permutative reductions of monl with���2 or���3 simply result in the deletion
of the application of monl, e.g.

���#��
��
%���

��
% & +

+���
monl

����
���3

�

���#��
��
%���
����

���3
�

In the permutative reduction of monl with��� the application of monl is ‘pushed’
to rwffs, i.e. it is replaced with an application of mon����:

�
������ � � � ��

��
� & +

+����� � � � ��
monl ��

+���� ! ! !
����

+��������

��

�� + +� � � � +�
+����

���

�
�

������ � � � ��

��
+���� ! ! !

����

+��������

��

�� + +� � � � +�
��

� & +

�� � +� � � � +�
mon����

+����
���

�

In the permutative reduction of monl with ��� the application of monl is ‘trans-
formed’ into applications of the monotony rules in the subderivation � � of the minor
premise (where we ‘substitute’ � for + using � & + and the monotony rules):
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�
������ � � � ��

��
� & +

+����� � � � ��
monl

�+����� ! ! ! �+����� ��
� + +� � � � +��

��
%��

%��
���

� �
������ � � � ��

�+����� ! ! ! �+����� ��� � +� � � � +��
�����+�
%��

%��
���

�

When we permute monl with itself we exploit the transitivity of the partial order,
which is an instance of mon���� with � � � (or, equivalently, � � � when � & + is
defined as � , � +):

��
���

��
� & +

+��
monl ��

+ & %

%��
monl

�
��
���

��
� & +

��
+ & %

� & %
mon����

%��
monl

�

We are now in a position to state our desired normalization results. We first
generalize Definition 2.3.4 to:

Definition 3.3.3 A derivation is in normal form (is a normal derivation) iff it contains
no maximal lwffs and no permutable lwffs. �

Then we consider the three systems in Table 3.1. For ����� and ��� �� we have:

Lemma 3.3.4 Every derivation of ��� from ��� in ����� or ����� reduces to a
derivation in normal form. �

Note first that derivations in Horn relational theories ��� � cannot introduce maximal
or permutable lwffs. The lemma then follows by a straightforward modification of
the well-known proof for minimal and intuitionistic logic given originally by Prawitz
in [186], and also found in many textbooks, e.g. [221, 230]. The proof relies on the
identification of particular sequences of formulas (the threads and tracks of Defini-
tion 2.3.8 in 2.3.1.1 and a straightforward adaptation of Prawitz’s segments) to show
that each application of proper and permutative reductions reduces a suitable well-
ordered measure on normal derivations. Thus, the reduction process must eventually
terminate with a derivation free of maximal and permutable lwffs.

Before proving analogous results for �����, let us perform a simplification that
will allow us to consider (as is standardly done) a simplified language. The rules
for classical non-local negation and �� allow us to define for each existential modal
operator ��, with associated relation ��, a dual universal modal operator ��

� , with
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associated relation��
� , while retaining completeness (see the discussion on the possible

incompleteness of positive modal logics in 3.2.3). In particular we define: 9

��#��
��� � � � ����#�� iff ������ � � � ��

and

��
� �� �� � � � ���� �

�
� iff �� � �� � � � ���� �� �

To illustrate that this is correct, i.e. that �� and ��
� are really interdefinable, we

take ��
� as primitive and derive the rules for��, e.g. for���:

��#��
��� � � � ����#��

�������
� ! ! ! �����������

� �������
� ���

� �� �� � � � ���� �
�
� �
�

�
+�� �+��#���

%���
#�

��� �#��
#��

�����
��� � � � ����#��

��
� �
�

����
#�

+�� ���3�

where, for brevity, we have identified ��� with � instead of explicitly using the rules
��2 and ��3. Hence we can safely replace�� and �� with��

� and ��
� . Analogously,

we can define disjunction in terms of conjunction, and with these replacements we
obtain the system ������, which is adequate for representing a non-classical logic
with a classical treatment of negation.

Considering this simplified language (with the operators �, 
, ��, ��
� , # and

��) allows us to reduce applications of ���3 to instances where the conclusion is
atomic, by showing that any application of ���3 with a non-atomic consequence can
be replaced with a derivation in which ���3 is applied only to lwffs of smaller grade.
For instance, again identifying ��� with �,

���#���� � � � ���
�

+���
������� � � � ��

���3

9Note that this is equivalent to defining �� 	 	� � � � 	��� 	� iff ��� 	� � � � 	��� 	� 	 and adding switching
rules for both �� and ��� , e.g.

��� 	� � � � 	��� 	� 	

��� 	
� 	� � � � 	��� 	

�
�

�

This is, for instance, the case in relevance logics [79], where fusion (Æ) and relevant implication (
) are
associated with the one and the same � and 	�� Æ � is shown equivalent to 	��� 
 �� by means of
switching.
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is replaced with

�����#���
�

�������� � � � ���
� �������

�! ! ! �����������
� ��� �� �� � � � ���

�

�����
���

%���
#�

��#���� � � � ��
#��

�
+���
�����

���3�

������� � � � ��
����

�

Therefore, in the case of ������ the only permutative reductions that need to be
considered are those for monl, and, by analogy with Lemma 3.3.4, we have:

Lemma 3.3.5 Every derivation of ��� from ��� in ���� �� reduces to a derivation
in normal form. �

As we showed in 2.3.1, one of the main advantages of normal derivations is that
they possess a well-defined structure that has several desirable properties. In particular,
in any of the three families of systems we considered, the two parts of each system are
strictly separated: derivations of lwffs may depend on derivations of rwffs, but not vice
versa. As a consequence, any derivation of an lwff is structured as a central derivation
in the base system ‘decorated’ with subderivations in the relational theory, which attach
onto the central derivation through instances of���,���, or monl. Moreover, when
in normal form, the structure of the central derivation in the base system can be further
characterized by identifying particular sequences of lwffs (our adaptations of Prawitz’s
threads, tracks and segments), and showing that in these sequences there is an ordering
on inferences.10 By exploiting this ordering, we can then show a subformula property
for all three families of systems.

We first generalize Definitions 2.3.10 and 2.3.12, for the restricted language of
Definition 3.1.7, as follows.

Definition 3.3.6 � is a subformula of � iff (i) � is �; or (ii) � is �� ���, �� ���,
�� 
 ��, #��, ���� � � � ��, or ���� � � � ��, and � is a subformula of one of the
��’s. We say that +�� is a (labelled) subformula of ��� iff � is a subformula of �. �

Definition 3.3.7 Given a derivation ��� � ���, let � be the set of subformulas of
the formulas in �� � %�� 	 � � ����� for some %�, i.e. � is the set consisting of the
subformulas of the assumptions � and the goal ���.

We say that a derivation ��� � ��� in ����� or ��� �� satisfies the subformula
property iff for all lwffs +�� used in the derivation, � 	 �.

We say that a derivation ��� � ��� in ������ satisfies the subformula property
iff for all lwffs +�� used in the derivation, (i) � 	 �; or (ii) � is an assumption

10To restrict further the structure of normal derivations it is then interesting to study the eliminability of
monl from the systems.
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#� or � � �� discharged by ���3 and � 	 �; or (iii) � is an occurrence of ��
immediately below an assumption #� or � � �� discharged by ���3 and � 	 �;
or (iv) � is an occurrence of �� obtained by an application of ���3 that does not
discharge any assumption. �

Then it follows that:

Lemma 3.3.8 Every normal derivation of ��� from ��� in �����, ����� or
������ satisfies the subformula property. �

To summarize, we can generalize Theorem 2.3.14 and its commentary as follows.

Theorem 3.3.9 Our labelled ND systems have the following properties.

(i) The deduction machinery is minimal: the systems formalize a minimum fragment
of first-order logic required by the semantics of propositional non-classical logics
with Horn axiomatizable properties of the relations and of the � function.

(ii) Derivations are strictly separated: derivation of lwffs may depend, via rules for
non-local operators, on derivations of rwffs, but not vice versa.

(iii) Derivations normalize: derivations of lwffs have a well-structured normal form
that satisfies the subformula property. �

For comparison, consider again the semantic embedding approach: a propositional
non-classical logic is encoded as a ‘suitable’ (e.g. intuitionistic or classical) first-order
theory by axiomatizing an appropriate definition of truth, but all structure is lost as
propositions and relations are flattened into first-order formulas, and derivations of
propositions are mingled with derivations of relations.

However, in exchange for the extra structure in our systems there are limits to the
generality of the formulation: the properties in Theorem 3.3.9 depend on design deci-
sions we have made, in particular, the use of Horn relational theories. This, of course,
places stronger limitations on what we can formalize than a semantic embedding in
first-order logic. Consider, for instance, the relevance logic�, obtained by extending
the logic  with the postulate

���+�%��� + % 
 �� , � % � � , + %�� � (3.29)

which corresponds to the ‘mingle’ axiom schema � � �� � ��, 4�. in Table 3.2.
We cannot directly present � because (3.29) is not formalizable as a set of Horn
rules. This is a design decision. Consider the alternatives. Analogously to 2.3.1, we
can extend our deduction machinery by providing rules for a full first-order relational
theory and explicitly add (3.29) as an axiom schema. However, if we then maintain
(ii) of Theorem 3.3.9 we lose completeness with respect to the semantics, since by
analysis of normal form proofs we can show that ,�� � �� � �� is not provable.
Alternatively, we can regain completeness by giving up (ii), by identifying falsum in
the first-order relational theory with ��, i.e. adopting a universal ��. However, the
resulting system is then essentially equivalent to semantic embedding and we lose (i);
this follows by a straightforward generalization of the results for modal ND systems
with universal falsum in 2.3.3.
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But there is another reason why the latter solution is not satisfactory: since it is
based on the �� rules, it does not apply to positive fragments. For these (and also
for full logics), we can regain completeness by again giving up (ii) to introduce rules
similar to Simpson’s ‘geometric rules’ [216], e.g. we can formalize (3.29) with the rule

�� + %

�� , � %�....
���

�� , + %�....
���

���

�





4 LABELLED NATURAL DEDUCTION
SYSTEMS FOR QUANTIFIED MODAL

LOGICS

In the previous chapters we have given a framework based on labelled deduction that
provides a systematic solution to the problem of finding uniform and modular pre-
sentations of propositional non-classical logics. Here we consider quantified modal
logics [89, 104, 141] as a significant case study of the additional complexity intro-
duced by quantifiers with respect to the range of possible logics and semantics for
them. (Other quantified non-classical logics, e.g. quantified relevance logics, can be
presented similarly.) In this case we must choose not only properties of the accessibil-
ity relation in the Kripke frame, as in the propositional case, but also how the domains
of individuals change between worlds; for example, do the domains vary arbitrarily
(varying domains), or do the same objects exist in every world (constant domains), or
are objects possibly created (increasing domains) or destroyed (decreasing domains)
when moving to accessible worlds?

These two choices can be made independently, which results in a two-dimensional
space of possible logics. (Other dimensions are possible,e.g. non-rigid designators [89,
104]; we consider here only the rigid case.) This space has often been explored in
a piecemeal fashion and there has been a lack of uniformity in the formalization of
deduction systems and in the way their associated metatheoretical results, in particular
completeness, are proved. Consider the following aspects.

First, different deduction systems are employed. Quantified modal logics are typ-
ically presented by using Hilbert systems extending those for the propositional case,
but the standard quantifier rules automatically require the domains of a semantics to
be increasing [89, p. 426], and this restricts the class of logics that are formalizable
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in a modular way. This problem can be solved by modifying either the deduction
system (e.g. by adopting the rules of ‘free logic’), or the semantics (e.g. by introducing
‘truth value gaps’), see [104, 141]. These techniques, however, are imperfect in that
none provides a general and uniform solution. For example, the rules of free logic
don’t provide modular completeness proofs: different strategies must be adopted for
different conditions on the domains.

Second, incompleteness with respect to Kripke semantics is common. Simply
adding quantifier rules to a Hilbert system complete for a propositional modal logic
may not result in a system complete with respect to the corresponding extension of the
semantics. Moreover, minor changes to a complete quantified modal logic, e.g. chang-
ing the conditions on the domains, can produce incompleteness. For instance, there are
Hilbert systems for logics with the Barcan Formula (	7, ����� 
 �����) that are
incomplete, while those without it are complete, and vice versa; e.g. ��
���� � 	7�
is incomplete although ��
����� is complete [141].

Third, metatheoretical results are not proved in a uniform way. Often, even for
related logics, completeness proofs or counter-examples must be devised ad hoc, using
different techniques. For example, the standard canonical model technique fails for
��
�����, but we can prove completeness with respect to Kripke semantics using the
‘subordination method’ [61, p. 175].

Quantified modal logics also raise special challenges when we begin actually to
prove theorems with them. Many propositional modal logics are decidable, so proof
search can be automated; see 12 and [87, 89, 232]. In the quantified case, however,
even when we restrict ourselves to terms built from constants and variables, as is often
done [141], and as we do here, the resulting modal logics are undecidable. Thus if we
want to use them, it is desirable to have deduction systems that ‘naturally’ support the
interactive construction of proofs and that possess properties, such as normalization of
derivations and the subformula property, which restrict the search space for proofs.

We extend the development of 2 to the quantified case and thereby provide solu-
tions to the above problems: we give a natural deduction presentation of quantified
modal logics that is modular in two dimensions, reflecting the two degrees of freedom
discussed above. As before, it is based on a fixed base system (now ��
��, for
quantified �) where extensions are made by independently instantiating two separate
theories: a relational theory (as before), and a domain theory, which formalizes the be-
havior of the domains of quantification. That is, in the domain theory we reason about
labelled terms, 
��, expressing the existence of term � at world 
. Thus � 
�����
iff � 
������ for all � such that � 
��. This formulation naturally suggests that we
adopt quantifier rules similar to those of free logic [28], and we show below that the
previously mentioned problems for Hilbert-style quantified modal logics based on free
logic do not apply in our approach. 1 By appropriate instantiation of these two theories,

1There is also another important respect in which our approach differs from the standard ones based on
free logic. In the latter, the existence of a term at a particular world is not an independent ‘judgement’ like
���, but it is expressed by the atomic modal formula ����, which has to be explicitly considered in the
completeness proof [104, p. 279].
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we formalize the predicate extensions (with varying, increasing, decreasing or constant
domains) of the propositional modal logics we presented in 2.

The metatheoretical properties of our ND systems extend as well: we give modular
proofs of soundness and completeness by extending the canonical model construction
of 2.2 to account for the explicit formalization of the properties of the domains of
quantification. This means that our quantified modal ND systems are sound and
complete with respect to the appropriate Kripke semantics, and thus equivalent to the
corresponding Hilbert systems only when these are themselves complete with respect
to the same semantics. We also show that the proof-theoretical results for propositional
modal systems (in particular, normalization and the subformula property) carry over
to the quantified case. Hence, proof search can be restricted and the effectiveness of
theorem proving improved. Finally, we discuss tradeoffs in formalizations of the base
system and the theories extending it, and show not only that the results for propositional
modal systems carry over to the quantified case, but also that new tradeoffs must be
considered.

The remainder of this chapter is organized as follows. In 4.1 we extend our
framework to present quantified modal logics by formalizing the base ND system and
the theories extending it. In 4.2 we prove that our systems are sound and complete
with respect to the corresponding Kripke semantics. In 4.3 we prove that derivations
in our systems normalize and investigate the consequences of this result. In 5.3
we will then present the Isabelle encodings of our systems, give applications, and
demonstrate their correctness.

4.1 A MODULAR PRESENTATION OF QUANTIFIED MODAL LOGICS

We extend Definitions 2.1.1, 2.1.3 and 2.1.4 and Notations 2.1.2 and 2.1.5 as follows.

Definition 4.1.1 Let � be a set of labels and � a binary relation over � . If 

and 
� are labels, then 
�
� is a relational formula (rwff). If � is a constant % or
a variable , then 
�� is labelled term (lterm). If � is a modal formula built from
atomic propositions (i.e. predicates applied to terms, e.g. * ���) and the connectives,
modal operator and quantifier �, 
, � and �, then 
�� is a labelled formula (lwff).
Other connectives, modal operators and quantifiers can be defined in the usual manner,
e.g.�� ���� � 
 �,�� ���� �� �� and ���� ���� ������. �

Definition 4.1.2 The grade of an lwff 
��, in symbols ������
���, is the number of
times 
, � and � occur in �. �

Notation 4.1.3 In order to simplify our notation, we will omit brackets whenever no
confusion can arise, and we adopt the convention that �, �, �, � and � are of equal
binding strength and bind tighter than �, which binds tighter than �, which binds
tighter than 
.

For the rest of this chapter, we assume that the variable 
 ranges over labels, �
ranges over terms, and ���� � � � range over quantified modal formulas. Further, let
�, � and 8 be, respectively, arbitrary sets of lwffs, �
����� � � � � 
�����, rwffs,
�
��
�� � � � � 

�
��, and lterms, �
����� � � � � 
� ����. All variables may be an-
notated with subscripts or superscripts. Finally, we adopt the standard notation of
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In ��, 
� is different from 
� and does not occur in any assumption on which 
 � ��
depends other than 
��
� . In � �, � does not occur in any assumption on which

������ depends other than 
��.

Figure 4.1. The rules of ��
��

predicate logic, e.g. ����� denotes the substitution of the term � for the variable  in
the formula �. �

4.1.1 The base system �����

The rules given in Figure 4.1 determine ��
��, the base ND system presenting the
quantified modal logic 
�. (That ��
�� presents 
� is proved in Theorem 4.2.5
below.) The rules for � are a labelled version of the rules of free logic [28], and, as
in free logic, 
����� 
 ���� is provable only under the assumption 
��, stating
that the domain of quantification of 
 is non-empty; see 4.3. Note the symmetry
between the rules for � and those for �; this reinforces the role of �, and of modal
logics in general, “as a replacement for the more powerful machinery of quantified
classical logic, at least in some cases” [89, p. 377]. The same symmetry holds between
the derived rules for � and � given in Figure 4.2; the rules for � are derived like
in Example 2.1.14, and the derivations of the rules for � are given in Example 4.1.8
below.

4.1.2 Relational theories

Different quantified modal logics are obtained from the base logic 
� by placing
conditions on the accessibility relation in the Kripke frame; e.g., like in the propo-
sitional case, we get the logic 
� from 
� by adding that the relation is reflexive,
and then 
�� from 
� by further adding transitivity. We present particular logics by
extending our base system ��
�� with relational theories axiomatizing properties of
�. However, as we argued before, some properties of � can only be expressed using
higher-order logic, although for other properties first-order logic, or even fragments of
it, is enough. We showed in 2.3 that there are tradeoffs in formalization: different
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�
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	 ��
��


������

�
�������� �
����....

� ��


� ��
��

In��, 
� is different from 
� and 
	 , and does not occur in any assumption on which
the upper occurrence of 
	 �� depends other than 
� �� and 
��
� . In ��, � does
not occur in any assumption on which the upper occurrence of 
 � �� depends other
than 
������� and 
���.

Figure 4.2. The derived rules for � and �

choices require different formalizations of the base modal system and have different
metatheoretical properties. In the previous chapters we settled on relations axiomatiz-
able in terms of Horn clauses, a choice we repeat here; we discuss the implications of
this decision in 4.3.

We choose to admit precisely those properties of � that can be formalized as a
collection of Horn relational rules, i.e. rules of the form

#��  � ! ! ! #�� �
#�� �

where � � ,, and the #� and  � are terms built from labels 
�� � � � � 
� and function
symbols (recall that some properties of �, e.g. seriality and convergency, can be
expressed as relational rules only after a conservative extension of our theories with
Skolem function constants).2 A Horn relational theory ��� � is a theory generated by
a set of such rules.

Relational rules suffice to present the predicate extensions of a large family of
common propositional modal logics; in Table 4.1 we recall some of the properties
that are instances of restricted ��� ���� �� convergency and the corresponding Horn
relational rules, written with the new notation.

The ND system ��
�� � ��
�� � ��� �for the quantified modal logic 
� is
obtained by extending ��
�� with a Horn relational theory ��� �; this extension is
represented by the horizontal arrows in Figure 4.3.

Extending Notation 2.1.10,we refer to the system��
������ � also as��
��� �,
where � is a string consisting of the standard names of the characteristic axiom

2Also recall that in the presence of Skolem function constants we must appropriately extend our language
and rules to distinguish between atomic and composite labels.
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Table 4.1. Some properties of �, corresponding characteristic axiom schemas and
Horn relational rules

Property Axiom schema Horn relational rule

Seriality �� �� 
 �� 
�� � �
��
ser

Reflexivity �� �� 
 � 
��
�

refl

Transitivity �� �� 
 ���

��
� 
��
	


��
	

trans

Euclideaness ���� 
 ���

��
� 
��
	


��
	

eucl

Convergency ����� 
 ���

��
� 
��
	


�� ���� ��� ��� �
conv1


��
� 
��
	


	� ���� ��� ��� �
conv2

Where � and � are (Skolem) function constants.

schemas corresponding to the relational rules generating ��� �. Then, for exam-
ple, ��
���� is a synonym of ��
���. Various combinations of relational rules
define therefore predicate extensions of propositional modal logics, including 
�,

�, 
	, 
��, 
����, 
���� and 
��, which are respectively presented by the
systems ��
���, ��
���, ��
��	�, ��
����, ��
������, ��
����� and
��
����.

4.1.3 Domain theories

So far, we have made no commitments to the relationship between the domains of
quantification in the different worlds; in this case we say that the domains of��
���
��� � are varying. We can then place constraints on them; e.g. requiring that, when
we move from a world to another world accessible from it, objects persist (the domains
are increasing), are not created (and possibly deleted, i.e. the domains are decreasing),
or stay the same (the domains are both increasing and decreasing, i.e. constant). The
conditions for increasing and decreasing domains can be respectively formalized by
the (Horn) rules


��
� 
���


� ��
id and


��
� 
� ��


���
dd �

Different combinations of these rules define different labelled ND systems for common
quantified modal logics.
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Figure 4.3. Extensions of ��
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����2�

dd
�������������

��
����9�

id
��

��
����

id

�� dd

�������������

Figure 4.4. The systems ��
������

Definition 4.1.4 The labelled ND system ��
�� � ��
�� � ��� � � ��+� is
obtained by extending ��
�� � ��� � with a given theory ��+� of the domains of
quantification (or domain theory, for short), generated by a subset of �id� dd�; this
extension is represented by the vertical arrows in Figure 4.3. �

This yields the two-dimensional uniformity of the deduction system motivated above.
(Uniform proofs of soundness and completeness are given in 4.2.)

Notation 4.1.5 We extend the above notational conventions and refer to the system
��
������ ����+� also as��
��� �	�, where & represents the conditions imposed
on the domains. We write��
����when��+� is empty, as done above;��
��� �2�
or ��
��� �9� when ��+� is generated by id or dd, respectively; ��
��� �3� when
��+� is generated by id and dd.3

�

We can therefore formalize one of four related logics simply by instantiating ��+�;
e.g., as shown in Figure 4.4, we can specify ��
����, i.e. ��
���, with domains

3We here consider, as is standard, constant domains only for worlds connected by the accessibility relation.
The case where all worlds, even unconnected ones, share the same domain, can be formalized by the rule

����

�� ��

from which both id and dd can be derived.
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that are varying, ��
����, increasing, ��
����2�, decreasing, ��
����9�, or
constant, ��
����3�.

This is not the case in the standard Hilbert presentations of quantified modal logics,
where the domains are committed to being increasing, since the standard rules for �
automatically enforce the Converse Barcan Formula �	7,

����� 
 ����� �

which corresponds to the increasing domains condition [89, p. 426]. Constant domains
are then obtained by further adding as an axiom schema the Barcan Formula 	7,

����� 
 ����� �

which corresponds to the decreasing domains condition. Hilbert-style systems for
logics with varying domains can be given by substituting the classical quantifier rules
with the rules of free logic, as done by Garson in [104]. However, Garson also shows
that his completeness proof fails for some logics, e.g. for 
	; we return to this at the
end of 4.2.

Some particular quantified modal logics with varying domains can also be formal-
ized by systems that keep the classical quantifier rules, e.g. by using free variables
as disguised universal quantifiers and restricting the necessitation rule to closed sen-
tences [151], or by adopting a semantics with truth value gaps [141]. However, none
of these techniques provides uniform deduction systems (or semantics) since it is not
clear how to generalize them to other logics. For a detailed discussion of the limits of
these systems see [104].

We now extend Definition 2.1.11 and Fact 2.1.12; Notation 2.1.13 for derivations in
propositional modal systems generalizes straightforwardly to derivations in ��
���
��� � � ��+�.

Definition 4.1.6 A derivation of an lwff, rwff or lterm � from a set of rwffs �, a set of
rwffs � and a set of lterms 8 in a ND system ��
�� � ��
������ ����+� is a
tree formed using the rules in��
��, ending with � and depending only on����8.
We write ����8 ������ � when � can be so derived. A derivation of � in ��
��
depending on the empty set, ������ �, is a proof of � in ��
��, and we then say that
� is a ��
��-theorem. �

Fact 4.1.7 Due to the separations enforced between the base system, the relational
theory, and the domain theory, in ��
�� � ��
�� � ��� � � ��+� we have that:

(i) ����8 ������ 
��
� iff � ���� � 
��
� .

(ii) ����8 ������ 
�� iff ��8 ���� ������ 
��. �

That is, while lwffs are derived from lwffs, rwffs and lterms, i.e. ����8 ������ 
��,
(i) rwffs are derived from rwffs alone, and (ii) lterms are derived from rwffs and lterms
but not from lwffs.

We conclude this section with some examples of derivations; corresponding Isabelle
proofs are given in 5.3.1.
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Example 4.1.8 We begin by deriving the rules for � using the rules of ��
��,
where the side condition on the application of �� follows from the condition on the
application of � �.


������ 
��


�����
� � �

�
�������� 
��


� ������
��


������


��
��


� ������
� ��

� (4.1)


������

�
�������� �
����
�


� ��


� ��
��

�


�� ������

�
� �� 
 ���

�
��������� �
����
�

�

� ��


� ��

�


���
��


�� ������
���


�������
� ��


���
��


� ��
���

�

(4.2)

Note that the symmetry between� and � and between� and � is reflected also in these
derivations, which are ‘symmetrical’ to the derivations (2.1) and (2.2) of the rules for
� given in Example 2.1.14 (except for the necessary application of��, or gf, in (2.1)).

As a further example, we show that �	7 is a theorem of (any extension of)
��
��2�:4

�
�������� �
�
��
�


������
��

�
�
��
� �
����


���
id


�������
��


�������
���


������
� ��


������ 
 �����

 ��

�

�

4Note that the assumption ��� is discharged by the application of � �. Informally, ��� is not a theorem of
�� �� because id is missing and the application of � � at world� cannot discharge ����; a formal proof of
this can be given by exploiting the normalization results we establish in �4.3 to show that there is no normal
proof (and, a fortiori, no proof at all) of ��� in �� ��.
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In a similar manner, we can prove 	7 in ��
��9�,

�������� 
������ 
 ����� �

and other examples usually considered in standard texts:

�������	� 
������ 
 ����� � (4.3)

�������� 
������ 
 ����� � (4.4)

������	� 
������ 
 ����� � (4.5)

������	� 
������ 
 ����� � (4.6)

������	� 
������ 
 ����� � (4.7)

Some remarks. The rules id and dd are interderivable when the rule


��
�


��
�

symm

is present, i.e. when the accessibility relation is symmetric (recall that symmetry
corresponds to the modal axiom schema 	: � 
 ���). (4.3) shows that a quantified
modal logic with a symmetric accessibility relation and with increasing domains,
e.g. ��
�	�2�, validates 	7 and has therefore constant domains; similarly we can
show that �	7 is a theorem of ��
�	�9�. By (4.4) and (4.5),����� and �����
are equivalent in ��
��3�; by analysis of normal form proofs, see 4.3, we can show
that they are equivalent only in systems with constant domains. Similarly, we can
show that, as is the case in Hilbert systems, the converses of (4.6) and (4.7) are not
provable even when dd is added as a rule.

4.2 SOUNDNESS AND COMPLETENESS

We extend the definitions and results we gave for propositional modal logics in 2.2
to introduce a Kripke semantics for our systems and prove that any system ��
��
obtained by extending ��
�� with a Horn relational theory ��� � and a domain
theory ��+� is sound and complete with respect to the corresponding semantics.

Definition 4.2.1 A (Kripke) model for ��
�� is a tuple� � ������� �� ��, where
� is a non-empty set of worlds; � �� ��; � is a set of objects; � is a mapping
assigning to each member 
 of � some subset of �, the domain of quantification
of 
; � is a function interpreting the terms and predicate letters by assigning to
them the corresponding kind of intensions with respect to � and �. ��
� �� is an
element of �, and for a predicate letter * of arity �, ��
�* � is a set of ordered
�-tuples, ,��� � � � � ��-, where each �� 	 �. We say that � has some property of
binary relations iff � has that property. Moreover, for every 
�� 
� 	 � such that
�
�� 
�� 	 �, the domains of � are: increasing iff ��
�� � ��
��; decreasing iff
��
�� . ��
��; and constant iff ��
�� � ��
��. Otherwise, the domains are varying.

�

Note that we only consider rigid designators [89, 104], where � is such that ��
 �� �� �
��
� � �� for all 
�� 
� 	 �. Moreover, like in the propositional case, our models
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do not contain functions corresponding to possible Skolem functions in the signature;
when such constants are present, the appropriate Skolem expansion of the model is
required [230, p. 137]. As before, we identify labels with identically named worlds.

Definition 4.2.2 Given a set of lwffs �, a set of rwffs � and a set of lterms 8,
we call the ordered triple �����8� a proof context. When �� � ��, �� � �� and
8� � 8�, we write �������8�� � �������8�� and say that �������8�� is included
in �������8��. We write 
�� 	 �����8� when 
�� 	 �; 
�
� 	 �����8� when

�
� 	 �; and 
�� 	 �����8� when 
�� 	 8. Finally, we say that a label 

occurs in the proof context �����8�, in symbols 
 � �����8�, if there exists an �
such that 
�� 	 �, or a 
� such that 
�
� 	 � or 
�
� 	 �, or a � such that

�� 	 8. � � �����8� is defined analogously. �

We now define truth for ground lterms, rwffs and lwffs, where truth for lterms indicates
definedness, truth for rwffs indicates accessibility, and quantifiers are treated in each
world as ranging over the domain of that world only.

Definition 4.2.3 We define a ground lterm, rwff or lwff � to be true in a model �,
in symbols �� �, as follows. First we ensure, as is standard [167, 213], that we
have a name for each object in the domain � of � by extending, if necessary, the
class of terms with a new constant 3� for each ' 	 �, and then extending � so that
��
� 3�� � '. Then we define �� to be the smallest relation satisfying:

�� 
�� iff ��
� �� 	 ��
�;
�� 
��
� iff �
�� 
�� 	 �;
�� 
�* ���� � � � � ��� iff ,��
� ���� � � � � ��
� ���- 	 ��
�* �;
�� 
�� 
 � iff �� 
�� implies �� 
��;
�� 
��� iff for all 
�, �� 
�
� implies �� 
���;
�� 
����� iff for all �, �� 
�� implies �� 
������.

When �� �, we say that � is true in�. By extension:

�� � means that �� 
�� for all 
�� 	 �;
�� � means that �� 
��
� for all 
��
� 	 �;
�� 8 means that �� 
�� for all 
�� 	 8;
�� �����8� means that �� �, �� � and �� 8;
� �� 
��
� means that �� � implies �� 
��
� ;
� � 
��
� means that � �� 
��
� for all�;
��8 �� 
�� means that �� � and �� 8 imply �� 
��;
��8 � 
�� means that ��8 �� 
�� for all�;
����8 �� �� means that �� �����8� implies �� ��;
����8 � �� means that ����8 �� �� for all�.

�

Truth for lwffs built using other operators can be defined in the usual manner, e.g.

�� 
����� iff �
� 
������

iff for some � ��� 
�� and �� 
������
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since �� 
�� for every 
, by Definition 4.2.3.
The explicit embedding of properties of the models, and the capability of explicitly

reasoning about them, via lterms and rwffs, require us to consider soundness and
completeness also for lterms and rwffs, where we show that � ������ 
��
� iff
� � 
��
� , and that ��8 ������ 
�� iff ��8 � 
��.

Definition 4.2.4 The system ��
�� � ��
�� � ��� � � ��+� is sound iff

(i) � ������ 
��
� implies � � 
��
� ,

(ii) ��8 ������ 
�� implies ��8 � 
��, and

(iii) ����8 ������ 
�� implies ����8 � 
��.

��
�� is complete iff the converses hold, i.e. iff

(i) � � 
��
� implies � ������ 
��
� ,

(ii) ��8 � 
�� implies ��8 ������ 
��, and

(iii) ����8 � 
�� implies ����8 ������ 
��. �

By Lemma 4.2.6 and Lemma 4.2.14 below, we have:

Theorem 4.2.5 ��
�� � ��
�� � ��� � � ��+� is sound and complete. �

4.2.1 Soundness

We extend Lemma 2.2.6.

Lemma 4.2.6 ��
�� � ��
�� � ��� � � ��+� is sound.

Proof Throughout the proof let�� ������� �� �� be an arbitrary model for��
��.
We proceed by induction on the structure of the ��
��-derivations. The base cases,
e.g.
�� 	 �����8�, are trivial. There is a step case for each inference rule of��
��,
and we treat only id, � � and �� as representative cases; the cases for the other rules
follow analogously (in particular, the cases for Horn relational rules, for �� and for
the � rules are a straightforward adaptation of the corresponding propositional cases
in Lemma 2.2.6).

Assume that the domains of � are increasing and consider an application of the
rule id,

��

��
�

��

���


� ��
id

�

where �� and �� are the derivations �� ������ 
��
� and ���8 ������ 
���, with
� � �� ���. Assume �� � and �� 8. Then, from the induction hypotheses we
obtain�� 
��
� and �� 
���. Since the domains of� are increasing, we conclude
�� 
� �� by Definition 4.2.3.
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The cases for � can be obtained from the ones for � by exploiting the symmetry
between the rules for � and �. Consider an application of the rule � �,

�
���
�


������


�����
� �

�

where � is the derivation ����8� ������ 
������, with 8� � 8 � �
���. By
the induction hypothesis, ����8� ������ 
������ implies ����8� � 
������.
Assume �� �����8�. Considering the restriction on the application of � �, we can
extend 8 to 8� � 8 � �
���� for an arbitrary �� �� �����8�, and assume �� 8�.
Since �� 8� implies �� 8�, from the induction hypothesis we obtain �� 
������,
that is �� 
������� for an arbitrary �� �� �����8� such that �� 
���. We conclude
�� 
����� by Definition 4.2.3.

Consider an application of the rule ��,

��

�����

��

��


������
��

�

where �� and �� are the derivations �����8� ������ 
����� and ���8� ������

��, with � � �� ��� and 8 � 8� � 8�. Assume �� �����8�. Then, from the
induction hypotheses we obtain �� 
����� and �� 
��, and thus �� 
������ by
Definition 4.2.3. �

4.2.2 Completeness

For simplicity, we extend the completeness proof that we gave for propositional modal
logics in 2.2.2, instead of the more general proof for arbitrary propositional non-
classical logics given in 3.2.2.

Completeness follows by a Henkin-style proof, where a canonical model

�� � ��� ��� ��� � �� � ���

is built to show the contrapositives of the conditions in Definition 4.2.4, i.e.

� ������ 
��
� implies � �
�

�


��
� � (4.8)

��8 ������ 
�� implies ��8 �
�

�


�� � (4.9)

����8 ������ 
�� implies ����8 �
�

�


�� � (4.10)

In particular, given the presence of labelled formulas and explicit assumptions on the
relations between the labels and their domains of quantification (i.e. � and 8), in our
‘quantified’ version of the Lindenbaum lemma (Lemma 4.2.9 below) we consider a
‘global’ saturated set of labelled formulas, where consistency is also checked against



104 LABELLED NON-CLASSICAL LOGICS

the additional assumptions in � and8, instead of the usual saturated sets of unlabelled
formulas. Moreover, we extend Definition 2.2.9 as follows.

Definition 4.2.7 For any system��
�� � ��
������ ����+� and proof context
�����8�, let ������ be the deductive closure of � under ��
��, i.e.

������ ���� �
��
� � � ������ 
��
�� �

and let 8������� be the deductive closure of 8 under ��
�� with respect to �, i.e.

8������� ���� �
�� � ��8 ������ 
��� �

�

This allows us to generalize to the quantified case the notion of maximal consistency
of a propositional proof context, Definition 2.2.10, as follows.

Definition 4.2.8 A proof context �����8� is saturated iff

(i) �����8� is consistent, i.e. ����8 ������ 
�� for every 
;

(ii) � � ������ and 8 � 8������;

(iii) for every 
 and every �, either 
�� 	 � or 
� �� 	 �;

(iv) for every 
, if ����8 ������ 
�� implies ����8 ������ 
������ for every
�, then ����8 ������ 
�����; and

(v) for every 
, if ����8 ������ 
�
� implies ����8 ������ 
��� for every

�, then ����8 ������ 
���. �

In the Lindenbaum lemma for first-order logic, a saturated set of formulas is induc-
tively built by adding for every formula � ���� a witness to its truth, namely a
formula � ��%�� for some new individual constant %. This ensures that the set is
$-complete, a property equivalent to condition (iv) in Definition 4.2.8. A similar
procedure applies here not only for every lwff 
� � ����, but also for every lwff

� ���, cf. condition (v) in Definition 4.2.8. That is, together with 
� ���, we
consistently add �� �� and 
�� for some new �, which acts as a witness world to
the truth of 
� ���. This ensures that the saturated proof context �����8� is such
that 
��� 	 �����8� iff 
�
� 	 �����8� implies 
��� 	 �����8� for every

�, as shown in Lemma 4.2.10 below.5

Lemma 4.2.9 Every consistent proof context �����8� can be extended to a saturated
proof context �������8��.

Proof We first extend the language of ��
�� with infinitely many new constants for
witness terms and witness worlds. Systematically let � range over the original terms, �

5Recall from �2.2.2 that in the standard completeness proof for unlabelled modal logics, �� is defined

to be the set of all saturated sets, and it is possible to show that if � � �� and ��
�

�� 	��, then
�� also contains a world �� accessible from � that serves as a witness world to the truth of �� 	��,
i.e. ��

�

��� 	�.
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range over the new constants for witness terms, and � range over both. Analogously,
let 
 range over labels, � range over the new constants for witness worlds, and � range
over both. All these may be subscripted. Let &�� &�� � � � be an enumeration of all lwffs
in the extended language. Starting from �������8�� � �����8�, we inductively
build a sequence of consistent proof contexts by defining �� ���������8���� to be:

�������8��, if ��� � �&��������8�� is inconsistent; else

��� � �&��������8��, if &��� is neither �� ��� nor �� �����; else

������� ������ �� �����������8��������, for an � �� ������� �������
���8��, if &��� is �� �����; else

��� � ��� ���� �� ������ � ������8��, for a � �� ��� � ��� ��������8��,
if &��� is �� ���.

Now define

�� �
�
���

�� � �� �
�
���

��������� � and 8� �
�
���

�8��������� �

It immediately follows that the proof context �������8�� is saturated, since it satisfies
all the conditions in Definition 4.2.8. �

The following lemma states some properties of saturated proof contexts.

Lemma 4.2.10 Let �������8�� be a saturated proof context. Then

(i) �� ������ ����� iff ����� 	 ��.

(ii) ���8� ������ ��� iff ��� 	 8�.

(iii) ������8� ������ ��� iff ��� 	 ��.

(iv) ��� 
 � 	 �� iff ��� 	 �� implies ��� 	 ��.

(v) ����� 	 �� iff ����� 	 �� implies �� �� 	 �� for all �� .

(vi) ������ 	 �� iff ��� 	 8� implies ������� 	 �� for all �.

Proof (i), (ii) and (iii) follow immediately by definition and Fact 4.1.7. We only treat
(vi); (iv) follows like case (iii) in Lemma 2.2.12, and the proof of (v) can be easily
obtained from the proof of (vi) by exploiting the symmetry between � and � (or by
generalizing case (iv) in Lemma 2.2.12). For the left-to-right direction of (vi) suppose
that ������ 	 ��. Then, by (iii), we have ������8� ������ ������, and, by ��,
we have ���8� ������ ��� implies ������8� ������ ������� for all �. By (i),
(ii) and (iii), conclude ��� 	 8� implies ������� 	 �� for all �. For the converse,
suppose that 
����� �	 ��. Then �� � ���� 	 �� and, by the construction of
�������8��, there exists an � such that ��� 	 8� and ������� �	 ��. �

We can now define the canonical model�� � ��� ��� ��� � �� � ���.

Definition 4.2.11 Given a saturated proof context �������8��, we define the canon-
ical model�� for the system ��
�� as follows:
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�� � �� � � � �������8���;

���� ��� 	 �� iff ����� 	 ��;

����� �� � �, and ,��� � � � � ��- 	 ����� * � iff ��* ���� � � � � ��� 	 ��, for * an
�–ary predicate;

����� � ������ �� � ��� 	 8��;

�� �
�
������������ �

����. �

Like for the propositional case, the standard definition of�� , i.e.

���� ��� 	 �
� iff �� � �� 	 ��� � �� �

is not applicable in our setting, since �� � �� 	 ��� � �� does not imply ������

����� . We would therefore lose completeness for rwffs, since there would be cases,
e.g. if ��
�� � ��
�� and � � ��, where ������ ����� but ���� ��� 	 �� and

thus ��
�

����� . Hence, we instead define ���� ��� 	 �� iff ����� 	 ��; note that
therefore ����� 	 �� implies �� � �� 	 ��� � �� . As a further comparison with
the standard definition, note that in the canonical model the label � can be identified
with the set of formulas �� � ��� 	 ���.

The deductive closures of �� and 8� ensure not only completeness for rwffs
and lterms, but also that the conditions on �� and �� are satisfied, so that ��

is really a model for ��
��. For example, it is straightforward to show, like we
did in the propositional case, that if ��� � includes conv1 and conv2, then �� is
convergent. Analogously, if��+� includes, e.g., id, it follows that the domains of� �

are increasing. Moreover, we immediately have that:

Fact 4.2.12

(i) ����� 	 �������8�� iff �� ��
�

����� .

(ii) ��� 	 �������8�� iff ���8� ��
�

���. �

By Lemma 4.2.10 and Fact 4.2.12, it follows that:

Lemma 4.2.13 ��� 	 �������8�� iff ������8� ��
�

���.

Proof We proceed by induction on the grade of ���, and we treat only the step
case where ��� is ������; the other cases follow analogously.6 For the left-to-
right direction, assume ������ 	 ��. Then, by Lemma 4.2.10, ��� 	 8� implies
������� 	 ��, for all �. Hence, by the induction hypothesis and Fact 4.2.12,
we obtain ������8� ��

�

������� for all � such that ���8� ��
�

���, and
thus ������8� ��

�

������ by Definition 4.2.3. For the converse, assume �� �

6As above, the case for ������� can be obtained from the case for ����, cf. Lemma 2.2.15 for the
propositional case, by exploiting the symmetry between � and �.
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���� 	 ��. Then, by Lemma 4.2.10, ��� 	 8� and �� ������ 	 ��, for some �.
Fact 4.2.12 and the induction hypothesis yield ���8� ��

�

��� and ������8� ��
�

�� ������, i.e. ������8� ��
�

�� ����� by Definition 4.2.3. �

It is now a simple matter to show (4.8), (4.9) and (4.10), analogously to Lemma 2.2.16,
and thus prove that:

Lemma 4.2.14 ��
�� � ��
�� � ��� � � ��+� is complete. �

Some remarks and comparisons are in order. Our proof is modular: the same method
applies uniformly to every system ��
��. As remarked above, this is not the case for
the completeness proof of Hilbert-style systems for quantified modal logics based on
free logic [104, 141]. Garson himself points out that his proof “lacks generality” [104,
pp. 280-281], since (i) it does not work for logics with constant domains, and (ii) it is
not general with respect to the underlying propositional modal logic (although there
are tricks one can use to overcome the difficulties for particular systems). As we have
shown, none of these problems applies in our approach.

Most importantly, being complete, our systems are adequate presentations of the
Kripke semantics, and are thus equivalent to the corresponding Hilbert systems only
when these are themselves complete with respect to it. For example, by the results
in [141], ��
�����2� is equivalent to the Hilbert system ��
����� since they are
both complete with respect to reflexive, transitive and convergent Kripke models
with increasing domains, but ��
�����3� is not equivalent to the Hilbert system
��
���� � 	7�, since the latter is incomplete with respect to reflexive, transitive and
convergent Kripke models with constant domains.

4.3 NORMALIZATION AND ITS CONSEQUENCES

We extend our results of 2.3 to show that derivations in��
������ ����+� have
additional properties: derivations of lwffs can be reduced to a normal form that does
not contain unnecessary detours and satisfies a subformula property. This provides us
with positive results, such as alternative proofs of the consistency of our systems and
restricted search space for proofs. It also allows us to establish negative results, such
as how incompleteness can arise; we show how analysis of normal forms provides a
basis for investigating tradeoffs in formalizations also in the quantified case.

Recall that any lwff 
�� in a derivation is the root of a tree of rule applications
leading back to assumptions. The lwffs in this tree other than 
�� we call side
lwffs of 
��. A maximal lwff in a derivation is an lwff that is both the conclusion
of an introduction rule and the major premise of an elimination rule. A maximal
lwff constitutes a detour in a derivation, and we remove it by the application of the
corresponding proper reduction. Three possible configurations (for
,� and �) result
in a maximal lwff in a derivation. We have already given the proper reductions for 
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and�, albeit in the propositional case, in (2.5) and (2.6). The proper reduction for � is

�
����
�

��

�������


�����
� �� ��


���


�������
��

�

��

���

���������

�������

where �������� is obtained from � by systematically substituting �� for ��, possibly
with a renaming of the variables to avoid clashes. Note that �� is empty when the
domain theory is empty. Like for (classical) propositional modal systems, we define:

Definition 4.3.1 A derivation is in normal form (is a normal derivation) iff it contains
no maximal lwffs. �

Following 2.3, we can straightforwardly show that each proper reduction reduces
a suitable well-ordered measure on derivations. Hence, the reduction process must
eventually terminate with a derivation free of maximal lwffs. We have:

Lemma 4.3.2 Every derivation of 
�� from ����8 in ��
�� � ��� � � ��+�
reduces to a derivation in normal form.

Proof First, note that derivations in the Horn theories��� � and��+� cannot introduce
maximal lwffs. Then, consider a derivation � of 
�� from ����8 in ��
�� �
��� � � ��+�, and from the set of maximal lwffs of � pick some 
 ��� that has
the highest grade and has maximal lwffs only of lower grade as side lwffs. Let
�� be the reduction of � at 
���. �� is also a derivation of 
�� from ����8 in
��
�� � ��� � � ��+� and no new maximal lwff as large, or larger than 
 ��� has
been introduced. Hence, by a finite number of similar reductions we obtain a derivation
of 
�� from ����8 in ��
�� � ��� � � ��+� containing no maximal lwffs. �

We can now exploit Lemma 4.3.2 to show that derivations in ��
�� � ��
�� �
��� � � ��+� have a well-defined structure. We start by observing that, given
Fact 4.1.7, we can strictly separate ��
��-derivations involving lwffs, rwffs and
lterms as follows.

Fact 4.3.3 Consider derivations in ��
�� � ��
�� � ��� � � ��+�.

(i) A derivation of an lwff can depend on a derivation of an rwff (via an application
of ��), but not vice versa.

(ii) A derivation of an lwff can depend on a derivation of an lterm (via an application
of ��), but not vice versa.

(iii) A derivation of an lterm can depend on a derivation of an rwff (via an application
of id or dd), but not vice versa. �

As a consequence, any derivation of an lwff is structured as a central derivation � in
the base system ��
�� ‘decorated’ with (i) subderivations in the relational theory,
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which attach onto � through instances of ��, and (ii) subderivations in the domain
theory, which attach onto � through instances of ��. Moreover, the structure of
the central ��
��-derivation �, when in normal form, can be further characterized
by identifying particular sequences of lwffs (i.e. threads and tracks, as in 2.3), and
showing that in these sequences there is an ordering on inferences. By exploiting this
ordering, we can show a subformula property for all extensions of ��
��.

Definition 4.3.4 � is a subformula of � iff (i) � is �; or (ii) � is �� 
 �� and � is
a subformula of �� or ��; or (iii) � is ��� and � is a subformula of ��; or (iv) � is
����� and � is a subformula of ������ for some �. We say that 
��� is a (labelled)
subformula of 
�� iff � is a subformula of �. �

Definition 4.3.5 Given a derivation ����8 � 
���, let � be the set of subformulas
of the formulas in �� � 
	 �� 	 � � �
���� for some 
	�, i.e. � is the set consisting
of the subformulas of the assumptions � and of the conclusion 
 ���. We say that
����8 � 
��� satisfies the subformula property iff for all lwffs
� �� in the derivation
(i) � 	 �; or (ii) � is an assumption � 
 � discharged by an application of ��,
where � 	 �; or (iii) � is an occurrence of � obtained by 
� from an assumption
� 
 � discharged by an application of ��, where � 	 �; or (iv) � is an occurrence
of � obtained by an application of �� that does not discharge any assumption (i.e. an
occurrence of � obtained by an application of gf). �

Lemma 4.3.6 Every normal derivation of 
�� from ����8 in ��
�� � ��� � �
��+� satisfies the subformula property. �

To summarize, we can generalize Theorem 2.3.14 and its commentary as follows.

Theorem 4.3.7 Our labelled ND systems have the following properties.

(i) The deduction machinery is minimal: labelled ND systems formalize a minimum
fragment of first-order logic required by the semantics of quantified modal logics
with Horn axiomatizable properties of the relations.

(ii) Derivations are strictly separated as in Fact 4.3.3.

(iii) Derivations normalize: the derivations of lwffs have a well-structured normal
form that satisfies the subformula property. �

For comparison, consider again the semantic embedding approach: a quantified modal
logic is encoded as a first-order theory by axiomatizing an appropriate definition of
truth, but all structure is lost as relations, predicates and terms are flattened into first-
order formulas, and derivations of predicates are mingled with derivations of relations
and terms.

From Theorem 4.3.7, standard corollaries follow; for example, our ND systems
are consistent since there is no introduction rule for �. We can also exploit the
existence of normal forms to design equivalent cut-free sequent systems and automate
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proof search.7 However, in exchange for this extra structure there are limits to the
generality of the formulation: the properties in Theorem 4.3.7 depend on design
decisions we have made, in particular, the use of Horn theories. This, of course, limits
what we can formalize in comparison to a semantic embedding in first-order logic.
There are tradeoffs in the possible formalizations: if we remove these limitations by
introducing first-order (or even higher-order) theories of the accessibility relation and
of the domains of quantification, then, in general, to achieve complete presentations we
must give up the properties in Theorem 4.3.7. In particular, we must give up the ability
to separate derivations so that reasoning can be factored into interacting theories, and
instead retreat to systems where derivations arbitrarily mix lwffs, rwffs and lterms.
Such liberalized systems essentially amount to a direct formalization (embedding) of
the semantics in first-order logic.

To illustrate this, we consider problems that appear only in the quantified case,
namely the tradeoffs in ND presentations of logics with first-order domain theories;
the tradeoffs for first-order relational theories discussed in 2.3 generalize straightfor-
wardly to the quantified case. Before doing this, however, let us briefly discuss when
and why first-order domain theories might be of interest.

As we have shown above, all the domain properties commonly considered, i.e. that
the domains are varying, increasing, decreasing or constant, can be easily axiomatized
by Horn clauses. However, in particular applications of quantified modal logics, we
might want to consider more complicated properties. For example, we might want
to state explicitly that some object does not exist in a world 
. Or we might want
to refine the increasing domains property by specifying the size of the increment,
e.g. that there are at least � ‘new’ objects. Such properties require a full first-order
(or even higher-order) domain theory. Analogously to the case of relational theories,
it is not conceptually difficult to introduce first-order domain theories. 8 We just
need to introduce a standard first-order natural deduction system for reasoning about
labelled terms built using the operators � (falsum), � (implies),

�
(for all); lterms

over other connectives and quantifiers, e.g. � (not), � (and),  (or),
�

(exists), and
corresponding rules are defined as usual. Note that we use the same operators that
we used for relational theories in 2.3.2; since here we do not consider such relational
theories, no confusion should arise.

The particular properties of the domains are then added as axioms or rules directly
in their full form, i.e. the first-order domain theory ��+	� � �� � �� is obtained
by adding a collection �� of such axioms or rules to the first-order ND system for
labelled terms ��. The rules of �� are given in Figure 4.5, where the 1 � range over

7In �6 we give cut-free labelled sequent systems for propositional and quantified non-classical logics, and
then in Part II we show that in the sequent systems for certain propositional modal logics we can bound
applications of the contraction rules and thus establish decidability. This will not be the case for quantified
modal logics (since we cannot bound the use of universally quantified subformulas), but still the existence
of partitioned normal forms allows us to restrict the search space during theorem proving.
8Note that the possibility of expressing complex properties of the domains of quantification in our systems
provides another advantage of our approach with respect to Hilbert-style axiomatizations, since it is often
difficult, if not impossible, to give Hilbert-style axioms corresponding to such properties.
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�
��1 � ��....
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��1 ��
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�1�
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In
�
�,  must not occur free in any open assumption on which 
�1 depends.

Figure 4.5. The rules of ��

terms (note that �� is a ‘global falsum’, and we can therefore formulate also local and
universal variants).

For example, to state that the domain of each world contains at least one term we
add the rule


�
�

��
non-empty �

The non-emptiness of the domains is a property expressible as a Horn rule, since we
can express it as


�%�
�

where % is a Skolem function constant. However, it is interesting to consider it in its
full (unskolemized) form, since even this very simple property gives rise to a tradeoff
between expressivity, completeness and metatheoretical properties of our systems.

As remarked in 4.1, from free logic [28] we know that non-empty corresponds to
the axiom schema


����� 
 ���� � (4.11)

Therefore there should be a proof of it in the extension of ��
�� with a first-order
domain theory ��+	� � �� � ��, where �� consists of non-empty as the only
property. Moreover, since normalization in ��
�� � �� � �� can be shown by
extending Lemmas 4.3.2 and 4.3.6, if there is a proof of (4.11), then there is a normal
one satisfying the subformula property. But reasoning backwards from (4.11), we see
that we need a proof of 
�� from non-empty:

������� 
��


������
��


��


�����
� �


����� 
 ����

��

�
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However, such a proof cannot exist: we can only use non-empty as the major premise
in an application of the derived rule

�
�,


��
�

��

�
���....

� ��


� ��

�
�

�


�� �
�

�� �

�
� � � ���

�
���
�

....

� ��


� ��
��


�� �  � ��


��
�

�� �

�
�


���
��


� ��
���

�

where the side condition of
�
� requires that  must not occur free in 
� �� or in

any assumption on which the upper occurrence of 
 � �� depends other than 
��; in
particular, 
� �� cannot be 
��.9

Thus, we cannot derive 
�� by non-empty and
�
�, and (4.11) is not provable in

��
�� � �� � ��. As a consequence, ��
�� � �� � �� is not complete with
respect to its corresponding semantics (in which (4.11) is a valid formula), and we
have:

Theorem 4.3.8 There are systems��
������ ����+	�, with��+	� � �����,
that are incomplete with respect to the corresponding Kripke models with domains of
quantification defined by a collection �� of first-order axioms. �

As for first-order relational theories, we can restore completeness by giving up the
separations in our systems. Specifically, we need rules that allow us to propagate,
in either direction, inconsistency (falsum) between the base system and the domain
theory extending it. The addition of the rules


���


� ��
uf �� and


� ��


���
uf ��

(universal falsum for terms) allows us to mingle derivations of lwffs with derivations
of lterms, and we can then prove (4.11) as follows:


�
�

��
non-empty

�
������� �
���


�����
��

�
���


�����
� �


����� 
 ����

��


����� 
 ����

�
�lwff

�

�

9The derivations of the rules

!��� "
....
���
�� � � ��

and
�� � � ���

���
��

are straightforward (analogously to the derivations of 	 � and 	�).
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Note that we have used a derived rule of the domain theory,
�
�lwff, to infer an lwff;

the derivation of
�
�lwff requires using uf �� and uf ��, namely:


�
�

�1�

�
�1 �....

��


��

�
�lwff

�


� �
�

�� 1�

�
� ����

�
�1 ��....

��


��
��


��
uf ��


� � 1 ���


�
�

�� 1�

�
�


��
��


��
uf ��


�� ���

where
�
�lwff has the side condition that  does not occur free in 
�� or in any

assumption on which the upper occurrence of 
�� depends other than 
�1 .
Hence, to restore completeness not only have we lost the separation of derivations,

but also the other good metatheoretical properties in Theorem 4.3.7, in exchange for
a system in which, like in semantic embedding, derivations of lwffs are mingled with
derivations of rwffs and lterms. In fact, by defining a suitable mapping between
derivations, like we did in Definition 2.3.19 for propositional modal logics, we can
show that the quantified system with uf �� and uf �� is essentially equivalent to the usual
semantic embedding of quantified modal logics in first-order logic.





5 ENCODING LABELLED
NON-CLASSICAL LOGICS IN ISABELLE

We have used the generic theorem prover Isabelle [181] to implement the non-classical
logis we presented. The logical basis of Isabelle is a natural deduction presentation
of minimal implicational predicate logic with universal quantification over all higher-
types [179].1 We call this metalogic 
�� , and to prevent object/meta confusion we
use
�

to represent 
��’s universal quantifier and � for implication.
An object logic is encoded in Isabelle by declaring a theory, composed of a signature

and axioms, which are formulas in the language of 
�� . The axioms are used to
establish the validity of judgements, which are assertions about syntactic objects
declared in the signature. Derivations are constructed by deduction in the metalogic.

5.1 ENCODING PROPOSITIONAL MODAL LOGICS

5.1.1 Implementation

We begin by declaring a theory
������, which encodes the base propositional modal
ND system ����.

1Isabelle’s logic also contains equality (that of the �-calculus under �, �, and �-conversion), but we do not
need to consider this, since, in the analysis of derivations in the metalogic, we shall identify terms with their
�� normal forms. This is possible as terms in our metatheories are terms in the simply-typed �-calculus
(with additional function constants) and every term can be reduced to a normal form that is unique up to
�-conversion.
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� � ���� � �� � �	
��� ���� ��������� ��
������� ��
�� ��
� 
�� ��������� ����
��� ��� �	��� ��


��� �� ������
��� �� 
��� ���
���
�� ��
�������  

���
�� �� !���
��� �� 
�� ���
� "������ 
� 
�� �	�
��� 
��� ��
������ � ## �����

���

�� $������ �����
�� ��
����� ## %�%
��� ## %&�� �' �( �% �%) **( )% &+,�+-' +-�
��
 ## %� �( �% �%. )% &/ ' / �
��	 ## %� �( �% �%&')% &, ' , �
��� ## %� �( �% �%0()% &, ' , �

�� 1�������
 ��
$2 ## %&������ �' �( ����% �%�) # )�% & � ' 3  �
42 ## %&������ �����' �( ����% �%�) 4 )�% & � ' 3  �

����
�� !	��� �������
��� 
�� ��5��
*��6�� ���� ��
�����7 %�	# ! **( ����� ��( �# ������ ��( 	#!%
���� %�	#! ��( 	#8� ��( 	# ! **( 8%
���7 %	# ! **( 8 ��( 	#! ��( 	#8%
��	� %�99�: �	 4 � ��( �#!�� ��( 	#&'!%
��	7 %	#&'! ��( 	 4 � ��( �#!%

�� ������
��� ��
��
)��� %	# .! �� 	# ! **( �����%
���)��� %	# 0(! �� 	# .�&'�.!��%

���

Figure 5.1. Isabelle encoding of ����

The signature of 
������ declares two types &�+�& and ', which denote labels
and unlabelled modal formulas, respectively. Logical operators are declared as typed
constants over this signature, e.g. +' of type '� '. There are two judgements, which
correspond to predicate symbols in the metalogic: �/ and 0/ , which stand for
‘Labelled Formula’ and ‘Relational Formula’. �/���� and 0/�� �� respectively
express the judgements that �� is a provable lwff and that � � is a provable rwff. 2

The axioms for �/ are a direct axiomatization of the rules in Figure 2.1; for example,

2Indexed judgements similar to ours have been adopted in other encodings of some non-classical logics in
Logical Frameworks, e.g. modal and dynamic logics in [10, 18, 133, 216].
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for �� we give the axiom

�

�

���
�

��0/�� ��� �/�������� �/������ �

Figure 5.1 contains our entire Isabelle declaration for the theory 
�� ����. Some
brief explanations are in order.3 First, we use 
������
�� ���
 for displaying
concrete Isabelle syntax which has come from actual Isabelle sessions: ���� stands
for Isabelle’s metalogic 
�� , and � for 
������. The operators 99 and ��( are
concrete syntax in Isabelle for universal quantification (

�
) and implication (�) in


�� . ��
)��� and ���)��� are the definitions (using meta-equality ��) of the
logical operators� and�; other operators can be defined similarly. The use of mixfix
annotations, declared with information for Isabelle’s parser, allows us to abbreviate���
with **(, ��
 with ., ��	 with &', ��� with 0(, $2�	�!� with 	#!, and 42�	���

with 	 4 �. Finally, note that, in axioms, free variables are implicitly outermost
universally quantified, that comments are added between ‘��’ and ‘��’, and that there
is additional information present to fix notation and help Isabelle’s parser.

A system ���� � ���� � ��� � is encoded by extending 
������ with the
theory 
����� �, which encodes ��� �.4 The axioms for 0/ are given by directly
translating Horn relational rules to axioms in 
�� : each rule corresponds to an
iterated (Curried) implication where the assumptions of the rule together imply the
conclusion.

Theories in Isabelle correspond to instances of an abstract datatype in the ML
programming language [180] and Isabelle provides means for creating elements of
these types, extending them, and combining them. We use these facilities to combine
and extend our modal theories. This is best illustrated by an example. �; (for

���� �) is obtained by extending � with the axiom ����; this is specified as
follows.

�; � � �
����
���� %	 4 	%

���

Again, recall that outermost quantifiers are left implicit, so the above is shorthand for
adding 99	: 	 4 	 as an axiom to �. Similarly, �/ is formed by extending � with

���.

�/ � � �
����

��� %	 4 � ��( � 4 < ��( 	 4 <%

���

3Further details on Isabelle syntax and theory declarations can be found in [181]. Note that we here employ
the release ‘Isabelle98’; other releases, available from the world-wide-web pages of Isabelle, may require
small changes to our encodings.
4Note that we could also extend �������� by adding constants and rules that encode new logical operators,
as we do, e.g., below where we introduce �.
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We may now obtain �;/, i.e. =/, by similarly extending �; (or �/ or �); alternatively,
we may apply the ML-function �����)
������ to �; and �/. As remarked above,
�;/ inherits theorems and derived rules from its ancestor logics. As an example,
consider the �;/-theorem	#&'! 0*( &'&'!. The formulas 	#&'! **( &'&'! and
	#&'&'! **( &'! are theorems of �/ and �;, respectively:

������
�� ��� ��� ���

� �
trans

���
��

���� ���

���� ���

��� 
 ��� 
��

������� �
refl

���
��

���� 
 �� 
 ��

� (5.1)

In 5.1.3 below, we show how these theorems are interactively proved in Isabelle in
the corresponding theories and then applied to conclude:

....
��� 
 ���

....
���� 
 ��

��� 1 ���
1 �

�

Note that this requires adding a definition of 0*( to our theory, which can be done in
the standard way, e.g.

���)��� %	# ! 0*( 8 �� 	# .��! **( 8� **( . �8 **( !��%

We also need to add, or derive, an axiom

���� %	# ! **( 8 ��( �	# 8 **( ! ��( 	# ! 0*( 8�%

for the rule 1 �.
As a further example of theory definition, �+ is obtained by extending � with the

constant function symbol � and with the axioms ���63 and ���6+, i.e.

�+ � � �
���

� ## %&�����������������' �( �����%

����
���63 %	 4 � ��( 	 4 < ��( � 4 ��	���<�%
���6+ %	 4 � ��( 	 4 < ��( < 4 ��	���<�%

���

In 5.1.3, we use this theory to prove ���� 
 ���, the characteristic axiom
of �+. The examples we work through in Isabelle should help convince the reader
that the approach we have taken to interactive theorem proving for modal and other
non-classical logics is both simple and flexible. In particular, it supports hierarchical
structuring of theories and inheritance of theorems between them.

5.1.2 Faithfulness and adequacy

When one logic encodes another, correctness of the encoding must be shown. A
technique established with the Edinburgh Logical Framework [125] is to demonstrate a
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correspondencebetween derivations in the object logic and derivations in the metalogic
by considering certain normal forms for derivations in the metalogic. Given � �
������ � � � � ����� and � � ������ � � � � �����, in what follows we abuse
notation and write �/��� and 0/��� for the sets ��/��� ���� � � � ��/��� ����
and �0/��� ���� � � � �0/��� ����.

Definition 5.1.1 
������ is faithful (with respect to ����) iff

(i) 0/��� � 0/�� �� in 
������ implies � � � � in ����, and

(ii) �/����0/��� � �/���� in 
������ implies ��� � �� in ����.


������ is adequate (with respect to ����) iff the converses hold, i.e. iff

(i) � � �� in ���� implies 0/��� � 0/�� �� in 
������, and

(ii) ��� � �� in ���� implies �/����0/��� � �/���� in 
������. �

By Lemma 5.1.3 and Lemma 5.1.4 below, we have:

Theorem 5.1.2 
������ is faithful and adequate. �

Lemma 5.1.3 
������ is faithful.

Proof Following Prawitz and our definitions in 2.3.1, we call a thread a sequence
of formulas in a derivation in the metalogic leading from some assumption to the
conclusion. A track is the initial segment of a thread ending at either the first minor
premise of a � � rule encountered, or the conclusion of the derivation if no such
minor premise occurs. Paulson [179] shows that derivations in
�� have an expanded
normal form (which in the case of 
�� amounts to derivations in normal form where
the minimal formulas of the tracks are atomic). Since this result immediately extends
to 
������, in the following we exploit the fact that derivations in 
�� ���� have an
expanded normal form in which there are no maximal formulas and each track has a
minimal formula of the form�/���� or0/�� ��. The proof proceeds by induction
on the size of the expanded normal form of 
�� ����-derivation of 0/�� �� from
0/���, or of �/���� from �/��� and0/���.

In the base case for (ii), if �/���� follows from an assumption in �/���, then
�� is an assumption in �, so we trivially have��� ����� ��. We conclude similarly
in the base case for (i), i.e. when0/�� �� follows from an assumption in 0/���.

In the step case, a track begins with an axiom followed by a sequence of elimination
rules. We proceed by showing that the application of each axiom in 
�� ���� corre-
sponds to an object level inference in ����. All of the cases are simple and we give
two representative ones below: a Horn axiom from 
�� ��� � and the axiom ��	�

from 
������.
Consider a Horn axiom of the relational theory corresponding to 
�� ��� �. The


������-derivation must comprise a sequence of
�
� steps, one for each quantifier,

followed by a sequence of�� steps, one for each premise. For concreteness, consider
the axiom ���63, where � � is �� ���� �� 
� for some �, � and 
. The 
������-
derivation must have the structure shown at the top of Figure 5.2. ����-derivations of
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Figure 5.2. The metalevel derivations formalizing conv1 and ��

��� and ��
 from � and � are given by the induction hypotheses, so that applying
conv1 gives a ����-derivation of �� ���� �� 
� from � and �.

In the case of ��	�, let �� be ���� for some � and �. The 
������-derivation
must have the structure shown at the bottom of Figure 5.2. It contains a 
�� ����-
derivation of

�
��0/��� �� � �/������ from �/��� and 0/���, which, by

expanded normal form, consists of a 
������-derivation of �/����� from �/���
and 0/��� � 0/��� ��, where � is not free in the assumptions, followed first by a
� �, discharging the assumption 0/�� ��, and then by a

�
�. A ����-derivation of

��� from � and � � �����, where � is not free in the assumptions, is given by the
induction hypothesis, so that applying �� gives a ����-derivation of ���� from �
and �. �

Lemma 5.1.4 
������ is adequate.

Proof The proof proceeds by induction on the structure of the����-derivation of � �
from �, or of �� from � and �. The base cases are trivial, and we treat only two
step cases as examples.

In the first case, a relational rule has been applied. Consider the case of conv1. � �
is �� ���� �� 
�, and conv1 is applied to ����-derivations of ��� and ��
 from �
and �. 
������-derivations of 0/��� �� and 0/���
� from �/��� and 0/���
are given by the induction hypotheses, and we conclude by building a 
�� ����-
derivation like that at the top of Figure 5.2.
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In the second case, we consider the propositional and the modal rules, i.e. the rules
of ����, individually. For example, for��, �� is ���� and�� is applied to a ����-
derivation of ��� from � and � � �����, where � is not free in the assumptions. A

������-derivation of�/����� from�/��� and0/����0/ ��� ��, where � is not
free in the assumptions, i.e. a 
������-derivation of

�
��0/��� �� � �/������

from �/��� and 0/���, is given by the induction hypothesis. We conclude by
building a 
������-derivation like that at the bottom of Figure 5.2. �

5.1.3 Isabelle proof session

We now illustrate Isabelle proofs for the examples given in 5.1.1. Some brief back-
ground is required; see [181] for a full account.

5.1.3.1 Background. Isabelle manipulates rules (metatheorems). A rule is a for-
mula

99 63 ::: 6�: !3 ��( ::: ��( �!� ��( !�

which is also displayed as

99 63 ::: 6�: &> !3? :::? !�>' ��( !

Rules represent proof states where ! is the goal to be established and the !�’s are the
subgoals to be proved. Under this view, an initial proof state has the form ! ��( !,
i.e. it has one subgoal, namely !. The final proof state is itself the desired theorem
(no subgoals are left). Isabelle supports proof construction through higher-order
resolution, which is roughly analogous to resolution in Prolog. That is, given a proof
state with subgoal 8 and a rule as above, then, treating the 6�’s of the rule as variables
for unification, we higher-order unify ! with 8. If this succeeds, then the unification
yields a substitution 2, and the proof state is updated replacing 8 with the subgoals !3,
..., !� and applying 2 to the whole proof state. This resolution step can be justified
by a sequence of proof steps in the metalogic. Although rules are formalized in a
natural deduction style, they may be read as intuitionistic sequents where the !�’s are
the hypotheses. Isabelle has procedures which apply rules in a way that maintains this
‘illusion’ of working with sequents.

5.1.3.2 Derivations. To prove the equivalence of �� and ��� in the theory =/

encoding �����, we begin by proving the left-to-right direction in the subtheory
�/. The following proof, which is taken verbatim from an Isabelle session with the
exception of minor pretty-printing and omission of diagnostic output, corresponds to
the first derivation given in (5.1). We begin with the desired goal.

( ���� �/:
�� %	#&'! **( &'&'!%?
	 # &'! **( &'&'!
3: 	 # &'! **( &'&'!

On the first line, at the Isabelle prompt ‘(’, we use the command ���� to state the
theory we are using and the theorem to be proved. Isabelle responds with the next



122 LABELLED NON-CLASSICAL LOGICS

2 lines, which give the goal to be proved, and what subgoals (in this case the goal
itself) must be established to prove it. We proceed by applying our rule for implication
introduction,����, declared in Figure 5.1. The command�� ��
�� ���� 3� directs
Isabelle to apply ���� using resolution (�
��) to the first subgoal. Isabelle responds
with the new subgoal.

( �� ��
�� ���� 3�?
	 # &'! **( &'&'!
3: 	 # &'! ��( 	 # &'&'!

If we read the subgoal as a sequent, we must now show 	 # &'&'! under the assump-
tion 	 # &'!. We proceed with two applications of ��	�, each of which gives us new
relational assumptions, followed by ��	7 (using �
��, which first applies �
�� and
then unifies the first assumption of the rule ��	7 against an assumption in the subgoal).

( �� ��
�� ��	� 3�?
	 # &'! **( &'&'!
3: 99�: &> 	 # &'!? 	 4 � >' ��( � # &'!

( �� ��
�� ��	� 3�?
	 # &'! **( &'&'!
3: 99� ��: &> 	 # &'!? 	 4 �? � 4 �� >' ��( �� # !

( �� ��
�� ��	7 3�?
	 # &'! ��� &'&'!
3: 99� ��: &> 	 4 �? � 4 �� >' ��( 	 4 ��

The theory �/ extends � with the transitivity of �. Applying transitivity using �
��,
we obtain

( �� ��
�� 
��� 3�?
	 # &'! **( &'&'!
3: 99� ��: � 4 �� ��( � 4 ��

This leaves only one subgoal, which we prove by assumption using �
��; Isabelle
then reports that we have finished the proof.

( �� ��
�� 3�?
	 # &'! **( &'&'!
@� ������9

We can now name this theorem (we name it 8�	������8�	8�	 using the command
A��) and use it in subsequent proofs; Isabelle provides unknowns, written with a B

prefix, that may be instantiated later during unification.

( A�� %8�	������8�	8�	%?
6�� 8�	������8�	8�	 � %B	 # &'B! **( &'&'B!%

The proof of the converse direction in the theory �; directly mirrors the second
derivation in (5.1); we give it here without further comment.

( ���� �;:
�� %	#&'&'! **( &'!%?
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	 # &'&'! **( &'!
3: 	 # &'&'! **( &'!

( �� ��
�� ���� 3�?
	 # &'&'! **( &'!
3: 	 # &'&'! ��( 	 # &'!

( �� ��
�� ��	7 3�?
	 # &'&'! **( &'!
3: 	 4 	

( �� ��
�� ���� 3�?
	 # &'&'! **( &'!
@� ������9

( A�� %8�	8�	������8�	%?
6�� 8�	8�	������8�	 � %B	 # &'B! **( B!%

Having proved both directions, we may now combine them to prove the equivalence
in �;/, i.e. =/, which has inherited both theorems from its ancestors, and which we
assume to contain an axiom ���� encoding the (possibly derived) rule1 �.

( ���� �;/:
�� %	#&'! 0*( &'&'!%?
	 # &'! 0*( &'&'!
3: 	 # &'! 0*( &'&'!

( �� ��
�� ���� 3�?
	 # &'! 0*( &'&'!
3: 	 # &'! **( &'&'!
+: 	 # &'&'! **( &'!

( �� ��
�� 8�	������8�	8�	 3�?
	 # &'! 0*( &'&'!
3: 	 # &'&'! **( &'!

( �� ��
�� 8�	8�	������8�	 3�?
	 # &'! 0*( &'&'!
@� ������9

In our Isabelle implementation we can also derive new rules. To illustrate this, we
derive the rules for� and� following the����-derivations we gave in Example 2.1.14.
To derive � �, we call ����� with a list of definitions (in this case only ��
)���)
and the appropriate metalevel formula. ����� has two effects: (i) it returns a list
consisting of the rule’s premises (in this case a one-element list, which we bind to the
ML identifier ���� using 6��), and (ii) it applies the definitions specified in the list as
meta-rewrite rules to the subgoal and the premises. Specifically, we type

( 6�� &����' �
����� �:
�� &��
)���' %�	#! ��( 	# ������ ��( 	#.!%?

and Isabelle responds with the lines
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	 # . !
3: 	 # ! **( �����
6�� ���� � %	 # ! ��( 	 # ����� &	 # ! ��( 	 # �����'% # 
��

which give respectively the goal to be proved, what subgoals must be established to
prove it (in this case the goal itself, rewritten using ��
)���), and the binding of
the identifier ���� to the premise. We then apply ���� and use �
�� to resolve the
subgoal using the premise.

( �� ��
�� ���� 3�?
	 # . !
3: 	 # ! ��( 	 # �����

( �� ��
�� ���� 3�?
	 # . !
3: 	 # ! ��( 	 # !

This leaves us with one subgoal, which we prove by assumption; we name this theorem
(derived rule) ��
� in order to use it in subsequent proofs.

( �� ��
�� 3�?
	 # . !
@� ������9

( A�� %��
�%?
6�� ��
� � %�B	 # B! ��( B	 # ������ ��( B	 # . B!% # 
��

We derive�� analogously, but this time we have two premises, enclosed in &>:::>'
to represent nested meta-implications, which we respectively bind to the ML identifiers
��5�� and �����.

( 6�� &��5��������' �
����� �:
�� &��
)���' %&> 	#.!? 	#! >' ��( 	#�����%?

	 # �����
3: 	 # �����
6�� ��5�� � %	 # ! **( ����� &	 # . !'% # 
��
6�� ����� � %	 # ! &	 # !'% # 
��

The rest of the proof is straightforward:

( �� ��
�� ���7 3�?
	 # �����
3: 	 # B! **( �����
+: 	 # B!

( �� ��
�� ��5�� 3�?
	 # �����
3: 	 # !

( �� ��
�� ����� 3�?
	 # �����
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@� ������9

( A�� %��
7%?
6�� ��
7 � %&> B	 # . B!? B	 # B! >' ��( B	 # �����% # 
��

Using ��
� and ��
7 and the definition ���)���, we can derive the rules for �,
directly mirroring the derivations (2.1) and (2.2) in Example 2.1.14. To shorten the
proofs, we make use of some of Isabelle’s built-in tacticals: 7C74D executes commands
in sequence, ;E7@ composes two commands, and 47�7!; applies commands as many
times as possible.

( 6�� &��5��������' �
����� �:
�� &���)���' %&> �#!? 	 4 � >' ��( 	# 0(!%?

	 # 0(!
3: 	 # . &'�. !�
6�� ��5�� � %� # ! &� # !'% # 
��
6�� ����� � %	 4 � &	 4 �'% # 
��

( �� �7C74D &�
�� ��
� 3� �
�� �����7 3� �
�� ��
7 3'�?
	 # 0(!
3: &> 	 # &'�. !�? 	 # ����� **( ����� >' ��( B�3 # . B!+
+: &> 	 # &'�. !�? 	 # ����� **( ����� >' ��( B�3 # B!+

( �� ��
�� ��5�� +�?
	 # 0(!
3: &> 	 # &'�. !�? 	 # ����� **( ����� >' ��( � # . !

( �� ��
�� ��	7 3�?
	 # 0(!
3: 	 # ����� **( ����� ��( 	 4 �

( �� ��
�� ����� 3�?
	 # 0(!
@� ������9

( A�� %����%?
6�� ���� � %&> B� # B!? B	 4 B� >' ��( B	 # 0(B!% # 
��

( 6�� &��5��������' � ����� �:
�� &���)���'
%&> 	#0(! ? �99�: �#! ��( 	 4 � ��( <#8� >' ��( <#8%?

< # 8
3: < # 8
6�� ��5�� � %	 # . &'�. !� &	 # 0(!'% # 
��
6�� ����� � %&> B� # !? 	 4 B� >' ��( < # 8

&99�: &> � # !? 	 4 � >' ��( < # 8'% # 
��

( �� ��
�� �����7 3 ;E7@ �
�� ��
7 3�?
< # 8
3: < # 8 **( ����� ��( B� # . B!3
+: < # 8 **( ����� ��( B� # B!3
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( �� �7C74D &�
�� ��5�� 3� �
�� ��	� 3� �
�� ��
� 3�
�
�� �����7 3� �
�� ���7 3� �
�� ����� 3�
47�7!; ��
�� 3�'�?

< # 8
@� ������9

( A�� %���7%?
6�� ���7 � %&> B	 # 0(B!? 99�: &> � # B!? B	 4 � >'

��( B< # B8 >' ��( B< # B8% # 
��

As a final example, we exploit these derived rules to prove the characteristic axiom
schema for ����� based on the extension of � given in 5.1.1. The proof directly
mirrors the �����-proof (2.4) given in Example 2.1.14.

( ���� �+:
�� %	# 0(&'! **( &'0(!%?
	 # 0(&'! **( &'0(!
3: 	 # 0(&'! **( &'0(!

( �� �7C74D &�
�� ���� 3� �
�� ��	� 3� �
�� ���7 3� �
�� ���� 3�
�
�� ��	7 3� �
�� ���6+ 3� �
�� 3� �
�� ���63 3�
�
�� 3'?

	 # 0(&'! **( &'0(!
@� ������9

5.2 ENCODING PROPOSITIONAL NON-CLASSICAL LOGICS

5.2.1 Implementation and Isabelle proof session

Since the implementation issues are not significantly different from the simpler case
for propositional modal logics described above, we give only a brief overview.

Recall that a logic is encoded in Isabelle using a theory composed of a signature and
axioms, which are formulas in the language of 
�� , and that proving theorems in the
encoded logic means simply proving theorems with these axioms in the metalogic. As
an example, Figure 5.3 contains
����!��, 4��� in concrete syntax, which encodes
the system ���� given in Table 3.4. Note that we could also obtain 
�� ��!�� by
extending a theory for a suitable base system, e.g. a theory 
�� ��"�� for the base
system ��	��.

The signature of 4��� declares two types ����� and �, for labels and unlabelled
formulas of relevance logic. Logical operators are declared as typed constants over this
signature; e.g. ��
 (for the actual world) of type �����, ��� (for incoherence, i.e.��)
of type�, and��� (for relevant implication) of type&���' �( �, i.e.� �( �� �( ��.
There are two judgements, encoded as predicates: first, $2���!�, for provable lwffs,
which we abbreviate to �#!; second, 42�������, for provable rwffs, which we ab-
breviate to 4 � � �. The axioms for $2 and 42 correspond directly to the rules in 3
(recall that in the axioms free variables are implicitly outermost universally quantified).

We may now extend 4��� by adding axioms, which reflect the discussion in
3.1.4. The encoding 14 of ���� is obtained by extending 4��� with axioms for
an intuitionistic treatment of negation, i.e.
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4��� � ���� � �� 4��� �	
��� ���� ��������� ��
������� ��
�� ��
� 
�� ��������� ����
��� ��� �	��� ��


��� �� ������
��� �� 
��� ���
���
�� ��
������ �  

���
�� �� !���
��� �� 
�� ���
� "������ 
� 
�� �	�
��� 
��� ��
������ � ## �����

���
 �� $����� $������ �����
��� 1�������
 ��
��
 ## %�����%
�+ ## %&�����������������������������' �( �����%
�F ## %&�����������������������������' �( �����%
�/ ## %&�����������������' �( �����%

��� ## %&�� �' �( �% �����	� F,�
�� ## %&�� �' �( �% �����	� F �
��� ## %&�� �' �( �% �����	� +,�

$2 ## %&������ �' �( ����% �%�) # )�% & � ' 3  �
42 ## %&������ ������ �����' �( ����% �%�4 ) ) )�%

& � � ' 3  �

����
�� 8�� �
�� ��
���5� %&> �#!? �#8 >' ��( �# ! ��� 8%
���573 %�# ! ��� 8 ��( �#!%
���57+ %�# ! ��� 8 ��( �#8%
��5�3 %�#! ��( �# ! �� 8%
��5�+ %�#8 ��( �# ! �� 8%
��57 %&> �# ! �� 8? �#! ��( �#G? �#8 ��( �#G >' ��( �#G%
���� %&> 99� �: &> �#!? 4 � � � >' ��( �#8 >'

��( �# ! ��� 8%
���7 %&> �# ! ��� 8? �#!? 4 � � � >' ��( �#8%
���� %&> �#!? 4 ��
 � � >' ��( �#!%

�� ������
�� �� 
�� ����������
� ����
��� 4 ��
���43 %&> 4 � � �? 4 ��
 	 � >' ��( 4 	 � �%
���4+ %&> 4 � � �? 4 ��
 	 � >' ��( 4 � 	 �%
���4F %&> 4 � � �? 4 ��
 � 	 >' ��( 4 � � 	%
���� %4 ��
 � �%
���3 %&> 4 � � 	? 4 	 � � >' ��( 4 � � �+���������	�%
���+ %&> 4 � � 	? 4 	 � � >' ��( 4 � �+���������	� �%
���3 %&> 4 � � 	? 4 	 � � >' ��( 4 � � �F���������	�%
���+ %&> 4 � � 	? 4 	 � � >' ��( 4 � �F���������	� �%
���
3 %4 � � � ��( 4 � � �/�������%
���
+ %4 � � � ��( 4 �/������� � �%
������
 %4 � ��
 �%
���� %4 � � � ��( 4 � � �%

���

Figure 5.3. Isabelle encoding of ����
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14 � 4��� �
���

��� ## %�%
��� ## %� �( �% �%.)% &/ ' / �

�� ## %����� �( �����% �%)�% &/ ' / �

����
���� %���# ! ��( �# ���� ��( �# .!%
���7 %&> �# .!? ��# ! >' ��( �# ���%
���7� %�# ��� ��( �# !%
��6 %4 � � � ��( 4 � �� ��%

��� %4 ��
 � ���%

���

Then we can further add an axiom encoding the rule int to obtain an encoding of the ND
system ��5� for intuitionistic logic as in Proposition 3.1.11, or we can add ‘classical’
negation rules to obtain 4, the encoding of ���, i.e.

4 � 14 �
����
���7� %��# .! ��( �# ���� ��( ��# !%

��� %4 ��
 ��� �%

���

(Alternatively, we can encode��� by directly extending4���.) Using this encoding
we can, for example, prove��
 # ..! ��� ! in��� as follows; cf. the proof (3.24)
of ,�##�� � given in Example 3.1.12.

( ���� 4:
�� %��
 # ..! ��� !%?
��
 # ..! ��� !
3: ��
 # ..! ��� !

We begin by instructing Isabelle to apply implication introduction using resolution to
the first (and only) subgoal.

( �� ��
�� ���� 3�?
��
 # ..! ��� !
3: 99� �: &> � # ..!? 4 ��
 � � >' ��( � # !

We now apply ���� and dispose of the second subgoal using the rule 
���.

( �� ���
�� ���� 3� ;E7@ ��
�� 
��� +��?
��
 # ..! ��� !
3: 99� �: &> � # ..!? 4 ��
 � � >' ��( ��� # !

Next we apply rules as in the proof in Example 3.1.12 (recall that 7C74D executes
commands in sequence and that �
�� proves a subgoal by assumption after solving
for unknowns).

( �� �7C74D &�
�� ���7� 3� �
�� ���7 3� �
�� +'�?
��
 # ..! ��� !
3: 99� �: &> � # ..!? 4 ��
 � �? �� # .! >' ��( � # ..!
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( �� ��
�� ���� 3�?
��
 # ..! ��� !
3: 99� �: &> � # ..!? 4 ��
 � �? �� # .! >' ��( B�,��� �� # ..!
+: 99� �: &> � # ..!? 4 ��
 � �? �� # .! >'

��( 4 ��
 B�,��� �� �

This leaves us with two subgoals, which are both proved by assumption, simplifying
B�,��� �� to �.

( �� �47�7!; ��
�� 3��?
��
 # ..! ��� !
@� ������9

As a second example, we give a 4-derivation of one of the contraposition rules,
reflecting the derivation (3.23) in Example 3.1.12. In this case, at the Isabelle prompt,
we state the theory we are using, the lwff to be proved (��
 # .8 ��� .!) and the
premise from which it follows (��
 # ! ��� 8); the premise is bound to the ML
identifier ����.

( 6�� &����' � ���� 4:
�� %��
 # ! ��� 8 ��( ��
 # .8 ��� .!%?
��
 # .8 ��� .!
3: ��
 # .8 ��� .!
6�� ���� � %��
 # ! ��� 8 &��
 # ! ��� 8'% # 
��

( �� �7C74D &�
�� ���� 3� �
�� ���� 3� �
�� ���7 3� �
�� 3�
�
�� ���7 3'�?

��
 # .8 ��� .!
3: 99� �: &> � # .8? 4 ��
 � �? �� # ! >'

��( B�F��� �� # B!F��� �� ��� 8
+: 99� �: &> � # .8? 4 ��
 � �? �� # ! >'

��( B�F��� �� # B!F��� ��
F: 99� �: &> � # .8? 4 ��
 � �? �� # ! >'

��( 4 B�F��� �� B�F��� �� ��

We resolve the first subgoal using the premise:

( �� ��
�� ���� 3�?
��
 # .8 ��� .!
3: 99� �: &> � # .8? 4 ��
 � �? �� # ! >' ��( B�F��� �� # !
+: 99� �: &> � # .8? 4 ��
 � �? �� # ! >' ��( 4 ��
 B�F��� �� ��

This leaves us with two subgoals. The first is proved by assumption, simplifying
B�F��� �� to ��.

( �� ��
�� 3�?
��
 # .8 ��� .!
3: 99� �: &> � # .8? 4 ��
 � �? �� # ! >' ��( 4 ��
 �� ��

We conclude the proof by first exploiting the inversion property of�, which is stronger
than the antitonicity rule that we exploited in (3.23), and then proving the remaining
subgoal by assumption.
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( �� ���
�� ��6 3� ;E7@ ��
�� 3��?
��
 # .8 ��� .!
@� ������9

As a final example, we encode the derivation of the relational rule idem given
in Table 3.4, using which we could then, for example, prove the axiom schema
,��� � �� � ���� �.

( ���� 4���:
�� %4 � � �%?
4 � � �
3: 4 � � �

( �� ��
�� ���43 3�?
4 � � �
3: 4 B� � �
+: 4 ��
 � B�

( �� ��
�� ���
+ 3�?
4 � � �
3: 4 B�3 � �
+: 4 ��
 � �/�B�3� �� ��

( �� ��
�� ���
3 +�?
4 � � �
3: 4 ��
 � �
+: 4 ��
 � �

( �� ��
�� ���� 3�?
4 � � �
3: 4 ��
 � �

( �� ��
�� ���� 3�?
4 � � �
@� ������9

5.2.2 Faithfulness and adequacy

By reasoning about our encoding and the metalogic
�� we can prove that
�� ��!�
corresponds to the original���. Like for propositional modal logics in 5.1.2, we do
this in two parts, by showing adequacy, that any proof in ��� can be reconstructed
in 
����!�, and faithfulness, that we can recover from a derivation in 
�� ��!� a
proof in ��� itself. Formally, we generalize Definition 5.1.1 as follows; note that,
given � � ������� � � � � ������ and � � ���� +� %�� � � � � � �� +� %��, we abuse
notation and write �/��� and 0/��� for the sets ��/���� ���� � � � ��/���� ����
and �0/���� +�� %��� � � � �0/���� +�� %���.

Definition 5.2.1 
����!� is faithful (with respect to ���) iff

(i) 0/��� � 0/��� +� %� in 
����!� implies � � �� + % in ���, and

(ii) �/����0/��� � �/����� in 
����!� implies ��� � ��� in ���.
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����!� is adequate (with respect to ���) iff the converses hold, i.e. iff

(i) � � �� + % in ��� implies 0/��� � 0/��� +� %� in 
����!�, and

(ii) ��� � ��� in ��� implies �/����0/��� � �/����� in 
����!�. �

Adequacy is easy to show, because the rules of���map directly onto the axioms of

����!�. A simple inductive argument on the structure of proofs in��� establishes
this (as in Lemma 5.1.4). Faithfulness is more complex, since there is no such simple
mapping in this direction: arbitrary derivations in 
�� ��!� do not map directly onto
proofs in ���. Instead we use proof-theoretical properties of 
�� : any derivation
in
�� is equivalent to another in expanded normal form, see [179] and Lemma 5.1.3.
Thus, given a derivation in
����!� we can, by induction over the size of its expanded
normal form, find a derivation in ���. This establishes faithfulness; moreover, this
proof is constructive: it not only tells us that there is a proof in ���, it also provides
an effective method for finding one.

Faithfulness and adequacy of theories 
������ with respect to systems ���� for
other propositional non-classical logics� follow analogously. Thus, we can generalize
Theorem 5.1.2 to:

Theorem 5.2.2 
������ is faithful and adequate. �

5.3 ENCODING QUANTIFIED MODAL LOGICS

5.3.1 Implementation and Isabelle proof session

Again, we give only a brief overview. We extend
�� ����� with theories 
����� �
and 
������ to encode the corresponding systems ��
�� � ��� � � ��+�.

Figure 5.4 contains H�, our entire Isabelle declaration for ��
��. The signature
of H� declares two types ����� and �, for labels and unlabelled modal formulas. The
type variable �� has the default sort 
���, which we declare to be a subclass of �����.
Logical operators are declared as typed constants over this signature, e.g. the universal
quantifier !�� of type ��� �( �� �( �. The variable-binding construct ������
lets us write universal quantification in Isabelle concrete syntax as !$$ 	: !�	� (of
type �), where 	 is a bound variable of type �� of sort 
���, and the body !�	�

has type �. Similarly, the concrete syntax for the existential quantifier 7	 of type
��� �( �� �( � is 7I 	: !�	�.

There are three judgements: $2���!� for provable lwffs, 42���6� for provable
rwffs, and $;���
� for provable labelled terms, which we abbreviate with � 7 


using mixfix annotations. These judgements respectively correspond to the predicate
symbols�/ ,0/ and�� in the metalogic. ��
)��� and ���)��� are the definitions
(using ��) of the logical operators� and�; �	)��� is the definition of the existential
quantifier. Other operators can be defined similarly.

We now illustrate Isabelle proofs for the examples given in 4.1. We begin by
deriving the rules for � following the ��
��-derivations of Example 4.1.8.

To derive �	� we type

( 6�� &��5��������' � ����� H�:
�� &�	)���'
%&> �#!�
�? � 7 
 >' ��( ��#7I 	: !�	��%?
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H� � ���� � �� H� �	
��� ���� ��������� ��
������� ��
�� ��
� 
�� ��������� ����
��� ��� �	��� ��

����

��� 0 �����

������


���


��� �� ������
��� �� 
��� ���
���
�� ��
������ �  

���
�� �� !���
��� �� 
�� ���
� "������ 
� 
�� �	�
��� 
��� ��
������ � ## �����

���

�� $������ �����
�� ��
����� ## %�%
��� ## %&�� �' �( �% �%) **( )% &+,' +,�
��
 ## %� �( �% �%. )% &/ ' / �
��	 ## %��( �% �%&')% &, ' , �
��� ## %��( �% �%0()% &, ' , �
!�� ## %��� �( �� �( �% ������� %!$$ % 3 �
7	 ## %��� �( �� �( �% ������� %7I % 3 �

�� 1�������
 ��
$2 ## %&������ �' �( ����% �%�) # )�% & � ' 3  �
42 ## %&������ �����' �( ����% �%�) 4 )�% & � ' 3  �
$; ## %&������ ��' �( ����% �%�) 7 )�% & � ' 3  �

����
�� !	��� �������
��� 
�� ��5��
*��6�� ���� ��
�����7 %��#! **( ����� ��( 6# ������ ��( �#!%
���� %��#! ��( �#8� ��( �#�! **( 8�%
���7 %�# ! **( 8 ��( �#! ��( �#8%
��	� %�996: �� 4 6 ��( 6#!�� ��( �#�&'!�%
��	7 %�#&'! ��( � 4 6 ��( 6#!%
���� %�99
: �� 7 
 ��( �# !�
��� ��( ��# !$$ 	:!�	��%
���7 %�# !$$ 	: !�	� ��( � 7 
 ��( �#!�
�%

�� ������
��� ��
��
)��� %�# .! �� �# ! **( �����%
���)��� %�# 0(! �� �# .�&'�.!��%
�	)��� %�# 7I 	: !�	� �� �# .�!$$ 	: .!�	��%

���

Figure 5.4. Isabelle encoding of ��
��
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and Isabelle responds with four lines, which give the goal to be proved, what subgoals
must be established to prove it (in this case the goal itself, rewritten using �	)���),
and the binding of the ML identifiers ��5�� and ����� to the two premises of the rule

� # 7I 	: !�	�
3: � # . �!$$ 	: . !�	��

6�� ��5�� � %� # !�
� &� # !�
�'% # 
��
6�� ����� � %� 7 
 &� 7 
'% # 
��

The rest of the derivation is straightforward, assuming that we have derived the rules
for negation introduction and elimination, � � and ��, which we can do exactly like
in the propositional case in 5.1.3.

( �� ��
�� ��
� 3�?
� # 7I 	: !�	�
3: � # !$$ 	: . !�	� ��( � # �����

( �� ��
�� ��
7 3�?
� # 7I 	: !�	�
3: � # !$$ 	: . !�	� ��( � # . B!3
+: � # !$$ 	: . !�	� ��( � # B!3

( �� ��
�� ��5�� +�?
� # 7I 	: !�	�
3: � # !$$ 	: . !�	� ��( � # . !�
�

( �� ��
�� ���7 3�?
� # 7I 	: !�	�
3: � 7 


( �� ��
�� ����� 3�?
� # 7I 	: !�	�
@� ������9

( A�� %�	�%?
6�� �	� � %&> B� # B!�B
�? B� 7 B
 >' ��( B� # 7I 	: B!�	�% # 
��

The rule �	7 is derived analogously and we give it without further comments.

( 6�� &��5��������' � ����� H�:
�� &�	)���'
%&> �#7I 	: !�	�? �99
: �#!�
� ��( � 7 
 ��( 6#8� >' ��( 6#8%?

6 # 8
3: 6 # 8
6�� ��5�� � %� # . �!$$ 	: . !�	�� &� # 7I 	: !�	�'% # 
��
6�� ����� � %&> � # !�B
�? � 7 B
 >' ��( 6 # 8
&99
: &> � # !�
�? � 7 
 >' ��( 6 # 8'% # 
��

( �� �7C74D &�
�� �����7 3� �
�� ��
7 3� �
�� ��5�� 3�
�
�� ���� 3� �
�� ��
� 3� �
�� �����7 3�
�
�� ���7 3� �
�� ����� 3� 47�7!; ��
�� 3�'�?

6 # 8
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@� ������9

( A�� %�	7%?
6�� �	7 � %&> B� # 7I 	: B!�	�?
99
: &> B� # B!�
�? B� 7 
 >' ��( B6 # B8 >' ��( B6 # B8% # 
��

We can now extend the encoding of��
��with encodings of relational and domain
theories. For example, for ��
��2� we extend H� with an encoding of id, i.e.

H�� � H� �
����
�� %&> � 7 
? � 4 6 >' ��( 6 7 
%

���

Then we can, e.g., use �	� and �	7, which H�� inherits from H�, to prove the��
��2�-
theorem


������ 
 �����

as follows.

( ���� H��:
�� %�# �7I 	: �&'!�	��� **( &'�7I 	: !�	��%?
� # �7I 	: &'!�	�� **( &'�7I 	: !�	��
3: � # �7I 	: &'!�	�� **( &'�7I 	: !�	��

( �� �7C74D &�
�� ���� 3� �
�� �	7 3� �
�� ��	� 3� �
�� �	� 3�
�
�� ��	7 3� �
�� 3� �
�� �� 3� 47�7!; ��
�� 3�'�?

� # �7I 	: &'!�	�� **( &'�7I 	: !�	��
@� ������9

As a final example, we show that �	7 is a theorem of ��
�	�2�. First we extend
H�� with an encoding of symm, i.e.

H�8� � H�� �
����
��� %� 4 6 ��( 6 4 �%

���

and then we exploit �� (inherited from H��) and ��� to prove
������ 
 �����
as follows.

( ���� H�8�:
�� %�# �!$$ 	: �&'!�	��� **( &'�!$$ 	: !�	��%?
� # �!$$ 	: &'!�	�� **( &'�!$$ 	: !�	��
3: � # �!$$ 	: &'!�	�� **( &'�!$$ 	: !�	��

( �� �7C74D &�
�� ���� 3� �
�� ��	� 3� �
�� ���� 3� �
�� ��	7 3�
�
�� ���7 3� �
�� F� �
�� 3� �
�� �� 3� �
�� 3�
�
�� ��� 3� �
�� 3'�?

� # �!$$ 	: &'!�	�� **( &'�!$$ 	: !�	��
@� ������9
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5.3.2 Faithfulness and adequacy


������� � 
������� � 
����� � � 
������ corresponds to ��
�� �
��
������ ����+�. Like for propositional modal logics in 5.1.2, we prove this
in two parts, by showing adequacy, that any proof in ��
�� can be reconstructed in

�������, and faithfulness, that we can recover from a derivation in 
�� ����� a
proof in ��
�� itself. Formally, we extend Definition 5.1.1 to quantified modal logics
as follows; note that given � � �
����� � � � � 
�����, � � �
��
�� � � � � 

�
��
and 8 � �
����� � � � � 
� ����, we abuse notation and write �/��� for

��/�
�� ���� � � � ��/�
�� ���� �

0/��� for

�0/�
�� 
��� � � � �0/�

� 
��� �

and �� �8� for

��� �
�� ���� � � � ��� �
�� ���� �

Definition 5.3.1 
������� is faithful (with respect to ��
��) iff

(i) 0/��� � 0/�
� �� in 
������� implies � � 
�� in ��
��,

(ii) 0/������ �8� � �� �
� �� in
������� implies��8 � 
�� in��
��, and

(iii) �/����0/������ �8� � �/�
��� in 
������� implies ����8 � 
��
in ��
��.


������� is adequate (with respect to ��
��) iff the converses hold, i.e. iff

(i) � � 
�� in ��
�� implies 0/��� � 0/�
� �� in 
�������,

(ii) ��8 � 
�� in��
�� implies0/������ �8� � �� �
� �� in
�������, and

(iii) ����8 � 
�� in ��
�� implies �/����0/������ �8� � �/�
��� in

�������. �

By a straightforward generalization of Theorem 5.1.2, it follows that:

Theorem 5.3.2 
������� is faithful and adequate. �





6 LABELLED SEQUENT SYSTEMS
FOR NON-CLASSICAL LOGICS

We show that our normalizing labelled natural deduction systems yield equivalent
cut-free labelled sequent systems that

(i) allow us to present non-classical logics in a uniform and modular way;

(ii) are decomposed into two separated parts: a base system fixed for related logics,
and a labelling algebra, which we extend to generate particular logics;

(iii) contain left and right rules for each logical operator (except for falsum � and
incoherence��), independent of the relation(s) � � and of the other operators;

(iv) satisfy a subformula property; and

(v) provide the basis of a general proof-theoretical method for bounding the com-
plexity of the decision problem for propositional non-classical logics.

Following the development of the previous chapters, in 6.1 we introduce cut-free
labelled sequent systems for (classical) propositional modal logics, and then, in 6.2,
we formalize generalizations for other non-classical logics, restrictions to minimal and
intuitionistic subsystems, and extensions to the quantified case. In 6.3 we show that
normalizing natural deduction systems and cut-free sequent systems are intertranslat-
able; this guarantees that our sequent systems are sound and complete with respect to
the corresponding Kripke semantics.

In Part II we then show how to use our sequent systems to establish decidability
and complexity results, and consider some propositional modal logics as examples.
As we discuss in the introductory chapter, 8, the fact that derivations in our ND
systems can be reduced to a normal form that has a well-defined structure, and satisfies

137
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a subformula property, provides only a first step towards establishing decidability of
the logics presented that way. Additional steps are required, such as bounding the
number of times a particular formula may be assumed or discharged. This kind of
proof-theoretical analysis is more easily performed when logics are presented using
sequent systems, which allow a finer grained control of structural information via their
structural rules. More specifically, we show that for certain logics we can restrict
applications of the structural rules of our sequent systems, so that we can bound the
number of times a given formula appears in a given proof (the number of different
formulas that can appear in a proof is already bounded by the subformula property).
This, combined with an analysis of the accessibility relation of the corresponding
Kripke frames, yields decision procedures with bounded space requirements for a
number of modal (and other non-classical) logics.

6.1 LABELLED SEQUENT SYSTEMS FOR PROPOSITIONAL MODAL
LOGICS

We introduce partitioned, cut-free, labelled sequent systems for propositional modal
logics: the logics are presented by modularly extending the labelling algebra of the
fixed base sequent system ����.

We begin with some terminology and notation. Let formulas be defined as for
propositional modal ND systems,Definitions 2.1.1 and 2.1.3,possibly with the addition
of Skolem function constants (and in that case with our usual convention about atomic
and composite labels). That is, if � is a binary relation over a set of labels � ,  and
� are labels, and � is a propositional modal formula built from propositional variables
and the operators �, 
 and �, then � � is a relational formula (rwff ) and �� is a
labelled formula (lwff ). As before, other logical operators can be defined in the usual
manner, e.g. �� ���� � 
 � and�� ���� �� ��.

Further, let � and �, possibly annotated, vary over finite multiset of lwffs and rwffs
respectively. We write ��� for the union of � and �, and �� �� [�� � �] for the
union of � [�] with the singleton multiset ���� [����]. A sequent is an ordered
pair of the form

,� -� �- � written � � � �,

or

,��� -��- � written ��� � ��,

where � is a new meta-logical symbol, the sequent symbol, not to be confused with
the derivability symbol for ND systems.

Let �, possibly annotated, vary over sequents. We call the left hand side of �,
i.e. the multiset(s) of formulas � or ���, the antecedent of �, and the right hand side
of �, i.e. the rwff � � or the multiset of lwffs � �, the succedent of �. The intuitive
semantic reading of � is: ‘if all the formulas in the antecedent are true, then some
(or the) formula in the succedent is true’. Formally, where � � ������� as in
Definition 2.2.1, truth for an rwff or lwff � in a model �, �� �, is the smallest
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relation �� satisfying:

�� � � iff �� �� 	 � -
�� �# iff ��� #� � � -
�� �� 
 � iff �� �� implies �� �� -
�� ��� iff for all � ��� � � implies �� ��� �

When �� �, we say that � is true in�. By extension:

the sequent � � � � is true in a model � iff, whenever �� ��� for every
��� 	 �, then �� � �;

the sequent��� � �� is true in a model� iff, whenever�� �� for every�� 	 �
and �� ��� for every ��� 	 �, then �� ��� for some ��� 	 ��.

Sequent systems can be understood as meta-calculi for the corresponding natural
deduction systems (see [106, 186, 221] and Theorem 6.3.1 below). Indeed, the two
possible forms of a sequent directly correspond to the separations enforced in our
labelled ND systems: � � � � expresses that rwffs follow only from other rwffs,
and ��� � �� expresses that lwffs follow from lwffs and rwffs.1

Formally, a sequent system (or sequent calculus) is a collection of axioms (also
called initial sequents) and rules. For example, the axioms and rules given in Fig-
ure 6.1 determine ����, the sequent system presenting the modal logic �. (That ����
presents � is a consequence of the equivalence of ���� and ����, which is proved in
Theorem 6.3.1.) In the following we will use also the derived rules given in Figure 6.2,
especially the rules for�, which follow immediately from the axioms, weakening and
the rules for 
; the derivations of the� rules are given in Example 6.1.3.

Some remarks about terminology.

Definition 6.1.1 We call the sequent below the line in a rule the conclusion of the
rule, and the sequents above the line the premises of the rule. We call the formulas,
lwffs and rwffs, which pass through the application of a rule unchanged (they appear
in the premises and in the conclusion) the parametric formulas of the rule. The formula
contracted or introduced in the conclusion of the rule is called the principal formula
of the rule, and the formulas from which the principal formula derives are the active
formulas; we also say for short that a rule introduces or contracts (if the rule is a
contraction) its principal formula. �

The rules of a sequent system are divided in two categories: logical rules and
structural rules. Logical rules define the behavior of logical operators (they introduce
instances of the operators of the logic), while structural rules alter on the structure of the
sequents, adding new formulas (weakening, in symbols � � � �) or deleting duplicated

1Note also that since � � ��� has the form of minimal or intuitionistic sequents, in the sense that only
one rwff appears in the succedent, our sequent systems do not contain rules for weakening or contraction of
rwffs on the right (see also �6.2). It follows that we could consider two kinds of sequents, �� for� �� ���
and �	 for ��� �	 ��, where the rules for �	 ‘employ’ those for �� but not vice versa.
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Axioms:

�� � ��
4)� � � � � �

4)$
��� � ��

��

Logical rules:

��� � ��� �� ������ � ��

�� 
 ����� � ��

�
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 �
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In �, the (atomic) label � does not occur in ��� � � �� ���.

Structural rules:
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�$�
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Figure 6.1. The axioms and rules of ����
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In��, the (atomic) label � does not occur in ������� � � �.

Figure 6.2. Some derived rules of ����
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formulas (contraction, in symbols � � � �). We write � � � $ � � � and � � � � � � � to distinguish
weakenings and contractions of rwffs and lwffs. Logical and structural rules are further
divided into left rules, � � ��, and right rules, � � �, depending on which side of � the
principal formula appears.

One of the advantages of our labelled sequent systems over standard ones for modal
(and other non-classical) logics is that each logical operator is characterized by a left
and a right rule. In particular, this holds for � (and �). Using the terminology of
Wansing [233, 235], our rules for � are

separated: �� and � are independent of the other operators, as well as inde-
pendent of the properties of � (this allows us to view the rules as specifying the
meaning of �, as is philosophically required of sequent and ND systems);

symmetric: �� introduces��� in the antecedent of the conclusion,� introduces
��� in the succedent of the conclusion;

explicit: only one boxed formula �� is introduced in the conclusion.

Furthermore, in our systems,� is properly interrelated with�: if we take both� and�
as primitive, then we can easily prove � ��� 1�� �� and � ��� 1�� ��.
Note also that, as for ND systems, there is a close correspondence between the rules for
� and
; this holds since we express ��� as the metalevel implication � � � ���
for an arbitrary world � accessible from .

Standard modal sequent systems, e.g. [87, 119, 233, 238], do not possess all of these
properties. Consider, for example, the standard system ����� given in Figure 6.3,
where: and:� are multisets of formulas and�� denotes the multiset ��� � � 	 ��.
Note that ����� contains no structural rules: weakening is built into �4)� and
���, and contraction can be shown to be admissible (Zeman [238] first explicitly
gives contraction rules, and then shows how to eliminate them). 2 Also note that the
traditional negation rules, ���� and ���, can be replaced by the axiom

��: � :�� �
����

where � is then defined in terms of 
 and �. Most importantly, while ��� is a
separated rule, it is neither symmetric nor explicit (it is only weakly symmetric and
weakly explicit [233]). In the terminology of consequence relations, ��� is an impure
rule, since it carries a non-local side condition on the complete set of assumptions
(while � is a pure rule as it has a local side condition).3 Moreover, in our labelled
systems we extend the fixed base system ���� with a labelling algebra consisting
only of relational rules (see below). �����, on the other hand, is extended with rules
for � that depend on the properties of the accessibility relation in the corresponding
frames, i.e. the behavior of modal operators is not independent of the details of the

2That is, while the contraction rules are not derived rules, no new theorems become provable by their
addition. For a technical discussion of admissible and derived rules see, e.g., [131, 220].
3See �1 and Avron’s discussion of degrees of impurity of rules in [6, �5.5].
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�4)� : � :�� �

���: � :�
����

��: � :�

: � :����
���

: � :�� � ��: � :�

� 
 ��: � :�
�
��

��: � :�� �

: � :�� � 
 �
�
�

� � �
:��� � ���:�

���

Figure 6.3. The axioms and rules of �����

Kripke frame providing their semantics. For example, ����� can be extended with
non-explicit rules like

�����: � :�

���: � :�
��� �

���� � �

:��� � ���:�
���� � or

�� � �
:��� � ���:�

���� �

The standard sequent system ����� is then ����� plus ���, while ������ is obtained
from ����� by replacing ��� with ����, and ������ is obtained from ����� by
replacing ��� with ��� and ����; alternatively, we can obtain ������ by extending
����� or ������. (Note that actually the rule ��� becomes redundant when we add
the rule ���� or ��� and ����.)

Rules for other systems, e.g. ������, ������� and ������, require considerably
more ingenuity, and have been given various formulations, e.g. [87, 115, 119, 163,
214, 233, 235]. For example, Shvarts [214] formalizes ������� by extending the
propositional rules with the non-explicit, ‘left-and-right’ rule

�:��:� � �:��:�
�:���:� � �:���:�

where :� contains at most one formula.
Their being difficult to invent is not the only problem of standard sequent rules; as

observed by Kripke [150], the equivalences between �� and �� ��, and �� and
�� �� do not follow from many standard rules.

We will consider again standard sequent systems in 7 and in Part II, in which we
also show that our rules provide a proof-theoretical justification (and a refinement of
some) of the standard rules. We now adapt common terminology to define derivations
and proofs of sequents in an arbitrary labelled sequent system ����.

Definition 6.1.2 Let a branch be a sequence of sequents, written vertically and sepa-
rated by horizontal lines. A derivation of a sequent � in a system ���� is a finite tree of
branches, growing upwards, where each sequent except the root of the tree is obtained
from the one below it by a (backwards) application of one of the rules of ����. We
call the root sequent the end-sequent, and we say that a sequent is a leaf of the tree iff
it is the top-most sequent in a branch. A branch is closed iff all of its leaves are axioms
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(initial sequents) and is open otherwise. A derivation of � in ���� is a proof of � in
���� iff all of its branches are closed. An lwff or rwff � of the logic � is a theorem of
���� (or, simply, a ����-theorem) iff the sequent � � is provable in ����. �

Analogously with ND systems, we also call a derivation [proof] in ���� a ����-
derivation [����-proof ], and we omit the ‘����’ when the details of the particular
logic are not relevant or are clear from context. We systematically use �, possibly
annotated, to range over derivations of sequents, and write

�� � � � ��
�
�

to specify that the sequent � follows from sequents ��, � � � , �� by the derivation �.
Further, we sometimes combine derivations graphically, e.g. we can combine

�� � � � ��
��
��

and
�� �� � � � ��

��
�

to

�� � � � ��
��
�� �� � � � ��

��
�

�

For brevity, we denote a sequence of applications of the rule ��� in a derivation with
vertical dots labelled with ���, e.g.

��� � � � � �.... �$�

������ � � � � �

or, more generally,
����� � ���.... �

����������� � �����
�
�

where � stands for one or more applications of the weakening rules. Moreover, given
a derivation

�� � � � ��
�
�

we write
��� � � � �

�
�

�	

��

to denote that in �	 we apply to � �� � � � �
�
� the same sequence of rules (with the same

principal and active formulas) applied to �� � � � �� in �. That is, � and �	 differ only
in their parametric formulas. For example, let

������ � ��� �� ������ � ��

�
��� 
 �� 
 ����� � ��

be

������ � ��� ��

��� � ��� �� 
 �



������ � ��

��� 
 �� 
 ����� � ��

�

�

Then we write

�������� � ���� �� �������� � ���
�	

��� 
 �� 
 ������� � ���



144 LABELLED NON-CLASSICAL LOGICS

to denote

�������� � ���� ��

����� � ���� �� 
 �



�������� � ���
��� 
 �� 
 ������� � ���


�
�

Example 6.1.3 As examples of derivations and proofs, we use the rules of ���� and
the derived � rules to derive the rules for �, cf. (2.1) and (2.2), and prove the ����-
theorem ���� 
 �� 
 ��� 
 ���. Note that the side condition on the application
of ��, that the (atomic) label � does not occur in ������� � � �, follows from the
condition on the application of �.

�
�������� � � � ��

������� � ��
��

�

�
�������� � � � ��

���� � � � ��� �� ��
�

��� � ��� �� ��
�

� �� ������ � ��
��

��
� � � �

��
��� � ��� ���

��� � ��� ���
�

�

��
� � � �

��
��� � ��� ���

�� ������ � ��
��

�� ������ � ��
��

��� � ��� � �� ��
�

�
� � �
�
���

�
� � �
�
���

�	� � �	�
��


�	� � �		� �	�
�
�

�		 � �		
��


�		� �	� � �		
�
�

�	� � 	� �	� � �		
��

�	� � 	� �	���
� � �		
���

�	� � 	� �	��� �
� � �		
��

�	��� � 	�� �	��� �
� � �		
��

�	��� � 	�� �	�� � �	�	
�

�	��� � 	� � �	�� � �	
�

� �	��� � 	� � ��� � �	�
�

�

�

Note that in ���� the provability of a sequent � � � � reduces to a question of
membership: � � � � is provable iff� � 	 �. This is because the labelling algebra
of ���� is essentially empty; the axiom4)$ and the rules �$� and�$� are needed in
���� simply to manipulate assumptions of rwffs. In fact, as is sometimes the case for
other sequent systems, including standard systems for modal logics [119, 221, 238], all
of the structural rules can be absorbed into the axioms and the logical rules of����. For
example, we can dispense with weakenings by building them into ‘extended’ axioms
of the form

������ � ��� �� � �� � � � � � � and ������� � ��� �� �
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and we can dispense with contractions by building them into ‘extended’ logical rules
of the form

������ � ��� �� 
 �� ��

��� � ��� �� 
 �
and

� � � � ���� ������� � ��

������� � ��
�

It is then a trivial matter to show that these extensions yield equivalent sequent systems.
The provability of � � � � requires more than testing membership when we

extend ���� with relational rules to obtain sequent systems for other logics. To
formalize these systems, we can directly import definitions and results given for
natural deduction systems (including the ‘space’ of systems with local, global or
universal falsum analyzed in 2.3). In particular, in the following we will focus on
Horn relational sequent theories, often dropping the adjective ‘Horn’, with the implicit
understanding that arbitrary first-order (or even higher-order) relational theories can
be introduced like for ND systems. For example, for transitivity, we can extend the
labelling algebra of a system with

� � � � � � �� �

� � � �
� or add �

�

�

�
�

��� � � �� � � � ��

together with a full first-order sequent system with rules for
�

,�, and other operators
(by analogy with the system �� in the propositional case).

Definition 6.1.4 A sequent system ���� � ���� � ��� � is obtained by extending
���� with a Horn relational sequent theory ��� �, a collection of Horn relational
sequent rules. �

Table 6.1 contains some examples of Horn relational rules for propositional modal
sequent systems, corresponding to the rules given in Table 2.2. 4 Then, for example, the
systems �����, �����, ����	�, ������ and ������, and their synonyms ����,
����, ��	�, ����� and �����, present the modal logics �, �, 	, ��, and �� (we prove
this in 6.3 where we show the equivalence of normalizing natural deduction systems
and cut-free sequent systems).

Note that we use the same names for the relational rules of ND and sequent systems;
it will always be clear from context which system is meant. Most importantly, all of
our Horn relational sequent rules have a common form: they operate only ‘on the
right’, i.e.

Fact 6.1.5 The principal rwff of each Horn relational sequent rule is introduced in
the succedent of the conclusion. �

Hence, these rules only affect applications of��, for which they provide new possible
active rwffs. Recall that, symmetrically, in ND systems a relational rule introduces an
rwff that can serve as minor premise in an application of ��. This fact is of crucial
importance for the substructural analysis that we perform in the following chapters
(see, for example, Lemma 8.2.1, Proposition 8.2.9, Theorem 9.1.1 and Corollary 9.1.2).

4The relational rules with empty premises, e.g. ser and refl, can also be seen as ‘relational axioms’.
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Table 6.1. Some properties of � and corresponding Horn relational sequent rules

Property Horn relational rule

Seriality � � � ��
ser

Reflexivity � �
refl

Symmetry
� � � �

� � ��
symm

Transitivity
� � � � � � �� �

� � � �
trans

Euclideaness
� � � � � � � �

� � �� �
eucl

Convergency
� � � � � � � �

� � �� ��� � � � � �
conv1

� � � � � � � �

� � �� ��� � � � � �
conv2

Where � and � are (Skolem) function constants.

Example 6.1.6 As further examples of derivations, which exhibit the use of relational
rules and of contraction, we prove the ����-theorem  �� �� � �� 
 ��� and the
�����-theorem ��� ��� 
 � ���� as follows:

� ���
refl

��� � ���
4)$

��� � ���
4)�

.... �

���� ���� ��� � ���� ����

���� ��� � ���� ��� 
 ��



�� ��� 
 ���� ���� ��� � ���
��

��� ��� 
 ���� ���� ��� � ���
��

��� ��� 
 ���� ��� � ����
�

��� ��� 
 ��� � ��� 
 ��



�� ��� 
 ���� ��� ��� 
 ��� �
��

��� ��� 
 ���� ��� ��� 
 ��� �
��

��� ��� 
 ��� �
���

� �� �� ��� 
 ���
�

(6.1)
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��� � ���
4)$

�
� � ���

��� � ���
4)$

� � ���
�$�

���� � ����
4)�

.... �

������ � ���� ����

������� � ���� ����
��

�� ���� ������� � ���
��

��� ���� ������� � ���
��

��� ���� ������ ��� � ����
�

�� ���� ��� ���� ������ ��� �
��

��� ���� ��� ���� ������ ��� �
��

��� ���� ������ ��� �
���

��� ���� ��� � �� ����
�

��� ��� � ��� ����
�

� ��� ��� 
 � ����



(6.2)

where � � ����� ���� and � is

��� � ���
4)$

���� ��� � ���
�$�

��� � ���
4)$

���� ��� � ���
�$�

���� ��� � ���
trans

�

�

Note that the contractions in (6.1) and (6.2) are indispensable; in fact, in 10 and 11 we
show that these two end-sequents cannot be proved without (at least) one application
of ���.

6.2 LABELLED SEQUENT SYSTEMS FOR NON-CLASSICAL LOGICS

Parallel to Chapter 3, we generalize our cut-free labelled sequent systems to present
other non-classical logics. For example, the universal non-local operator� � of arity
� associated with a �+�–ary relation�� is characterized by the following left and right
logical rules:

� � �� 	 	� � � � 	� ��� � ��� 	���� � � � ��� � ��� 	�������� 	�������� � ��

	����� � � � ������ � ��
��#

������ � � � � �������������� �� � �� � � � �� � ��� �����

��� � ��� ������ � � � ��
��

where, in ��, the labels ��� � � � � �� are all different from � and each other, and do
not occur in ��� � ��� ������ � � � ��. Then, e.g., the sequent system ��� for the
relevance logic  contains, among others, the following rules for relevant implication
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(�) and non-local negation (#),

� � �� + % ��� � ��� +�� %������ � ��

��� � ����� � ��
��

+������� � � + % � ��� %��

��� � ��� ��� � �
�

��� � ��� ����

��#����� � ��
#�

�������� � ��

��� � ��� ��#�
#

� � �� + %
� � �� %� +�

inv � � , � ���
��2

� � , ��� �
��3

where, in�, the labels + and % are different from � and each other, and do not occur
in ��� � ��� ���� �.

These sequent rules correspond to the ND rules given in 3, and they allow us, for
example, to derive a contraposition rule (cf. the derivation (3.23) in Example 3.1.12,
where we used antitonicity instead of the stronger inversion property):

� � 	 
 � � � 	 

�$%

� � 	 
 � � � 
� 	�
inv


��� � 
���
�$&

.... '


����	���� � 	 
 � 
���

	���� � 	 
 � 
��� 
���
�

	��� � 	���
�$&

.... '

	����� � 	 
 � 
���	���

	���� 	���� � 	 
 � 
��
#

	��� ���
 ��� � 	 
 � 
��

#

���
 � � ��� 
 �

�

�

As for labelled ND systems, labelled sequent systems for various families of non-
classical logics are obtained by extending a suitable fixed base system with collections
of (Horn) rules axiomatizing semantic properties.

We can also give systems with local and universal falsum, or consider systems
with different treatments of negation, e.g. minimal, intuitionistic, classical or ortho
negation. We can even consider ‘full’ intuitionistic versions of non-classical logics.
For example, mirroring Simpson’s work on intuitionistic modal logics [216], we can
present an intuitionistic version of the modal logic� as the subsystem of ���� obtained
by

(i) explicitly adding the rules for �, � and� given in Figure 6.2,

(ii) restricting the sequents to contain at most one formula in the succedent, and

(iii) replacing
�with a labelled version of the standard intuitionistic left implication
rule:

��� � �� ������ � ���

�� � ����� � ���
�� �

Two remarks. First, the restriction (ii) rules out contraction on the right. Second,
the addition (i) is needed since �, � and � must now be taken as primitive logical
operators (e.g. � is not definable in terms of �) and their rules are not derivable
anymore. However, in the resulting system we can still derive the rules for� , as well
as the rules given by Simpson.
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Finally, we can consider also extensions to the quantified case. For example, for
quantified modal logics with varying domains we simply need to appropriately modify
the definitions of formulas and sequents to introduce a base sequent system ��
��
containing the rules

��8 � 
�� 
�����������8 � ��


����������8 � ��
�� and

����8� 
�� � ��
������

����8 � ��� 
�����
� �

where 8 is a multiset of lterms and � has the side condition that � does not occur in
����8 � ��� 
�����. Then we can formalize increasing, decreasing and constant
domains by appropriately adding the rules

� � 
��
� ��8 � 
���

��8 � 
� ��
id and

� � 
��
� ��8 � 
� ��

��8 � 
���
dd �

6.3 EQUIVALENCE OF LABELLED NATURAL DEDUCTION AND
SEQUENT SYSTEMS

Normalizing natural deduction systems and cut-free sequent systems are closely re-
lated [185, 186, 221, 239]. In this section, we show that ���� and ���� are intertrans-
latable, from which it follows that our cut-free labelled sequent systems are sound and
complete with respect to the corresponding Kripke semantics.

We prove this equivalence for classical propositional modal logics, i.e. for ���� �
�������� � and���� � �������� �, and then discuss extensions and restrictions
to other systems.

Theorem 6.3.1 Let ; � ��� ��� � �� ��� 	 ��, say ; � ��� ���� � � � � �� �
���, and let 6 � � 2 ;. Then we have:

(i) � ����� � � iff the sequent � � � � is provable in ����.

(ii) ��� ����� �� iff the sequent 6�� � ��� ����� � � � � ���� is provable in
����.

Proof We adapt and extend the proof given by Prawitz in [186, App. A]. Claim (i)
follows trivially by induction on the length of the derivations, applying the same rules
in both systems.

((ii), left-to-right) We proceed by induction on the length of the normal ����-
derivation of �� from ���. The base case, �� 	 �, is trivial. There is one step case
for each rule of ���� and we distinguish three main cases, depending on the form of
the rules.

(Case 1) If the last rule in � is an introduction, then we apply the corresponding
right rule in ����. Consider, for example, an application of ��,

� � �� ��
��
���

���
��

�

where � is different from and does not occur in any assumption on which ��� depends
other than � �. �� is a����-derivation of ��� from�,� and � �. By the induction
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hypothesis, there is then a ����-proof � �
� of 6��� � � � ���� ����� � � � � ����,

where � is different from  and does not occur in 6��� ����� � � � � ����. We
conclude by an application of �, i.e.

���
6��� � � � ���� ����� � � � � ����

6�� � ���� ����� � � � � ����
�

�

We conclude analogously when the last rule in � is an application of 
 �, i.e.

� � ����
��
��

�� 
 �

�

�

���
6� ���� � ��� ����� � � � � ����

6�� � �� 
 �� ����� � � � � ����



�

(Case 2) Suppose that the last rule in � is an application of��, i.e.

�� ��� � �
��
���

��
��

�

where�� is a����-derivation of ��� from � ������. By the induction hypothesis,
there is a ����-proof ��� of the sequent 6�� � ���� ��� ����� � � � � ����. Now
reason on ��� in ���. It can only be the result either of an application of �� or of
an axiom. In the first case, we delete the weakening from �� to obtain the desired
����-proof ���� of 6�� � ��� ����� � � � � ����. In the second case, ��� has the
form

��� � ���
�� (or 4)� if � � �)

��
6�� � ���� ��� ����� � � � � ����

� (6.3)

Then the occurrence of ��� in the succedent is parametric in � �, and �� must contain
at least one weakening introducing some labelled subformula of some formula in the
end-sequent. Thus, we conclude by simply transforming the initial �� (or 4)�) to
introduce this other lwff. For example, if (6.3) is

��� � ���
4)�

��
6���� � ���

6���� � ���� ����
��

��
6�� � ���� ��� ����� � � � � ����

we transform this to obtain the desired ����-proof

��� � ����
��

�	�
6���� � ����

�	�
6�� � ��� ����� � � � � ����

�
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Note that if ��� � ���� for some � � � � �, we can alternatively conclude by
an application of ��. In fact, we could have dispensed with the second subcase by
showing that the restrictions that � �� � in �� and 4)� yield an equivalent sequent
system.

(Case 3) The last rule in � is an elimination. Then we apply the corresponding left
rule in ����. Let 1 be an lwff-thread in � that contains no minor premise, so that, by
the structure of normal ����-derivations (Lemma 2.3.11), the introduction part of 1 is
empty.5 Hence, no assumption can be discharged in 1 , and the first lwff occurring in
1 , say ���, belongs to � and is the major premise of an elimination rule. We consider
the different cases for this rule.

If it is 
�, then ��� � ���� 
 �� and � has the form

���� 
 ��
��
����

����

�

��
��

�

Since no assumption is discharged at any formula occurrence in 1 , ��� � cannot depend
on assumptions other than those on which the end-formula �� of � depends. Hence,
�� is a ����-derivation of ���� from ���. Furthermore, �� is a ����-derivation
of �� from ��������. By the induction hypotheses, there are ����-proofs of the
sequents6�� � ����� � � � � ����� ���� and �����6�� � ��� ����� � � � � ����,
where ���� 
 �� 	 6. Thus, by an application of
� and a contraction of��� � 
 ��,
we obtain the desired ����-proof of 6�� � ��� ����� � � � � ����.

If it is ��, then ��� � ����� and � has the form

�����
��
�� �

����
��

��
��

�

Since no assumption is discharged at any formula occurrence in 1 , �� � cannot depend
on assumptions other than those on which the end-formula �� of � depends. Hence,
�� is a����-derivation of �� � from�. Furthermore,�� is a ����-derivation of ��
from ��������. By the induction hypotheses, there are ����-proofs of the sequents
� � �� � and �����6�� � ��� ����� � � � � ����, where ����� 	 6. Thus, by
an application of �� and a contraction of �����, we obtain the desired ����-proof of
6�� � ��� ����� � � � � ����.

((ii), right-to-left) We proceed by induction on the length of the ����-proof � of
the sequent. The base case is when the sequent is an axiom. 4)� corresponds to a
����-derivation consisting of the single assumption �, and �� corresponds to

���

��
�� �

5Recall from Definition 2.3.8 that an lwff-thread is a sequence of formulas ��� � � � � �
 in a derivation
where each �� is an lwff. An lwff-thread containing no minor premise is also a track.



152 LABELLED NON-CLASSICAL LOGICS

There is one step for each rule of ����, and we distinguish three main cases.
(Case 1) If the last rule in � is a structural rule, then we conclude by exploiting the

fact that ND systems admit equivalents of weakening and contraction. For example,

6�� � ��� ����� � � � � ����

����6�� � ��� ����� � � � � ����
���

and

6�� � ��� ����� � � � � ����

6�� � ��� ����� � � � � ����� ���
��

correspond to transforming

� �
�
��

to
��� � �

�
��

and
�� �� � �

�
��

respectively, while contractions correspond to identifications of assumption classes in
ND systems; see, e.g., [221, p. 59].

(Case 2) If the last rule in � is a left logical rule, then we apply the corresponding
elimination rule in ����. Consider, for example, an application of ��,

� � � � ����6�� � ���� ����� � � � � ����

����6�� � ���� ����� � � � � ����
�� �

By the induction hypotheses, there are ����-derivations

�
��
� �

and
��� � �

��
���

�

Then we apply �� to obtain the desired ����-derivation of ��� from �������,
i.e. we combine the derivations as follows:

���

�
��
� �

���
��

� �
��
���

�

If the last rule in � is an application of 
�,

6�� � ���� ����� � � � � ����� �� ���6�� � ���� ����� � � � � ����

�� 
 ��6�� � ���� ����� � � � � ����

� �

we conclude analogously, i.e.

�� 
 �

� �
��
��

��

�

� �
��
���

�
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(Case 3) If the last rule in � is a right logical rule, then we apply the corresponding
introduction rule in ����. Consider, for example, an application of �,

6��� � � � ����� � � � � ����� ���

6�� � ����� � � � � ����� ���
� �

where � is different from  and does not occur in 6��� ����� � � � � ����. By the
induction hypothesis, there is a ����-derivation �� of ��� from ���� � �, where �
is different from  and does not occur in any assumption on which ��� depends other
than � �. Then we apply �� to obtain the desired ����-derivation of ��� from
���, i.e.

� � �� ��
��
���

���
��

�

We conclude analogously when the last rule in � is an application of 
, i.e.

���6�� � ����� � � � � ����� ��

6�� � ����� � � � � ����� �� 
 �

 �

���� � �
��
��

�� 
 �

�

�

This concludes the proof of the theorem. �

The proof proceeds along the same lines for sequent systems for other non-classical
logics with a ‘classical’ non-local negation, provided that we restrict our attention to
‘primitive’ rules like we did for ����, where we omitted the derived rules for� and�;
this is analogous to considering normalization for the system ���� �� with a simplified
language, as we did in 3.3.

For intuitionistic and minimal subsystems we prove a slightly different theorem,
since for these systems there is no need to push negated formulas on the other side
of �. In fact, by a standard [186] modification of the proof of Theorem 6.3.1 we can
show that for propositional modal systems with an intuitionistic or minimal treatment
of negation we have the following theorem.

Theorem 6.3.2 Let ���� be ����� � ��� � or ����� � ��� �, and ���� be
����� � ��� � or ����� � ��� �, respectively. Then we have:

(i) � ����� � � iff the sequent � � � � is provable in ����.

(ii) ��� ����� �� iff the sequent ��� � �� is provable in ����. �

Consider now again labelled sequent systems for propositional modal logics (with
a classical negation); analogous results hold for our sequent systems for other non-
classical logics. From Theorem 6.3.1 and the soundness and completeness of ���� �
���� � ��� � with respect to the corresponding Kripke semantics (Theorem 2.2.5),
it immediately follows that our cut-free sequent systems are sound and complete with
respect to same semantics.
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Corollary 6.3.3 ���� � ���� � ��� � is sound and complete. �

Another important consequence of Theorem 6.3.1 is the admissibility of the rule

����� � ���� �� �������� � ���
����������� � �����

�
�

���

in any sequent system ����. That is, although ��� is not a derived rule of ����, no
new theorems become provable by its addition. This follows from Theorem 6.3.1
because it holds trivially that if ����� ����� �� and �������� ����� ���, then
also ����������� ����� ���. Graphically, we combine

�� ��
��
��

and
�� �� ��

��
���

to

�� ��
��
�� �� ��

��
���

possibly renaming some labels to avoid variable clashes.
Note that instead of showing that ��� is admissible as a consequence of Theo-

rem 6.3.1, we could have followed Gentzen [106], who first proved the completeness
of his sequent systems with ��� , and then that applications of ��� can be eliminated
from a given proof.

Although ��� provides a powerful tool for shortening and reusing proofs, its (un-
restricted) addition to a system ���� would require us to control its application if we
want to establish the decidability of �. To illustrate this briefly, suppose that, as is
usually done, we apply the rules backwards (i.e. upwards) to build a proof top-down,
starting with the end-sequent and working towards the axioms. Since ��� is always
applicable, no matter what its end-sequent looks like, it follows that potentially infinite
branches exist and top-down proof search may not terminate.

Moreover, each backwards application of ��� may introduce an arbitrary formula
�, so that its addition would spoil an important feature of our systems: our labelled
sequent systems satisfy the subformula property, in the sense that in any proof of a
sequent ��� � ��, only labelled subformulas of � and � � occur; cf. Definition 2.3.10
and Lemma 2.3.13 for the propositional case. 6 Therefore, if in our systems we build
proofs top-down, at each rule application other than a contraction we obtain lwffs of
smaller grade (or we just delete lwffs using weakening). That this is the case follows
immediately by the form of our rules, observing that each active lwff is a subformula
of the principal labelled formula of the rule. Contraction, on the other hand, duplicates

6Note that eliminating the rule

(� � (�� � ��(� � (�

(� � (�
�����

where the (�’s are multisets of formulas, is not the only way to control its application in standard sequent
systems for modal and other logics. Common alternatives include reducing it to analytic cut where we ‘cut’
only subformulas of the goal, e.g. [35, 62, 68], or to applications in which we cut complex but ‘controlled’
formulas built from subformulas according to a specific superformula principle, e.g. [87, 120].
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formulas instead of simplifying them, and is thus always applicable, with, again, the
consequence that proof search may not terminate.

Let us consider in more detail the problems with contraction, as this also helps
motivate the substructural analysis that we perform in Part II. 7 We can, as is generally
done, view our sequent systems as refutation systems, and associate the progressive
(backwards) construction of a derivation to the progressive construction of a model.
For concreteness, consider the case of propositional modal logics: in our framework
we associate the derivation

�
�� � ����� � ���

to the progressive construction of a (partial) model� � ������� such that for each
sequent �� � ����� � ��� in �, with � � ,,

the worlds of� are connected according to � �, i.e. �� �� 	 � iff �� � � �,

� satisfies all lwffs �� 	 ��, i.e. �� ��, and

� falsifies all lwffs �� 	 ���, i.e. �� ��.

Then we have:

if �� is provable, then� is inconsistent (i.e. it contains an inconsistent world),

if �� is not provable, then� is a counter-model for it.

Note that� is partial in the sense that the truth values of some propositional variables
might be missing from the model, but we can univocally determine these values from
the values of the composite formulas of � � they appear in (e.g. �� � � #, for # a
propositional variable, implies �� �#, i.e.��� #� � ,).

Consider, for example, the proof (6.1) of the ����-theorem � �� � �� 
 ���.
We can represent the inconsistent model � spawned by (6.1) (inconsistent since
�� �� �� and �� ���) with the following diagram


������		

�� �
������		

� ��� 
 ���
�

�#�
#��!
��

� $�#
		

�����

� ��� 
 ���

� �#�
#��!

		
�����

�

�!
�� ��

7Contraction is not the only problematic aspect of proof search, as we must also consider permutability of
rules, and, if present, we must also control applications of relational rules and of monl; see �8 and �12, and
the discussion on ����� in �13.1.4.
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As notation, we connect worlds, built by applications of �, according to the � �’s in
the proof (6.1), and we write beneath each world the formulas that are true in it, i.e. the
formulas in the antecedents of the sequents in the proof and the negation of the formulas
in the succedents. We use numbered and indexed arrows to represent applications of
rules with principal formula��� and the local (i.e. propositional) reasoning following
them. In other words, reading (6.1) backwards, we write � � �� 
 ��� below  as
the result of the initial �; then: � represents the application of ���, � the lowest
application of �� and the applications of �� and 
 following it, � the application
of �, and � the uppermost application of �� and the applications of �� and 

following it.

Let now � be a formula that is not trivially provable (i.e. assume that � is not a
propositional tautology) and consider an attempted proof of the non-theorem���� 

��� in ����

���� ��� �� � � ���

���� � � � ����
�

�� � ��� 
 ��



� ���� 
 ���
�

and its associated ‘putative’ counter-model

 �� � �� �

���� 
 ���
�

�!��!
�� �����

�

�!
�� ��

�

The subformula property tells us that a ����-proof of � � � ���� 
 ��� must
have this form. Thus, to disprove �, we must check whether no rule can be applied
to ���� � �� �� � � ��� to yield a closed branch. When this is the case, then the
diagram really is a counter-model of � in ����. However, by looking at the rules,
we immediately see that ���� � �� �� � � ��� could be the result of a contraction or
of a weakening. Since there are only a finite number of possible weakenings, which
we can try out in turn, to establish the claim that � is not provable, we must show
that contraction is eliminable in ����; this amounts to showing that if a theorem is
provable in ����, then it has a proof in which there are no applications of contraction.
This investigation is the main topic of Part II, in which we first perform a substructural
analysis of some of our modal sequent systems, bounding applications of contraction
to bound the complexity of the decision problem of the corresponding modal logics,
and then discuss the generalizations required for other non-classical logics.

Before moving on to this, however, we conclude this part of the book by summa-
rizing our results up to now and discussing some related work.



7 DISCUSSION

We have given a framework that provides uniform and modular presentations and
implementations of families of non-classical logics in terms of labelled deduction
systems: logics in a family are presented as extensions of a fixed base system,consisting
of rules for local and non-local operators, with theories comprised of (Horn) rules
formalizing the properties of the relations connecting worlds in the underlying Kripke-
style semantics and, in the case of quantified logics, the way domains of individuals
change between worlds. The previous chapters demonstrate, we think, that our systems
fit well into the Logical Framework setting (our Isabelle encodings provide a simple
and natural environment for interactive proof development that supports hierarchical
structuring), and have modular metatheoretical properties, in particular soundness and
completeness, and normalization of derivations and a subformula property, which we
can exploit to delineate advantages and limitations of our approach. 1

7.1 RELATED WORK

Throughout the chapters we described various problems that arise in traditional ap-
proaches to non-classical logics based on Hilbert-style presentations, and showed that
such problems are not encountered in our labelled presentations. We now compare
our work with some related approaches based on standard deduction systems, based

1Although we have not explicitly given an Isabelle encoding of our sequent systems, this can be done fairly
straightforwardly, e.g. by adapting Pfenning’s [183] representation of sequents in a Logical Framework.
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on implicit or explicit labelling, or based on embeddings of non-classical logics in
predicate logic.

7.1.1 Standard deduction systems

Prawitz [186] gives a natural deduction rule for � introduction in �� and �� with
the non-local side condition that all the assumptions on which it depends are ‘modal’
(i.e. their main operator is �), in the case of ��, or ‘modal’ formulas or their negation,
in the case of ��.2 (Prawitz also gives similar rules for relevant implication.)

The main problem with Prawitz’s systems, besides this ‘impurity’ of the � intro-
duction rule (see [6, 9]), is that it is unclear how to generalize or restrict them to present
other logics. As mentioned in 1, a solution to the impurity problem is given in [9,
 4.4], where a deduction system for �� is factored into two ordinary, pure, single-
conclusioned consequence relations. Unfortunately, the result is fairly far removed
from the standard presentations based on accessibility relations or characteristic ax-
ioms, and there is no attempt to modularize structure or correctness: only a particular
modal logic is analyzed and it is not apparent how to generalize the results in a uniform
way.

Another approach to the formalization of non-local conditions in a Logical Frame-
work is to manage assumptions explicitly with sequents (as done, e.g., in the encodings
of the modal logics �, �� and ���� that are part of the Isabelle system distribution). In
fact, several standard sequent (or tableaux) systems have been proposed and studied,
especially for modal logics, e.g. [46, 87, 115, 119, 120, 174, 190, 238]. Although
these systems can be employed for automated theorem proving [129], they are often
unsatisfactory from a proof-theoretical point of view as they are based on rules that
may require ingenuity in their invention and application. 3 (In the following chapters,
we show how a substructural analysis of our labelled sequent systems naturally yields
justifications and, in some cases, refinements of some of these rules.)

Moreover, standard sequent systems lack, in general, modularity (sometimes ‘exten-
sions’ require deleting some rules while others are added), and in some cases desirable
proof-theoretical properties such as the subformula property and the eliminability of
the ��� rule (although for, e.g, several modal logics one can fortunately show that
only certain ‘superformulas’ are needed or that only ‘analytic’ or ‘semi-analytic’ ���
is required). In fact, Wansing [233, p. 128] summarizes the situation for propositional
modal logics when he notes that:

2That is, making the correspondence with the rules of standard modal sequent systems (see �6) more evident,
the � introduction rule has the form

�....
�

��
��

where for �	 all the formulas in the set of open assumptions � have a � as their main operator, and for �

the formulas in � either have a � as their main operator, or are the negation of formulas of this form.
3Furthermore, these rules fail to meet the philosophical requirements at the basis of natural deduction,
e.g. the independence of the logical operators, as discussed in �6 and, in more detail, in [233, 235].
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In contrast to the axiomatic approach, the standard sequent-style proof theory for normal
modal logics fails to be ‘modular’, and the very mechanism behind the small range
of known possible variations is not very clear. One might be inclined to agree with
Segerberg’s [46, p. 30] remark (in connection with natural deduction systems for modal
logics) that ‘only exceptional systems ... seem to be characterizable in terms of reasonably
simple rules’. [...] Apart from the absence of symmetric and explicit introduction rules for
� and�, the problem is that it is not quite clear which parameters could be systematically
modified so as to obtain characteristic sequent rules. [his emphasis]

Therefore, alternative, ‘natural’, deduction systems have been proposed, which
systematically attempt to restore modularity by extending the standard presentations
with additional information. We can roughly classify these approaches in terms of the
nature of this information, syntactic or semantic, and we now briefly discuss some of
the proposed systems.

7.1.2 Non-standard deduction systems

We begin by considering non-standard deduction systems in which additional (syntac-
tic) metatheoretical information is employed. Avron [7, 8], Benevides and Maibaum
[29], Cerrato [53], Došen [73], Martini and Masini [157, 158], among others, have
devised different non-standard deduction systems for modal and other non-classical
logics that have in common the use of a ‘higher-level’ deduction system. For example,
in [53] Cerrato proposes modal sequent systems based on the introduction of ‘meta-
modalities’ that communicate with the usual modal operators by means of ingenious
rules, and in [157] Martini and Masini give a two-dimensional generalization of the
notion of sequent that asserts provability between two-dimensional sequences of for-
mulas, instead of the usual consequence relation between two sequences of formulas.
These approaches provide elegant formalizations of several modal logics but their
generalization to other logics is not immediate.

Another metatheoretical approach is based on Belnap’s display logic [26], which
provides a framework for the ‘Gentzenization’ of non-classical logics [27, 149, 195,
233, 235]. In this approach, different families of related logics are presented by
extending a fixed set of logical rules with collections of particular structural rules
formalizing the behavior of ‘structural modalities’ (i.e. structural modal operators).
Thus, the display logic approach bares some similarity with our systems, in which
the rules for logical operators are never changed, and all changes are made in the
collections of relational or domain rules; we return to this below.

7.1.3 Implicit and explicit labelling

Based on Kripke’s semantic tableaux for modal logics [150], Fitch [86], among others,
proposed a ‘semantic’ style of natural deduction, where the additional information can
be used either implicitly by employing nested derivations, or explicitly by extending
the (object) language.

In the implicit case, derivations are structured as trees consisting of a main deriva-
tion that communicates with subordinate derivations according to metatheoretical
conditions, so that different communication rules yield systems for different log-
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ics. Examples of several such deduction systems for non-classical logics are given
in [1, 2, 38, 39, 77, 87, 215], but, while effective, also these systems suffer in some cases
from a lack of modularity, and ingenuity may be required in inventing the appropriate
communication rules.

These problems can be solved, at least partially, by explicitly encoding additional
semantic information in the syntax of the deduction systems. This can be done in
various ways, ranging from the adoption of labels (or prefixes) representing possible
worlds (as suggested by Kripke and Fitch), e.g. [17, 90, 66], to ‘full’ semantic embed-
dings of non-classical logics into predicate logic, e.g. [171]. Several such possibilities
have been studied and new ones are frequently proposed. In fact, we could say that
our work, especially when compared with full translations, is an analysis of the min-
imal semantic information, in other words the minimal partial translation, needed to
formulate deduction systems for non-classical logics in a uniform and modular way.

It is however worth pointing out that given the commitment to a particular se-
mantics, be it the standard Kripke semantics that we employ or the alternative (al-
gebraic or neighborhood) semantics that have been proposed for non-classical logics,
e.g. [60, 141, 154, 194, 223], it is ‘philosophically’ questionable whether the use of
labels, prefixes or other forms of semantic translation indeed yields ‘natural’ deduc-
tion systems for these logics. We briefly return to this in 14, and observe here that
detailed discussions championing the semantic view of modal and other non-classical
logics can be found both in Gabbay’s Labelled Deductive Systems book [90] and in
Blackburn’s papers on Hybrid Languages [30, 31].

Our work is inspired by the Labelled Deductive Systems (���) approach proposed
and developed by Gabbay [90] and several others as a general and unifying method-
ology for presenting almost any logic, e.g. [4, 41, 42, 43, 44, 45, 63, 67, 70, 97, 121,
202, 203]. For example, Compiled Labelled Deductive Systems (����), developed
by Broda and Russo [43, 44, 202, 203], build upon ��� to formalize uniform (and
abductive) systems for families of modal and other non-classical logics.

To support the desired generality, the ��� (and����) metatheory and presenta-
tions are based on a notion of diagrams and logic data-bases, which are manipulated by
rules (for propositional and first-order logical operators) with multiple premises and
conclusions. For example, for� elimination [90, p. 49] gives a rule

����
Create a new point � with � ( � and deduce ���

(7.1)

the application of which updates a modal data-base with the new conclusion; a rule to
the same effect is given in [45, 202, 203]. The formal details are different from our
‘pure’ ND presentation, which comprises the rule for� elimination given in Figure 2.2,
i.e.

���

����� �� ��....
���

���
��

�
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We can state this difference even more sharply by quoting Blackburn [31], who,
while discussing the relationships between��� and Hybrid Languages [3, 30, 32, 33,
34, 211, 222], and focussing in particular on Gabbay’s rule (7.1), points out that:

[...] Gabbay proceeds by manipulating labels metalinguistically (in effect, he makes use
of a programming language containing expressions such as ‘create’, ‘and’, ‘
’, ‘:’, and
a supply of labels, to manipulate object language formulas) whereas [...] we work with
an object language rich enough to state the required deduction step. [his emphasis]

The object language of our ���� and ���� is rich enough as well: labels, ‘:’, ‘�’
and rwffs are all part of the language of our labelled deduction systems. Leaving a
more detailed analysis of the relationships between our systems and Hybrid Languages
for future work, we here simply remark that while there are some important differences
(e.g. Hybrid Languages are in fact far more expressive than labelled systems like ours),
there are also several significant similarities besides the one we just mentioned. For
example, the intuitions and techniques underlying the ‘hybrid completeness proof’
in [33] are very close to those underlying our completeness proof for systems ����,
although the proofs were developed in complete independence. We expect there to be
cross-fertilization of ideas and results in the future.

There is another difference between our and the ��� approach that is worth
emphasizing. In our work, we have identified an important property of the structured
presentation of logics, their combination, and extension. Namely, there is tension
between modularity and extensibility: a narrow interface between the base system and
the separate labelling algebra (i.e. the relational and the domain theories) provides
well-defined structural properties but limits extensions. This separation is critical: it
is only when we attempt to modularize and separate theories formally, and define a
precise interface between them, that we see that only limited extensibility is actually
possible. Of course, in formalizing particular ��� or ����, one could similarly
separate theories. The precise nature of this would be reflected in the rules chosen for
propagating results between data-bases. It should be the case that if these rules enforce
a similar separation, then one will encounter similar limitations to those reported
here. That is, the problems we identify have some generality and should appear
in other labelled deduction frameworks where theories are separated and results are
communicated in a limited way between them. In fact, the purely semantic view taken
in [45, 202, 203], i.e. the explicit adoption of what we call universal falsum, results in
systems close to the semantic embedding approach, to which we have compared our
work throughout the chapters and which we discuss again below. 4

��� have been further developed in various other directions. For example, in [63],
D’Agostino and Gabbay give labelled tableaux for substructural logics based on al-
gebraic semantics. Their rules support automated proof search, but are not easy to

4An example of an approach in which, like with our local falsum, local inconsistency does not imply
global inconsistency, is the work of Giunchiglia and Serafini [114], who show that particular ‘multicontext
systems’, where (indexed) formulas are translated between contexts using ‘bridge rules’, define the same
classes of provable formulas as certain common propositional modal logics. Based on [114], Ghidini
and Serafini [107] have then introduced first-order systems that allow for the formalization of distributed
knowledge representation with local inconsistency. These systems are, in general, radically different from
ours, and not comparable in more detail.
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recast as ordinary pure ND rules (e.g. the general closure rule they give depends on
arbitrarily many formulas). The systems of [63] have then been extended with the
modal operators � and � in [65, 67] to investigate ‘modal substructural implication
logics’, while in [42] they are extended to include ‘resource abduction’ in labelled
natural deduction systems for substructural logics.

Another promising research direction based on ��� aims at formalizing ‘goal-
oriented deduction systems’ for non-classical logics. As a preliminary report of a larger
project [98], in [97] Gabbay and Olivetti introduce uniform goal-oriented deduction
systems for the implicational fragment of several modal logics. These systems behave
well from the point of view of proof theory: they are analytical and satisfy cut-
admissibility. Moreover, we believe that the analysis of the conditions under which
an original goal must be re-asked in modal goal-oriented systems is closely related to
the analysis of applications in our systems of contractions and other structural rules,
which we perform in Part II.

The kind of labelled natural deduction presentation we employ is close also to
the work of Simpson [216] even though his focus, proof techniques and applications
are based on using labelling as a means of investigating intuitionistic versions of
propositional modal logics, and his metatheoretical considerations are quite different.
Moreover, his relations have no independent theory with which one can work: Simpson
treats relational formulas only as assumptions in inferences of labelled formulas via his
‘geometric’ rules, which are derivable in our systems. Investigating presentations of
intuitionistic versions of modal logics using our systems (see 6.2) will reveal further
similarities and differences between our approach and his.

Our work is also closely related to, and influenced by, the algebraic approach
proposed by Dunn (see [79] and the references there), who introduces gaggle theory
as an abstraction of Boolean algebras with operators [145], where �–ary operators are
interpreted by means of �+�–ary relations. Gaggle theory yields a space of algebras
where the standard Kripke semantics for a particular logic is obtained by manipulating
the gaggle presentation at the level of the canonical model, as opposed to instantiating
the appropriate relational theory as in our approach. For instance, an analysis of the
canonical model shows how to reduce the ternary relation associated with the binary
intuitionistic implication to the more customary partial order on possible worlds.
This algebraic approach is extremely powerful, but does not lend itself well to direct
implementation; however, with appropriate simplifications or by combination with
display logic, as in [193, 195, 235], this may be possible.

We have already mentioned above that Fitting [87] has studied standard sequent
systems for modal logics. Extending Kripke [150], Fitting [87, 88, 89], among others,
e.g. [13, 52, 141, 167], investigated also prefixed sequent and tableaux systems. For ex-
ample, for quantified modal logics he first gives ‘standard’ systems for non-symmetric
logics with increasing domains, and then, in order to capture the other conditions, he
extends his systems by introducingprefixes that represent possible worlds. These allow
him to formulate systems for several modal logics (including symmetric logics like ��)
with varying, increasing or constant domains. In Fitting’s prefixed systems, the dif-
ferent properties of the domains are expressed by imposing different (metatheoretical)
side conditions on the applicability of the quantifier rules; analogously, the properties
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of the accessibility relation require different (metatheoretical) side conditions on the
rules for the modal operators. (In contrast, in our systems we add relational or domain
rules to a fixed base system.)

The main disadvantage of Fitting’s prefixed systems, apart from the fact that they
don’t capture decreasing domains, is that their formalizations may require ingenuity,
and that the rules for the modal operators and quantifiers can be quite awkward, since
they carry non-local side conditions on the complete set of assumptions. These prefixed
systems could however be modified to cover decreasing domains, and we believe that
one of the best ways for doing so is to replace the standard quantifier rules with rules
similar to ours.

Fitting’s prefixed systems have been refined and extended by several researchers.
For example, Massacci [159, 160] (but see also Gor é’s survey [120]) gives modular
prefixed tableaux systems for a wide range of modal logics, including the ones we con-
sidered here. The main characteristic of Massacci’s systems is their being single-step:
modal formulas are prefixed with a non-empty sequence of integers (naming possible
worlds) and rules are such that the prefixes of the premises and of the conclusion are at
most ‘one step away’. In other words, the rules do not require an explicit accessibility
relation and a relational theory for reasoning about it, but code them implicitly in the
prefixes by concatenating integer sequences. We return to this for further comparison
in 13.5

7.1.4 Translations and semantic embeddings

Clearly, our work is related also to approaches based on semantic embeddings, in which
a formula of non-classical logic is translated into a formula of predicate logic, and
shown to be valid (or not) in a theory formalizing the semantics of the modal operators
and domains of quantification. Several translation methods have been proposed,
e.g. the standard relational translation (see [170] for references), but also functional
[5, 83, 126, 169] or semi-functional [168] translations. For example, according to the
relational method, the modal formula ��� � ��, where � and � are propositional
variables and 
� is the actual world, would be translated into a first-order formula like

�
� � ��
�� 
�� 
 ���
�� � ��
���

where there would be additional axioms characterizing the accessibility relation �
and the domains of quantification (cf. Definition 2.3.19). Ohlbach [170], for example,
provides a general framework for carrying out such translations and reasoning about
their soundness and completeness; translations are defined by morphisms on formulas
and these are shown sound and complete by providing morphisms on interpretations.

5Other novel related work is the one by Castilho, Farĩnas del Cerro, Gasquet and Herzig [49], who formalize
‘modal tableaux with propagation and structural rules’. These tableaux systems are based on acyclic graphs,
instead of trees, and have the single-step systems of Massacci as a special case. Moreover, they allow
for presentations of logics based on the axiom 
 that respect the subformula property, as opposed to the
superformula principle common in standard systems for non-analytic logics such as �
 (cf. the discussion
in �8).
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As we remarked when discussing first-order labelling algebras in 2, 3 and 4, our
work differs from approaches based on semantic embedding with respect to the nature
of the translations, the metatheoretical properties that hold, and how they are proved.
First, we separate, rather than combine, reasoning about formulas, relations and terms.
With semantic embeddings there is, by design, no formal distinction between formulas,
relations and terms, or separation between relational and first-order reasoning. (On
the other hand, this is what allows semantic embedding to present a wider range
of logics.) Second, rather than using interpretation morphisms and building on top
of the semantics of first-order logic, we directly define deduction systems for non-
classical logics and show, using a parameterized canonical model construction, that
these systems are sound and complete. Finally, our proofs have normal forms with
separated reasoning and a subformula property, while the translation approach has no
separation and the normal forms are those of derivations in first-order logic.

This is not to say that semantic embedding is not interesting or useful. On the
contrary, it can be efficiently used for automated theorem proving. Moreover, the
structure that is missing from our point of view, and the advantages that we gain
from it, can be made up for by alternative analyses, at least in some cases. So,
for example, Schmidt and others [101, 205, 206, 207] have shown how to exploit an
optimized functional translation to employ resolution as a decision procedure for many
propositional modal logics; this is achieved by first translating modal formulas into a
fragment of monadic first-order logic with function symbols, and then showing that
the depth of terms can be bounded. We return to this for further comparison in 13.

We conclude by mentioning the work of Orlowska [176, 177, 178], who introduced
tableaux-like relational systems for relevance, modal and intuitionistic logics, by trans-
lating formulas into relations, which are then proved by a process of decomposition.
Although the metalogic is different, relational logic instead of predicate logic, this
method is close to semantic embedding, since formulas of the logic and relations from
the Kripke semantics are treated in a uniform way as relations.
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sequent systems





8 INTRODUCTION AND
PRELIMINARIES

8.1 INTRODUCTION

In Part I we introduced a labelled deduction framework for presenting modal and other
non-classical logics in a uniform and modular way. In particular, in 2 and 6, we
showed that for a large family of propositional modal logics, essentially those with
accessibility relations axiomatizable using Horn-clauses, e.g. �, �, ��, ��, etc., we
can decompose our labelled deduction (ND or sequent) systems into two separated
parts: a base system, fixed for all logics in the family, and a labelling algebra, which
we extend to generate systems for particular logics. Now we use our framework to
develop a proof-theoretical method for bounding the computational complexity of the
decision problem for a number of these logics.

Our method is inspired by the observation that the decidability of a logic follows
from a sound and complete, cut-free and contraction-free, sequent system presentation
satisfying a subformula property (or some sort of superformula property), since in such
a presentation both the depth of possible proofs and the possible sequents appearing in
them are bounded. The decidability of propositional classical logic, for instance, can
easily be proved this way.

In general, however, it is not possible to eliminate cut and/or the contraction rules
from a sequent system if we want to retain its completeness with respect to the logic it
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presents.1 But, as we argued in 6.3, since we build proofs backwards (i.e. ‘top-down’,
starting with the end-sequent and working towards the axioms), these structural rules
are always applicable so that their ‘uncontrolled’ application may give rise to infinite
branches and proof search may not terminate. Hence, in order to establish decidability,
we must find a way of controlling, i.e. bounding, their application.

Suppose therefore that we approach the problem of establishing the decidability of
a logic� by using our labelled sequent systems ����. For concreteness, let us consider
modal logics. We know that each modal ���� is a sound and complete system for
the corresponding logic �. And ���� is cut-free. Hence, in contrast to Hilbert-style
axiomatizations, proofs in ���� satisfy a subformula property, which restricts the
formulas that may appear in proofs to subformulas of the formula we are trying to
prove.

However, the subformula property alone is not sufficient to establish decidability:
if subformulas may appear (be duplicated) infinitely often, we cannot bound the size of
branches in an attempted proof. To fully bound the space of possible proofs we must
thus also bound how often subformulas may appear in sequents, and thereby bound the
length of branches. In other words, the problem we have to tackle when using ����
is that of controlling duplications of formulas caused by backwards application of the
contraction rules

��� ������ � ��

������ � ��
��� and

��� � ��� ��� ��

��� � ��� ��
�� �

as well as �$�.
Contraction is, in general, similarly required in standard modal sequent systems [87,

238]; as we have seen, left contraction is embedded in standard rules such as

�����: � :�

���: � :�
��� �

���� � �

:��� � ���:�
���� � and

�� � �
:��� � ���:�

���� �

and much effort has been devoted to the design of contraction-free modal systems,
e.g. [55, 119, 120, 137, 138]. 2

An analogous problem exists also in standard sequent systems for first-order logic:
we cannot say, in general, how often a universally quantified formula must be in-
stantiated, which is equivalent to being unable to recursively bound the number of
times that a formula must be contracted. In fact, many modal logics can be seen as a

1Typical examples of this are standard sequent systems for modal logics such as the system for �
 given
by Ohnishi and Matsumoto [174], which requires both cut and contraction rules. In recent years, however,
several cut-free sequent systems have been devised for �
 and related modal logics; for more detailed
discussions of these systems see, for example, [87, 119, 120, 233, 235].
2Note that contraction is similarly embedded in the left implication rule

� 
 ��� � � ��� � �

� 
 ��� � �
�
#�

of standard sequent systems for propositional intuitionistic logic. In fact, the techniques applied for modal
logics by Hudelmaier in [137, 138] are closely related to those that he originally devised, in parallel with
Dyckhoff [81], for propositional intuitionistic logic in [136]. We discuss related work in more detail in �13.
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‘halfway-house’ between propositional and predicate logic, an observation reflected in
the labelled deduction systems we have developed, which correspond to strict (proof-
theoretical) subsystems of first-order logic. On the other hand, a number of modal
logics are known, on independent (semantic) grounds, to be decidable. Hence, if we
are to analyze decidability and complexity of modal logics proof-theoretically using
sequent systems, as opposed to semantic methods such as the finite model property,
we must bound the application of these structural rules.

In the following chapters, we take advantage of the reduced complexity of our
sequent systems to show that, at least in some cases, it is indeed possible to bound,
or even eliminate, applications of the contraction rules, and thus provide decision
procedures with bounded space requirements. 3 More specifically, we show that our
labelled sequent systems enable a combinatorial analysis of possible proofs, which we
can use to obtain Polynomial Space (PSPACE, for short) upper-bounds for the decision
problem for some of the modal (and other non-classical) logics they present.

Our method factors into a collection of general properties shared by families of
logics (and systems), and a supplementary analysis of the distinguishing qualities
of particular logics. This supplementary analysis itself factors into a collection of
independent subproblems, centered on bounding the applications of contraction rules
and the complexity of reasoning about the underlying accessibility relation.

Our analysis proceeds thus in several steps. Before considering, as examples, the
modal systems ����, ����, ����� and ����� in detail in the next three chapters, in the
rest of this chapter we introduce useful notation and terminology,and prove preliminary
results, which we divide in logic-independent results (8.2.1) and logic-dependent ones
(8.2.2). In the light of these results, we then consider the unique features of particular
logics, and show that, for theoremhood, i.e. for proofs of end-sequents of the form
� ���, contraction can be completely eliminated in ���� (Theorem 9.1.1), while in
����, ����� and ����� (Theorems 10.1.4 and 11.2.5) it can be restricted to a number
of applications polynomially bounded above in the size of the end-sequent we are
trying to prove.4

We then apply these results to analyze the computational complexity of these
systems. In 12 we establish separate bounds on reasoning in the relational theory
and combine our results to bound the depth of proofs and the size of sequents arising
in them, and thus, by ‘resource aware’ programming, provide PSPACE upper-bounds
for the decision problem of logics that can be analyzed in this way. In particular, we
give a -�� �!<��-space procedure for �, a -��� �!<��-space procedure for �, and
-��� �!<��-space (or, possibly, -��� �!<��-space) procedures for �� and ��.

3A legitimate question to ask at this point is why we employ labelled sequent systems instead of labelled
ND systems. In fact, we have shown in �2 that derivations in our ND systems can be reduced to a normal
form that has a well-defined structure and satisfies a subformula property. This provides a first step towards
establishing decidability of the modal logics presented that way, but additional steps are required, such as
bounding the number of times a particular formula may be assumed or discharged. This kind of proof-
theoretical analysis is more easily performed when logics are presented using sequent systems, which allow
a finer grained control of structural information via their structural rules.
4These contraction bounds and the resulting space bounds revise some of the bounds of [20, 23, 24].
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While the space bounds we arrive at using our method are not necessarily new or
‘optimal’, they compare well with the best currently known [138]; we give a detailed
comparison in 13. What is new is the use of labelled deduction systems to provide
a framework for complexity bounds combined with the analysis of contraction for
particular logics in this general setting. We view this as a first step towards a general
method for both applying proof-theory to the analysis of the decision problem for
families of modal and other non-classical logics, e.g. [231], and for implementing
decision procedures for these logics.

Moreover, as a by-product of our substructural analysis, in 9.2, 10.2, 11.3 and
11.4 we are able to give proof-theoretical justifications, and in some cases partial
refinements, of the rules of the corresponding standard sequent systems (in contrast to
the usual semantic justifications). Specifically, we first show that in our systems we
can obtain labelled equivalents (as derived or admissible rules) of the standard rules.
We then use these labelled rules to compare our systems with standard ones (showing
them equivalent via proof transformations), thereby illustrating the advantages of the
labelled approach in the way it allows us to analyze substructural properties and ‘control
resources’ (specifically, applications of the contraction rules).

8.2 PRELIMINARY RESULTS

8.2.1 Logic-independent results

We now give results that hold for all modal systems ���� � �������� �, where ��� �
is a Horn relational sequent theory. We begin by introducing notation and terminology.

We call lwff-rules the rules that have an lwff as principal formula, namely ���,
��, ���, ��, 
 �, 
, �� and �. Suppose now that a sequent � is derived
(reasoning forwards) from sequents ��� � � � � �� by first applying the lwff-rule ���� and
then applying the lwff-rule ����, where

(i) each of the premises of ���� results from an application of ����,

(ii) each application of ���� introduces or contracts the same lwff, and

(iii) the lwff introduced or contracted by ���� is parametric in the application(s) of
����.5

We then say that ���� is permutable over ����, or that ���� permutes over ����, if the
original inference may be replaced by one in which the sequent � is derived from
��� � � � � �� by applying first ���� and then ����. By extension, we say that a derivation
or proof � permutes to ��, if �� is obtained from � by one or more permutations.
For example,

�������� � � � ��� ���� ���

���� � � � ��� ��� 
 �� ���



��� � ��� ��� 
 �� ���
�

(8.1)

5In other words, (ii) means that all applications of ���� have the same principal formula ���, and (iii) means
that this ��� is parametric in the subsequent applications of ����.
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permutes to

�������� � � � ��� ���� ���

������� � ��� ���� ���
�

��� � ��� ��� 
 �� ���



(8.2)

since � is different from � by the condition on the application of �. We can also
reverse this permutation, i.e. (8.2) permutes to (8.1).

Lemma 8.2.1 Every lwff-rule is permutable over any other lwff-rule, with the excep-
tion of ��, which is permutable over every lwff-rule other than �. �

This follows immediately by inspection of the rules, where �� does not always
permute over � since �� may have the same active rwff � � as �. 6 More
concrete examples of this situation are given in the following chapters, e.g. in the
derivation (9.2) in the proof of Theorem 9.1.1. There are, however, cases in which
�� permutes over �, most notably when the active rwff of �� is introduced by
reflexivity or seriality. For example

� �
refl

.... �$�

�� �� � � � ������� �� � � ��� ���

�������� �� � � ��� ���
��

������� � ��� ����
�

permutes to

� �
refl

.... �$�

� � �

������� �� � � ��� ���

������ � ��� ����
�

������� � ��� ����
��

since � is different from  by the condition on the application of �.
As a first step in the substructural analysis of labelled modal sequent systems, recall

that in 6.1 we have shown that by analogy with standard results for unlabelled sequent
systems, e.g. [138, 221, 238], all of the structural rules of ���� � ��� � can be built
into the axioms and the logical rules. A substructural analysis similar to ours could
be performed for these equivalent systems. However, we choose not to follow this
approachas the fine grained investigationof contraction needed to bound its application
is more easily performed when our systems explicitly contain structural rules. Indeed,
to simplify the analysis, we restrict, instead of generalize, the axioms and rules of our
systems.

6An analogous restriction holds for the quantifier rules �# and �� of standard (unlabelled) sequent systems
for first-order logic, e.g. [221], where �# does not always permute over �� as they may share the same
eigenvariable.
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We begin by restricting instances of axioms.

Fact 8.2.2 Every sequent provable in ���� has a proof in which all the axioms em-
ployed contain no logical operators, i.e. the formula � in each application of 4)� and
�� is atomic. �

It is easy to see that this restriction yields equivalent systems. For example, we can
replace

��� � ���
4)� with � � � ��

4)$
��� � ���

4)�

���� � � � ���
�$�

���� � � � ���
��

��� � ���
�

and, similar to Lemma 2.3.2, we can replace

��� � ���
�� with

��� � ���
��

���� � � � ���
�$�

��� � ���
�

�

We make another simplifying assumption. Instead of (and equivalent to) dispensing
with weakening by building it into ‘extended’ axioms, we transform proofs so that all
applications of�$� occur immediately below the axioms. Indeed, by the permutability
of the rules (all rules permute over �$�), it follows that:

Fact 8.2.3 Every sequent provable in ���� has a backwards proof in which all appli-
cations of �$� in the proof immediately precede the axioms. �

We henceforth assume that all proofs have been so transformed (except when explicitly
noted otherwise).7

Let us now consider contraction. While in the following we show that applications
of the rule ��� can be eliminated in ���� and bounded in ����, ����� and �����,
applications of the rules �$� and �� in these modal systems can be eliminated once
and for all. Indeed, �$� is eliminable in every labelled sequent system that extends
���� with a Horn relational theory ��� � (and, more generally, in every non-classical
system ���� � ��(� � ��� � where ��� � is a Horn theory).

7Note that each branch of a proof so transformed contains a maximal multiset of rwffs,�max, such that for
each �� occurring in the branch we have�� � �max. That is, each branch has the form

axiom(s)
)�

����max � ���
)�

��� � ��

where )� contains all applications of '%# in the branch and no applications of ��, and )� contains all
applications of �� in the branch and no applications of '%#, so that �� � �max for each �� occurring
in )� or )� , including �.
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Lemma 8.2.4 The rule �$� is eliminable in ���� � ���� � ��� �, where ��� � is a
Horn relational theory. �

This follows by the separation that we have enforced between base system and the
relational theories extending it: contracted rwffs can only be introduced in the an-
tecedent of a sequent by applications of the rule �$�, since (cf. Fact 6.1.5) relational
rules introduce rwffs only in the succedent of the conclusion. Therefore, we just need
to delete both the �$� and the corresponding�$�, e.g. we transform

��
�� � ���

��� � � � ���
�$�

��
��� � �� � � � ���

��� � � � ���
�$�

to

��
�� � ���

�	�
��� � � � ���

where, as in 6.1, we have used * to denote that the derivations � and � 	 differ only
in their parametric formulas.

We conclude this section with two further definitions: first, we extend the definition
of subformula, Definition 2.3.10, to distinguish positive and negative occurrences of
subformulas, and then we define when an occurrence of an lwff is weak in a proof (or
in a branch of it).

Definition 8.2.5 We inductively define that a subformula � of � occurs positive
[negative] in �, in symbols � �� � [� �� �], as follows:

if � � �, then � �� �;

if � 
 � �� �, then � �� � and � �� �;

if � 
 � �� �, then � �� � and � �� �;

if �� �� �, then � �� �;

if �� �� �, then � �� �.

We say that ��� occurs positive [negative] in �� iff � occurs positive [negative] in
�. By extension, we inductively define that an lwff ��� occurs positive [negative] in a
multiset of lwffs �, in symbols ��� �� � [��� �� �], as follows:

if ��� 	 �, then ��� �� �;

if ��� �� �� and �� �� �, then ��� �� �;

if ��� �� �� and �� �� �, then ��� �� �;

if ��� �� �� and �� �� �, then ��� �� �;

if ��� �� �� and �� �� �, then ��� �� �.

Finally, we inductively define that an lwff ��� occurs positive [negative] in a sequent
� � ��� � ��, in symbols ��� �� � [��� �� �], as follows:
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if ��� �� �, then ��� �� �;

if ��� �� ��, then ��� �� �;

if ��� �� �, then ��� �� �;

if ��� �� ��, then ��� �� �.

We will also write����� to specify that� �� �, and����� to specify that� �� �.
�

Note that our definition classifies formulas on the left [right] of the sequent symbol
� as positive [negative], and reflects the standard interpretation of sequent systems
as refutation systems in which the progressive (backwards) construction of a proof
is associated with the progressive construction of a partial (counter-)model. In other
words, ��� �� � and ��� �� � correspond to the possible interpretation of sequent
systems as refutation systems discussed in 6.3. Namely, ��� �� � if ��� occurs
positive in the antecedent of � (the lwffs of which are satisfied by the model �
corresponding to the attempted proof of �), or if ��� occurs negative in the succedent
of � (the lwffs of which are falsified by�).

Definition 8.2.6 Consider a proof � of a sequent � in ���� � ��� �, and let �� be
a particular occurrence of an lwff in �. We say that �� is weak in � when it is weak
in every branch ( of �, where �� is weak in a branch ( of � when

(i) �� is introduced by weakening in (, or

(ii) �� is �� 
 � and �� and �� are both weak in (, or

(iii) �� is ��� and is introduced by an application of �� in (,

��
�� � � �

��
��������� � ���

��������� � ���
��

....
������� � ��....

�

�

and ��� is weak in ��, or

(iv) �� is ��� and is introduced by an application of � in (,

��
������ � � � ���� ���

����� � ���� ���
�

....
��� � ��� ���....

�

�

and ��� is weak in ��. �
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In other words, �� is weak in ( if it is introduced by weakening in (, or if so are
introduced all of its subformulas of smallest grade that appear in ( (in the sense that
the lwffs active in the rules introducing �� are themselves weak in (). If �� is not
weak, then we sometimes say that �� leads to axioms.

8.2.2 Logic-dependent results

We now focus our attention on particular modal sequent systems. To show that �� is
eliminable in some of these systems (in particular, in ����, ����, �����, and �����;
cf. Corollary 8.2.13), we prove additional results that will also be useful later for the
analysis of���. We begin by introducing a modal analogue of the disjunction property
of propositional intuitionistic logic.

One of the consequences of cut-elimination in sequent systems for propositional
intuitionistic logic is the disjunction property [221, 229], if � � � � is provable then
so is � � or � �. The property holds also under hypotheses,

if � � � � � is provable, then so is � � � or � � � �

provided that the hypotheses in � are Harrop formulas [229], where the class $ of
Harrop formulas is inductively defined by:

(i) # 	 $ for # a propositional variable,

(ii) � � � 	 $ if � 	 $ and � 	 $, and

(iii) � � � 	 $ if � 	 $, where� is intuitionistic implication.

Since � � � �	 $, the restriction to Harrop formulas ensures that no disjunctive
formula� �� occurs positive in �, i.e. � �� ��� �. This guarantees that � � ���
is not the conclusion of an application of the (branching) intuitionistic left disjunction
rule ����, e.g.

���� � � � � ���� � � � �

� ����� � � � �
����

where� � ��������. For example, the disjunction property fails for� � �����,
since we can prove��� � ��� but neither��� � � nor��� � � are provable.

Note that ���� is the only rule that endangers the disjunction property in systems for
propositional intuitionistic logic since intuitionistic sequents are single-conclusioned
and the intuitionistic left implication rule (with built-in contraction) has the form

� � ��� � � ��� � 3

� � ��� � 3
����

and it therefore suffices to require that � 	 $.
The disjunction property does not hold in our modal sequent systems since they

are extensions of propositional classical logic. However, an analogous property holds
for boxed formulas in many of our modal systems, including ����, ����, ����� and
�����. For these systems we can easily check semantically that:

if � ���� ��� is provable, then so is � ��� or � ��� �
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To generalize this property to hold under hypotheses, in Definition 8.2.7 we define
an analogue of the branchings caused by formulas that are not Harrop: since in our
systems � is defined in terms of 
 and �, we need to consider only the branchings
caused by applications of the classical (i.e. with more than one lwff in the succedent)
left implication rule with principal formula labelled with  or with a predecessor of . 8

Definition 8.2.7 The class of -branching lwffs with respect to a multiset of rwffs �
in ���� � ���� � ��� �, in symbols�%�������, is inductively defined by

(i) �� 
 � 	 �%�������,

(ii) ��� 
 � 	 �%������� if � � �� is provable in ����, and

(iii) ���� 	 �%������� if there exists a � such that � � ��� is provable in ����
and ��� 	 �%�������.

By extension, given a sequent ��� � ��, we define that

(i) � is -branching with respect to � in ���� if 
�� 	 �%������� for some

�� �� �, and

(ii) �� is -branching with respect to � in ���� if 
�� 	 �%������� for some

�� �� ��. �

We also need the following definition.

Definition 8.2.8 Consider a branch of a proof in ���� � ���� � ��� �. We call a
chain a sequence of worlds (labels) �� �� �� � � � where ��� is a successor of � for
each � (in the sense that each ��� has been generated in the branch by an application
of �, so that there is a �� in the branch such that ����� 	 ��).

Let now � and � be two distinct successors of  generated by two applications of
� in the branch, i.e.

....
������ � � � ���� ����

����� � ���� ����
�

....
������ � � � ���� ����

����� � ���� ����
�

....
�

�

We say that � and � are independent in ���� if we cannot prove in ��� � that � accesses
� or that � accesses �. That is, if there is no �� (in some sequent in the branch) such
that �� � �� � or �� � ��� is provable in ��� �.

8 Note that choosing between ���� and ���� constitutes a backtracking point in a backwards proof: if
the chosen lwff does not allow us to close the proof, we must backtrack and try the other formula; cf. the
derivations of the rule ��� and of its labelled equivalent in �9.2.
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In other words, since it cannot be that � is �, � accesses �, or � accesses �, the
independent worlds � and � diverge from  as they generate two distinct, divergent,
(sub-)chains of worlds that have  as their origin. By extension, we then say that ����
is a divergent sequent system. �

Observe that, given the absence of relational rules such as symmetry, euclideaness, or
convergency, each system ���� where � 	 �������� ��� is a divergent system. For
example, in the following branch of a �����-proof

....
���� � �� � � � ��� ����� ����
���� � � � ��� ����� ����

�

��� � �� ����� ����
�

....
�

the atomic labels � and � are independent as � is different from � (by the condition on
the application of �) and neither of the two sequents

�� � �� � � � �� � and �� � �� � � � �� �

is provable in �����. Thus ����� is a divergent system.9

Proposition 8.2.9 (�-disjunction property) Let ���� � �������� � be a divergent
system, and consider a ����-proof � of the sequent

��� � ��� ����� ����� � � � � ����

where

(i) � and �� are not -branching with respect to � in ����.

Then there exists a ����-proof of ��� � ��� ���� for some � with � � � � �.

Proof We prove the proposition for � � �; the extension to the general case is
straightforward. Let the sequent ��� � � �� ����� ���� satisfy condition (i), and
let � be its ����-proof.

Observe that by the permutability of the rules we can assume that� does not contain
any contraction of ���� or ����. If, for example, the last rule application in � is
a contraction of ����,

��
��� � ��� ����� ����� ����

��� � ��� ����� ����
��

�

9 Note that our proof-theoretical notion of divergent systems essentially corresponds to the semantic notion
of tree-frame modal logics, i.e. modal logics whose Kripke frames are trees; see [140, �7] and [57, 204].
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then we consider the proof �� of the sequent ��� � ���� ����� ���� with ��� �
�� � ������ and show that there is a proof of ��� � � ��� ���� for � � � or �.
Similarly, if one of the two lwffs ���� is contracted somewhere in��, then we simply
permute this �� over the rules below it.

We now proceed by induction on �, and since the sequent cannot be an axiom we
distinguish two cases, depending on the last rule in �.

(Case 1) If the rule has principal formula other than ��� �, then, since � and ��

are not -branching with respect to � in ����, we conclude by applying the induction
hypothesis.

(Case 2) If the rule has principal formula ��� �, then it is either �� or �.
(Case 2.1) If the rule is an application of �� with principal formula ��� �, then

we conclude trivially; for example, if � is

��
��� � ��� ����

��� � ��� ����� ����
��

then �� is the desired proof.
(Case 2.2) Suppose that the rule is an application of � with principal formula

����. Then � has the form

��
���� � � � ��� ����� ����
��� � ��� ����� ����

�
(8.3)

and we distinguish two cases, depending on how ���� is introduced in ��.
(Case 2.2.1) If ���� is the principal formula of an application of ��, then (8.3)

has the form shown below on the left, and, since ���� is a parametric formula in ��,
we can delete the application of �� that introduces it to obtain the proof on the right:

��
����� � ���

����� � ���� ����
��

��
���� � � � ��� ����� ����
��� � ��� ����� ����

�

�

��
����� � ���

�	�
���� � � � ��� ����
��� � ��� ����

�

�

Note that for this transformation to be possible it must be the case that ���� is
introduced by �� in all branches of ��. If it is introduced by �� in some branches
and by � in other branches, then we make the mode of introduction of ��� �

uniform by replacing all such introductions by weakening with introductions by �.
This is achieved by appropriately weakening active formulas so that we can introduce
���� by an application of �. The rest of the proof is as before, modulo possible
applications of weakening and 4)$, and we then proceed like in the next case.

(Case 2.2.2) If ���� is the principal formula of an application of �, then (8.3)
has the form shown below on the left, and, since ���� is a parametric formula in ��,
we can postpone its introduction, i.e., by Lemma 8.2.1, we permute the uppermost�
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over the rules below it to obtain the proof on the right:

��
������ � � � ���� ����

����� � ���� ����
�

��
���� � � � ��� ����� ����
��� � ��� ����� ����

�

�

��
������ � � � ���� ����

�	�
���� � �� � � � ��� ����� ����
���� � � � ��� ����� ����

�

��� � ��� ����� ����
�

�

(During the transformation it might be necessary to rename some labels to avoid
possible variable clashes). Now we have a proof

�� �

��
�

��
������ � � � ���� ����

�	�

of ���� � �� � � � ��� ����� ���� �

where � and �� are not -branching. We show that then there is a proof of either

���� � � � ��� ���� or ���� � � � ��� ���� �

from which we conclude by an application of �.
Since all our relational rules introduce rwffs only in the succedent of the conclusion

(Fact 6.1.5), � � and � � must both be introduced by applications of �$� in � �.
Moreover, and most importantly, since both � and � are arbitrary worlds accessible
from , and since ���� is divergent, � and � are independent: it cannot be that �
is equal to �, � accesses �, or � accesses �. This implies that ���� and ���� are
independent as well, so that at least one of them is weak in ��. In other words, one of
���� and ���� is introduced by weakening in ��, or so are the formulas it is inferred
from. By deleting the weakening(s) we obtain a proof � �

� of either

���� � �� � � � ��� ���� or ���� � �� � � � ��� ���� �

This is however not enough to conclude, since in both cases we must dispose of the
additional rwff in the antecedent.

If ��� is a proof of the sequent ���� � �� � � � ��� ����, then we dispose of
� � as follows (we proceed analogously when � �

� is a proof of the other sequent and
we need to dispose of � �). If the application of �$� that introduces � � is the last
step in ���, then ��� has the form

�

���� � � � ��� ����

���� � �� � � � ��� ����
�$�

and �
 is the desired proof. If the application of �$� that introduces � � is not the
last step in ���, then we can delete it provided that we modify the steps where � �
is active. That is, since � � can only have been active in applications of �� with
principal formula of the form ��� or in applications of relational rules to introduce
���� by �� for some � accessing , we must replace these applications of �� by
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suitable steps, which depend on how the subformulas of �� or ���� are introduced.
For example, suppose that ��� has the form

��
��� � � � � �

�&
����� � ���

������ � � � ���
�$�

��
������ � � � ���

���������� � � � ���
���

���������� � � � ���
��

�

���� � �� � � � ��� ����

where � � is not active in�
 and��. In this case, after having deleted the application
of �$� that introduces � � in the right branch, we also delete �� and the application
of ��, and ‘blow up’ the weakening: we apply ��� to introduce ��� directly and
transform the above to

�&
����� � ���

�	�
����� � ���

��������� � ���
���

�	

���� � � � ��� ����

�

With such suitable changes we obtain the desired proof of ���� � � � � �� ����, from
which we conclude by an application of �. �

Corollary 8.2.10 Let ���� be a divergent system, and let � be an ����-proof of

���� � ��� � � � � � �� � ��� ������ � � � � ������ ����� � � � � ���� (8.4)

where

(i) � and �� are not -branching with respect to � in ����, and

(ii) � ��� � � � � �� are all distinct, and for each �, with � � � � �, �� does not
occur in �, � or ��.

Then there is a ����-proof either of ��� � ��� ���� for some � with � � � � �, or
of ���� � �� � ��� �� ��� for some � with � � � � �. �

This follows because, by (ii), each �� is an arbitrary world accessible from , and
is independent from all other �	’s, so that the sequent (8.4) is ‘equivalent’ to (e.g. is
obtained by � backwards applications of � from) the sequent

��� � ��� ����� � � � � ����� ����� � � � � ���� �
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and we conclude analogously to Proposition 8.2.9. 10 Similarly we can show that:

Corollary 8.2.11 Let ���� be a divergent system, and let � be a ����-proof of

��� � ��� ������� � � � � ������� ����� � � � � ����

where

(i) � and �� are not -branching with respect to � in ����,

(ii) � ��� � � � � �� are all distinct, and

(iii) � � � �� is provable in ���� for each � where � � � � �.

Then there is a ����-proof either of ��� � ��� ���� for some � with � � � � �, or
of ��� � ��� �� ���� for some � with � � � � �. �

The intuition for Proposition 8.2.9 is that if in a backwards proof of ��� �
��� ����� ����� � � � � ���� there is no branching in  or in its predecessors, as re-
quired by the condition (i), then only one ��� � (if any) will lead to axioms, i.e. all the
other lwffs ���� are weak in the proof. The intuition for the corollaries is analogous;
for example, since condition (ii) in Corollary 8.2.10 requires that each � � is an arbitrary
world accessible from, at most one of ������ � � � � ������ ����� � � � � ���� leads
to axioms and all the others are weak in the proof. In other words, the proposition and
the corollaries state that if there is no branching in  or in its predecessors, then we
only need to follow one chain of worlds that originates from .

Note that the corollaries fail if we remove condition (ii), and that Corollary 8.2.11
does not generalize to hold for

��� � ��� ������ � � � � ������ ����� � � � � ����

even when � ��� � � � � �� are all distinct. For example, to prove in �����

� ��� ����� � ����� 
 �� �� ��� (which is equivalent to � ����� 
 ����)

we need both lwffs in the succedent.
The condition that� and�� are not-branching with respect to� in ����, condition

(i) in the proposition and the corollaries, requires that in � there is no application of

 � with principal formula of the form �� 
 � or ��� 
 � where � � ��
is provable, and thus no implicit duplication (contraction) of the lwffs ��� �.11 If
this condition is not satisfied, then we can immediately find counter-examples to the
proposition; for example, for # a propositional variable, although we have a proof of

����� 
 �� 
 �# � ���� � ����� ���� � (8.5)

10Note that our rules for rwffs are such that none of the �� ’s can be a composite label built using Skolem
function constants.
11Note that the implicit duplication resulting from an application of �# with principal formula ��� � �,
where � � ��� is provable, does not affect Proposition 8.2.9 and its corollaries, since in a backwards
proof this �# can only occur after an application of �� with some ����� or some formula in � or �� as
its principal formula.
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neither of the two sequents

����� 
 �� 
 �# � ���� � ���� �� � � � ��

is provable. In this case, however, we can proceed as follows. By the permutability of
the rules, we can find �� and �� such that we can transform each proof of (8.5) to:

��
���� � ����� ����� ��

� ����� ����� ���� 
 �

 ��

�# ���� � ����� ����
����� 
 �� 
 �# � ���� � ����� ����


�
� (8.6)

�� and �� are proofs of ���� � ����� ����� �� and �# � ��� � �����
����, and since both sequents satisfy condition (i) we can apply Proposition 8.2.9
to each of them separately. Indeed, there are proofs of ��� � � ����� �� and
�# � ��� � ����, and we can further transform (8.6) to a proof in which only one
of ���� and ���� leads to axioms in each branch (and the other is weak):

axioms....
���� � ����

���� � ����� ��
��

���� � ����� ����� ��
��

� ����� ����� ���� 
 �



axioms....
���� � ����

���� � ����� ����
��

�#� ���� � ����� ����
���

�# � ��� � ����� ����
��

����� 
 �� 
 �# � ���� � ����� ����

�

�

In general, given a ����-proof � of

��� � ��� ����� � � � � ���� �

where ���� is a divergent system, we can permute the -branching rules (i.e. the
applications of 
 � with principal formulas labelled with  or with predecessors of
 in a chain) over the rules below them, and thereby transform � so that it contains
proofs of

���� � ���� ����� � � � � ���� and ! ! ! and ���� � ���� ����� � � � � ����

where �� and ��� are not -branching with respect to � in ����, for each � with
� � � � �. Then, for each

�� �� � ��� � ����� � � � � ���� �� � � � ��

there exists an �, where � � � � �, such that there is an ����-proof of

�� �� � ��� � ���� �

Performing these transformations, it is straightforward to show that applications of
�� with principal formula of the form ��� are eliminable in proofs of theorems of
����, so that we have:
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Corollary 8.2.12 Every sequent � ��� provable in a divergent system ���� has a
proof in which there are no applications of �� with principal formula of the form
���. �

To illustrate this further, suppose that we have

�
��� � ��� ���� ���

��� � ��� ���
��

��
� ���

�

The corollary follows because, by applying the above transformation to �, we permute
possible applications of -branching rules over the rules below them. Thus, we
transform � so that it contains proofs ��� � � � ��� of

���� � ���� ���� ��� and ! ! ! and ���� � ���� ���� ��� �

i.e. we transform � to

��
���� � ���� ���� ��� ! ! !

��

���� � ���� ���� ���
����

��� � ��� ���� ���

��� � ��� ���
��

��
� ���

� (8.7)

We can then permute the �� upwards, i.e. we can further transform (8.7) to

��
���� � ���� ���� ���

���� � ���� ���
�� ! ! !

��

���� � ���� ���� ���

���� � ���� ���
��

�	���
��� � ��� ���

��
� ���

where�� and��� are not -branching with respect to� for each � such that � � � � �.
Then, for each such � we can find a proof of � � �� � ��� � ���, and thus eliminate
the right contraction of ��� displayed in (8.7). By iterating this for all other right
contractions of boxed formulas in ��, we obtain a proof of � ��� in which there
are no applications of �� with principal formula of the form ���. In doing so,
we replace explicit right contractions of ��� with implicit ones, i.e. the contractions
implicit in the applications of 
� (with -branching principal formulas).

We summarize the above results as follows. Given the absence of relational
rules such as symmetry, euclideaness, or convergency, each system ���� where
� 	 �������� ��� is a divergent system. Hence, each such ���� satisfies the
�-disjunction property, and applications of �� are eliminable in ����-proofs of
� ���.
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Table 8.1. Counter-examples to extensions of the �-disjunction property

System Counter-example

���	� � ���� �� ���� (i.e. � � ��� 
 �� ���)
����� � �� ���� ��� (i.e. � � �� 
 �� ��)
����� � �� ���� �� �� �� (i.e. � ���� 
 ���)

Corollary 8.2.13 The sequent systems ����, ����, ����� and ����� satisfy the �-
disjunction property. This implies that every sequent � ��� provable in ����, ����,
����� or ����� has a proof in which there are no applications of �� with principal
formula of the form ���. �

The �-disjunction property for a divergent system ���� is related to the fact that
the semantic condition

if  accesses � and  accesses � � then � is different from �

and it is not the case that � accesses � or that � accesses � (8.8)

is consistent with the other properties of the accessibility relation in the logic �, but
is ‘purely negative’ and thus not modally axiomatizable (see [168, Lemma 3.6.1]
and [204, Lemma 9], and see also the discussion on tree-frame modal logics in [140,
7] as we remarked in Footnote 9 above). Thus, the addition of (8.8) to a first-order
metalogic (in which modal formulas are translated) does not alter the set of provable
theorems of �.

Although the �-disjunction property holds also for modal sequent systems other
than those we considered, e.g. for the divergent systems ���� and ������, it does not
hold in general. For example, if we have that

if  accesses both � and �, then � accesses � or � accesses � � (8.9)

then the lwffs ���� and ���� in the succedent of a sequent are not necessarily
independent, since their subformulas ���� and ���� may be not independent. That is,
���� and ���� are not weak in the proof. Thus, given (8.9), it is not surprising that
attempts to extend Proposition 8.2.9 fail for non-divergent systems such as ���	� �
���� � �symm�, ����� � ���� � �eucl� or ����� � ���� � �conv1� conv2�, and
that instances of the characteristic axiom schemas of the corresponding logics provide
us with the counter-examples given in Table 8.1.

While the failure of the �-disjunction property for a non-divergent system ����
does not imply that we cannot eliminate applications of �� with principal formula
of the form ��� in ���� (in fact, the sequents in Table 8.1 are all provable without
��), it is relatively easy, at least for some systems, to find theorems that do require
��. So, for example, to prove ��� �� 
 ��� 
 ��� in ����� we need a right
contraction of ���, as is suggested in the following proof
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��
� � � �

��
� � � �

��
� � �� �

axiom(s)....
��� � ���.... �

����� � ���� ���� ���

�� ��� ����� � ���� ���
��

��� ��� ����� � ���� ���
��

��� ��� ����� � ���� ���
��

��� ��� ����� � ���� ���
��

��� ��� ���� � � � ���� ���
�

��� ��� ��� � ���� ���
�

��� ��� ��� � ���
��

��� �� � ��� 
 ��



� ��� �� 
 ��� 
 ���



where � � �� �� � ��, so that �� and �� are trivial and �� is

� � � � �
4)$

� �� � � � � �
�$�

� � � � �
4)$

� �� � � � � �
�$�

� �� � � � �� �
eucl

�

We conjecture that the failure of the eliminability of �� can be related to, and
perhaps proof-theoretically justify, the need [87, 120] for a superformula principle in
non-analytic logics such as �	 and ��. However, we will not discuss this further.
Instead we will focus on the analysis of left contractions in ����, ����, ����� and
�����, in order to establish bounds needed for our complexity analysis.





9 SUBSTRUCTURAL ANALYSIS OF
����

We begin our analysis of contractions in ���� by introducing additional terminology.
We call contraction constituents the active formulas of an application of a contraction
rule, and define the rank of a contraction of ��, in symbols ���0����, to be
the largest number of steps immediately preceding the conclusion of the contraction
and containing at least one of the contraction constituents. Since we can always
transform a backwards proof so that a contraction of �� immediately precedes the
step introducing the second constituent, the rank measures how many steps stand
between the introduction of the first and second constituent (so that the minimum
possible rank of a contraction is �).

9.1 ELIMINATING CONTRACTIONS IN ����

Lemma 8.2.4 and Corollary 8.2.13 tell us that to prove a sequent �  ��� in ���� we
do not need to apply the contraction rules �$� and ��. We can eliminate the rule
��� as well.

Theorem 9.1.1 Every sequent � ��� provable in ���� has a proof in which there
are no applications of the contraction rules.

Proof We adapt and extend the proof for propositional classical logic given by Zeman
in [238], and proceed by three nested inductions. The first induction is on the number
of contractions in the ����-proof, the second on the grade of the contracted lwff, and
the third on the rank of the contraction.

187
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For the first induction, consider a proof� of� ��� that contains ��� contractions.
Pick a ‘highest’ (e.g. uppermost in the leftmost branch) contraction in �, i.e. consider
a subproof of � that ends with a contraction of �� and such that the proof above
the contraction is contraction-free. By the permutability of the rules, we can assume,
without loss of generality, that the contraction immediately precedes the rule that
introduces the second instance of ��. We show, by induction on the grade of ��,
how to eliminate this contraction to obtain a proof � � of � ��� that contains �
contractions.

(��������� � ,) The base case, ��������� � , is trivial: since neither of the
contraction constituents �� can be introduced by a logical rule, and since only the
first, at most, can be introduced by an axiom, the second �� must be introduced by a
weakening, and we conclude by deleting this weakening and the contraction.

Now let ��������� � 0 � �. We proceed by induction on the rank of the
contraction, ���0����, which in the base case is equal to �.

(��������� � 0��, ���0���� � �) We consider the different rules introducing
the second ��, where, by Fact 8.2.2, we do not need to consider the case when one
of the two constituents is introduced by an axiom, and where the case for � follows
trivially by Corollary 8.2.13.

(��������� � 0��, ���0���� � �, � � � 
 �,
�) Suppose that � � � 

� and that there is a contraction-free proof of �� 
 �� �� 
 ����� � � �. Since
the contraction has rank �, the first �� 
 � is introduced twice, once into the left and
once into the right premise of the application of 
�. We distinguish three cases.

(��������� � 0 � �, ���0���� � �, � � � 
 �, 
 �, case 1) If the
second �� 
 � is introduced by ���, or if both instances of the first �� 
 � are
introduced by ���, then we conclude by simply deleting the weakening(s) and the
���. For example, we transform

��
�� 
 ����� � ��

�� 
 �� �� 
 ����� � ��
���

�� 
 ����� � ��
���

��
� ���

to

��
�� 
 ����� � ��

��
� ���

�

(��������� � 0 � �, ���0���� � �, � � � 
 �, 
�, case 2) If one of the
instances of the first �� 
 � is introduced by ��� and the other by 
�, then we
have

��
��� � ��� ��

�� 
 ����� � ��� ��
���

��
������ � ��� ��

��
��� ������ � ��

��� �� 
 ����� � ��

�

�� 
 �� �� 
 ����� � ��

�

�� 
 ����� � ��
���

��
� ���
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which we can transform so that both instances of �� 
 � are introduced by 
 �,
i.e. we replace the application of ��� with

��
��� � ��� ��

��� � ��� ��� ��
��

��
��� � ��� ��

������ � ��� ��
���

�� 
 ����� � ��� ��

�

�

Since ��������� and ��������� are both less than �������� 
 ��, we can apply
the induction hypothesis to

��� � ��� ��� �� and ��� ������ � ��

to obtain contraction-free proofs � �
� and ��� of

��� � ��� �� and ������ � �� �

and then conclude by an application of 
�, i.e.

���
��� � ��� ��

���
������ � ��

�� 
 ����� � ��

�

��
� ���

�

(��������� � 0��, ���0���� � �, � � � 
 �,
�, case 3) If both instances
of the first �� 
 � are introduced by 
�, then the proof has the form

)�
��� � ��� �������

)�
������� � ��� ���

��� � ����� � ��� ���
�#

)	
������� � ��� ���

)�
����������� � ��

������� � ����� � ��
�#

��� � ����� � ����� � ��
�#

��� � ����� � ��
�&#

)

� ����

and we conclude by applying the induction hypothesis like in case 2.
(��������� � 0��, ���0���� � �, � � � 
 �,
) Suppose that � � � 


� and that there is a contraction-free proof of ��� � � �� �� 
 �� �� 
 �. If one
of the two constituents is introduced by ��, we conclude by deleting this �� and
the application of ��. Therefore suppose now that both constituents are introduced
by 
, i.e.

��
���� ��� �� � ��� ��� ��

���� �� � ��� ��� �� 
 �



��� � ��� �� 
 �� �� 
 �



��� � ��� �� 
 �
��

��
� ���

�
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We apply the induction hypothesis to ���� ��� �� � � �� ��� �� to obtain a
contraction-free proof � �

� of ���� �� � ��� ��, and then conclude by 
, i.e.

���
���� �� � ��� ��

��� � ��� �� 
 �



��
� ���

�

(��������� � 0 � �, ���0���� � �, � � ��, ��) Suppose that � � ��
and that there is a contraction-free proof of ���� ������� � � �. If one of the two
constituents is introduced by ���, then we conclude by deleting this ��� and the
application of ���. Therefore suppose now that both constituents are introduced by
��, i.e.

�
� � �
�
���

.... ���

�� �
 �� �
 � � �
�

�
� � �
�
���

.... ���

�� �
 �� �
 � � �
�
��

�		� �		����� �
 �� �
 � � ��

�		� �	�	����� �
 �� �
 � � ��
��

�	�	� �	�	����� �
 �� �
 � � ��
��

�	�	����� �
 �� �
 � � ��
�
�

�


� ��	�

�

(9.1)

Since (9.1) is a proof of � ��� in ����, and since ���0����� � �, the rwffs
� � and � � must be present in the conclusion of the lowest �� (and thus in the
conclusion of ��� as well); they are then active in two applications of � in � �. Let
���� and ���� be the principal formulas of these applications of�, and, without
loss of generality, assume that ����� ���� 	 ��.1 Then �� � ��� � ������ �����, and
(9.1) is

�
� � �
�
���

.... ���

�� �
 �� �
 � � �
�

�
� � �
�
���

.... ���

�� �
 �� �
 � � �
�

��

�		� �		����� �
 �� �
 �

� ���� �	��� �	��

�		� �	�	����� �
 �� �
 � � ���� �	��� �	��
��

�	�	� �	�	����� �
 �� �
 � � ���� �	��� �	��
��

�	�	����� �
 �� �
 � � ���� �	��� �	��
�
�

�


� ��	�

�

This proof contains a contraction-free sub-proof � � of

���� �������� � �� � � � ���� ����� ���� �

1Two remarks. First, if the two applications of �# have the same active rwff, say ���, then we conclude
analogously. Second, if, e.g., ���� � ����	 is the principal formula of a �� in )
, then ��� � � and
���	 � ��; if ���� � �� 	�� is the principal formula of a 	� in )
 , then ���� � �. In both these
cases we conclude analogously to the case we consider.
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and we can transform �� so that it contains contraction-free proofs of

���� ��������� � �� � � � ���� � ����� ����
and ! ! ! and

���� ��������� � �� � � � ����� ����� ����

where for each �, �� and ���� are not -branching with respect to � in ����. Then,
since � and � do not occur in �� , ���� or �, Corollary 8.2.10 tells us that for each

���� ������ ��� � �� � � � ���� � ����� ���� �� � � � ��

there is a contraction-free ����-proof �� of either

���� ������ ��� � � � ���� � ���� or ���� ������ ��� � � � ���� � ���� �

Let, for example, �� be the proof of the leftmost sequent. We have permuted possible
applications in�� of-branching rules (i.e. applications of
�with principal formulas
labelled with  or with predecessors of ) over the two consecutive applications of
��. Therefore, �� contains these two applications of ��, i.e. �� is

� � � � �
4)$

.... �$�

�� � � � � �

� � � � �
4)$

.... �$�

�� � � � � �
��

���� ������ ��� � � � ���� � ����

���� ������ ��� � � � ���� � ����
��

���� ������ ��� � � � ���� � ����
��

�

Since���������� ( ����������, by the induction hypothesis, there is a contraction-
free proof ��� of

������ ��� � � � ���� � ���� �

and thus we can replace �� with

� � � ��
4)$

.... �$�

�� � � � � �
���

������ ��� � � � ���� � ����

������ ��� � � � ���� � ����
��

�

Proceeding analogously for each � such that � � � � �, we obtain a contraction-free
proof ��� of either

�������� � � � ���� ���� or �������� � � � ���� ���� �

from which we conclude by weakening. For example:

���
�������� � � � ���� ����

�������� � �� � � � ���� ����
�$�

�������� � �� � � � ���� ����� ����
��

��
� ���

�
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To summarize, analogously to Corollary 8.2.12, we have first copied ��� in each
branch via the implicit contractions in applications of 
 � (with principal formulas
labelled with  or with predecessors of ), and then eliminated the explicit contraction.

This concludes the proof for the case ��������� � 0 � � and ���0���� � �.
Consider now the final case when ��������� � 0 � � and ���0���� � � � � 4 �.
In this case, it is possible that the first contraction constituent was introduced by a
weakening into one or more of the places which give the contraction a rank of � � �.
We make the mode of introduction of that constituent uniform by replacing all such
introductions by weakening with introductions by the proper logical rule; the rest of the
proof is as before, modulo possible applications of weakening and 4)$. For example,
we transform the proof

�� � � �
4)$

.... �$�

�� � � � � �

��
������ � � � ���

���������� � � � ���
���

��
���� �������� � � � ��

���� �������� � � � ��
��

�������� � � � ��
���

��
� ���

to

� � � � �
4)$

.... �$�

�� � � � � �

� � � � �
4)$

.... �$�

��� � � � � �

��
������ � � � ���

���������� � � � ���
���

���������� � � � ���
��

��
���� �������� � � � ��

���� �������� � � � ��
��

�������� � � � ��
���

��
� ���

�

The rank of��� is still ���, but now we have a proof in which all highest introductions
of the first contraction constituent are by the logical rule proper to that constituent. We
consider the different cases for this proper rule.

(��������� � 0 � �, ���0���� � � � �, � � � 
 �, 
 �) We conclude
straightforwardly by first permuting the uppermost
� over the rule below it to obtain
a proof with ���0��� 
 �� � �, and then applying the induction hypothesis.

(��������� � 0 � �, ���0���� � � � �, � � � 
 �, 
 ) We conclude
straightforwardly by first permuting the uppermost
 over the rule below it to obtain
a proof with ���0��� 
 �� � �, and then applying the induction hypothesis.

(��������� � 0 � �, ���0���� � � � �, � � ��, ��) We distinguish two
cases, depending on whether or not the rwff � � active in the uppermost�� appears
in the premise of ���; as before, the rwff � � active in the lowest �� must appear in
the premise of ��� since this is a proof in ����.
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(��������� � 0��, ���0���� � ���, � � ��,��, case 1) In the first case,
the rwffs active in the two applications of �� both appear in the premise of ���, i.e.

� � � � �
4)$

.... �$�

�� � �� � � � � �

� � � � �
4)$

.... �$�

��� � � � � �
��

���������� � � � ���
���������� � � � ���

��

��
���� �������� � �� � � � ��

���� �������� � �� � � � ��
��

�������� � �� � � � ��
���

��
� ���

�

Since ��� and � � are parametric in ��, the uppermost�� is permutable over the
rule immediately below it (even if this rule were an application of �). Performing
this permutation, we obtain a proof in which ���0����� � �, and we then conclude
by applying the induction hypothesis.

(��������� � 0 � �, ���0���� � � � �, � � ��, ��, case 2) In the second
case, � � does not appear in�, but is the active rwff of an application of� occurring
between the two applications of ��, i.e.

� � � � �
4)$

.... �$�

�� � � � � �

� � � � �
4)$

.... �$�

��� � � � � �
��

���������� � � � ���
���������� � � � ���

��

��
���������� � � � �������
��������� � �������

�

��
���� �������� � � � ��

���� �������� � � � ��
��

�������� � � � ��
���

��
� ���

� (9.2)

As explained for Lemma 8.2.1, we cannot, in general, reduce the rank of ��� by
permuting the uppermost�� over the rule below it, since, if� � is empty, the uppermost
�� is not permutable over the � with active rwff � �. We can however permute
this� over the lowest��. To show this, we reason as follows. Since we are proving
� ���, �� must contain an application of � with active rwff � �, and, for this
to be possible, � must be an arbitrary world accessible from . In particular, � �� .
Thus, since � � and since there are no relational rules, ��� cannot follow from (be
a subformula of) ���. Then ��� must be a subformula of some formula in � or � �,
and �� can be divided into two separate subproofs, �� and �
. �
 introduces ���
and � �, and ��� is active in �� or ��� 	 ��. (If ��� and � � are contained in



194 LABELLED NON-CLASSICAL LOGICS

�� and ��, then �
 is empty and �� � ��.) Given this separation, we can transform
(9.2) to a proof that has the form

� � � � �
4)$

.... �$�

��� � �� � � � � �

� � � � �
4)$

.... �$�

��� � � � � �
��

���������� � � � ���
���������� � � � ���

��

��
���������� � � � �������

�

���� ���������� � �� � � � �������

���� ���������� � �� � � � �������
��

���� ���������� � � � �������
�

��
���� �������� � � � ��

�������� � � � ��
���

��
� ���

and then to

� � � � �
4)$

.... �$�

��� � �� � � � � �

� � � � �
4)$

.... �$�

��� � � � � �
��

���������� � � � ���
���������� � � � ���

��

��
���������� � � � �������

�

���� ���������� � �� � � � �������

���� ���������� � �� � � � �������
��

���������� � �� � � � �������
���

���������� � � � �������
�

�	�
�������� � � � ��

��
� ���

�

Now we have a proof in which ���0����� � �, and we conclude by applying the
induction hypothesis. �

Theorem 9.1.1 provides the basis for showing that � is decidable (cf. 12). Fur-
thermore, its proof is extensible: when we add relational rules to ����, we only need
to consider the new cases that are generated by these rules. In particular, we must
just investigate the eliminability of ��� when it contracts lwffs of the form ���. By
Corollary 8.2.13 and (the proof of) Theorem 9.1.1, it follows that in ����, ����� and
����� we can eliminate �� and all applications of ��� with principal formula other
than ���.
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Corollary 9.1.2 Every sequent � ��� provable in ����, ����� or ����� has a
proof in which there are no contractions, except for applications of ��� with principal
formula of the form ���. �

Corollary 9.1.2 holds also for other systems extending����, e.g.���� and������.
However, it turns out that, even for a simple system like ����, applications of���with
principal formula ��� are not always eliminable. For example, as we previously
indicated in (6.1), the theorem � �� ��� 
 ��� cannot be proved in ���� without
one left contraction of �� � �� 
 ���. In the following chapters we show how to
bound applications of ��� in ���� and in the transitive systems ����� and �����.

9.2 ���� AND �����

Before moving on to the analysis of contractions in extension of ����, we show
that Theorem 9.1.1, together with Proposition 8.2.9, provides the basis for a proof-
theoretical justification of the rules of the standard sequent system ����� given in
Figure 6.3. We can derive a labelled equivalent of the standard rule

� � �
:��� � ���:�

���

as follows:

��� � ���

�:� ��� � ���� �:�
��� �

��� � ���

���� � � � ���
�$�

.... �� (all with active rwff � �)
���� � � � ���

��� � ���
�

.... �

�:� ��� � ���� �:�

where � is different from , the multisets of lwffs �: and �: � contain only formulas
labelled with , and if ��� � ������ � � � � ����� then ��� � ������ � � � � �����.

Since all the formulas in �: and �:� are labelled with , the rule ���, like
���, is a transitional rule: the conclusion represents a world  and the premise
an arbitrary world � accessible from , so that applying the rule means moving
from one world to the other. Note also that if �: � contains some lwff ���, then
an application of ��� explicitly performs the ‘metatheoretical choice’ in the �-
disjunction property in Proposition 8.2.9 by actually selecting, via weakening, the
lwff ��� as the principal formula of �. Furthermore, like ���, the rule ���

constitutes a potential ‘backtracking point’ in a backwards proof since it does not
permute over any other rule (it contains no parametric formulas). This is because the
applications of �� in the derivation of ��� are not permutable over the application
of �.

We can go one step further, and transform ����-proofs so that we can replace par-
ticular sequences of applications of�� and� with applications of���. Formally,
let ����� be the sequent system obtained from ���� by

(i) eliminating �� and �,
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(ii) eliminating 4)$ and �$�,

(iii) eliminating ��� and ��, and

(iv) adding��� and extending the axioms 4)� and��.

The intuition for (i) and (ii) is that ��, �, 4)$ and �$� are embedded into���;
this amounts to eliminating relational reasoning, i.e. sequents in ����� do not contain
�. The intuition for (iii) and (iv) is that we embed ��� and �� into 4)�, �� and
���. Then we have:

Lemma 9.2.1 � ��� is provable in ����� iff � ��� is provable in ����. �

The left-to-right direction follows by the derivability of��� in ���� (recall that the
extension of the axioms is justified in 6.1). For the converse direction, we begin by
showing that we can transform each ����-proof � of � ��� into a block form by

(i) eliminating ‘detours’, and

(ii) adjoining ‘related rules’,

where we say that an application of a rule ���� is related to an application of a rule
���� in a ���� proof if the principal formulas of these applications of �� �� and ����
have the same label.

We show how to adjoin ���� and ���� below. For (i), we define an application of
a rule ��� to be a detour in � when all of the active formulas of ��� are introduced in
� either by weakenings or by detours (i.e. none of them appears in the axioms of �
so that they are weak in �). Note that since we are in ���� if a � rule constitutes a
detour, then its active rwff must be introduced by �$�. 2

We eliminate a detour ��� by ‘blowing up’ the weakenings of lwffs, i.e. by trans-
forming them so that they introduce lwffs of the highest grade possible, and deleting
the relational reasoning. For example, let ��� be 
� and � be

��
����� � ���

������ � � � ���
�$�

��
���� � � � ��

���� � � � ��� ���
��

��� � ��� ���
�

��
����� � ���

�������� � ���
���

��
������ � ��

��� 
 ����� � ��

�

��
� ���

� (9.3)

This application of
� constitutes a detour, since �� is introduced by weakening and
the application of�with principal formula��� is itself a detour (its active formulas

2In the following chapters we extend the definitions of detour and related rules to consider extensions of
����.
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are introduced by weakening). Since �� is parametric in � �, we can eliminate this
application of 
� and transform (9.3) to

��
����� � ���

�	�
��� � ��

��� 
 ����� � ��
���

��
� ���

�

Alternatively, we can take the left branch as the proof of ��� � � �, provided that we
similarly transform the rules in �� where � � is active; e.g. if �� contains

� � � � �
4)$

.... �$�

��� � � � ��

�

������ � � � ���

���������� � � � ���
���

���������� � � � ���
��

then we transform it to

�

������ � � � ���

���������� � � � ���
���

�

Then we can eliminate both the application of � and the one of 
�. Note that we
have performed a similar transformation in case 2.2.2 in the proof of Proposition 8.2.9.
In fact, Proposition 8.2.9 tells us that if � contains two applications of � with
principal formulas ��� and ���, then at least one of them is a detour (i.e. at least
one of ��� and ��� is weak in �), provided that we take care of -branching rules.

By iterating these transformations, we obtain a ����-proof � � of � ��� that is
free from detours. As a consequence, each rwff � � active in an application of �
is active in (at least) one application of ��, and, vice versa, each � � active in an
application of �� is active in one application of �. Thus, in order to achieve (ii),
we transform �� by permuting rules so that, for each , rules with principal formulas
labelled with , including weakenings, are applied as an uninterrupted sequence. Then,
in particular, an application of � with principal formula ��� and active formulas
��� and � �

is immediately preceded by a (possibly empty, e.g. when � introduces  ���)
sequence of all rules in �� with active formulas labelled with , and

is immediately followed by a (possibly empty) sequence of all applications of ��
in �� with principal formula labelled with  and with active rwff � �.
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For example, if �� is

�� � ��
4)$

.... �$�

�� ��� � � � ��

�� � � �
4)$

.... �$�

��� � � � � �
��

���������� � � � ���
���������� � � � ���

��

��
���� �3� �������� ��� � � � ��� ���

���� �3����� �� � � � � ��� ��� 
 �



���� ���3����� �� � � � � ��� ��� 
 �
��

���� ���3����� �� � ��� ���� 
 ��
�

��
� ���

then we transform it into

�
� � �
�
���

.... ���

�� �
 �� �
 � � �
�

�
� � �
�
���

.... ���

�� �
 �� �
 � � �
�

��

�	�������� �
 � � ���
��
�

�	�� �	�� �		����� �
��

�
 � � ��� �	

�	�� �	������ �
��

�
 � � ��� �		 � 

�

�	��� �	������ �
�� �
 � � ��� �		 � 
��

�	��� �	������ �
 � � ��� �	��	 � �
�

�	��� �	������� �
� � ��� �	��	 � �
��

�


� ��	�

�

Moreover, we can further permute rules so that the sequence of� rules is immediately
followed by a weakening of the rwff active in the sequence, and is immediately
preceded by a (possibly empty) subsequence of weakenings.

By iterating these transformations, we obtain the desired proof in block form. Thus,
we have:

Lemma 9.2.2 Every proof of � ��� in ���� can be transformed into block form. �

The following is a more concrete example, using also the derived rules in Figure 6.2.
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Example 9.2.3 Given the ����-proof

� � � � �
4)$

� �� � � � � �
�$�

� � � � �
4)$

��� � ���
4)�

���� � � � ���
�$�

���� � � � ���� ���
��

���� � � � ���� ���
��

���� ���� � � � ���� ���
���

���� ���� � �� � � � ���� ���
�$�

���� ���� � �� � � � ���� ���� ���
��

���� ���� � �� � � � ���� ���� ���
��

���� ���� � � � ���� ���� ���
�

���� ���� � � � ���� ��� ��
�

���� ��� � ���� ���� � ��
�

��� � �� � ���� ���� � ��
��

��� � �� � ��� � ��� � ��
�

� ���� � ��� 
 ��� � ��� ����



(9.4)

we transform it into the following ����-proof in block form

� � � � �
4)$

��� � ���
4)�

��� � ���� ���
��

��� � ��� � �
�

���� � � � ��� ��
�$�

���� � � � ��� ��
��

��� � ���� � ��
�

���� ��� � ���� � ��
���

���� ��� � ���� ���� � ��
��

��� ��� � ���� ���� � ��
��

��� � �� � ��� � ��� � ��
�

� ���� � ��� 
 ��� � ��� � ���



� (9.5)

�

As displayed by Example 9.2.3, a ����-proof in block form consists of alternating
sequences of propositional and modal (�) rules, where the principal formulas in each
sequence all have the same label, and thus represent the same world. Moreover, in each
sequent, � consists of a single rwff. Thus, given a proof in block form, we can replace
each sequence of � rules and the weakenings surrounding it with an application of
���. These applications of ��� ‘absorb’ all instances of 4)$ and �$� in the
proof, so that the axiom and the rule can be eliminated. This allows us to eliminate all
rwffs from sequents and proofs, i.e. to eliminate relational reasoning.

Then, to obtain the �����-proof claimed by the right-to-left direction in Lemma 9.2.1,
we just need to ‘absorb’ the uppermost weakenings of lwffs into the instances of the
extended axioms 4)� or ��.
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Example 9.2.4 Consider again Example 9.2.3. Given (9.4), we first transform it to
(9.5) in block form, and then to the following �����-proof:

��� � ���� ���
4)�

��� � ��� ��
�

���� ��� � ���� ���� � ��
���

��� � �� � ���� ���� � ��
��

��� � �� � ��� � ��� � ��
�

� ���� � ��� 
 ��� � ��� ����



� (9.6)

�

It is a trivial matter to show the equivalence of ����� and �����. Indeed, we
just need to delete or add labels as required and appropriately rename the rules. For
example, given (9.6), we immediately obtain a proof in ����� by deleting the labels
and replacing��� with ��� and the propositional rules with their standard counter-
parts, i.e.

� � ���
�4)�

� � � � �
���

����� � ������ � ��
���

�� � �� � ������ � ��
����

�� � �� � �� � ��� ���
���

� ��� � ��� 
 ��� � ��� ����
�
�

�

Thus, we have:

Lemma 9.2.5 � ��� is provable in ����� iff � � is provable in �����. Further-
more, the proofs in the two systems differ only in the names of the rules and in the
presence of labels, which can be eliminated or added as required. �

Lemma 9.2.1 and Lemma 9.2.5 establish the equivalence of ���� and �����, in that
we have:

Theorem 9.2.6 � ��� is provable in ���� iff � � is provable in �����. �

In particular, we can then view ����� as the result of our substructural analysis of
rules of ���� and proofs built using them. In the following chapters we show that
analogous results hold for other sequent systems.



10 SUBSTRUCTURAL ANALYSIS
OF ����

10.1 BOUNDING CONTRACTIONS IN ����

Lemma 8.2.4 and Corollary 9.1.2 tell us that the rules�$� and�� and each application
of ��� with principal formula other than ��� can be eliminated in ����. It is
however easy to show that we cannot eliminate left contractions of lwffs of the form
��� and retain completeness of ����. As an example, consider the ����-theorem
� �� � �� 
 ��� and the proof (6.1) we gave in 6.1 (and see also the discussion
at the end of 6.3). If we eliminate ���, then this theorem cannot be proved: after the
initial �, we can only apply �� with active rwff introduced by reflexivity, so that
we obtain

� �
refl

� ��� 
 ��� �

�� ��� 
 ��� �
��

� � �� ��� 
 ���
�

�

We can then exploit the subformula property to show that � � �� 
 ��� � is not
provable (alternatively, we can argue semantically that � 
 �� is not valid in �).

Table 10.1 contains additional ����-theorem schemas that require application of
���; we also display there the overall number of contractions required in the proofs
when �, � and 3 are propositional variables. For example, the following is a proof
of the last theorem in the table,

���
���� 
�� ��� � �� 
�� �3�� �3� 
 � �� � (10.1)

201
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where, for brevity, we use � to denote the formula �� 
�� ��� � �� 
�� �
3�� �3, and we use ‘� � � ’ for the parts of sequents that are not relevant to the proof.
Also, we do not explicitly display relational reasoning, and write 6 � and 6� for the
trivial proofs of the sequents � � � � �� ��� ��� and � � � � � � � � �� ��� ���.

��

��

��	� � ��	�
��


.... �

��	 ��� � � � � � � � � ��	 ��.... �� ��

��	�� � � � � � � � � ��	 ��.... �� �� (with active rwff �	
��)
�		��� � � � � �	
�� � � � � � ��	 ��

�		��� � � � � � � � � �		� ��
�

�		 �� ����		��� � � � � � � �
��

�		� ��� ����		��� � � � � � � � � �		 ��
��

.... �� ��

�		�� �		��� � � � � � � � � �		 ��.... �� �� (with active rwff ��
�	)

��	��� ��	�
��� � � � � � � � � �		 ��.... �� �� (with active rwff ��
��)

��	�
��� ��	�

��� � � � � ��
�	 � � � � � �		 ��

��	�
��� � � � � ��
�	 � � � � � �		 ��

�
�

��	�
��� � � � � ��	 �� ��	� ��

�

��	 �� ��� ��	�
��� � � � � ��	 �

��

��	 ��� ��� ��	�
��� � � � � ��	 �

��

.... �� ��

��	�� ��	�
��� ��
�� � ��	 �.... �� �� (with active rwff ��
��)

��	��� ��	�
��� ��
�� � ��	 �.... �� �� (with active rwff ��
��)

��	�
��� ��	�

	�� ��
�� � ��	 �.... �� �� (with active rwff ��
��)

��	�
	�� ��	�

	�� ��
�� � ��	 �

��	�
	�� ��
�� � ��	 �

�
�

��	�
	� � ��	� �

�

� ��	�
	� � � �

�

The theorem schemas of Table 10.1 can be instantiated to require more contractions.
For example, a ����-proof of

�� �� ����� ��� 
 ��� 
 �� 
 ��� (10.2)

requires at least 3 contractions when we replace ‘� � �� 
 ���’ with ‘� � ���
� � �3 
 �3� 
 . � 
 �. �’, at least four contractions when we further replace
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Table 10.1. Some ����-theorem schemas requiring application of ���.

����-theorem schema #���’s
�� �� ��� 
 ��� �
�� ��� ���� 
 � �� ��� �
�� �� ����� ��� 
 ��� 
 �� 
 ��� �
�� �� ����� ��� 
 ��� 
 � ��3 
 �3�� 
 ��� �
�� �� ��� 
 � ��� 
 � ��� 
 ����� �
���

���� 
�� ��� � �� 
�� �3�� �3� 
 � �� �

The overall number #�&#’s of left contractions in the proofs is for when � , � and � are propositional
variables.

‘� � �3 
 �3�’ with ‘� � ��� � � �5 
 �5� 
 6� 
 �6�’, and so on.
Similarly, we can generalize (10.1) to

���
���� 
�� ��� � �� 
�� �3�� �3� 
 � ��

where # � �, and then modify it so that its proof needs more than 2 contractions,
e.g. by replacing ‘� �3’ with ‘� �3 
�� �. �� �. ’ and requiring that # � �.

Note that (10.1) (and similarly for its generalization) is the only theorem of the
ones in the table for which all contractions occur on the same branch of the proof,
except of course for the theorems that require only one application of ���. All the
other theorems require a total of two or more contractions, but these occur in different
branches; for example, the first of the two ���’s in a proof of (10.2) is ‘shared’ by two
branches while the second occurs only in one branch.

Although applications of ��� with principal formula ��� are needed in ����,
if we can bound their use then we need not give up decidability. To this end, in
Theorem 10.1.4 below we show that when proving a sequent �  ��� in ���� we need
at most linearly (in the size of ���) many applications of ��� in each branch of the
proof. Leading up to this, we begin by showing that each �  ��� provable in ����
has a ����-proof in which we do not need to left-contract any lwff ��� more than
once in each branch.

Lemma 10.1.1 Every sequent � ��� provable in ���� has a proof in which there
are no contractions, except for applications of ��� with principal formula of the form
���. However, ��� need not be applied more than once with the same principal
formula ��� in each branch.

Proof (Sketch) We extend Theorem 9.1.1, where, by Corollary 9.1.2, we only need
to consider the additional cases that arise in ���� when ��� is applied with principal
formula ���. In particular, we show that if ��� is applied with principal formula
��� more than once in a branch ( of a proof of �  ���, then we can transform (
so that it contains at most one left contraction of ���.

By the permutability of the rules, we can assume, without loss of generality, that if
��� is applied � times with principal formula ��� in (, then these � contractions are
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performed consecutively immediately below the rule that introduces the �-th instance
of ���. Thus, for example, we transform

��
���� ��������� � ���

��������� � ���
���

��
���� ��������� � ���

��������� � ���
���

��
� ���

to

��
���� ��������� � ���

�	�
���� ���� ��������� � ���

���� ��������� � ���
���

��������� � ���
���

��
� ���

�

For each branch ( we proceed as follows. If lwffs of different grade are contracted
in (, then we pick a ‘lowest’ (e.g. lowest in the rightmost subbranch of () sequence
of � applications of ��� with principal formula of greatest grade. If � � �, we move
on to the next sequence of contractions. If � 4 �, we consider the first (highest)
two applications in the sequence, and we either eliminate the uppermost one, or we
transform it into an application of ��� with principal formula of smaller grade (this
contraction is then eliminable when the contracted formula does not have the form
��). By iterating this transformation, we obtain the desired proof.

Therefore consider a branch

��
���� ���� ������� � ��

���� ������� � ��
���

������� � ��
���

��
� ���

(10.3)

where�� does not contain applications of��� with principal formula ��� or an lwff
of grade greater than ����������.1 We eliminate the uppermost ��� in (10.3) by
considering the two possible cases for the last rule in ��. This last rule has principal
formula ���, and thus is either ��� (in which case we conclude trivially by deleting
��� and the uppermost ���) or ��.

Suppose that the last rule in �� is ��, i.e.

��
� � � �

��
���� ���� ������� � ��

���� ���� ������� � ��
��

where either � � 	 � or � � . If the second contraction constituent ��� is
introduced in all subbranches of �� by an application of ���, we conclude trivially
as above by deleting the weakenings and the contraction. If ��� is introduced by
��� in some subbranches and by�� in other subbranches, then we make the mode of

1Note that, by the permutability of the rules, if � contains� instances of ����, then the uppermost� rule
applications in )
 might be applications of �&# with principal formula ����.
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introduction of ��� uniform by replacing all such introductions by weakening with
introductions by ��. This is achieved by appropriately weakening active formulas so
that we can introduce ��� by an application of��. The rest of the proof is as before,
modulo possible applications of weakening and 4)$.

Suppose therefore that the second constituent is introduced in � � by an application
of �� with active rwff � �. There are four cases, depending on � and �.

(Case 1) In the first case, � ��  and � �� . Then we eliminate the uppermost ���
by induction on the length of��, i.e. by induction on the rank of the uppermost���; we
conclude analogously to the cases in Theorem 9.1.1 in which ���������� � 0 � �,
and ���0����� � � or ���0����� � � � �.

(Case 2) In the second case, � �  � �, so that (10.3) has the form

� �
refl

.... �$�

� � �

� �
refl

.... �$�

�� � �
��

��� ��������� � ���
���� ��������� � ���

��

��
��� ���� ������� � ��

���� ���� ��������� ��
��

���� ������� � ��
���

������� � ��
���

��
� ���

�

Since applications of �� with active rwff introduced by refl permute over every rule,
we can transform this to

� �
refl

.... �$�

� � �

� �
refl

.... �$�

� � �

��
��� ��������� � ���

�	�
��� ��� ������� � ��

��� ���� ������� � ��
��

���� ���� ��������� ��
��

���� ������� � ��
���

������� � ��
���

��
� ���

�

Now we can conclude by replacing the uppermost application of ��� with principal
formula ��� with an application of ��� with principal formula ��, which has
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smaller grade, i.e.

� �
refl

.... �$�

� � �

��
��� ��������� � ���

�	�
��� ��� ������� � ��

��� ������� � ��
���

���� ������� � ��
��

������� � ��
���

��
� ���

�

This new contraction is then eliminable when � does not have the form ��.
(Case 3) In the third case, � � � and � �� , so that (10.3) has the form

� �
refl

.... �$�

� � �

� � � � �
4)$

.... �$�

��� � � � � �
��

���� ���������� � � � ���
���� ���������� � � � ���

��

��
��� ���� ������� � ��

���� ���� ������� � ��
��

���� ������� � ��
���

������� � ��
���

��
� ���

� (10.4)

We cannot, in general, permute the uppermost�� over the rule below it, since, in � �,
� � might be the active rwff of an application of � that has a subformula of �� as
its principal formula, e.g. when � is � �� 
 ��� as is the case in the proof (6.1) of
� � �� ��� 
 ���. However, if there is a proof of

��� ���� ������� � �� �

then there is also a proof of

��� ������� � �� �

and we can delete the uppermost ��� in (10.4). The intuition behind this is that since
we already have ��, we only need one instance of ��� to infer that � holds at some
world 
 that is a successor of  but is different from it (i.e., for some � � in the branch,
�
 	 �� so that �� � �
 is provable); then, 
�� leads to axioms and the second
��� is weak. Formally, we show that given

� � � � �
4)$

.... �$�

��� � � � � �
��

���� ���������� � � � ���
���� ���������� � � � ���

��

��
��� ���� ������� � ��
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there is a proof ��� such that either

���
���������� � � � ���

�	�
��� ������� � ��

or

���
���������� � � � ���

�	�
��� ������� � ��

�

We consider the possible forms of �� and distinguish two subcases.
(Case 3.1) In the first subcase, ��� is introduced by an application of �� with

active rwff � �. Then, by the permutability of the rules, we can transform � � so that
this application of �� is its last rule, i.e.

� � � � �
4)$

.... �$�

��� � � � ��
��

���� ���������� � � � ���
���� ���������� � � � ���

��

�

Then we replace the uppermost application of ��� with principal formula ��� in
(10.4) with a left contraction of ���, i.e. we transform (10.4) to

� �
refl

.... �$�

� � �

� � � � �
4)$

.... �$�

��� � � � � �

��
���� ���������� � � � ���

���������� � � � ���
���

���������� � � � ���
��

�	�
��� ������� � ��

���� ������� � ��
��

������� � ��
���

��
� ���

so that ��� is

��
���� ���������� � � � ���

���������� � � � ���
���

�

(Case 3.2) In the second subcase, the active rwff in the application of �� that
introduces ��� is not � � but is �
 for some 
 different from � (and , for
otherwise we could permute rules and conclude like in case 2). Since (10.4) is a proof
in ����, the �-disjunction property (Proposition 8.2.9 and its corollaries) tells us that
� and 
 diverge from . Then ��� and ��� are independent, in the sense that only
one of them (if any) leads to axioms and the other is weak. In other words, at least one
of ��� and ���, or the formulas it is inferred from, must be introduced by weakening
in ��. By deleting the weakening(s), we obtain the desired proof � �

�.



208 LABELLED NON-CLASSICAL LOGICS

(Case 4) In the fourth and last case, � ��  and � � , so that (10.3) has the form

� � � � �
4)$

.... �$�

�� � � � � �

� �
refl

.... �$�

�� � �
��

��� ��������� � ���
���� ��������� � ���

��

��
���� ���� �������� � � � ��

���� ���� �������� � � � ��
��

���� �������� � � � ��
���

�������� � � � ��
���

��
� ���

�

Since applications of �� with active rwff introduced by refl permute over every rule,
we can transform this to

� �
refl

.... �$�

� � �

� � � � �
4)$

.... �$�

�� � � � � �

��
��� ��������� � ���

�	�
���� ��� �������� � � � ��

��� ���� �������� � � � ��
��

���� ���� �������� � � � ��
��

���� �������� � � � ��
���

�������� � � � ��
���

��
� ���

and then conclude like in case 3. �

The intuition behind this result is that in each branch of a backwards proof of a
����-theorem we need at most two instances of each ��� in the antecedent of a
sequent: one to infer that � holds at  itself, and the other to infer that � holds at a
new world � that is a successor of  (where we can exploit the �-disjunction property
to ‘choose’ the appropriate �).

We can refine this to characterize further the form of the contracted lwffs. Consider
again (10.4), for which we argued that, in general, the uppermost application of ��
is not permutable over the rule preceding it since � � might be the active rwff of an
application of � introducing a subformula of ��, e.g. when � is ���. However,
if � � is ‘independent’ from �� (e.g. when � � 	 � or � � is the active rwff of
an application of � with principal formula ��3 	 � �), then we can permute the
uppermost application of �� over the rule preceding it, and eventually eliminate the
application of ���.

This suggests that in a ����-proof of a sequent � ���, we need a contraction
of ��� when the lwff �� that is inferred from the first constituent yields the rwff
� � active in the application of �� that has the second constituent as its principal
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formula. For example, when given two instances of ����� we use the first one to
infer (reasoning backwards via reflexivity) that � ���, and then use this � ���
to generate a new world � that is a successor of  such that using the rwff � � we
can infer �� � �� and �� � �. The contraction then ‘amounts to’ the backwards
introduction of the rwff � �. But this is not the only possibility as we might use a
contraction of ��� to generate additional worlds accessible from . For example, the
lowest contraction in the above proof of theorem (10.1) duplicates  ����� to generate
world �. In any case, it follows that we can expand on the previous intuition that
we need to contract ��� at most once in each branch by requiring that � contains a
negative subformula of the form ��, e.g. when � is ���, �� 
 �, � 
���, or
even ����� 
���� ���.

Formally, we have the following refinement of Lemma 10.1.1, where, by Defini-
tion 8.2.5, we graphically denote the condition on � by requiring that there is some �
such that �� �� � so that each contracted lwff has the form ��������.

Lemma 10.1.2 Every sequent � ��� provable in ���� has a proof in which there
are no contractions, except for applications of ��� with principal formula of the form
��������. However, ��� need not be applied more than once with the same
principal formula �������� in each branch. �

To illustrate this result, observe that all theorems in Table 10.1 require contractions of
lwffs of the form ��������. For example, to prove the theorem (10.2) where �
and � are propositional variables, we need two applications of ���: the first one with
principal formula �������� � ��� � ���� � �� 
 ��� 
 �� 
 ��� where
�� is ��, and the second one with principal formula �������� � ��� � �� 

��� where �� is ��.

This lemma allows us to restrict our contraction rule, and we do so in Theorem 10.1.4
after having introduced additional terminology.

Definition 10.1.3 Given a sequent � � ��� � ��, we define pbs��� and nbs��� to be
the number of positive and negative boxed subformulas of�, respectively, i.e. pbs��� �
���� � �� �� ��� and nbs��� � ���� � �� �� ���. In other words, pbs��� and
nbs��� are the sizes of the multisets of positive and negative boxed subformulas of �
and ��. �

For example, if �, � and � are propositional variables and

� � � ������ 
 ����� 
 ��� �

then pbs��� � �������������������� � � and nbs��� � ��������� � �.
Observe now that the examples in Table 10.1 tell us that there are sequents � �

� ��� that require at least pbs��� applications of ��� in ����. For example,
to prove ��� � (10.2) we need at least pbs�� ���� � � contractions. Using
Definition 10.1.3, we can sharpen our results to show that every � � �  ��� provable
in ���� has a proof in which each branch contains at most pbs��� applications of ���.

We denote this bound by annotating each sequent with a contraction index �, which
we set to pbs��� at the start of a backwards proof of �, and which tells us how many
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contractions we are allowed to perform in each branch of the proof from this point
(i.e. sequent) on. Then we can restrict the rule ��� to be

��������� ������������ ���� ��

������������ �� ��
���� �

which explicitly requires that the contraction index � of the conclusion is greater than
,. The index is decremented at every contraction and is imported in the premises of
branching rules, e.g.

��� �� ��� �� ������ �� ��

�� 
 ����� �� ��

� and

� � � � ������� �� ��

������� �� ��
�� �

Note that we do not import � into the left premise � � � � of �� since we can
eliminate contractions of rwffs by Lemma 8.2.4.

Then we have:

Theorem 10.1.4 Every sequent � � � ��� provable in ���� has a proof in which
there are no contractions, except for applications of ��� with principal formula of the
form ���������. However, ��� need not be applied more than pbs��� times in
each branch. Hence, we can restrict ��� to be ���� with � set to pbs��� at the start
of a backwards proof, i.e. �pbs���
'�� ���. �

Before giving a formal proof, we provide some intuition for this result. Given a
branch of a ����-proof of � � � ���, we can apply Lemma 10.1.2 to eliminate
superfluous contractions, retaining at most one for each lwff of the form  ���������
in the branch. It is nevertheless possible that some of these contractions are still
superfluous.

Recall that we argued above that we need at most two instances of each ���������
in each branch: one to infer that ������ holds at � and thus possibly generate a
new world � with � � �� � where � holds, and the other to infer that ������ also
holds at ���. In Lemma 10.1.2, we have formalized this by allowing at most one
contraction for each ��������� in each branch. However, the lemma allows us also
to perform one contraction for each of the subformulas of  ���������, provided
that they have the required form � �����3��. This yields exponentially, instead of
linearly, many contractions on a branch.

For example, let ��������� be ����������, where � is a box-free formula
as in Definition 2.1.1, i.e. where � is a formula that does not contain any �. Then
Lemma 10.1.2 allows us to perform � contractions, one of  ����������, and two
of the subformula������� but labelled differently at each ��� (once with label  �
and once with label 	), i.e.
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��
� � ���

��
� � ��	

��
	��������� 	�������������� � ���

	�������������� � ���
���

���������������� � ���
��

��
� ��������� � ��������� �������������� � ��

� ��������� �������������� � ��
���

����������� �������������� � ��
��

�������������� � ��
���

��
� ���

where � and 0 are either � or �� � as this is a proof in ����.
We can improve the results of the above lemmas and eliminate the superfluous con-

tractions to retain only linearly many in each branch, where, intuitively, the superfluous
contractions are those that produce more than two instances of some of the boxed sub-
formulas of the contracted lwff. To illustrate this, let us first extend Definition 8.2.5
and after consider an example.

Definition 10.1.5 We inductively define that a subformula � of � occurs locally
positive [negative] in �, in symbols � �


� � [� �

� �], as follows:

if � � �, then � �

� �;

if � 
 � �

� �, then � �


� � and � �

� �;

if � 
 � �

� �, then � �


� � and � �

� �.

We will also write����
� to specify that� �

� �, and����
� to specify that� �


� �,
and say that �� occurs locally positive [negative] in �� iff � occurs locally positive
[negative] in �. �

That is, � occurs locally positive [negative] in � if � is a local positive [negative]
subformula of �, where “local” means that � is not in the scope of a � in �. Thus,
for example, if � is �� and � is � �� (so that � is � � ��), then �� �


� �
and �� �� � but �� ��


� �. Intuitively, we then have that a principal formula
�������
� of an application of �� with active rwff ��� ‘means’ that � �����
�
occurs on the left of �, and thus that, by applying only propositional rules, we can
obtain � �� on the left of � as well. Graphically, this amounts to

� � ���

� �������� � ���
�

� �����
����� � ��

�������
����� � ��
��

where � is obtained by applying only propositional rules with principal and active
formulas labelled with � , inferring � �� from � �����
�; hence, �� � �.
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As an example, consider now the case when � is a box-free formula, and the
contracted lwff has the form ���������
�, i.e. � is �� and �� occurs locally
negative in �. Then we have

��
� � ���

��
� �������
�� ���������
����� � ��

���������
�� ���������
����� � ��
��

���������
����� � ��
���

��
� ���

� (10.5)

Suppose now that � is � (for the other alternative, ���, we proceed similarly) and
that, following the results above, we need the contraction to generate a successor of  �

where both � and �� hold. That is, suppose that we now contract  ��������
� to
produce the second instance that we need, and after that use one instance to generate
���, so that (10.5) has the form

� ���
refl

.... �$�

� � ���

� ���
refl

.... �$�

� � ���

��
��������
�� ���������
��
������ ����� � ���� �����

��������
�� ���������
��
����� � ���� ����

�

��
�������
�� ��������
��
���������
����� � ��

��������
�� ��������
��
���������
����� � ��

��

��������
�� ���������
����� � ��
���

���������
�� ���������
����� � ��
��

���������
����� � ��
���

��
� ���

(10.6)

where �� consists only of propositional rules, inferring  ���� on the right of � from
�������
� on the left.

It is possible that one of the two contractions in (10.6) is superfluous, as we can see
by considering the subproof ��. Since we have already eliminated the contractions
of lwffs that are weakened later (i.e. above) in the branch,  ���������
� must be
introduced in �� by an application of ��, and we distinguish two cases depending on
the active rwff of this��, namely ��� or �����. In both cases, the permutability
of the rules allows us to assume that this application of �� is the last rule in ��.

In the first case, the application of �� has active rwff  ��� and active lwff
��������
�. But this means that we have produced a third instance of ��������
�,
which we know to be redundant, so that we can eliminate one of the two contractions
in (10.6). (In fact, we can permute downwards the �� introducing  ��������
�, so
that the contraction is eliminable by Lemma 10.1.2.)
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In the second case, �� has the form

����� � �����
4)$

.... �$�

��� ����� � �����

�

��������
�� ����������
��
������ ����� � ���� �����

��������
�� ���������
�������� ����� � ���� �����
��

�

In this case we cannot immediately eliminate one of the two applications of ��� in
(10.6). Consider however the two lwffs  ��������
� and ����������
�. As
we have already eliminated the contractions of lwffs that are weakened later in the
proof (branch), both formulas must be introduced by �� in � 
. Reason now on
the active rwffs of these applications of ��. Looking at (10.6), we see that we
have already inferred that �����
� holds at �. Hence, if the active rwff of the ��
introducing��������
� is ���, then we produce a second, redundant, instance of
�������
�, so that we can eliminate the uppermost contraction in (10.6). (As above,
we can permute downwards the�� introducing ��������
�, so that this contraction
is eliminable by Lemma 10.1.2.) This implies that  ��������
� must be introduced
by an application of �� with active rwff  ����� and active lwff ���������
�.
So what about ����������
�? We have just argued that �����
� holds at ���.
Thus we can argue similarly as above, possibly permuting rules in � 
 appropriately,
to conclude that the application of �� introducing  ����������
� must have active
lwff ���������
�. Note that we can then also replace the uppermost left contraction
of ��������
� with a left contraction of ����������
�. In any case, we see
that given ���������
�, we need at most two contractions, one for each of its two
positive boxed subformulas�������
� and ������
�.

We are not yet done as it might be the case that � is not a box-free formula, but has
subformulas that also require contractions. This is for example the case in the proof of

� �� �� ��� 
 � ��� 
 � ��� 
 �����

where � has the form��� 
 � ��� 
 ����.
We can iterate the above argument to eliminate superfluous contractions of sub-

formulas of �. Observe however that the above transformations yield two instances
of � on the right of �, one labelled with  ��� and the other with ���. These two
instances of �, albeit labelled differently, might produce exponentially many contrac-
tions of subformulas of �. To avoid this, in Lemma 10.1.6 below, we show that we
can transform the proof so that only one instance of � is needed in each branch.

A generalization of this informal argument proves Theorem 10.1.4.

Proof [of Theorem 10.1.4] (Sketch) Consider a branch ( in a ����-proof of � � �
���, and assume that we have eliminated all contractions that are trivially superfluous
because one of the two constituents is introduced by weakening in all subbranches of(.
We show that if( contains pbs����� applications of���with principal formula of the
form ���������, where � 4 ,, then we can transform it to a branch ( � containing
at most pbs��� such contractions. To this end, we consider each of the pbs��� � �
contractions in turn, starting from the lowest one in(, and for each of them we proceed
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with a preliminary analysis in which we eliminate unnecessary contractions according
to Lemma 10.1.2. In other words, we exploit the lemma to show that we need not
contract each lwff ��������� more than once in each branch.

To eliminate the remaining superfluous contractions, if any, we proceed as follows.
Let, for example, the branch have the form

....
� � ��
��

�	

�� 	���	��� ��	������	���	�������� �	
�	�� � ���� �	��		

�� 	���	��� ��	������	���	������� � ���� �		�	
�

��

�� 	���	��� �� 	���	��� ��	������	���	������� � ���

�� 	���	��� ��	������	���	������� � ���
�
�

��

�� 	�����	���	�� ��	������	���	����� � ��

��	������	���	�� ��	������	���	����� � ��
��

��	������	���	����� � ��
�
�

�


� ��	�
(10.7)

where �� occurs locally positive in �; �� is the outermost boxed formula that
occurs negative in � and �; � is either � or ���; �� consists only of applications
of propositional rules inferring � �������� from � �����������
�, both on the
left of �; and in �� we infer 
��� on the right of � from � �������� on the left.

Let us now reason on the introduction of  �������������
� in ��. Since we
have already applied Lemma 10.1.2, this lwff cannot be introduced by an application
of��� or���. It must be introduced by an application of��, which by permutability
we can assume to be the last rule application in �� , i.e.

��� 
�
�� � ��	

��
� ��������� 	�����������
��
������ 
�
�� � ���� 
����

� ��������� �������������
�������� 
�
�� � ���� 
����
��

where either 	 is one of � or ���, or 	 and ��� diverge from �. We now
distinguish five subcases, depending on � and 	; the fifth subcase occurs when
� � ��� and 	 diverge from �.

(Case 1) In the first case, � � � � 	, and we can eliminate one of the two
contractions in (10.7), for either  ������������
� is weak in ��, or �� contains
rules inferring ��������� from ������������
�, both on the left of �. Then
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we can permute these rules downwards and transform �� to

� ���
refl

.... �$�

��� 
�
�� � ���

��
���������� ����������
������ 
�
�� � ���� 
����

�

���������� ������������
��
������ 
�
�� � ���� 
����

���������� �������������
�������� 
�
�� � ���� 
����
��

where �
 consists only of applications of propositional rules inferring  ���������
from ������������
�, both on the left of �. But this means that we have a third
instance of ���������, which we know to be redundant. In fact, in this case we
can further permute rules and transform the proof so that one of the two displayed
contractions is eliminable by Lemma 10.1.2. Note also that, as in the example above,
there are alternatives as to which contractions we eliminate.

(Case 2) In the second case, � � � and 	 � ���. If ��������������
� is
weak in ��, then we can eliminate the contraction of  �������������
� in (10.7).
Let therefore�� contain rules inferring ����������� from ��������������
�,
both on the left of �. We can permute these rules downwards and transform � � to

����� � �����
4)$

.... �$�

��� 
�
�� � �����

��
���������� ������������
������ 
�
�� � ���� 
����

�

���������� ��������������
��
������ 
�
�� � ���� 
����

���������� �������������
�������� 
�
�� � ���� 
����
��

where����� must occur in�� and�
 consists only of propositional rules. Consider
now the two lwffs ��������� and �����������. As we have already eliminated
the contractions of lwffs that are weakened later in the proof (branch), both formulas
must be introduced by�� in ��. Reason now on the active rwffs of these applications
of ��. Looking at (10.7), we see that we have already inferred that ������ holds
at �. Hence, if the active rwff of the application of �� introducing  ���������
is ���, then we produce a second, possibly redundant, instance of  ��������, so
that we can either eliminate the uppermost contraction in (10.7), or replace it with a
contraction of (some subformula of)  �������� (if, e.g., �3����� occurs locally
positive in �).

This implies that ��������� must be introduced by an application of �� with
active rwff ����� and active lwff ����������. So what about �����������?
We have just argued that ������ holds at ���. Thus we can argue similarly as
above, possibly permuting rules in �� appropriately, to conclude that the application
of �� introducing ����������� must have active lwff ����������.

(Case 3) In the third case, � � ��� and 	 � �. Then we can permute rules so
that we can conclude like in case 2.
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(Case 4) In the fourth case, � � ��� � 	. Then we introduce a third instance
of ����������, and we can conclude like in case 1.

(Case 5) In the fifth and last case, � � ��� and 	 diverge from �. Then
� �������� and 	 �����������
� are independent, and we can conclude easily.

This concludes the case analysis. We can now iterate these arguments for all other
contractions of positive boxed formulas that occur in � (and thus in �) and that contain
��; for example for �3 where ���������3������
��
�. It then follows that we
can transform (10.7) so that in each branch it contains at most one contraction for each
of the positive boxed subformulas of  �������������
�.

Reason now on �, as the above transformations yield two instances of � on the
right of �, but labelled differently. For example, one instance of � is labelled with
��� and the other with ���, and the proof has the form

��
������ ������� � ���� ������ �����

����� � ���� ������ ������
�

��
��� � ��� ������ ������....

� ���

(10.8)

The problem that we have to tackle is that these two instances of �, albeit labelled
differently, might produce exponentially many contractions of subformulas of �. 2 We
proceed as follows. We first permute rules and transform (10.8) to

��
������ ������� � ���� ������ �����

����� � ���� ������ ������
�

....
� ���

where �� and ��� are not ���-branching with respect to ��, and ��� does not
occur in ��, �� or ���. We can then apply Lemma 10.1.6 below, which tells us that
given �� there is a proof ��� of either ����� � ���� ����� or ������ ������� �
���� �����. That is, there is a proof of either ����� � ���� ����� or ����� �
���� ������. We can thus iterate the above argument and eliminate superfluous
contractions of subformulas of �.

It then follows that we can transform each ����-proof of � � �  ��� so that in
each branch we need at most one contraction for each boxed positive subformula of
�, and thus at most pbs��� applications of ��� in each branch. �

2This problem does not occur when ������� is not introduced by the application of �� displayed in
(10.8), but by an application of'&� in all branches originating from ��� � ��� ��������������. Then
we can simply permute downwards this weakening so that we have a proof of ��� � ��� ������. We
proceed analogously when ������ is introduced by an application of'&� in all branches originating from
��� � ��� ������� �������.
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Lemma 10.1.6 If there is a ����-proof of��� � ��� ���� ����, where� and�� are
not�-branchingwith respect to�, then there is a ����-proof of either��� � � �� ���
or ��� � ��� ����.

Proof Let � be a ����-proof of ��� � � �� ���� ����, where � and �� are not
�-branching with respect to �. We begin with two observations. If one of  ��� and
���� is introduced by weakening in all branches of �, then we conclude trivially. If
one of��� and���� is introduced by��� in some branches and by its proper logical
rule in other branches, then we make the mode of introduction of the lwff uniform by
replacing all its introductions by weakening with introductions by the proper logical
rule. We proceed by induction on the structure of � and distinguish three cases.

(Case 1) If the last rule application in � has principal formula different from  ���
and ����, then we conclude by applying the induction hypothesis.

(Case 2) If the last rule application in � has principal formula  ����, then � has
the form

��
���� ����� � ��� ���� �����

��� � ��� ���� ����
�

and we proceed by induction on the structure (grade) of � to show that there is a proof
of either ��� � ��� ��� or ���� ����� � ��� �����.

(Case 2.1) If � is a propositional variable, then, since� and� � are not �-branching
with respect to ��, at least one of ��� and ����� is weak in ��.

(Case 2.2) If � has the form � 
 �, then we can permute downwards first the
rules introducing ��� and �����, and then the ���-branching rules, so that �� has
the form

��
���� ������������ ����� � ���� ���� �����

��
���� ���������� ����� � ��� ���� �����

�������� ����� � ��� ���� ����� 
 �



���� ����� � ��� ��� 
 �� ����� 
 �



where �� is such that �� and ��� are not ���-branching with respect to ��. Nor are
they �-branching (by the initial assumption). We then proceed by induction on the
structure of � and apply the induction hypothesis on � to obtain a proof � �

� of either
��������� � ���� ��� or ������������ ����� � ���� �����.

(Case 2.2.1) If � is a propositional variable, then at least one of  ��� and �����
is weak in ��.

(Case 2.2.2) If � has the form 3 
 . , then we conclude by applying the induction
hypotheses.
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(Case 2.2.3) If � has the form �3, then �� has the form

��
��� ����� � ���

��
�� � ����	

��
	�3������ � ���

�����3������ � ���
��

�

� �3� �����3������� ����� � ���� ���� �����

���3� �����3������� ����� � ���� ���� �����
��

�

Since � is a successor of � and 	 is a successor of ���, we distinguish five subcases
depending on � and 	 (the fifth one occurs when � and ��� diverge from �).

(Case 2.2.3.1) If � � � and 	 � ���, then we can permute rules so that ��
has the form

� ��
��
���

.... ���

��� ��
���� � ��
��

� ����
����
���

.... ���

�� � ����
����

��

����	������� � ���
��
�

��	�� ����	�������� ��
����
� ���� ��	� ����	

��	�� ����	��������� ��
���� � ���� ��	� ����	
��

��	��� ����	��������� ��
���� � ���� ��	� ����	
��

and we conclude by applying the induction hypotheses.
(Case 2.2.3.2) If � � � and 	 � ���, then we conclude easily since we can

transform the proof (branch) so that at least one of  ��3 and ����3 is weak.
(Case 2.2.3.3) If � � ��� � 	, then we can permute rules and contract

�����3 (or ���3; note that the contraction is then of course eliminable if no �.
occurs negative in 3). That is, we can for example transform � � to

� ����
����
refl

.... ���

��� ��
���� � ����
����

� ����
����
refl

.... ���

��� ��
���� � ����
����

��

����	������� � ���
��
�

����	�� ����	�����
��� ��
����
� ���� ��	� ����	

����	�� ����	���������

��
���� � ���� ��	� ����	

��

����	��� ����	��������� ��
���� � ���� ��	� ����	
��

����	��������� ��
���� � ���� ��	� ����	
�
�

�

We then conclude by applying the induction hypotheses.
(Case 2.2.3.4) If � � ��� and 	 � ���, then we can similarly conclude by a

contraction of �����3.
(Case 2.2.3.5) If � and��� diverge from�, then � �3 and	�3 are independent,

and we can conclude easily.
(Case 2.3) If � has the form ��, then we conclude by the �-disjunction property

(Proposition 8.2.9 and its corollaries).
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(Case 3) If the last rule application in� has principal formula ���, then we proceed
by induction on the structure (grade) of �, where � cannot be a propositional variable,
as we have already considered the case where  ��� is introduced by weakening.

(Case 3.1) If � has the form � 
 �, then we conclude like in case 2.2.
(Case 3.2) If � has the form ��, then we again conclude by the �-disjunction

property (Proposition 8.2.9 and its corollaries). �

10.2 ���� AND �����

Like for ����, our substructural analysis of ���� provides a proof-theoretical justifi-
cation of the rules of �����. Moreover, we can propagate our results to give a refined
version of �����.

We follow the development for ���� in 9.2, and, before defining an intermediate
system �����, which we relate to both ���� and �����, we first derive a labelled
equivalent�� of

�����: � :�

���: � :�
���

as follows:

��� ���� �: � �:�

���� �: � �:�
�� �

� �
refl

��� ���� �: � �:�

���� ���� �: � �:�
��

���� �: � �:�
���

where the multisets of lwffs �: and �:� contain only formulas labelled with . Thus,
�� is a local rule: the principal, active and parametric formulas all have the same
label, so that, like in ���, the premise and the conclusion represent the same world.

Let ����� be the system obtained by extending ����� with �� . Then, ����� and
�����, like ����� and �����, do not contain structural rules, since the unavoidable
left contractions of formulas of the form�� are embedded in�� and ���. We show
the equivalence of ����, ����� and ����� by transforming ����-proofs into a block
form. As before, this is achieved by eliminating detours and adjoining related rules,
and there are only a few minor changes with respect to our development for ����.

As for ���� and �����, the right-to-left direction of the first such equivalence, i.e. if
there is a �����-proof of � ��� then there is a ����-proof, follows by transforming
a proof in ����� into one in ���� by exploiting the derivability of ��� and �� 
in ����. To show the other direction of this equivalence, we begin by extending the
definition of detour as follows. An application of a rule ��� is a detour in a ����-proof
� of � ��� if

(i) all of the active formulas of ��� are introduced in � either by weakenings or by
detours (i.e. none of them appears in the axioms of � so that they are weak in
�), or

(ii) ��� is an application of �� in which the active rwff is introduced by refl and the
active lwff is introduced by weakening or by detours.
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For example, the application of �� in the proof shown below on the left is a detour
that we eliminate by (‘blowing up’ the application of ��� and) transforming the proof
to the one on the right:

� �
refl

��
��� � ��

������ � ��
���

������� � ��
��

��
� ���

�

��
��� � ��

������� � ��
���

��
� ���

�

If the rule ��� in (i) is an application of ���, then we simply delete it together with the
corresponding weakenings; e.g. we transform

��
� � � �

��
���� 
 ������ � ��

���� 
 ������ � ��� ���
��

��
����� � ���

��������� � ���
���

��
���� ���� 
 ������ � ��

��� 
 �� ���� 
 ������ � ��

�

���� 
 ��� ���� 
 ������ � ��
��

���� 
 ������ � ��
���

��
� ���

to

��
���� 
 ������ � ��

��
� ���

or

��
����� � ���

�	�
���� 
 ������ � ��

��
� ���

by considering the left or the right branch, respectively.
We adjoin related rules as for ����, with the addition that we permute each left

contraction of ��� so that it immediately precedes the application of�� introducing
���. By iterating these transformations, we obtain the desired ����-proof in block
form, which consists of alternating sequences of local reasoning (���–�� pairs and
propositional rules) and transitional reasoning (�–�� sequences surrounded by
weakenings). From this ����-proof in block form,we obtain a �����-proof by replacing
the ���–�� pairs with applications of �� , and replacing the sequences of � rules
and the weakenings surrounding them with applications of���. �� thus ‘absorbs’
all applications of ��� and all of refl, so that we can eliminate all rwffs from sequents
and proofs. From this �����-proof we obtain a proof in ����� by deleting the labels,
replacing ��� and �� with ��� and ���, and renaming the propositional rules.

Example 10.2.1 Consider again the proof (6.1) of � � ��� �� 
 ��� given in
Example 6.1.6. We first transform it into block form simply by permuting two of the
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weakenings over the rules below them, i.e.

� �
refl

� � � � �
4)$

��� � ���
4)�

��� � ���� ����
��

� ���� ��� 
 ��



�� ��� 
 ��� � ���
��

�� ��� 
 ���� � � � ���
�$�

�� ��� 
 ���� � � � ���
��

�� ��� 
 ��� � ���
�

�� ��� 
 ���� �� � ���
���

�� ��� 
 ��� � �� 
 ��



� ��� 
 ���� �� ��� 
 ��� �
��

�� ��� 
 ���� �� ��� 
 ��� �
��

�� ��� 
 ��� �
���

� � �� ��� 
 ���
�

�

From this we obtain the �����-proof shown below on the left, which then yields the
�����-proof on the right:

��� � ���� ����
4)�

� ���� ��� 
 ��



�� ��� 
 ��� � ���
��

�� ��� 
 ���� �� � ���
���

�� ��� 
 ��� � �� 
 ��



� ��� 
 ���� �� ��� 
 ��� �
��

�� ��� 
 ��� �
�� 

� � �� ��� 
 ���
�

� � ����
�4)�

� ��� 
 ��
�
�

��� 
 ��� � �
����

� ��� 
 ���� � � ��
���

� ��� 
 ��� � � 
 ��
�
�

��� 
 ����� ��� 
 ��� �
����

� ��� 
 ��� �
���

��� ��� 
 ���
���

�

�

Formally, we have:

Lemma 10.2.2 Lemma 9.2.1, Lemma 9.2.2, Lemma 9.2.5, and Theorem 9.2.6 extend
as follows.

1. Every proof of � ��� in ���� can be transformed into block form.

2. The following are equivalent:

(a) � ��� is provable in ����.

(b) � ��� is provable in �����.
(c) � � is provable in �����.
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3. The proofs in ����� and ����� differ only in the names of the rules and in the
presence of labels, which can be eliminated or added as required. �

We can thus view ����� as the result of our substructural analysis of the rules of
���� and of the proofs built using them. However, up to now we have used only part
of Theorem 10.1.4, which tells us also that for theoremhood we can restrict the left
contraction rule in our labelled system ���� to be

��������� ������������ ���� ��

������������ �� ��
����

with � set to pbs�� ���� at the start of a backwards proof � ���.
We can propagate this refinement to the systems ����� and �����. This is best

achieved by undoing the embedding of contraction, so that by transforming into block
form ����-proofs in which��� is restricted to be����, and by introducing contraction
indices in ����� and ����� as well, we can replace �� with the rules

��������� ��������� �: ���� �:�

��������� �: �� �:�
�����

and

��� �: �� �:�

���� �: �� �:�
�� � �

and we can replace ��� with the rules

����������������: ���� :�

��������: �� :�
���=� and

��: �� :�

���: �� :�
���� �

The rule ���� is a non-contracting version of ���, while ���=� is an explicit contraction
rule that is applied only when the conclusion has contraction index greater than ,. Then,
by Lemma 10.2.2, we have:

Theorem 10.2.3 The following are equivalent:

1. � ��� is provable in ����.

2. � ��� is provable in ���� where ��� is restricted to be ���� with � set to
pbs�� ���� at the start of a backwards proof of � ���.

3. � ��� is provable in �����.
4. � ��� is provable in ����� where �� is replaced by �� � and ����� with � set

to pbs�� ���� at the start of a backwards proof of � ���.

5. � � is provable in �����.

6. � � is provable in ����� where ��� is replaced by ���� and ���=� with � set to
pbs�� ���� at the start of a backwards proof of �. �
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Lemma 8.2.4 and Corollary 9.1.2 tell us that the rules�$� and�� and each application
of ��� with principal formula other than ��� can be eliminated in ����� and �����.
It is however easy to show that we cannot eliminate left contractions of lwffs of the
form ��� and retain completeness of ����� and �����. For instance, similar to the
example for ���� at the beginning of 10.1, we can exploit the subformula property to
show that the left contraction of ������ in the proof (6.2) of the �����-theorem

������ 
 �����

is indispensable, in the sense that the theorem cannot be proved without it. Table 11.1
contains additional �����-theorem schemas that require application of ���; we also
display there the condition under which each lwff is a theorem and the overall number
of contractions required to prove it when �, � and 3 are propositional variables.
(A negative number means, of course, that no contractions are required.) For �����,
observe that when�, � and3 are propositional variables the last theorem in Table 11.1
requires two contractions also in �����, and that, similarly, the formula

������� 
 ��� 
 3�� 
 3� 


����� 
 ��� 
 ��� 
 ��� 
 ��� 
 ��� 
 3������� 
 3� (11.1)

(suggested by Nicola Olivetti in a private communication) requires � left contractions
of ������� 
 ��� 
 3�� 
 3�.

Since contraction is not eliminable, ����� and ����� suffer from a drawback
common also to other (unlabelled, labelled or prefixed) deduction systems for ��

223
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Table 11.1. Some �����-theorem schemas requiring application of ���.

�����-theorem schema Condition #���’s
��� ��� 
 ���� 
 ��� # � � #� �
��� ��� 
 ��� 
 � ����� 
 ��� # � � #� �
��� ��� 
 � ���� # � � #� �
��� ��� 
 ������ ���� # � � #� �
��� ��� 
 �� ��� 
 � ����� # � � #� �
��� �� ��

���� ��� 
 �� # � , #
������ 
�� ��� � �� 
�� �3�� �3� 
 � �� �

The displayed formulas are theorems of ���	� only when the indicated condition on � is satisfied. The
overall number #�&#’s of left contractions in the proofs is for when� ,� and� are propositional variables.

and ��, namely: backwards proof search in ����� or ����� may not terminate since
unbounded applications of left contractions may give rise to infinite chains of worlds,
and thus to infinite branches.1 A typical example of this, which we discuss in more
detail in Example 11.1.1 below, is the attempted proof in a system for �� of the
unprovable formula� ��� 
 � ��.

In order to guarantee termination of proof search, and thereby establish decidability
of �� and ��, we must therefore find a way of bounding applications of contraction
and thereby stop the construction of infinite chains and branches. A common technique
for doing so relies on the observation that each infinite chain in �� and �� (as well
as in other decidable transitive modal logics, which, however, we do not discuss here)
is also periodic: there exist worlds � and � in the chain such that � is accessible
from �, and � holds at � iff � holds at �. That is, the chain is periodic after � ,
since then, for each � and each & � ,, the formula � holds at  ��
 iff it holds at ��
.
The infinite branch thus contains two sequents that are ‘essentially the same’ (which
Kleene, in the context of propositional intuitionistic logic [147, p. 480], calls cognate
sequents). Therefore, infinite branches can be recognized and avoided by introducing
loop-checkers (also called repetition or redundancy checkers), that dynamically test
for periodicity by keeping a history of the proof during proof construction: if  � is
accessible from � and the same formulas hold at � and � , then, by connecting
worlds appropriately, we can truncate the chain at  � , and thus truncate the branch
(and so eventually the proof) as well. As a result, we obtain a finite chain and thus a
finite branch, where, moreover, no ‘relevant information’ is lost: if the original infinite
branch allowed us to construct a counter-model for some end-sequent �, then so does
the finite branch.

1See, e.g., [87, � 8] and [120, 238], and recall from Definition 8.2.8 that a chain is a sequence of worlds
��� ��� �	� � � � where ���� is a successor of ��. Note also that the same problems with unbounded
contractions occur also in deduction systems for other transitive modal logics, as well as in systems for
several other non-classical logics such as propositional intuitionistic logic [81, 136, 147].
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Dynamic loop-checking may however be computationally expensive as we must
carry along a history of the proof, and update and check it at every rule application. 2

In our systems we can replace dynamic loop-checking by a static counter-part: we
give a-priori polynomial bounds on the number of applications of ��� in each branch,
so that each branch is finite and proof search in ����� and ����� terminates. We
establish these bounds by extending our results for ���� and ����, and by combining
them with an adaptation of a result given by Ladner [153], who showed that there
exists a polynomial bound on the length of branches in proofs built using a standard,
unlabelled, tableaux system for ��.3

More specifically, exploiting the observations of 11.1 on infinite chains and pe-
riodicity, in the main section of this chapter, 11.2, we bound contractions in �����
and ����� by proceeding as follows. In Lemmas 11.2.1 and 11.2.2 we show that the
number of applications of � in each branch of a proof of a theorem is polynomially
bounded in terms of the size (number of symbols) of the theorem itself. This provides
us with polynomial bounds on the length of chains and branches, which we can exploit
to give a polynomial (cubic) bound on the number of applications of��� in each branch
(Theorem 11.2.3), and which we can also combine with an extension of the results of
the previous chapters to restrict the form of contracted lwffs (Theorem 11.2.5). We
also discuss Conjecture 11.2.6, which surmises that we can improve our contraction
bounds so that we can always find a proof of � � � ��� in ����� or ����� such
that each branch of the proof contains at most quadratically many (in the size of �)
applications of ���.

In 11.3 and 11.4 we then show that our labelled sequent systems yield a proof-
theoretical justification of the rules of the standard systems ������ and ������.

11.1 INFINITE CHAINS, INFINITE BRANCHES AND PERIODICITY

To provide intuition for our results, let us illustrate in more detail how unbounded
applications of ��� in ����� and ����� may give rise to infinite chains of worlds, and
thus to infinite branches, and how to show these infinite chains to be periodic.

Suppose that applications of ��� with principal formula of the form  ���� are not
bounded in ����� and �����; by Corollary 9.1.2, we know that we need not consider
contractions of lwffs that do not have this form. We can further assume that, reasoning
backwards, each application of such a ��� immediately precedes an application of��
with the same principal formula ����; otherwise, given a sequent �������� � ��

we could construct an infinite branch simply by repeatedly applying ���. An attempt

2Note however that efficient loop-checking procedures for sequent-based proof search in systems for �	
(and some other modal and non-classical logics) have been proposed, e.g. [127, 130], based on efficient
representations of the histories of the proofs. Note also that, as shown in [127, 130], loop-checking is in
fact required also for systems for�, where, however, loops occur locally inside a world when we repeatedly
left-contract some boxed formula.
3Ladner does not explicitly give this bound, which is however implicit in his proof of the complexity of
proof search in �	. Similar indirect applications of Ladner’s results to various modal tableaux systems can
be found in [55, 130] and [120, 160]; we discuss these in more detail in �13. Note also that we could have
used similar results to bound applications of �&# in ���� implicitly, as a consequence of bounds on the
length of chains in ����-proofs, but preferred instead to give the constructive arguments of �10.
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to prove such a sequent in ����� or ����� thus has the form

� � ��� � ��� �������� � ��

����� �������� � ��
��

�������� � ��
���

(11.2)

for some � such that we can prove � � ��� .
This contraction is, in general, not eliminable: if there is some � such that�� ��

�, then � ������� might be used to generate a new world ��	 with 0 � � so
that ��	 is accessible from � by means of transitivity (i.e. there is some � 
 in the
branch such that we can prove � 
 � ����	). If we delete the second instance of
��������� in (11.2), then we cannot infer that ������ holds at ��	 , and, in
general, we lose completeness.

For an example of such a situation, let ��������� be ��� ���. Then from
(11.2) we have

� � ���

��� �������� ��� � ��� ���

��� ������� � ��� ����
�

�� ���� ��� ������� � ��
��

��� ���� ��� ������� � ��
��

��� ������� � ��
���

�

Now that we have a new world� accessible from�, we can perform another ‘���–��
sequence’ with principal formula ��� ��� to obtain

� � ���

�� ��� � ���

��� �������� ���� ��� � ��� ���� ���

��� �������� ��� � ��� ���� ����
�

�� ���� ��� �������� ��� � ��� ���
��

��� ���� ��� �������� ��� � ��� ���
��

��� �������� ��� � ��� ���
���

��� ������� � ��� ����
�

�� ���� ��� ������� � ��
��

��� ���� ��� ������� � ��
��

��� ������� � ��
���

where �� ��� � ��� follows by transitivity since � � ��� is provable.
It is easy to see that we can go on like this indefinitely, and by similar ���–��

sequences construct an infinite chain of worlds

��������
� � � �

and thus an infinite branch. However, in constructing such a chain we would use only
one formula, ��� ���, completely neglecting the other lwffs in � and � �. But it
is precisely the ‘information’ in these lwffs that allows us to eventually truncate the
chain once we have generated some particular world.

The ‘standard’ intuition behind this is as follows. Suppose that we attempt to prove
in ����� or ����� a non-provable sequent � � � ���. Then, one (or more) of the
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branches of this attempted proof might be infinite as we might be constructing in it an
infinite chain of worlds. Since such a branch does not close, we need to find a way of
stopping the construction of the chain. To this end, we show that the infinite chain must
be periodic so that at some point formulas start to repeat themselves with larger labels,
i.e. with labels with greater subscripts. Indeed, during the construction of this infinite
chain/branch we will at some point obtain a sequent � � whose antecedent contains,
either explicitly or implicitly as we discuss below, for some world �, all the positive
boxed subformulas ������ � � � � ����pbs��� of the goal �. That is, ��
 �� � for
each & where � � & � pbs���.4 For example, suppose that this � � has the form

������ � � � � ����pbs��������� � ���� ���� �

We can then continue the backwards proof by applying� to generate world  ��� to
which we ‘transfer’ all �
’s by applying��, i.e.

������� � � � � �����pbs������������� � ������ �����....
������ � � � � ����pbs���������� ����� � ���� �����

������ � � � � ����pbs��������� � ���� ����
�

�

Suppose now that then, after a finite number of further steps, we obtain the sequent

��� � �������� � � � � ������pbs������������� � ������ ������

where � 4 �. We need not continue the attempted proof by creating a successor of
��� by applying� with principal formula ������, since we already have

������� � � � � �����pbs���� � � � � � � � � ����� �

Hence we can simply ‘short-circuit’ the chain and ‘connect’ ��� with ��� in the
diagram spawned by the failed branch. That is, we let ��� be the successor of ���.
Thus the chain contains � � � worlds, and a loop. This provides us eventually also
with a counter-example for the non-theorem  ��� we were trying to prove.

The following, more concrete, example shows that in our sequent systems we do
not need all of ������ � � � � ����pbs��� to be explicitly contained in � �. Instead, it
suffices that � � � ����� � ��� contains enough information to disclose the desired
formulas. For example, for each �� 
 it suffices that there exists some 	 such that
�� � 	�� is provable and 	���
 	 ��. Then, if we generate ���, we will
be able to obtain �����
 by applying ��; the same holds for ��� in ���. (As we
discuss below, a further advantage of this is that we may then be able to reduce the
number of contractions in the branches.)

Example 11.1.1 We attempt to prove the non-provable sequent �  ��� � �� 

� � � in �����; see [87, p. 404] for a similar attempt to prove the contrapositive

4If pbs��� � �, then the situation is much simpler, as shown in Lemma 11.2.1 below.
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�� 
 ��� in Fitting’s prefixed tableaux system, as well as a discussion of infinite
chains in these systems. The first steps are mechanical, and we abuse notation by
naming some of the sequents that appear in the proof in order to refer to them below: 5

��
�� � ��
��
���

	 	 	 	 	 	

��
��� ��
�	 � ��
�	
trans

�� � ��	� ��	���
���

��
�	 � ��	 �	��			� �		�	

�		 ��	� ��	� ��	���
���

��
�	 � ��	 �	��			

��

��	� ��	���	� ��	� ��
���

��
�	 � ��	 �	��			

��

��	� ��	���
��� ��
�	 � ��	 �	��			
�
�

�� � ��	� ��	� ��
�� � ��	 �	���	�	
�

��	 ��	� ��	� ��	���
�� � ��	 �	
��

��	� ��	���	� ��	� ��
�� � ��	 �	
��

��	� ��	� ��
�� � ��	 �	
�
�

��	� ��	 � ��	� �	
�

� ��	� ��	 � � �	
�

�

(11.3)

Since � ��� is the only positive boxed subformula of the goal �, i.e. pbs��� � �,
we need not apply� to ��. Namely: although we cannot directly identify �� and ��
with the desired sequents � � and � ��, the missing lwffs ��� ��� and ��� ���
are implicit in �� and ��, since both sequents contain in the antecedent the lwff
��� ���, from which we can obtain �� ��� and �� ���.

We can, however, transform the proof to ‘disclose’ ��� ��� and ��� ���.
We can do so by employing the admissible (by means of a ���) rule ����,

� � ��� � ��� � ������� � ��

�������� � ��
���� �

� � ���

���� � �����

� � ��� � ��� � ������� � ��

� ��� ��������� � ��
��

� ��� �������� � ��
���

����� �������� � ��
��

�������� � ��
���

�

(11.4)

where ���� � ����� follows trivially by exploiting the transitivity of �.

5Note that if the uppermost �# had active rwff �����, then we would simply obtain a redundant sequent,
��� 	��� ���� 	��������� ����	 � ��� 	�� �	��. Using the �-disjunction property and its
corollaries we could then show that there is a proof of either ���� 	 ��������� ����	 � ��� 	
�� �	�� or ��� 	������� 	���������� ��� 	�.
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Then we can replace applications of �� and the contractions preceding them with
applications of ����, and transform the attempted proof (11.3) to

��
�� � ��
��
���

��
�	 � ��
�	
���

��
��� ��
�	 � ��
�	
���

��� � �		� ��	���
���

��
�	 � ��	 �	��			� �		�	

�		 ��	� �		� ��	���
���

��
�	 � ��	 �	� �			

��

��	� ��	� ��
��� ��
�	 � ��	 �	��			
����

�� � ��	� ��	���
�� � ��	 �	� ��	�	
�

��	 ��	���	� ��	� ��
�� � ��	 �	
��

��	� ��	���
�� � ��	 �	
����

��	� ��	 � ��	� �	
�

� ��	� ��	 � � �	
�

�

We need not apply � to � �� to generate a successor of the world ��� � �, since
we already have a successor of the world � � � where

��� ���� � � � � � � � � ���� ���� �

It is � itself. Thus, we can connect� with itself and truncate the chain of worlds. This
truncates and concludes the branch and the proof as well: �  ��� ��� 
 � �� is
not provable in �����, and we have the following counter-model

� ��
���� �� 		

� �� �
������		

�� ��
�

�!
�� �

� ���
�

�#��
��

�

�#���
#



������������������� � ���
�

�#��
��

�

�#���
#
����������������� � ���

���

���
�

�!
�� ��

where the initial application of 
  yields � � � � and � � �� at �, and the
numbered and indexed arrows represent applications of � and ���� together with
the propositional reasoning following them; note that we represent the succedent and
the antecedent of the premise of an application of ���� by means of two arrows with
the same number.

Although �� may contain different formulas and/or be a smaller sequent than � �� (it
may contain fewer formulas when there is more than one positive boxed subformula),
(11.3) contains enough information to build a similar counter-model to which the
missing formulas can be easily added. In fact, we can associate (11.3) with the
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diagram

� ��
���� ��		

� �� �
������		

�� ��
�

�!
�� �

� ���
�

�#�
#
��

� $�#
		

���
�

�!
�� ��

� ���
�

�#�
#
��


 $�#
		

���

� ���

where the initial application of 
 yields �� �� and � ��� at �. (Looking
at this diagram, we see that the third instance of � ��� at �, and thus the second
application of ���, is redundant; we return to this below where we discuss superfluous
contractions, e.g. in the examples and in 11.3.) �

11.2 BOUNDING CONTRACTION IN ����� AND �����

We now formalize the above intuitions and show that, when proving theorems in �����
or �����, in each branch we can bound applications of� with principal formula��
labelled with ‘increasing’ worlds in a chain.

Lemma 11.2.1 Given a formula � and a sequent � � � ��� provable in ����� or
�����, there is a proof of � in the corresponding system such that in each branch � is
applied at most pbs��� � � times with principal formula �� labelled with increasing
worlds in a chain.

Proof (Sketch) We begin by observing that Proposition 8.2.9 and its corollaries tell us
that for fixed � we need not apply� with principal formula  � ��� more than once
(for otherwise we generate two divergent subchains of worlds that have  � as their
origin). Thus, we only need to consider the case where � is fixed and  � varies over
different, increasing, worlds in a chain. We distinguish two subcases.

If pbs��� � ,, then, again by Proposition 8.2.9 and its corollaries, it immediately
follows that we need at most one application of � with principal formula  � ���.

If pbs��� 4 ,, then consider the following branch

��
�� ��� � ����� � ��� � �����

�� ��� � ��� � � ���
� ���

��
���� ��� � ��� ���

��� � ��� ����
� ���

��
� ���

(11.5)

where � ��� is the first application of � with principal formula  � ���, which, for
simplicity but without loss of generality, we have assumed to occur for  � � �.
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At each application of �, we generate a new world  ��� that is then available for
applications of �� with principal formula  ����, where ���� �� � and � � � � �
(or � � � � � � � in �����). In particular, since we can prove � � � ����� �
�����, from ���� we can obtain ����� by ��.

Now, for example, pick the highest & such that , ( & � pbs��� and  ���

� 	 � (or

���

� �� �), and suppose that we need � to close the branch at the leaves of (11.5).

(In the general case, we consider instead ��3 �� � with 3 containing & positive�’s
and � being in the scope of the innermost such �.) Then we require a chain of & � �
worlds,

������ � � � � 
�
�� �

generated by & applications of � with, possibly, principal formulas  ����, ����,
� � � , 
���. Then, for example, (11.5) has the form

�
� 
�
�� � ��
��

��

����� 
�����
��
� 
�
�� � ��
� 
����


���� 
�����
��
� 
�
�� � ��
� 
����
��


�����
��
� 
�
�� � ��
� 
����
���


�����
��
 � ��
� 
���
� �&�

��
���


�� ��� ���������� ��� � ���� ���

���

�� ��� ��������� � ���� ����

� ���

��
� ���

�

Once we have generated 
�� we need not apply � with principal formula ����
for� � &��. This follows because, analogous with Example 11.1.1 and since we have
picked the highest &, all the positive boxed subformulas of � hold at  
�� (explicitly
or implicitly, like in that example); e.g. � 
 contains


������ 
������� � � � � 
����

�� 
���� ��� �

Therefore we can transform �� so that it does not contain applications of � with
principal formula���� for� � &��. Note that we can perform another application
of � with principal formula 
�����; in doing so, we generate a world 
�� where
all the scopes of the positive boxed subformulas of � hold. We can thus combine
the two subcases and conclude that, given � and a �����-theorem or �����-theorem
���, we can find a proof of � � � ��� in the corresponding system where in each
branch� is applied at most pbs��� � � times with principal formula  � ���. �

Since each � � � ��� contains at most nbs��� negative boxed subformulas, and
since �� is eliminable by Corollary 9.1.2, in a proof of � in ����� or ����� there
are at most nbs��� different candidates for the formula  � ��� in Lemma 11.2.1. It
follows that if � is provable, then it has a proof where in each branch there are at most
nbs���� �pbs��� � �� worlds accessible from �. In such a branch we need at most
�nbs��� � �pbs��� � ��� � � applications of ��� with the same principal formula
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����, so that there is one instance of ���� for each world accessible from �. In
other words, we have:

Lemma 11.2.2 Given a proof of � � � ��� in ����� or �����, there is a proof of
� in the corresponding system such that in each branch there are at most nbs��� �
�pbs������ applicationsof �, so that chains contain at most ��nbs�����pbs����
��worlds. Hence, each branch is finite and contains at most �nbs�����pbs���������
applications of ��� with the same principal formula ����. �

Since each � � � ��� contains at most pbs��� different formulas of the form
���� that can be contracted, it follows that in each branch there at most ��nbs����
�pbs��� � ���� ��� pbs��� left contractions. That is, from Lemma 11.2.2 we have:

Theorem 11.2.3 Every sequent � � � ��� provable in ����� or ����� has a
proof in the corresponding system in which there are no contractions, except for
applications of ��� with principal formula of the form ����. However, in each
branch of this proof ��� need not be applied with the same principal formula  ����
more than �nbs���� �pbs��������� times. Hence, in each branch there are at most
��nbs���� �pbs��� � ���� ��� pbs��� applications of ���. �

We can fairly straightforwardly extend our previous results to restrict the contraction
rule: like for ����, in ����� and ����� we only need to contract lwffs of the form
���������. (This is indeed the case for all theorem schemas in Table 11.1.)

Lemma 11.2.4 Every sequent � ��� provable in ����� or ����� has a proof in the
corresponding system in which there are no contractions, except for applications of
��� with principal formula of the form ���������.

Proof (Sketch) We extend the proof of Theorem 9.1.1 for ���� and the proof of
Theorem 10.1.4 for ����. By Corollary 9.1.2, given a proof of �  ���, we consider
the uppermost left contraction of an lwff of the form  ���� where there is no � such
that �� �� �, and show how to eliminate this contraction. The lemma follows by
iterating the following argument.

We proceed by induction on the rank of the contraction, ���0� �����, where
the permutability of the rules allows us to assume that the contraction immediately
precedes the application of �� that introduces the second constituent.

(���0������ � �) If one of the two constituents is introduced by ���, then we
conclude by deleting this ��� and the application of ���. Therefore suppose that
both constituents are introduced by ��, i.e. consider

��
� � ���

��
� � ��	

��
� ��� 	������ � ��

� ��� �������� � ��
��

����� �������� � ��
��

�������� � ��
���

��
� ���

�
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Since �� is contraction-free, we then proceed as follows, possibly applying Corol-
lary 8.2.11 where we previously applied Corollary 8.2.10. If  � � � or 	 � �, then
we conclude as in the proof of Theorem 10.1.4 for ����. If  � �� � and 	 �� �, then
we conclude as in the proof of Theorem 9.1.1 for ����.

This concludes the proof for the case ���0� ����� � �. Consider now the case
when ���0������ � � � � 4 �. As for ����, in this case it is possible that the
first ���� was introduced by ��� into one or more of the places which give the
contraction a rank of � ��. We make the mode of introduction of that  ���� uniform
by replacing all such introductions by ��� with introductions by ��; the rest of
the proof is as before, modulo possible applications of weakening and 4)$ (cf. the
example given in the proof of Theorem 9.1.1). Note that the rank is still � � �. We
distinguish two cases, depending on whether or not there is an application of �
between the two applications of ��.

(���0������ � � � �, case 1) If there is no application of � between the two
applications of ��, then we can permute rules to obtain a contraction of rank �, and
conclude by applying the induction hypothesis.

(���0������ � ���, case 2) Suppose that there is an application of� between
the two applications of ��. That is, consider a branch of the form

��
� � ���

��
�� � ��	

�

	 �������� � ���

���������� � ���
��

��
����������� ��� � �������

���������� � ��������
�

��
� ��� �������� � ��

����� �������� � ��
��

�������� � ��
���

��
� ���

� (11.6)

Depending on � we distinguish three cases: � is different and not accessible from
� (case 2.1), � � � (case ���), � is accessible from � (case 2.3).

(���0������ � � � �, case 2.1) If � is not accessible from � and � �� �,
then ��� �� ��	 . It also follows that the provability of �� � ��	 implies
that there exists a proof �� of � � ��	, and we can permute rules to reduce the
rank of the contraction, for example transforming (11.6) to
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We conclude by applying the induction hypothesis.
(���0������ � � � �, case 2.2) Suppose that � � �. If � and � (or

� and 	) diverge from �, then we can permute rules to reduce the rank of the
contraction; else, we conclude similarly either to the proof of Theorem 10.1.4 for
����, or to case (��������� � 0� �, ���0���� � � ��, � � ��, ��, case 2) in
the proof of Theorem 9.1.1 for ����. Observe that it is possible that we need to apply
Corollary 8.2.11 where we previously applied Corollary 8.2.10.

(���0������ � � ��, case 2.3) Suppose that � is accessible but different from
� (and � and � do not diverge from �, in which case we conclude like in case 2.2).
Then � is either � (case 2.3.1), or a world different from  � but still accessible from
� (case 2.3.2).

(���0������ � ���, case 2.3.1) If� � � , then� ��� must follow from some
formula in � or �� (� ��� cannot be a subformula of � �� since we have assumed
that there is no � such that �� �� �). We consider an example that points out the
subtleties of the proof (the general case is dealt with similarly, by permutations of rules
to reduce the rank of the contraction). The proof
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is an instance of (11.6) where ��� � ��	, � � �� � ���� ����, �� �
� � ���	�, �� � �, and ���0������ � .. By permuting rules, we can
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transform this proof to
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Now ���0������ � �, and by the induction hypothesis we can eliminate the contrac-
tion (thus reducing also ���0���� ����, which was temporarily increased). The
intuition behind this is that since �� ��� �, only one of � �� and 	 �� contributes
to the proof �� when 	 �� does (i.e. at most one of � �� and 	�� leads to axioms
and the other is weak).

(���0������ � ���, case 2.3.2) If � is a world different from� but accessible
from �, then ���� must follow from (be a subformula of) some formula in � or � �,
and we conclude similarly to case 2.3.1. �

A straightforward combination of Theorem 11.2.3 and Lemma 11.2.4 yields:

Theorem 11.2.5 Every sequent � � � ��� provable in ����� or ����� has a proof
in the corresponding system in which there are no contractions, except for applications
of ��� with principal formula of the form ���������. However, in each branch
of this proof ��� need not be applied with the same principal formula  ���������
more than �nbs���� �pbs��������� times. Hence, in each branch there are at most
��nbs���� �pbs��� � ���� ��� pbs��� applications of ���. �

As for ����, we can denote the bound on applications of ��� by annotating each
sequent with a contraction index �, which we set to ��nbs���� �pbs��� � ���� ���
pbs��� at the start of a backwards proof, and restricting ��� in ����� and ����� to be

��������� ������������ ���� ��

������������ �� ��
���� �

which explicitly requires that � 4 ,. As for ����, the index is decremented at every
contraction, and is imported in the premises of branching rules.

Since in a proof of � � � ��� in ����� or ����� both nbs��� and pbs��� are
bounded above by the size � � ��� of � (i.e. the number of symbols in �’s string
representation), Lemma 11.2.2 and Theorem 11.2.5 tell us that each branch of the
proof may contain chains that consist of -���� worlds, and thus it may contain -����
applications of ���.
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We show in 12 that this contraction upper-bound allows us to show that provability
in the modal logics �� and �� is decidable in PSPACE. However, while it is true that
in general we might need to contract  ���� to infer � �� from ���� by �� for each
� accessible from � in a chain, it is often the case that many of these contractions
are superfluous and we can dispose of them. It is thus reasonable to assume that this
contraction bound is not ‘optimal’ and that there exists a better, smaller, bound; we
conjecture that it is possible to establish a quadratic one, i.e. -�� � ������.

Conjecture 11.2.6 Given a proof of � � � ��� in ����� or �����, there is a proof
of � in the corresponding system such that in each branch there are at most nbs����
�pbs������ applications of � and chains contain at most ��nbs�����pbs������
worlds. Thus, in each branch there are at most ��nbs��� � �pbs��� � ��� � ��
applications of ���, and we can restrict ��� to be ���� with the contraction index �
set to this number at the start of a backwards proof of � � � ���. �

The intuition behind this smaller bound is as follows. We need a contraction of
��������� only when it allows us to generate a new world in a chain by an
application of � with principal formula � ���, where � is accessible from �.
Hence, in the worst case we need such a contraction to generate each single world
(except the first) in the longest chain that we ought to construct in the branches of a
proof of � � � ���. Chains contain at most � � nbs��� � �pbs��� � �� worlds,
and so we need at most ��nbs���� �pbs��� � ���� �� applications of ���. In other
words, a contraction of ��������� ‘corresponds’ to the creation of a new world in
a chain in some branch of a proof of � � � ���; since we need not build chains
that are longer than � � nbs��� � �pbs��� � �� worlds, we do not need more than
��nbs��� � �pbs��� � ��� � �� applications of ��� per branch. The following three
observations expand on this.

First, the restriction to principal formulas of the form  ��������� disposes of
superfluous contractions of lwffs ���� where there is no � such that �� �� �.6

However, in the multiplications in Theorems 11.2.3 and 11.2.5 we have made no
distinction between contractions of ���� where there is some � such that�� �� �
and contractions of ���� where there is no such �.

Second, we have not been able to find theorems of ����� and/or ����� that require
the -���� contractions of Theorem 11.2.5. On the other hand, we can fairly easily
come up with theorems for which applications of ��� are bounded above in each
branch by the number of Conjecture 11.2.6. For instance, the proof (6.2) of the �����-
theorem ������ 
 ����� that we have given in Example 6.1.6 contains only
one contraction of ������, instead of the 21 allowed by Theorem 11.2.5, which
also include left contractions of ����� and ���� even when � is a propositional
variable. Similar observations hold for the other �����-theorems in Table 11.1 and
for the �����-theorem (11.1), as well as for their generalizations. For example, when

6Note that this is not the case in standard sequent systems for �	 and �	 as, e.g., the rule ��	� implicitly
contracts boxed formulas on the left of � independent of their form. We return to this in �11.3 when we
show the admissibility of ��	�.
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each �� is a propositional variable, in both ����� and ����� a proof of

����
��
�(�

��� 
�� ������� ���� 
 � ��� � (11.7)

which is a generalization of the last formula in Table 11.1 where
��
�(� �� stands for

the conjunction of the � formulas � � for � � � � �, requires � contractions of

����

��
�(�

��� 
�� ������� ���� �

namely, one contraction for each � that occurs negative in it (i.e. one for each of
its subformulas � �����).7 Moreover, we can modify (11.7) to require additional
contractions, and we can do so not only like we did for the corresponding example
(10.1) in ����, but also by replacing ‘� ���’ with

‘� ���� � ���
��
�(�

�3� 
�� �3����� �3�� 
 � �3���’

so that we obtain a theorem of ����� and ����� such that for each subformula that
has a positive� as its main operator we need at most as many contractions as there are
�’s that occur negative in its scope. That is, -�� � ������ left contractions.

The third and last observation supporting our conjecture is that we can transform
backwards proofs in ����� and ����� so that each application of ��� that is not
eliminable is followed by a particular derivation (sequence of rule applications) that
has the effect of creating a new world in the chain of worlds that we are constructing
in a branch.8 All other contractions can be eliminated from the branch.

To illustrate this, recall that in each backwards proof we can always permute rules
so that each left contraction of ��������� immediately precedes the application
of �� introducing the second contraction constituent. Moreover, both constituents
must be introduced by �� in at least one subbranch, for otherwise the application of
��� is trivially eliminable (since we can delete it together with the application of ���
introducing one of the two constituents). We can further transform a proof of �  ���
so that before we apply a rule that has the second constituent as its principal formula,
we ‘decompose’ the first one to generate a new world in the chain that we are building.

7The formula (11.7), suggested by Fabio Massacci in a private communication, is essentially a ‘linearized’
version of the �	-formula built by Halpern and Moses in [123] to show that there are formulas such that the
models satisfying them contain exponentially many worlds (in the size of the formula). Hence, the models
have exponential size, and the proofs built for such formulas in deduction systems for �	, including Halpern
and Moses’ tableaux system and our ���	�, require exponential size as well. Nonetheless, the decision
problem for �	 is still in PSPACE as it is possible to build proofs in such a way that the entire model is not
represented in memory and each branch in them has polynomial length in the size of the goal. We point
to [82, 123, 153, 160] for additional details.
8At least one of the constituents must be introduced by such a derivation, but not necessarily both, as can be
seen, e.g., when proving � ����	�� � ��� � �� in ���	�.
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That is, we can permute rules in the proof to obtain

....
�� � �����

��
���������������� ����	�����	�� � ���� ����	�� ��

��������������� � ���� ����	 ���
�

��
��� �������� ��������������� � ���

���������� ��������������� � ���
��

��������������� � ���
���

��
� ���

where � 4 , in ����� and � � , in �����, 0 � , in both ����� and �����, and
��������� is parametric in the subderivation �� in which we infer ����	 ��� on
the right of � from ��� ������� on its left. In this transformed proof (branch), the
application of �� that follows the contraction of  ��������� is itself followed by
subderivation ending with an application of � with principal formula  ����	 ���.
Informally, if this is not the case, i.e. if there is no such application of �, then it is
as if there were no �� such that �� �� �, and ����	 ��� is weak in the branch,
so that we can eliminate the contraction like in Lemma 11.2.4. In other words, the
sequence following a ��� generates at least one new world in a chain (‘at least one’
since each of the two constituents may be used to extend the chain). Hence, the worst
case occurs when all the ��nbs�����pbs������worlds of a chain must be generated
by contracting lwffs of the form  ��������� for ��nbs��� � �pbs��� � ��� � ��
times.9

A formalization of these supporting observations would allow us to convert our
conjecture into a fact, and thus reduce our cubic upper-bound on the number of
applications of ��� into a quadratic one.

11.3 ����� AND ������

The standard sequent system ������, see 6.1 and [87, 119, 120], is obtained from
����� by replacing ��� with the transitional rule

���� � �

:��� � ���:�
���� �

which embeds multiple (implicit) contractions, namely one for each formula in �.
Recall that in 9.2 and 10.2 we have given a proof-theoretical justification of the

rules of ����� and ����� by showing that their labelled equivalents can be derived

9A constructive proof of this would rely on the �-disjunction property and its corollaries to eliminate left
contractions of ���������� that generate, by means of a sequence of rule applications such as the one
described above, two worlds �� and �� that diverge from ��. That is, left contractions that do not generate
‘increasing’ worlds in a chain are trivially eliminable. Mirroring the development for ����, we could then
also exploit Lemma 10.1.6 to dispose of redundant instances of the subformula �. To this end, note that the
proof of Lemma 10.1.6 we have given in �10.1 does not depend on relational rules, except for case 2.2.3.
Thus, the lemma holds also for modal systems other than ���� provided that we check this case, which we
can do fairly straightforwardly for ���	� and ���	� by exploiting the transitivity of �.
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in our systems, and that there are intermediate systems equivalent to both ours and
the standard ones. Further, based on our analysis of contractions in ����, we have
given a refined version of �����. For ������ and ������ things are, however, not so
clear-cut: it is possible, at least to some extent, to use the above insights to similarly
justify and refine ������ and ������ but it is more difficult to find the appropriate
rules.

To illustrate this, observe that by a suitable number of applications of���� we can
give a labelled equivalent ���� of the transitional rule ����, i.e.

������ ������ � �����

��:� ���� � ����� ��:
� ���� �

������ ������ � �����

������ ������� ����� � �����
�$�

.... ���� (all with active rwff �����)
����� ����� � �����

���� � ����
�

.... �

��:� ���� � ����� ��:
�

(11.8)

where the multisets of lwffs ��: and ��:
� contain only formulas labelled with �,

and if �� � ����� � � � � ���� then ��� � ������ � � � � �����.
The derivation (11.8) employs several applications of ���� (one for each formula

in ��), each of which is obtained by (a contraction and) a ��� as in (11.4). Thus
both ���� and ���� are admissible, rather than derived, rules of �����. 10 As
a consequence, although we can still define a system ������ equivalent to ������,
showing the equivalence of ����� and ������ requires more ingenuity.

Let ������ be the system obtained from ����� by replacing ��� with ����;
since���� embeds the unavoidable left contractions of boxed formulas, ������, like
������, does not contain structural rules. We have:

Lemma 11.3.1 � ��� is provable in ����� iff � ��� is provable in ������. �

The right-to-left direction follows by the admissibility of ���� in �����. For the
left-to-right direction, we show that we can transform a �����-proof � of �  ���

into a ������-proof of the same sequent.
For concreteness, we show the equivalence of �����, ������ and ������ by trans-

forming �����-proofs into a block form; as before, this is achieved by eliminating

10That �#�� and �#��� are not derivable in ���	� without ��� follows from the subformula property.
Note however that the applications of ��� in (11.4), and thus in (11.8), are ‘strictly controlled’: the sequent
����� � ����� tells us precisely which formulas need to be cut in, namely the lwffs that we obtain
by prefixing with another � each lwff in �����. In order to derive �#��� we thus need a form of
‘superanalytic’ ��� in which only specific superformulas are allowed.
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detours and adjoining related rules, and there are only a few changes with respect to
our development for ����.

We begin by eliminating detours in �. We extend the definition for ���� by saying
that an application of a rule ��� is a detour in a �����-proof � of �  ��� if

(i) all of the active formulas of ��� are introduced in � either by weakenings or by
detours (i.e. none of them appears in the axioms of � so that they are weak in
�), or

(ii) ��� is an application of �� in which the active rwff is introduced by trans and
the active lwff is introduced by weakening or by detours.

For example, the application of �� in

��
�� ��� � ��	 � ��	

��
���� ��� � ��	 � ��

	 ������� ��� � ��	 � ��
���

��������� ��� � ��	 � ��
��

��
� ���

is a detour that we eliminate by (‘blowing up’ the application of��� and) transforming
the proof to

��
���� ��� � ��	 � ��

��������� ��� � ��	 � ��
���

��
� ���

�

If the rule ��� in (i) is a contraction ���� (or ���), then we simply delete it together
with the corresponding weakenings; e.g. we transform

��
� � ���

��
��� ������� ���� ��

� � ���� ��� ������� ���� ��
���

��� ���� ��� ������� ���� ��
��

��� ������� �� ��
����

��
� ���

to

���
��� ������� �� ��

��
� ���

where ��� is obtained from �� simply by replacing the contraction index �� � with �.
By iterating these transformations, we obtain a proof that is free from detours.
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Given a proof �� free from detours, in 9.2 and 10.2 we showed that, for ����
and ����, a proof in block form is obtained from � � by permuting rules so that, for
each �, rules with principal formulas labelled with � are applied as an uninterrupted
sequence. This does not straightforwardly generalize to �����. Consider, as a running
example, the following simple proof where � is a propositional variable and � �
����� ���� ����.

....
� � ���

....
� � ���

� � ���
trans

��� � ���
4)�

.... �

����� � ���� ���

������ � ���� ���
��

������ � ��� ��
�

����� ���� ��� � ����� � ��
�

����� ��� � ������ ���
�

���� � ������� ���
�

� ���� 
 ����� ���



� (11.9)

This proof is free from detours but we cannot transform it so that rules with principal
formulas with the same label are applied as an uninterrupted sequence: we can permute
the application of �� over that of � but not over the applications of � below it,
since the rwffs active in the applications of � are also (indirectly) active in �� by
transitivity. This tells us that in ����� it is not enough to consider two rules to be
related when their principal formulas have the same label; we must extend this by
defining an application of�� and an application of� to be related when there exists
an rwff that is active in both rules via transitivity, as is the case in (11.9). Specifically,
we define applications of �� and � to be related when

the active rwff ��������� of � is also active in the applications of trans that
introduce the active rwff ��������	 of ��.

Note that when � � 0 � , this reduces to the case where the principal formulas of��
and � have the same label. Thus, in (11.9), the application of �� is related to all
three applications of �, and we can transform (11.9) to

....
� � ���

....
� � ���

� � ���
trans

��� � ���
4)�

.... �

����� � ���� ���

����� � ��� � �
�

������ � ��� ��
��

����� ���� ��� � ����� � ��
�

����� ��� � ������ � ��
�

���� � ������� ���
�

� ���� 
 ����� � ��



� (11.10)

The permutations that adjoin related rules affect also contractions: we obtain a proof
in which related rules are applied as uninterrupted sequences, where, in particular, each
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left contraction of ���� immediately precedes the application of �� that introduces
����. However, this is still not enough: at applications of ����,

������ ������ � �����

��:� ���� � ����� ��:
� ���� �

and, analogously, at applications of ����, each formula in  ���� is implicitly con-
tracted. As a consequence, proofs in ������ and ������ might contain more con-
tractions, albeit all of them implicit, than the corresponding proofs in �����. This is
because sequents in ������ and ������ are committed to representing only one world;
thus, when applying the transitional rule ���� or ����, i.e. when moving from one
world to another, we must bring along, by contraction, boxed formulas that might be
inessential to the successful conclusion of the proof. On the other hand, the sequents
that appear in �����-proofs may contain formulas labelled differently, i.e. the sequents
contain information about different worlds, and this allows us to reduce the number of
required contractions since we can postpone applications of �� until they are really
useful to the proof.

Thus, to obtain a ������-proof, we need to transform our �����-proof further by
adding the possibly missing contractions. Specifically, we transform our �����-proof
by

eliminating applications of trans,

replacing each application of ��, and the possible contraction below it, with a
suitable number � of applications of ���� (i.e. for each �� we implicitly add �
contractions and � applications of ���), and

possibly adding applications of ��� to introduce the additional lwffs required in
the premises of the applications of ����.

The number � depends on the rule introducing the active rwff of the particular appli-
cation of�� that we are replacing: if the active rwff of�� follows just by applications
of �$� and 4)$, then we can replace �� with only one application of ����; if the
active rwff of �� is introduced by an application of trans with premise � �  ��� ,
then we can replace �� with � applications of ����, where � is the ‘distance’
� � � between � and � , i.e. the number of applications of trans required to prove
� � ��� . In both cases, ���� absorbs the possible contraction preceding the
application of ��. ���� absorbs also the possible applications of ��� and ��
that surround ��, although this, as well as the absorption of the contractions, is not
illustrated in our simple example, which illustrates only the second of the above cases:
� � � and we transform (11.10) to
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....
� � ���
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� � ���
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� � ���

��� � ���
4)�

.... �
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� ���� 
 ����� � ��



�

(11.11)

Note that a �����-proof so transformed may contain additional applications of ���
(in this case the weakening of ����), but it does not contain applications of trans:
all the relational reasoning that is left consists of applications of �$� and 4)$.

We can now further adjoin related rules, namely the applications of ���� and �
that have the same (implicit) active rwff and principal formula labelled with the same
label. Specifically, we transform (11.11) to

��
�� � ��
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���
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�	 � ��
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(11.12)

We are almost done: we have finally obtained the desired�����-proof in block form,
which consists of alternating sequences of local reasoning (propositional rules) and
transitional reasoning (‘�–���� pairs’). We can then transform this into a ������-
proof by absorbing the uppermost weakenings of lwffs into instances of (extended)
4)�, and replacing the transitional reasoning with applications of ����; this latter
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step eliminates all rwffs and the remaining relational reasoning (applications of �$�
and 4)$) from sequents and proofs.

By similar proof transformations we can transform any �����-proof of �  ���

into a ������-proof of the same sequent, and thus conclude the (informal) justification
of the left-to-right direction of Lemma 11.3.1. We can then transform this ������-proof
into a ������-proof of � �, where, as for ����� and �����, proofs in ������ and
������ differ only in the names of the rules, e.g.���� and ����, and in the presence
of labels, which can be eliminated or added as required. For example, (11.12) yields
the ������-proof shown below on the left, which then yields the ������-proof on the
right:

���� ���� � ���� ���
4)�

���� ���� � ��� � �
�

���� ���� � ����� � ��
����

���� ���� � ������ � ��
����

���� � ������� � ��
����

� ���� 
 ����� � ��



���� � ���
�4)�

���� � � � �
���

���� � ��� � ��
����

���� � ���� � ��
����

�� � ����� � ��
����

� �� 
 ����� � ��
�
�

�

Although the development is rather entangled, since it relies on applications of ���
and thus on admissible but not derivable rules, admissibility suffices for producing the
proof transformations needed to show the equivalence of �����, ������ and ������.
However, admissibility does complicate the analyses of the resources (i.e. applications
of contractions): Theorem 11.2.5 restricts contractions in the system �����, and it
is thus reasonable to expect that the restriction propagates to ������ and ������, as
was the case for ����. Unfortunately, the above transformation of a �����-proof �
into a ������-proof does not distinguish applications of ��� and ���� in �, and it
is unclear how to modify this transformation so that it propagates the side conditions
on the principal formulas of ����. Indeed, we have seen that in the transformations
we may need to add, rather than remove, contractions. Thus, while we can show that������ is equivalent to ������, there is no immediate refinement of the rules. For
example, we might consider replacing ���� with the rule

��������� � �

:�������� � ���:�
�*�

where for every �. 	 ��� there is no � such that �� �� . , while for every
�. 	 ��� there is some � such that �� �� . . However, this rule yields an
incomplete system: we can easily show that the ��-theorem

� ��� 
 ��� 
 � ����� 
 ��� �

which is an instance of the second theorem schema in Table 11.1 with # � �, is not
provable when �*� is the only modal rule.

We could add �*� together with the rule

���������� � �

:�������� � ���:�
�3�
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where �� and �� have the same side conditions as for �*�, but the resulting system
then contracts, implicitly, also the formulas �. 	 ��� where there is no � such that
�� �� . .

To conclude, we therefore content ourselves with the following theorem, which
states that, by Lemma 11.3.1 and the results above, our labelled system ����� provides
a proof-theoretical justification of the standard sequent system ������.

Theorem 11.3.2 The following are equivalent:

1. � ��� is provable in �����.

2. � ��� is provable in�����where��� is restricted to be����with� set according
to Theorem 11.2.5.

3. � ��� is provable in ������.

4. � � is provable in ������. �

11.4 ����� AND ������

The standard system ������, see 6.1 and [87, 119, 120], is obtained by extending
����� with the rules

�����: � :�

���: � :�
��� and

�� � �
:��� � ���:�

���� �

We have already shown in 10.2 how to justify ��� and the contraction embedded in it
by deriving the rule �� ; the same derivation can be given in �����. In order to give
a labelled equivalent��%� of ����, we first give an admissible rule ��%�,

� � ��� � ������� � ��

�������� � ��
��%� �

���� � �����

� � ��� � ������� � ��

��������� � ��
��

�������� � ��
���

�

where ���� � ����� follows trivially by the transitivity of �. The transitional rule

������ � �����

��:� ���� � ����� ��:
� ��%�

is then obtained by a suitable number of weakenings and applications of �� %� where,
as before, the multisets of lwffs ��: and ��:

� contain only formulas labelled with
�, and if �� � ����� � � � � ���� then ��� � ������ � � � � �����.

If we now compare the derivation of ��%� with the derivation (11.4) of ����, we
see that for��%� it suffices to use ��� and we do not need to apply���. The embedded
application of ��� implies however that ��%� and ��%� are admissible, rather than
derived, rules of �����. It follows that, like for ��, the refinements that result from
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our analysis cannot be directly propagated to ������. To make a long story short, we
can combine the definitions and results for systems for � and �� in 10.2 and 11.3 to
show, by proof transformations (and block forms), the following equivalence, where,
however, we do not distinguish between applications of ��� and ���� in �����.

Theorem 11.4.1 � ��� is provable in ����� iff � � is provable in ������. �

That is, our analysis of ����� provides a justification of the rules of the standard
sequent system ������. However, since the proof transformations are again based on
admissible rules, there is no immediate way of exploiting our analysis to restrict the
rules of ������.



12 COMPLEXITY OF PROOF
SEARCH IN �, �, �� AND ��

In this chapter we show how bounds from substructural analysis can be combined with
bounds for relational reasoning to provide decision procedures with space complexity
upper-bounds. In particular, we show that contraction elimination for ���� and
bounded contraction for ����, ����� and �����, combined with the soundness and
completeness of our systems with respect to the corresponding Kripke semantics, tell
us that the provability (validity) problems for the modal logics �, �, �� and �� are
decidable in PSPACE.

For clarity, we first summarize the results of the previous chapters, then begin our
complexity analysis with �, and after consider extensions to other modal logics.

12.1 SUMMARY OF OUR SUBSTRUCTURAL ANALYSIS

We can summarize the main results of the previous chapters as follows.

Theorem 12.1.1 For each � 	 �������� ���, let the ‘restricted’ system �$��� be
defined as follows.

�$��� consists of the axioms 4)�, 4)$ and��, where 4)� and�� are restricted
to atomic lwffs, the logical rules 
�, 
, �� and �, and the weakening rules
�$�, ��� and ��.

�$��� extends �$��� with the contraction rule

247
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��������� ������������ ���� ��

������������ �� ��
���� �� 4 ,�

with � set to pbs��� at the start of a backwards proof of � � � ���, and with the
relational rule refl.

�$���� extends �$��� with the contraction rule ���� with � set appropriately set
(according to Theorem 11.2.5 or Conjecture 11.2.6) at the start of a backwards
proof of � � � ���, and with the relational rule trans.

�$���� extends �$���� with the relational rule refl.

The systems ���� and �$��� are equivalent for theoremhood, in the sense that an lwff
��� is a theorem of ���� iff it is a theorem of �$���. Hence, �$��� is a sound and
complete system for theoremhood in each logic � 	 �������� ���. �

12.2 COMPLEXITY OF PROOF SEARCH IN �

We apply rules of �$��� backwards to build a proof top-down, starting with the end-
sequent � � � ��� and working towards the axioms of the proof. We begin by
showing that the search space for proofs is finite and after analyze space requirements.

Let the size of a formula � be the number of symbols in �’s string representation,
i.e. ���, and let the degree of an lwff �� be twice the size of �, i.e. � � ���. We
define the degree of a sequent � to be the sum of the degrees of the lwffs in � plus the
number of rwffs in �.1 The degree serves as a measure of the complexity of a sequent;
by examining the rules of �$��� we can establish:

Fact 12.2.1 (Measure Decreasingness) In each rule of �$���, each premise has de-
gree smaller than that of the conclusion. �

It follows that the length of any branch in a proof of � � �  ��� is -���, where
� � ��� is the size of the sequent � (defined, like for �, as the number of symbols
in its string representation). We can also bound the distinct lwffs appearing in proofs.
An examination of the rules of �$��� shows:

Fact 12.2.2 (Subformula Property) Each premise of each rule of �$��� contains
only labelled subformulas of the labelled formulas in the conclusion. �

Due to the rules �� and �, subformulas may have different labels. However, new
labels are only generated by applications of � and an application of �� can only
lead to axioms (the first premise of an application of �� is only provable) when the
label � chosen has been generated by a previous application of �. Since the number
of possible applications of � in a �$���-proof of � � � ��� is bounded above by

1Note that this amounts to implicitly defining the degree of an rwff to be �. Other definitions of sizes and
degrees (of lwffs, rwffs and sequents) are possible.



12. COMPLEXITY OF PROOF SEARCH IN K, T, K4 AND S4 249

pbs��� � ���, we can additionally bound the number of labels appearing in branches,
and with this the possible lwffs and rwffs.

Fact 12.2.3 (Bounded Labels and Formulas) The number of labels appearing on
any branch of a �$���-proof of � � � ��� is -���, where � � ��� is the size of �.
The number of different possible lwffs and rwffs is -���� and of these only -��� can
occur in any sequent. �

It follows that provability is decidable. Since the length of each branch is bounded
and so are the formulas appearing in each sequent, for any end-sequent we need only
check a finite number of possible proofs.

To give a finer analysis of decidability, we distinguish between two different kinds
of branching that arise in the search space for proofs.

Conjunctive branching: applying rules with multiple premises builds a branching
tree, where all branches must be proved.

Disjunctive branching: more than one rule may be applicable and a given rule may
be applicable in different ways.

Conjunctive branching, caused by rules like 
�, leads to proofs that are exponential
in size (although the length of the branches may be only polynomial). Disjunctive
branching arises when more than one rule may be applied to a sequent or when a single
rule can be applied to more than one formula in a sequent (e.g. weakening) or to a
formula in more than one way (e.g. ��, where we can pick any suitable � that has
been previously generated). Disjunctive branching is reflected by a branching point in
the search space for proofs rather than in the proofs themselves.

To minimize space requirements in navigating the search space, we adapt a standard
technique (see, e.g., [136, 138]). Rather than storing entire proofs, we store a sequent
and a stack. The stack maintains information sufficient to reconstruct both kinds of
branching points, and stack entry is a triple consisting of the name of the rule applied
to a sequent, the principal formula of the rule, and an index. The stack allows us
to reconstruct the sequent associated with a branching point by replaying the stack
entries to that point. The index records sufficient information such that on return to
the branching point we can generate the remaining branches. For example, for 
�,
the index is a bit indicating the first or second premise. For ��, the index also records
the label � chosen.

A proof begins with an end-sequent � � � ��� and the empty stack. Each rule
application generates a new sequent and appropriately extends the stack. (This exten-
sion represents a disjunctive branching point; we assume rules are ordered arbitrarily,
e.g. alphabetically, and we apply them in order.) If the generated sequent is an axiom
and the stack contains no conjunctive branching points that still need to be explored,
then � is provable. Otherwise we pop entries off the stack until we find a conjunctive
branching point that must be further explored and then generate the next branch (first
incrementing the index on the stack to record this). Alternatively, if we arrive at a
sequent that is not an axiom and no rule applies, then we pop stack entries and continue
at the first available disjunctive branching point with the remaining choices. If no such
branching point remains, then � is not provable.
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This procedure terminates since, by Fact 12.2.1, the stack depth is -��� and branch-
ing is bounded (by �, the number of rules, and the maximum number of premises).
Since a formula � of the modal logic � is provable iff the sequent �  ��� is provable
in �$���, and because the entire search space for proofs is navigated, if need be, on
backtracking, this is a decision procedure for �.

The space required by this decision procedure is the sum of the space required
to store any intermediate sequent arising in the proof and the space required for the
stack (plus the space � required to store the end-sequent). Fact 12.2.1 tells us that
every proof of a sequent � � � ���, of size �, is bounded in length by the degree
of �, which is -���. We can represent any generated sequent in -����-space since
by Fact 12.2.3 there are only -��� lwffs and rwffs, each lwff is a subformula of the
end-sequent (Fact 12.2.2), and there are only � possible labels. We can reduce this to
-�� �!<��-space by representing any subformula by an index into the end-sequent �,
which requires only &'� � bits, and using &'� � bits to encode each label. The stack
can also be stored in -�� �!<��-space since it contains -��� entries and each entry
requires constant space for the rule name, -��!<��-space for a pointer to the principle
formula (and its associated label), and -��!<��-space for the index. Putting the above
together gives us:

Theorem 12.2.4 Provability for � is decidable in PSPACE, namely in -�� �!<��-
space. �

With minimal extensions, the same decision procedure and analysis applies to other
modal logics. However, �$��� is a good starting point since it is comparatively simple
in two respects. First, contraction is eliminated, not just bounded. Second, relational
reasoning, which arises in proving the first premise of ��, is trivial: � � � � is
provable precisely when � � 	 �.

12.3 COMPLEXITY OF PROOF SEARCH IN �

�$��� extends �$��� with reflexivity, refl, and the bounded contraction rule ����,
where each sequent is annotated with a contraction index � that is initially set to be the
number of positive boxes in the end-sequent � � � ���.2

The backwards application of contraction increases the measure of sequents, hence,
as is, Fact 12.2.1 fails. We address this problem with two changes. First, we incorporate
the contraction index in the measure: we define the degree of an lwff �� to be, as
before, twice the number of symbols in the string representation of �, i.e. �����, and
we now define the degree of a sequent � with contraction index � lexicographically as
the pair ���:�, where : is the sum of the degrees of the lwffs of � plus the number of

2Observe, however, that if we are only interested in bounding the space complexity of our decision procedure,
as we are here, then it suffices to consider a left contraction rule

����������� ���� ��

������� �� ��

in which we do not impose any syntactic restriction on the contracted lwff. The absence of the restriction
has no effect on overall space requirements, although more backtracking may be required.
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rwffs in�. Second, taking advantage of the separation of derivations in our systems, we
shall only consider whether non-logic-specific rules (i.e. logical and weakening rules)
reduce the measure and separately analyze the space requirements for logic-specific
(relational) reasoning. By inspecting the rules, the reader can check that ���� and
every non-logic-specific rule reduces this measure.

Relational reasoning in ���� is also trivial. � � � � is provable iff � � 	 � or
� is . A proof of � � is thus trivially constructible in space linear in the size of �
with -����� possible applications of �$� followed either by 4)$ or refl.

We analyze the overall space requirements as follows. Given an end-sequent
� � � ���, the contraction index � is bounded by � � ���. From our measure,
we have that the length of any branch is -�� � ��, i.e. -����, ignoring relational
reasoning. It follows that there are -���� lwffs and rwffs in any sequent and -����
possible labels in any branch. Now, using the fact that we can represent any label in
-�&'� ��-space and thus any lwff in -�&'� ��-space (as an index into the end-sequent
paired with a label), we have that any generated sequent can be represented using
-��� �!<��-space. Moreover, the stack depth is -���� (the depth ignoring relational
reasoning plus the space required for such reasoning) and each entry again requires
-��!<��-space. So the stack itself also requires -��� �!<��-space. Thus we have:

Theorem 12.3.1 Provability for � is decidable in PSPACE, namely in -��� �!<��-
space. �

12.4 COMPLEXITY OF PROOF SEARCH IN �� AND ��

�$���� extends �$���with trans and the bounded contraction rule����, where, at the
start of a proof of � � � ���, we set � � ��nbs���� �pbs��� � ���� ��� pbs���
according to Theorem 11.2.5 (or to ��nbs��� � �pbs��� � ��� � �� according to
Conjecture 11.2.6). �$���� extends �$���� with the relational rule refl.

Since the bounded contraction rule of �$���� and �$���� is the same as that of
�$���, except for the initial value of the contraction index �, we can use the same
lexicographic measure ���:�. The reader can again check that ���� and every non-
logic-specific rule of �$���� and �$���� reduces this measure.

Relational reasoning also has the same space requirement. A goal � � � � is
provable in �$���� if and only if � � is in the transitive closure of �; this can be
determined in time linear in � using depth-first search and the result can be translated
to a proof of linear depth. A goal � � � � is provable in �$���� if and only if � �
is in the reflexive-transitive closure of �, which is also provable in linear space.

Hence, the analysis of overall space requirements is similar to that for �$���, where
now � is -����, so that the length of any branch ignoring relational reasoning, and
thus the stack depth, is -����. We can thus conclude:

Theorem 12.4.1 Provability for �� and �� is decidable in PSPACE, namely in
-��� �!<��-space. �

Note that by Conjecture 11.2.6 we would have instead that � is -�� �� and the stack
depth is -����, from which it follows that provability for �� and �� is decidable
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in -��� �!<��-space. There are various other ways in which we could improve our
bounds for ����� and �����, and also that for ����. One of them is to find ‘better’
measures than our lexicographic ones. For example, by defining, based perhaps on
an analysis extending ours for ����� and �����, a measure that is decreased by
sequences of rule applications (instead of a measure like ours, which is decreased by
each rule application in isolation). Another way, which we illustrate in more detail
while discussing related work in the next chapter, is to translate formulas into some
normal form and then consider only proofs of formulas pre-processed that way.



13 DISCUSSION

We have shown how our framework provides a basis for new proof-theoretical method
for establishing decidability and bounding the complexity of some non-classical logics,
and, as examples, we have given PSPACE decision procedures for the propositional
modal logics�,�,�� and ��. We establish these bounds by combining restrictions on
the structural rules of our labelled sequent systems with an analysis of the accessibility
relation of the corresponding Kripke frames. Furthermore, we have shown that as a
by-product of our analysis we can obtain justifications (and in some cases refinements)
of the rules of standard sequent systems.

We view these results as a first step towards the application of our method to the
analysis of decidability and complexity of families of modal, relevance and other
non-classical logics, and for implementing decision procedures for these logics. For
example, our results for ���� and ����� should extend fairly straightforwardly to the
serial modal logics ���� and ������, respectively; moreover, based on the method
presented here, [231] gives a-�� �!<��-space decision procedure for the basic positive
relevance logic	�. We return to the results of [231] in 13.1.4, after discussing related
work.

13.1 RELATED WORK

Modal logics are typically shown to be decidable semantically, by showing that they
possess the finite model property [58, 141, 217]. (The same technique can be applied
also to other non-classical logics [175, 196].) However, for many modal logics,
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including for example �, � and ��, there are classes of satisfiable formulas such that
every satisfying model contains exponentially many worlds, and thus has exponential
size; see [123] and also our brief discussion in 11.2. Thus, it is necessary to analyze
the complexity of particular decision procedures to get better results.

A number of other authors have shown that the logics we have considered are
decidable, but often without analyzing the complexity of their decision procedures
or giving specific upper-bounds. Most of these procedures are based on two ideas:
(i) termination of the procedure is shown by dynamically checking for loops during
proof search, e.g. [87, 120, 127, 130, 153], or (ii) a specialized deduction system
is developed that restricts cut and contraction, and thus allows for the definition of
a measure that is decreased at every rule application, e.g. [55, 120, 136, 137, 138].
We now make comparisons with related work based on these techniques. After, in
13.1.3, we consider work on empirical performance analysis of automated decision
procedures.

13.1.1 Dynamic loop-checking

Ladner. In [153], Ladner shows that provability in�, � and �� is PSPACE-complete
and provides upper-bounds. Using semantic-based tableaux systems and building upon
the decision procedures of Kripke [150], he proves that� is decidable in -�� ��-space,
� in -����-space, and �� in -����-space, where � is the size of the goal.

There are a number of similarities between Ladner’s work and ours, including the
usual analogies between tableaux and sequent systems, e.g. he partitions the generated
formulas into a positive and a negative set, in the same way that we partition them in
the antecedent or succedent of a sequent. His rules for manipulating these sets have the
subformula property and he analyzes space requirements in terms of the stack depth
of his procedures and the information stored at each level of recursion. As remarked
in 11, we have adapted some of his results in our analysis of ����� and �����.

There are also important differences, however. For example, since Ladner’s for-
mulas are unlabelled, he needs logic-specific rules for decomposing boxed formulas;
e.g. he must distinguish not just positively and negatively occurring formulas, but also
track and handle subformulas of boxed formulas specially, since these are used to
‘restart’ tableaux at appropriate points during proof construction.

Ladner’s work is representative of approaches based on loop-checking, and his
solution is to introduce a ‘global stack’ recording the history of restarts and then show
that only finitely many different restarts are possible. This bounding of restarts plays a
role analogous to our bounding of contractions, and it is possible to replace the global
history with a ‘restart index’ analogous to our contraction indices. Note also that using
the techniques of 12 for minimizing space requirements in navigating the search
space, Ladner’s upper-bounds for �, � and �� can be reduced to -�� �!<��-space,
-��� �!<��-space and -��� �!<��-space, respectively.

Halpern and Moses. The modal logics considered by Ladner can be used to model
knowledge and belief. In [123] (but see also [82]), Halpern and Moses extend the
results of Ladner to model not just what a single agent knows (or believes) but more
generally what multiple agents know. Each agent’s knowledge corresponds to an
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indexed modal operator, e.g. � different boxes are used to model the knowledge of
� different agents. Halpern and Moses show that the complexity of the satisfiability
problem is PSPACE-complete for the multi-modal (one or more agent) versions of the
logics �, � and ��. The logics �� and ���� are also PSPACE-complete, but only
when there are at least two agents, and are NP-complete in the single agent case. The
authors also analyze modal operators that model common and distributed knowledge.

This work goes beyond ours with respect to both the kinds of modal operators
considered and the study of modal logics based on the ‘5’ axiom, �� 
 ���,
which says that the accessibility relation is euclidean (cf. eucl in Table 2.3). Thus,
[123] raises the interesting question of whether our results could be extended to
multi-modal logics, e.g. [51, 105, 121]. While we have not attempted this, we do
not foresee any difficulties for the logics we have considered and conjecture that
the complexity bounds are identical to the mono-modal case (at least when the �
different modal operators do not ‘interact’; interaction axioms in multi-modal logics
are discussed in [14, 15, 16], together with some (un)decidability results.) Extending
our results to modal logics whose accessibility relation is euclidean will probably
be more problematic since the �-disjunction property in Proposition 8.2.9, which
provided a basis for eliminating applications of �� (and of ���, too), holds only
for divergent logics/systems (cf. Table 8.1). Hence, analyses of non-divergent logics
must be based on results other than Proposition 8.2.9. The question of whether our
techniques can be extended to treat common and distributed knowledge operators also
remains to be explored.

Fitting. In [87], Fitting generalizes the procedures of Hughes and Cresswell [139,
141] to give systematic decision procedures for a wide variety of prefixed modal
tableaux systems, including systems for the logics we consider here. Although our
labelled sequent systems share characteristics with Fitting’s systems (recall from 7 that
the main representational difference is that in his systems the different properties of the
accessibility relation are expressed procedurally as side conditions on the application
of the same set of rules, while we use relational rules to extend a fixed base system),
the analysis of decidability relies on different mechanisms. We show that contraction
can be eliminated in ���� and bounded in ����, ����� and �����. Fitting avoids
explicit repetitions (contractions) of formulas of the form ��� in the antecedent
of a sequent (i.e., in his notation, formulas of the form  4�� in a tableau) by
having a �� rule that does not delete ��� but prevents its further use until a new �
accessible from  is introduced in the tableau; in other words, ��� is ‘asleep’ (i.e. is
not reused) until a new � accessible from  is created, at which point ��� ‘wakes
up’. Termination of this ‘asleep/wake-up’ decision procedure, which is used also in
other tableaux systems (see, e.g., [120]) is then argued by exploiting K önig’s Lemma.
Aside from this difference, this kind of procedure leads to implementations based on
loop-checking, as opposed to measure-decreasing rule applications (as in our work and
in the work based on specialized deduction systems we describe below).
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13.1.2 Specialized deduction systems

To get more refined space upper-bounds, non-classical logics are sometimes recast as
specialized deduction systems in which dynamic loop-checking is replaced by static
(a priori) termination checks, or in which rules are measure decreasing so that loops
cannot arise.

Cerrito and Cialdea Mayer. In [55], Cerrito and Cialdea Mayer show that loop-
checking can be avoided by establishing polynomial bounds on the length of branches
in unlabelled tableaux and sequent systems for �� and ��, and then show, similar to
what we did for our systems, that these bounds on the overall number of inferences
indirectly bound applications of contraction. In particular, they then exploit Mints’
translation of modal formulas into modal clauses [162] to give a contraction-free
sequent system for �� (radically different from the ones of Hudelmaier [137, 138],
which we discuss below).

Hudelmaier. Mints’ translation is used also in [138], where Hudelmaier gives the
best currently known space upper-bounds for �, � and ��. These bounds are iden-
tical to ours for �, and better than ours for � and �� (namely -�� �!<��-space and
-��� �!<��-space, respectively). While Hudelmaier also shows contraction elimina-
tion, his approach is otherwise radically different from ours and it is not clear how to
extend it to other logics.

Mirroring his previous work [136] on propositional intuitionistic logic for which
he also gave a -�� �!<��-space upper-bound, in [138] Hudelmaier considers first
unlabelled modal sequent systems in which cut is admissible and contraction is built
into the rules for the modal operator �. 1 Then, by introducing new modal operators
and rules, whose semantics is however quite unclear, he produces equivalent systems
in which all rules are measure decreasing. This, combined with the standard technique
we have also employed to minimize space requirements in navigating the search space,
allows him to establish his improved complexity bounds.

These improved bounds crucially depend on the assumption that formulas have
been translated into Mints’ clausal form [162]. We conjecture that if we employ the
same translation then we can also provide the same space bounds for � and �� (and
probably also reduce the bound for ��). To illustrate this, let us first summarize some
definitions and results of [162] and [137, 138].

Let a modal literal be a formula of the form #, � #, �#, or �� � #, where # is
a propositional variable, and a modal clause be a disjunction of modal literals or an
expression of the form�� where � is a modal clause. It is then possible to prove that
for any formula � there are a finite set of modal clauses :� and a new propositional
variable # such that � is ��-valid iff the formula

�
:� 
 # is ��-valid, where

�
:�

1Contractions of formulas not of the form �� can be easily shown to be eliminable in standard sequent
systems, as done by Zeman in [238], whose proof we have adapted and extended for our systems. Thus,
in standard systems, the contraction rule is ‘fully’ eliminated by building the necessary contractions of
formulas of the form �� into the modal rules, as we have shown in the previous chapters.
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is the conjunction of the elements of :�. Similar equivalence results hold for � and
other modal logics.

What is particularly interesting for comparing Hudelmaier’s method with ours is
the translation itself, i.e. the way in which the set of modal clauses is obtained. This
set is built by iterating two steps: (i) each subformula � of the original formula � that
is not a modal literal is replaced with a new propositional variable #�, and (ii) for each
such �, clauses are asserted that establish the equivalence of #� and �.

Consider, as an example, the formula

�� ���� � ��� (13.1)

where � is a propositional variable. Proving this formula in ���� or ����� requires
one application of ���, e.g.

� ��
��
refl

��
�� � ��
��
���
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.... �
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�

��
�� � ��	 �	���		� ��	 �	 
 �	
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 �	� �
��
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 �	�� ��	� ���	 
 �	� �
��

��	� � ��	 
 �	� �
�
�

� ��	 �� � ��	 
 �	�
�

� (13.2)

This is not surprising, as (13.1) is equivalent to �� � �� 
 ���, which we have
already shown to require contraction in ����, cf. the proof (6.1). It is also equivalent
to ����� ����, which similarly requires an application of ���, namely an initial
contraction of ���� ���� labelled with �.

Mints’ translation on the other hand produces a set of modal clauses that is equivalent
to (13.1) but does not require contraction. In Hudelmaier’s notation, cf. [137, Lemma 3]
or [138, Lemma 1], the translation transforms the sequent ��� ���� ���� to the
sequent � � #���# � �����#� ���� �, where # is a new propositional variable:
it is the variable replacing the formula �� � ��.2 In our notation, the translation
transforms the sequent

��� ���� ���� � (13.3)

2More generally, the above transformation follows by the equivalence of the sequents � 	�� ��� � and
�����	� � ������� 	�� �, where � and � are arbitrary modal formulas (in our example � is 	�
and� is ��) and � is a new propositional variable replacing the formula 	�� ���.
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to the sequent

��� �#� ����# � ��� ����#� ���� � � (13.4)

and proving this new sequent in ���� does not require contraction as is shown in the
proof
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where �� is
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The contraction that we required is thus ‘factored out’ by the translation that transforms
(13.3) into the equivalent (13.4). The crucial step there is the introduction of the new
propositional variable #, which allows us to ‘separate’ �� from ��. That is, while
in (13.3) the subformulas�� and �� both occur inside a positive boxed subformula
that must be contracted, in (13.4) the propositional variable # allows us to split them
into two different positive boxed subformulas that do not require contraction. More
formally, we prove the equivalence of the sequents (13.3) and (13.4) as follows.

For the left-to-right direction of the equivalence, let us assume that we have a proof
of (13.3). Then we obtain a proof the sequent (13.4) by an application of ��� with the
sequent

��� �#� ����# � ��� ����#� ���� � ��� ���� ���� �

which we can easily prove without contractions.
The right-to-left direction is slightly trickier. Given a proof of (13.4), we obtain the

desired proof of (13.3) by first substituting all occurrences of the variable # with the
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formula�� � �� it originally replaced, and then cutting the two provable formulas
������������ and ��������� � ���� from the resulting sequent. That
is:

)�
� �����	� � �� � 	���

)�
� �����	� � �� ���

���� 	�� ������ � ��� ������� 	��� �

���� 	�	� � ����
�����	� � �� ����
�����	� � �� � 	��� �

�

���� 	�	� � ����
�����	� ��� � 	��� �

���

���� 	�	� � ��� �
���

where �� and �� follow easily (without contractions), and the double inference line
labelled with 2 stands for the substitution of �� ��� for #.

We have thus made explicit the applications of ��� that were implicit in the trans-
lation. But showing the admissibility of ��� requires applications of contraction in
labelled as well as in unlabelled modal sequent systems (see, e.g., [238], and, to some
extent, also 6.3). Hence, this example shows how the translation into clausal form
allows us to trade the explicit contraction in (13.2) for the contractions implicit in
the applications of ��� , which are in turn implicitly required in the translation itself. 3

While this is only an example, we believe that the intuition underlying it has a general
character and could be turned into a more general, formal, argument. Pre-processing
formulas of ���� and ����� using Mints’ translation would then allow us to lower
our bounds for � and �� to -�� �!<��-space and -��� �!<��-space (or maybe even
-��� �!<��-space), respectively. Investigating this more formally, as well as the re-
lationship between Hudelmaier’s new modal operators and our contraction indices,
remains as future work.

Massacci. As we observed in 7, an approach based on a specialized deduction
system employing labels is that of Massacci [160, 120],who gives ‘single-step’ prefixed
tableaux systems for several propositional modal logics, in which the single-step nature
of the rules allows him to avoid an explicit characterization of the properties of the
underlying accessibility relation.

Massacci gives decision procedures for his systems that replace loop-checking with
a termination check based on bounding the length of prefixes and thus the length of
branches. (Thus, his method is similar to our adaptation of Ladner’s results to �����
and �����.) He then shows that provability in various modal logics, including the
ones we consider, is in PSPACE. He also investigates the problem of deciding logical
consequence, and shows that provability in ���, ���� and �� is co-NP-complete,
while we ruled out analysis of these logics by assuming the �-disjunction property.

3That the need for contraction depends on the form of the formula to be proved can also be seen by
transforming (13.3) to the sequent � ��� 	 ��� � � 	 ���, for which we can give a ����-proof
that does not apply �&#. This transformation follows by the equivalence of ������ � 	 ��� � and
������� 	�� �. Showing that we can ‘push’ a� inside a conjunction requires ��� like in the example
above, and thus, implicitly, contraction.
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Wallen. Other work on proof-theoretical decision procedures for modal and other
non-classical logics (related to that of Fitting) is that of Wallen [232], who uses matrix-
characterizations to investigate a range of logics, where duplication is achieved by
increasing a multiplicity index associated with the formulas. While Wallen stresses
the importance of ‘computationally sensitive’ characterizations of logics, he does not
explicitly address the complexity bounds associated with the systems he investigates.
Also, the central point of his work concerns identifying complementary terms that can
be used as the basis of a search procedure, rather than analyzing the structural rules.

More specifically, in our systems, ‘contraction’ means reusing the same principal
formula, while in the matrix-method the multiplicity of a formula � denotes the total
number of times � is used, as principal or parametric formula, in a proof. In other
words, the multiplicity of � denotes not only explicit contractions of �, but also
what we call implicit contractions, i.e. the duplication of the parametric formulas
in the premises of a multi-premise rule (e.g. 
 �). It is then interesting to study
how bounds on contractions relate to bounds on multiplicities. For example, in [54]
Cerrito and Cialdea Mayer exploit their previous results on tableaux and sequent
systems [55], which we discussed above, to perform precisely this kind of analysis for
the propositional modal logics �, �, �� and ��.

13.1.3 Empirical performance analysis

Much effort has been recently devoted to the empirical performance analysis of the
several automated theorem provers that have been devised for (or specialized to) non-
classical logics, and, in particular, multi-modal and description logics. Examples of
such provers are documented (together with pointers to related publications and world-
wide-web pages and interfaces) in the comparison sections in the latest proceedings
of the conference on ‘Automated Reasoning with Analytic Tableaux and Related
Methods’ (‘TABLEAUX’ [72, 165]). For instance, FaCT and DLP [134, 135] are two
optimized provers for descriptions logics, KSAT and *SAT [110, 112, 113, 210] are
provers for description, modal and temporal logics, based on extensions of the Davis-
Putnam procedure, KRIS [11] is a tableaux-based prover for knowledge representation,
MSPASS [101, 144, 143, 206, 207] is an enhancement of the first-order theorem prover
SPASS [236] with a translator of formulas of modal or description logics into first-order
logic with equality, and the Logics Workbench LWB [127, 128, 130] is a sequent-based
prover for a number of propositional non-classical logics. As future work, we plan to
increase the level of automation of our Isabelle implementations in order to evaluate,
in the light of the above analyses, the practical efficiency of our decision procedures. 4

4As we discussed in �7, in the approaches based on semantic embedding the emphasis is mostly on automated
although not necessarily ‘natural’ theorem proving. Indeed, as shown in the publications referenced above,
the optimized functional translation, combined with the first-order theorem prover SPASS, allows the use of
resolution as an efficient decision procedure for several (multi-)modal logics. Investigating the relationships
between our bounds on contractions and the bounds of the depth of terms in the optimized functional
translation remains also as future work.
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13.1.4 Decidability and complexity of �� and other relevance logics

In [231] we apply our proof-theoreticalmethod to bound applications of the contraction
and monotony rules of ��	��, see Figure 3.2 and 6.2, and thus give a -�� �!<��
upper-bound on the space complexity of the basic positive relevance logic 	 �.

This bound is new: to our knowledge, no similar investigations have been carried
out, and, in particular, we are not aware of any subrecursive bounds for the basic
relevance logic 	 or any of its fragments. In fact, the analysis of decidability and
complexity of relevance logics is a subtle issue (especially in comparison with other
non-classical logics such as modal logics), and positive results have been presented
alongside open problems and several negative results, including the undecidability of
the principal relevance logics and�; see [1, 2, 40, 175, 196, 198, 201, 224, 225, 226]
and, in particular, [195], which also contains a detailed summary of work in this area.

Like for modal and other non-classical logics, the decidability of relevance logics is
often established semantically by showing that they possess the finite model property.
Although effective to establish decidability, this often yields poor complexity bounds.
Moreover, the standard proofs of the finite model property fail for several relevance
logics, although not for 	 and its fragments.

Proof-theoretical decision procedures have also been given for (deduction systems
for) 	 and other relevance logics, and, although we are not aware of any analysis of
the complexity of these procedures, some of this work is close to ours, at least in spirit.
We now briefly discuss two of these approaches.

In [116], Gochet, Gribomont and Rossetto extend the matrix-method to	� and give
a decision procedure that yields finite models for satisfiable formulas. However, as we
already observed above, the matrix-method investigates the need for duplication, by
means of explicit and implicit contractions, of indexed formulas, rather than explicitly
bounding applications of the contraction rules as we do here.

In [195], Restall gives display calculi for a wide range of relevance and other
substructural logics, and investigates their decidability by a proof-theoretical analysis.
Similar to ours, this analysis focuses on controlling applications of the contraction
rules. However, Restall must also control applications of other rules, which are
specific to display calculi, such as the intensional display rules. (A similar analysis
is required by the Gentzen-style systems of [1, 40, 108], which are also based on the
introduction of new intensional operators.) While the display method establishes the
decidability of several substructural logics, including the logic ��, which is a simple
extension of 	, no complexity results are given. As we remarked in 7, investigation
of the connections and complementary aspects of the display method and ours remains
as future work.

We plan to use our proof-theoretical method to investigate the complexity of other
relevance logics, and thereby try to solve some of the decidability problems that are
still open in this area. A first example includes extending our analysis to the basic
relevance logic 	, which we obtain by extending	� with negation. Since the addition
of negation raises a number of interesting questions, we conclude this chapter by briefly
remarking on this.

To begin with, since there are different ways of dealing with negation in relevance
logics, e.g. [74, 78, 99, 196, 197], we must first choose the one that best suits our
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needs. For example, following 3 and 6.2, we could present 	 in terms of the cut-free
labelled sequent system that we obtain by extending ��	�� with the logical rules for
negation

��� � ��� ����

��#����� � ��
#� and

�������� � ��

��� � ��� ��#�
# �

and with the relational rules

� � 
 � � �
� � 
 � �� ��

anti � � 
 � � ���
��� and � 
 � ��� �

��� �

Or, alternatively, we could follow Priest and Sylvan [188] and Restall [192], and
develop a cut-free labelled sequent system for 	 in terms of the reduced semantics
they propose. This would, for example, require us to distinguish two pairs of logical
rules for relevant implication, depending on whether the lwff ��� � � they introduce
has label � �� , or � � ,. That is:

� � �� + % ��� � ��� +�� %������ � ��

���� ����� � ��
�� (� �� ,)

+������� � � + % � ��� %��

��� � ��� ���� �
� (� �� ,)

��� � ��� +�� +������ � ��

,��� ����� � ��
���

+������ � ��� +��

��� � ��� ,��� �
��

where, in�, the labels + and % are distinct and do not occur in ��� � � �� ���� �,
while �� has the side condition that + does not occur in ��� � � �� ,��� �.

This distinction between � �� , and � � , in ��� � � has the effect of eliminating
rwffs of the form � , + %, and thus also applications of iden (but not necessarily
applications of other relational rules). This is an advantage, as it simplifies the solution
of relational queries � � �� + %. It is however also a disadvantage, as it does not
allow us anymore to define the partial order & in terms or � and the actual world ,,
but requires us to introduce& explicitly, and reason explicitly about its properties. For
example, monl becomes

� � � & + ��� � ��� ���

��� � ��� +��
monl

and & is formalized by the rules

� � & � and
� � � & + � � + & %

� � � & %
�

When applying our method to extensions of	�we must thus examine these different
possibilities in detail, as different choices may lead to different results.



14 CONCLUSIONS AND FURTHER
RESEARCH

In this final chapter we summarize our main contributions and results, and discuss
directions of future research.

Methodologically, the contribution of this book is the formalization of a framework
for presenting families of non-classical logics in a uniform and modular way as labelled
deduction systems. Moreover, we have shown that our systems lend themselves well
to implementation in a Logical Framework such as Isabelle.

Technically, the contributions are as follows. We have given parameterized proofs of
soundness and completeness of our labelled deduction systems with respect to the cor-
responding Kripke-style semantics, and of faithfulness and adequacy of their Isabelle
encodings. Furthermore, we have analyzed structural and substructural properties of
our systems, in particular normalization of derivations, the subformula property, and
bounded contraction, and we have shown how we can exploit them to restrict proof
search. As examples, we have given PSPACE decision procedures for the propositional
modal logics �, �, �� and ��, and we have discussed applications of our method to
other non-classical logics such as the basic positive relevance logic 	�. Finally, we
have exploited our substructural analysis to give justifications and partial refinements
of the rules of standard sequent systems.

One of the main characteristics of our labelled presentations of non-classical logics
is the identification of fixed bases from which we generate systems for families of
logics by extension with separate theories formalizing the properties of the relations
and/or of the domains of quantification in the correspondingsemantics. This separation
is of crucial importance. It allows us not only to prove metatheoretical results in a

263
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parameterized way, but also, and most importantly, to delineate the advantages and
limitations of our systems. Specifically, we have shown that when the relational
and domain theories are comprised of Horn rules, then our systems consist of the
minimal deduction machinery necessary to present the corresponding logics, and allow
separated derivations possessing a well-defined structure: derivations normalize, and
normal derivations satisfy a subformula property. However, when we employ first-
order theories to capture even larger families of logics, this separation is lost, and our
approach does not seem to offer any advantages with respect to traditional semantic
embeddings. Our investigation of tradeoffs in possible formalizations of deduction
systems for non-classical logics can be developed further in several directions, and as
a first step we plan to investigate in more detail the paraconsistent systems that we
obtain when we restrict falsum to a local falsum.

Throughout the chapters we have pointed out a number of other directions for future
research, and we now focus on four of the most interesting and promising ones.

First, we plan to extend our substructural analysis in order to investigate decidability
and complexity of other non-classical logics; our work on 	� is merely a first step
in this direction. We also hope that, like for the example modal logics we have
considered, this extended analysis will provide further insights in the understanding of
other non-classical deduction systems that have been proposed in the literature.

Second, in order to present other logics than those considered here, we plan to
extend our systems with other non-classical logical operators, such as operators for
common and distributed knowledge and belief [82, 123] or ‘graded modalities’ [173].
This should be a straightforward task for several operators and logics. For example, as
we observed in 13.1, common multi-modal logics are just special cases of the logics
we presented in 3. But we also believe that there are logics, or combinations thereof,
whose presentations in our framework will require complex theories (labelling algebras,
in particular), thus endangering the naturalness and simplicity of our approach. This
is in fact connected to the main ‘problem’ with our approach, and, similarly, with
other approaches based on labelling, prefixing or embedding, namely the commitment
to a Kripke-style (or some similar algebraic) semantics for the logics we want to
present. While labels match our intuitions for a number of commonly considered
non-classical logics, they do not do so for others. In the case of provability logic
#� [36], for example, labels would closely match the semantics, which, however,
does not fully accord with intuition; a Hilbert-style axiomatization, on the other hand,
makes it clear that the Löb axiom is the central fact. In other words, there are logics
for which a Hilbert-style presentation, although difficult to use, gives insights into
intended applications that a labelled presentation does not. This establishes another,
and, probably, the most important limitation of our approach: our labelled deduction
framework is not a panacea for all problems that arise in connection with non-classical
reasoning, since in some cases there are tradeoffs or even theoretical and practical
limitations that must be taken into account.

Third, and closely related to multi-modal logics, we plan to use our labelled deduc-
tion systems to investigate combinations (and products) of logics. The recent research
on fibring, a general methodology for combining logics proposed by Gabbay [91] and
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others [212, 237], and which can be based on labelled systems, e.g. [25, 64, 122], will
provide a good starting point for our future work in this direction.

Finally, we plan to increase the level of automation of our Isabelle implementations
in order to compare the practical efficiency of our decision procedures with existing
theorem provers, and, most importantly, to consider the ‘real’ applications of non-
classical logics mentioned in 1.
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[49] M. Castilho, L. Fariñas del Cerro, O. Gasquet, and A. Herzig. Modal tableaux
with propagation rules and structural rules. Fundamenta Informaticae, 32:281–
297, 1997.

[50] M. Castilho, O. Gasquet, and A. Herzig. Modal tableaux for reasoning about
actions and plans. In S. Steel and R. Alami, editors, Proceedings of ECP’97,
LNAI 1348, pages 104–116. Springer, Berlin, 1997.

[51] L. Catach. Normal multimodal logic. In R. G. Smith and T. M. Mitchell, editors,
Proceedings of AAAI’88, pages 491–495. Morgan Kaufmann, San Francisco,
CA, 1988.

[52] L. Catach. TABLEAUX: A general theorem prover for modal logics. Journal
of Automated Reasoning, 7(4):489–510, 1991.

[53] C. Cerrato. Modal sequents. In Wansing [234], pages 141–166.

[54] S. Cerrito and M. Cialdea Mayer. Hintikka multiplicities in matrix decision
methods for some propositional modal logics. In Galmiche [100], pages 138–
152.

[55] S. Cerrito and M. Cialdea Mayer. A polynomial translation of �� into � and
contraction-free tableaux for ��. Logic Journal of the IGPL, 5(2):287–300,
1997.

[56] S. Cerrito and M. Cialdea Mayer. Labelled tableaux for propositional linear
time logic over finite frames. In Basin et al. [17].

[57] A. Chagrov and M. Zakharyaschev. Modal Logic. Clarendon Press, Oxford,
UK, 1997.

[58] B. F. Chellas. Modal Logic: an introduction. Cambridge University Press, New
York, NY, 1980.

[59] E. Clarke and D. Kozen, editors. Logics of programs. LNCS 164. Springer,
Berlin, 1984.



REFERENCES 271

[60] B. Copeland. On when a semantics is not a semantics : Some reasons for dislik-
ing the Routley-Meyer semantics for relevance logics. Journal of Philosophical
Logic, 8:399–413, 1979.

[61] G. Corsi and S. Ghilardi. Semantical aspects of quantified modal logic. In
C. Bicchieri and M. L. Dalla Chiara, editors, Knowledge, Belief and Strategic
Action, pages 167–195. Cambridge University Press, Cambridge, UK, 1992.

[62] M. D’Agostino. Are tableaux an improvement on truth-tables? (Cut-free proofs
and bivalence). Journal of Logic, Language, and Information, 1:235–252, 1992.

[63] M. D’Agostino and D. M. Gabbay. A generalization of analytic deduction
via labelled deductive systems. Part I : basic substructural logics. Journal of
Automated Reasoning, 13:243–281, 1994.

[64] M. D’Agostino and D. M. Gabbay. Fibred tableaux for multi-implication logics.
In Miglioli et al. [161], pages 16–35.

[65] M. D’Agostino, D. M. Gabbay, and K. Broda. Tableau methods for substructural
logics. In D’Agostino et al. [66], pages 397–467.

[66] M. D’Agostino, D. M. Gabbay, R. Hähnle, and J. Posegga, editors. Handbook
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